1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 * Copyright (C) 2022 Christoph Hellwig. 5 */ 6 7 #include <linux/bio.h> 8 #include "bio.h" 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "raid56.h" 12 #include "async-thread.h" 13 #include "dev-replace.h" 14 #include "zoned.h" 15 #include "file-item.h" 16 #include "raid-stripe-tree.h" 17 18 static struct bio_set btrfs_bioset; 19 static struct bio_set btrfs_clone_bioset; 20 static struct bio_set btrfs_repair_bioset; 21 static mempool_t btrfs_failed_bio_pool; 22 23 struct btrfs_failed_bio { 24 struct btrfs_bio *bbio; 25 int num_copies; 26 atomic_t repair_count; 27 }; 28 29 /* Is this a data path I/O that needs storage layer checksum and repair? */ 30 static inline bool is_data_bbio(struct btrfs_bio *bbio) 31 { 32 return bbio->inode && is_data_inode(bbio->inode); 33 } 34 35 static bool bbio_has_ordered_extent(struct btrfs_bio *bbio) 36 { 37 return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE; 38 } 39 40 /* 41 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it 42 * is already initialized by the block layer. 43 */ 44 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info, 45 btrfs_bio_end_io_t end_io, void *private) 46 { 47 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 48 bbio->fs_info = fs_info; 49 bbio->end_io = end_io; 50 bbio->private = private; 51 atomic_set(&bbio->pending_ios, 1); 52 } 53 54 /* 55 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for 56 * btrfs, and is used for all I/O submitted through btrfs_submit_bio. 57 * 58 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by 59 * a mempool. 60 */ 61 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf, 62 struct btrfs_fs_info *fs_info, 63 btrfs_bio_end_io_t end_io, void *private) 64 { 65 struct btrfs_bio *bbio; 66 struct bio *bio; 67 68 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset); 69 bbio = btrfs_bio(bio); 70 btrfs_bio_init(bbio, fs_info, end_io, private); 71 return bbio; 72 } 73 74 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info, 75 struct btrfs_bio *orig_bbio, 76 u64 map_length, bool use_append) 77 { 78 struct btrfs_bio *bbio; 79 struct bio *bio; 80 81 if (use_append) { 82 unsigned int nr_segs; 83 84 bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs, 85 &btrfs_clone_bioset, map_length); 86 } else { 87 bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, 88 GFP_NOFS, &btrfs_clone_bioset); 89 } 90 bbio = btrfs_bio(bio); 91 btrfs_bio_init(bbio, fs_info, NULL, orig_bbio); 92 bbio->inode = orig_bbio->inode; 93 bbio->file_offset = orig_bbio->file_offset; 94 orig_bbio->file_offset += map_length; 95 if (bbio_has_ordered_extent(bbio)) { 96 refcount_inc(&orig_bbio->ordered->refs); 97 bbio->ordered = orig_bbio->ordered; 98 } 99 atomic_inc(&orig_bbio->pending_ios); 100 return bbio; 101 } 102 103 /* Free a bio that was never submitted to the underlying device. */ 104 static void btrfs_cleanup_bio(struct btrfs_bio *bbio) 105 { 106 if (bbio_has_ordered_extent(bbio)) 107 btrfs_put_ordered_extent(bbio->ordered); 108 bio_put(&bbio->bio); 109 } 110 111 static void __btrfs_bio_end_io(struct btrfs_bio *bbio) 112 { 113 if (bbio_has_ordered_extent(bbio)) { 114 struct btrfs_ordered_extent *ordered = bbio->ordered; 115 116 bbio->end_io(bbio); 117 btrfs_put_ordered_extent(ordered); 118 } else { 119 bbio->end_io(bbio); 120 } 121 } 122 123 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status) 124 { 125 bbio->bio.bi_status = status; 126 __btrfs_bio_end_io(bbio); 127 } 128 129 static void btrfs_orig_write_end_io(struct bio *bio); 130 131 static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio, 132 struct btrfs_bio *orig_bbio) 133 { 134 /* 135 * For writes we tolerate nr_mirrors - 1 write failures, so we can't 136 * just blindly propagate a write failure here. Instead increment the 137 * error count in the original I/O context so that it is guaranteed to 138 * be larger than the error tolerance. 139 */ 140 if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) { 141 struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private; 142 struct btrfs_io_context *orig_bioc = orig_stripe->bioc; 143 144 atomic_add(orig_bioc->max_errors, &orig_bioc->error); 145 } else { 146 orig_bbio->bio.bi_status = bbio->bio.bi_status; 147 } 148 } 149 150 static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio) 151 { 152 if (bbio->bio.bi_pool == &btrfs_clone_bioset) { 153 struct btrfs_bio *orig_bbio = bbio->private; 154 155 if (bbio->bio.bi_status) 156 btrfs_bbio_propagate_error(bbio, orig_bbio); 157 btrfs_cleanup_bio(bbio); 158 bbio = orig_bbio; 159 } 160 161 if (atomic_dec_and_test(&bbio->pending_ios)) 162 __btrfs_bio_end_io(bbio); 163 } 164 165 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 166 { 167 if (cur_mirror == fbio->num_copies) 168 return cur_mirror + 1 - fbio->num_copies; 169 return cur_mirror + 1; 170 } 171 172 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 173 { 174 if (cur_mirror == 1) 175 return fbio->num_copies; 176 return cur_mirror - 1; 177 } 178 179 static void btrfs_repair_done(struct btrfs_failed_bio *fbio) 180 { 181 if (atomic_dec_and_test(&fbio->repair_count)) { 182 btrfs_orig_bbio_end_io(fbio->bbio); 183 mempool_free(fbio, &btrfs_failed_bio_pool); 184 } 185 } 186 187 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio, 188 struct btrfs_device *dev) 189 { 190 struct btrfs_failed_bio *fbio = repair_bbio->private; 191 struct btrfs_inode *inode = repair_bbio->inode; 192 struct btrfs_fs_info *fs_info = inode->root->fs_info; 193 struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio); 194 int mirror = repair_bbio->mirror_num; 195 196 /* 197 * We can only trigger this for data bio, which doesn't support larger 198 * folios yet. 199 */ 200 ASSERT(folio_order(page_folio(bv->bv_page)) == 0); 201 202 if (repair_bbio->bio.bi_status || 203 !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) { 204 bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ); 205 repair_bbio->bio.bi_iter = repair_bbio->saved_iter; 206 207 mirror = next_repair_mirror(fbio, mirror); 208 if (mirror == fbio->bbio->mirror_num) { 209 btrfs_debug(fs_info, "no mirror left"); 210 fbio->bbio->bio.bi_status = BLK_STS_IOERR; 211 goto done; 212 } 213 214 btrfs_submit_bio(repair_bbio, mirror); 215 return; 216 } 217 218 do { 219 mirror = prev_repair_mirror(fbio, mirror); 220 btrfs_repair_io_failure(fs_info, btrfs_ino(inode), 221 repair_bbio->file_offset, fs_info->sectorsize, 222 repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT, 223 page_folio(bv->bv_page), bv->bv_offset, mirror); 224 } while (mirror != fbio->bbio->mirror_num); 225 226 done: 227 btrfs_repair_done(fbio); 228 bio_put(&repair_bbio->bio); 229 } 230 231 /* 232 * Try to kick off a repair read to the next available mirror for a bad sector. 233 * 234 * This primarily tries to recover good data to serve the actual read request, 235 * but also tries to write the good data back to the bad mirror(s) when a 236 * read succeeded to restore the redundancy. 237 */ 238 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio, 239 u32 bio_offset, 240 struct bio_vec *bv, 241 struct btrfs_failed_bio *fbio) 242 { 243 struct btrfs_inode *inode = failed_bbio->inode; 244 struct btrfs_fs_info *fs_info = inode->root->fs_info; 245 const u32 sectorsize = fs_info->sectorsize; 246 const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT); 247 struct btrfs_bio *repair_bbio; 248 struct bio *repair_bio; 249 int num_copies; 250 int mirror; 251 252 btrfs_debug(fs_info, "repair read error: read error at %llu", 253 failed_bbio->file_offset + bio_offset); 254 255 num_copies = btrfs_num_copies(fs_info, logical, sectorsize); 256 if (num_copies == 1) { 257 btrfs_debug(fs_info, "no copy to repair from"); 258 failed_bbio->bio.bi_status = BLK_STS_IOERR; 259 return fbio; 260 } 261 262 if (!fbio) { 263 fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS); 264 fbio->bbio = failed_bbio; 265 fbio->num_copies = num_copies; 266 atomic_set(&fbio->repair_count, 1); 267 } 268 269 atomic_inc(&fbio->repair_count); 270 271 repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, 272 &btrfs_repair_bioset); 273 repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector; 274 __bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset); 275 276 repair_bbio = btrfs_bio(repair_bio); 277 btrfs_bio_init(repair_bbio, fs_info, NULL, fbio); 278 repair_bbio->inode = failed_bbio->inode; 279 repair_bbio->file_offset = failed_bbio->file_offset + bio_offset; 280 281 mirror = next_repair_mirror(fbio, failed_bbio->mirror_num); 282 btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror); 283 btrfs_submit_bio(repair_bbio, mirror); 284 return fbio; 285 } 286 287 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev) 288 { 289 struct btrfs_inode *inode = bbio->inode; 290 struct btrfs_fs_info *fs_info = inode->root->fs_info; 291 u32 sectorsize = fs_info->sectorsize; 292 struct bvec_iter *iter = &bbio->saved_iter; 293 blk_status_t status = bbio->bio.bi_status; 294 struct btrfs_failed_bio *fbio = NULL; 295 u32 offset = 0; 296 297 /* Read-repair requires the inode field to be set by the submitter. */ 298 ASSERT(inode); 299 300 /* 301 * Hand off repair bios to the repair code as there is no upper level 302 * submitter for them. 303 */ 304 if (bbio->bio.bi_pool == &btrfs_repair_bioset) { 305 btrfs_end_repair_bio(bbio, dev); 306 return; 307 } 308 309 /* Clear the I/O error. A failed repair will reset it. */ 310 bbio->bio.bi_status = BLK_STS_OK; 311 312 while (iter->bi_size) { 313 struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter); 314 315 bv.bv_len = min(bv.bv_len, sectorsize); 316 if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv)) 317 fbio = repair_one_sector(bbio, offset, &bv, fbio); 318 319 bio_advance_iter_single(&bbio->bio, iter, sectorsize); 320 offset += sectorsize; 321 } 322 323 if (bbio->csum != bbio->csum_inline) 324 kfree(bbio->csum); 325 326 if (fbio) 327 btrfs_repair_done(fbio); 328 else 329 btrfs_orig_bbio_end_io(bbio); 330 } 331 332 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev) 333 { 334 if (!dev || !dev->bdev) 335 return; 336 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET) 337 return; 338 339 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 340 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 341 else if (!(bio->bi_opf & REQ_RAHEAD)) 342 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 343 if (bio->bi_opf & REQ_PREFLUSH) 344 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); 345 } 346 347 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info, 348 struct bio *bio) 349 { 350 if (bio->bi_opf & REQ_META) 351 return fs_info->endio_meta_workers; 352 return fs_info->endio_workers; 353 } 354 355 static void btrfs_end_bio_work(struct work_struct *work) 356 { 357 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work); 358 359 /* Metadata reads are checked and repaired by the submitter. */ 360 if (is_data_bbio(bbio)) 361 btrfs_check_read_bio(bbio, bbio->bio.bi_private); 362 else 363 btrfs_orig_bbio_end_io(bbio); 364 } 365 366 static void btrfs_simple_end_io(struct bio *bio) 367 { 368 struct btrfs_bio *bbio = btrfs_bio(bio); 369 struct btrfs_device *dev = bio->bi_private; 370 struct btrfs_fs_info *fs_info = bbio->fs_info; 371 372 btrfs_bio_counter_dec(fs_info); 373 374 if (bio->bi_status) 375 btrfs_log_dev_io_error(bio, dev); 376 377 if (bio_op(bio) == REQ_OP_READ) { 378 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work); 379 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work); 380 } else { 381 if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status) 382 btrfs_record_physical_zoned(bbio); 383 btrfs_orig_bbio_end_io(bbio); 384 } 385 } 386 387 static void btrfs_raid56_end_io(struct bio *bio) 388 { 389 struct btrfs_io_context *bioc = bio->bi_private; 390 struct btrfs_bio *bbio = btrfs_bio(bio); 391 392 btrfs_bio_counter_dec(bioc->fs_info); 393 bbio->mirror_num = bioc->mirror_num; 394 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) 395 btrfs_check_read_bio(bbio, NULL); 396 else 397 btrfs_orig_bbio_end_io(bbio); 398 399 btrfs_put_bioc(bioc); 400 } 401 402 static void btrfs_orig_write_end_io(struct bio *bio) 403 { 404 struct btrfs_io_stripe *stripe = bio->bi_private; 405 struct btrfs_io_context *bioc = stripe->bioc; 406 struct btrfs_bio *bbio = btrfs_bio(bio); 407 408 btrfs_bio_counter_dec(bioc->fs_info); 409 410 if (bio->bi_status) { 411 atomic_inc(&bioc->error); 412 btrfs_log_dev_io_error(bio, stripe->dev); 413 } 414 415 /* 416 * Only send an error to the higher layers if it is beyond the tolerance 417 * threshold. 418 */ 419 if (atomic_read(&bioc->error) > bioc->max_errors) 420 bio->bi_status = BLK_STS_IOERR; 421 else 422 bio->bi_status = BLK_STS_OK; 423 424 if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status) 425 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 426 427 btrfs_orig_bbio_end_io(bbio); 428 btrfs_put_bioc(bioc); 429 } 430 431 static void btrfs_clone_write_end_io(struct bio *bio) 432 { 433 struct btrfs_io_stripe *stripe = bio->bi_private; 434 435 if (bio->bi_status) { 436 atomic_inc(&stripe->bioc->error); 437 btrfs_log_dev_io_error(bio, stripe->dev); 438 } else if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 439 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 440 } 441 442 /* Pass on control to the original bio this one was cloned from */ 443 bio_endio(stripe->bioc->orig_bio); 444 bio_put(bio); 445 } 446 447 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio) 448 { 449 if (!dev || !dev->bdev || 450 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 451 (btrfs_op(bio) == BTRFS_MAP_WRITE && 452 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 453 bio_io_error(bio); 454 return; 455 } 456 457 bio_set_dev(bio, dev->bdev); 458 459 /* 460 * For zone append writing, bi_sector must point the beginning of the 461 * zone 462 */ 463 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 464 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 465 u64 zone_start = round_down(physical, dev->fs_info->zone_size); 466 467 ASSERT(btrfs_dev_is_sequential(dev, physical)); 468 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 469 } 470 btrfs_debug_in_rcu(dev->fs_info, 471 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 472 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 473 (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev), 474 dev->devid, bio->bi_iter.bi_size); 475 476 if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT) 477 blkcg_punt_bio_submit(bio); 478 else 479 submit_bio(bio); 480 } 481 482 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr) 483 { 484 struct bio *orig_bio = bioc->orig_bio, *bio; 485 486 ASSERT(bio_op(orig_bio) != REQ_OP_READ); 487 488 /* Reuse the bio embedded into the btrfs_bio for the last mirror */ 489 if (dev_nr == bioc->num_stripes - 1) { 490 bio = orig_bio; 491 bio->bi_end_io = btrfs_orig_write_end_io; 492 } else { 493 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set); 494 bio_inc_remaining(orig_bio); 495 bio->bi_end_io = btrfs_clone_write_end_io; 496 } 497 498 bio->bi_private = &bioc->stripes[dev_nr]; 499 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT; 500 bioc->stripes[dev_nr].bioc = bioc; 501 bioc->size = bio->bi_iter.bi_size; 502 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio); 503 } 504 505 static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc, 506 struct btrfs_io_stripe *smap, int mirror_num) 507 { 508 if (!bioc) { 509 /* Single mirror read/write fast path. */ 510 btrfs_bio(bio)->mirror_num = mirror_num; 511 bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT; 512 if (bio_op(bio) != REQ_OP_READ) 513 btrfs_bio(bio)->orig_physical = smap->physical; 514 bio->bi_private = smap->dev; 515 bio->bi_end_io = btrfs_simple_end_io; 516 btrfs_submit_dev_bio(smap->dev, bio); 517 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 518 /* Parity RAID write or read recovery. */ 519 bio->bi_private = bioc; 520 bio->bi_end_io = btrfs_raid56_end_io; 521 if (bio_op(bio) == REQ_OP_READ) 522 raid56_parity_recover(bio, bioc, mirror_num); 523 else 524 raid56_parity_write(bio, bioc); 525 } else { 526 /* Write to multiple mirrors. */ 527 int total_devs = bioc->num_stripes; 528 529 bioc->orig_bio = bio; 530 for (int dev_nr = 0; dev_nr < total_devs; dev_nr++) 531 btrfs_submit_mirrored_bio(bioc, dev_nr); 532 } 533 } 534 535 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio) 536 { 537 if (bbio->bio.bi_opf & REQ_META) 538 return btree_csum_one_bio(bbio); 539 return btrfs_csum_one_bio(bbio); 540 } 541 542 /* 543 * Async submit bios are used to offload expensive checksumming onto the worker 544 * threads. 545 */ 546 struct async_submit_bio { 547 struct btrfs_bio *bbio; 548 struct btrfs_io_context *bioc; 549 struct btrfs_io_stripe smap; 550 int mirror_num; 551 struct btrfs_work work; 552 }; 553 554 /* 555 * In order to insert checksums into the metadata in large chunks, we wait 556 * until bio submission time. All the pages in the bio are checksummed and 557 * sums are attached onto the ordered extent record. 558 * 559 * At IO completion time the csums attached on the ordered extent record are 560 * inserted into the btree. 561 */ 562 static void run_one_async_start(struct btrfs_work *work) 563 { 564 struct async_submit_bio *async = 565 container_of(work, struct async_submit_bio, work); 566 blk_status_t ret; 567 568 ret = btrfs_bio_csum(async->bbio); 569 if (ret) 570 async->bbio->bio.bi_status = ret; 571 } 572 573 /* 574 * In order to insert checksums into the metadata in large chunks, we wait 575 * until bio submission time. All the pages in the bio are checksummed and 576 * sums are attached onto the ordered extent record. 577 * 578 * At IO completion time the csums attached on the ordered extent record are 579 * inserted into the tree. 580 * 581 * If called with @do_free == true, then it will free the work struct. 582 */ 583 static void run_one_async_done(struct btrfs_work *work, bool do_free) 584 { 585 struct async_submit_bio *async = 586 container_of(work, struct async_submit_bio, work); 587 struct bio *bio = &async->bbio->bio; 588 589 if (do_free) { 590 kfree(container_of(work, struct async_submit_bio, work)); 591 return; 592 } 593 594 /* If an error occurred we just want to clean up the bio and move on. */ 595 if (bio->bi_status) { 596 btrfs_orig_bbio_end_io(async->bbio); 597 return; 598 } 599 600 /* 601 * All of the bios that pass through here are from async helpers. 602 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's 603 * context. This changes nothing when cgroups aren't in use. 604 */ 605 bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT; 606 __btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num); 607 } 608 609 static bool should_async_write(struct btrfs_bio *bbio) 610 { 611 bool auto_csum_mode = true; 612 613 #ifdef CONFIG_BTRFS_DEBUG 614 struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices; 615 enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode); 616 617 if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF) 618 return false; 619 620 auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO); 621 #endif 622 623 /* Submit synchronously if the checksum implementation is fast. */ 624 if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags)) 625 return false; 626 627 /* 628 * Try to defer the submission to a workqueue to parallelize the 629 * checksum calculation unless the I/O is issued synchronously. 630 */ 631 if (op_is_sync(bbio->bio.bi_opf)) 632 return false; 633 634 /* Zoned devices require I/O to be submitted in order. */ 635 if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info)) 636 return false; 637 638 return true; 639 } 640 641 /* 642 * Submit bio to an async queue. 643 * 644 * Return true if the work has been successfully submitted, else false. 645 */ 646 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio, 647 struct btrfs_io_context *bioc, 648 struct btrfs_io_stripe *smap, int mirror_num) 649 { 650 struct btrfs_fs_info *fs_info = bbio->fs_info; 651 struct async_submit_bio *async; 652 653 async = kmalloc(sizeof(*async), GFP_NOFS); 654 if (!async) 655 return false; 656 657 async->bbio = bbio; 658 async->bioc = bioc; 659 async->smap = *smap; 660 async->mirror_num = mirror_num; 661 662 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done); 663 btrfs_queue_work(fs_info->workers, &async->work); 664 return true; 665 } 666 667 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num) 668 { 669 struct btrfs_inode *inode = bbio->inode; 670 struct btrfs_fs_info *fs_info = bbio->fs_info; 671 struct bio *bio = &bbio->bio; 672 u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 673 u64 length = bio->bi_iter.bi_size; 674 u64 map_length = length; 675 bool use_append = btrfs_use_zone_append(bbio); 676 struct btrfs_io_context *bioc = NULL; 677 struct btrfs_io_stripe smap; 678 blk_status_t ret; 679 int error; 680 681 smap.is_scrub = !bbio->inode; 682 683 btrfs_bio_counter_inc_blocked(fs_info); 684 error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 685 &bioc, &smap, &mirror_num); 686 if (error) { 687 ret = errno_to_blk_status(error); 688 goto fail; 689 } 690 691 map_length = min(map_length, length); 692 if (use_append) 693 map_length = min(map_length, fs_info->max_zone_append_size); 694 695 if (map_length < length) { 696 bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append); 697 bio = &bbio->bio; 698 } 699 700 /* 701 * Save the iter for the end_io handler and preload the checksums for 702 * data reads. 703 */ 704 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) { 705 bbio->saved_iter = bio->bi_iter; 706 ret = btrfs_lookup_bio_sums(bbio); 707 if (ret) 708 goto fail; 709 } 710 711 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 712 if (use_append) { 713 bio->bi_opf &= ~REQ_OP_WRITE; 714 bio->bi_opf |= REQ_OP_ZONE_APPEND; 715 } 716 717 if (is_data_bbio(bbio) && bioc && 718 btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) { 719 /* 720 * No locking for the list update, as we only add to 721 * the list in the I/O submission path, and list 722 * iteration only happens in the completion path, which 723 * can't happen until after the last submission. 724 */ 725 btrfs_get_bioc(bioc); 726 list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list); 727 } 728 729 /* 730 * Csum items for reloc roots have already been cloned at this 731 * point, so they are handled as part of the no-checksum case. 732 */ 733 if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) && 734 !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) && 735 !btrfs_is_data_reloc_root(inode->root)) { 736 if (should_async_write(bbio) && 737 btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num)) 738 goto done; 739 740 ret = btrfs_bio_csum(bbio); 741 if (ret) 742 goto fail; 743 } else if (use_append || 744 (btrfs_is_zoned(fs_info) && inode && 745 inode->flags & BTRFS_INODE_NODATASUM)) { 746 ret = btrfs_alloc_dummy_sum(bbio); 747 if (ret) 748 goto fail; 749 } 750 } 751 752 __btrfs_submit_bio(bio, bioc, &smap, mirror_num); 753 done: 754 return map_length == length; 755 756 fail: 757 btrfs_bio_counter_dec(fs_info); 758 /* 759 * We have split the original bbio, now we have to end both the current 760 * @bbio and remaining one, as the remaining one will never be submitted. 761 */ 762 if (map_length < length) { 763 struct btrfs_bio *remaining = bbio->private; 764 765 ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset); 766 ASSERT(remaining); 767 768 remaining->bio.bi_status = ret; 769 btrfs_orig_bbio_end_io(remaining); 770 } 771 bbio->bio.bi_status = ret; 772 btrfs_orig_bbio_end_io(bbio); 773 /* Do not submit another chunk */ 774 return true; 775 } 776 777 void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num) 778 { 779 /* If bbio->inode is not populated, its file_offset must be 0. */ 780 ASSERT(bbio->inode || bbio->file_offset == 0); 781 782 while (!btrfs_submit_chunk(bbio, mirror_num)) 783 ; 784 } 785 786 /* 787 * Submit a repair write. 788 * 789 * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a 790 * RAID setup. Here we only want to write the one bad copy, so we do the 791 * mapping ourselves and submit the bio directly. 792 * 793 * The I/O is issued synchronously to block the repair read completion from 794 * freeing the bio. 795 */ 796 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 797 u64 length, u64 logical, struct folio *folio, 798 unsigned int folio_offset, int mirror_num) 799 { 800 struct btrfs_io_stripe smap = { 0 }; 801 struct bio_vec bvec; 802 struct bio bio; 803 int ret = 0; 804 805 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 806 BUG_ON(!mirror_num); 807 808 if (btrfs_repair_one_zone(fs_info, logical)) 809 return 0; 810 811 /* 812 * Avoid races with device replace and make sure our bioc has devices 813 * associated to its stripes that don't go away while we are doing the 814 * read repair operation. 815 */ 816 btrfs_bio_counter_inc_blocked(fs_info); 817 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 818 if (ret < 0) 819 goto out_counter_dec; 820 821 if (!smap.dev->bdev || 822 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) { 823 ret = -EIO; 824 goto out_counter_dec; 825 } 826 827 bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); 828 bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT; 829 ret = bio_add_folio(&bio, folio, length, folio_offset); 830 ASSERT(ret); 831 ret = submit_bio_wait(&bio); 832 if (ret) { 833 /* try to remap that extent elsewhere? */ 834 btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS); 835 goto out_bio_uninit; 836 } 837 838 btrfs_info_rl_in_rcu(fs_info, 839 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 840 ino, start, btrfs_dev_name(smap.dev), 841 smap.physical >> SECTOR_SHIFT); 842 ret = 0; 843 844 out_bio_uninit: 845 bio_uninit(&bio); 846 out_counter_dec: 847 btrfs_bio_counter_dec(fs_info); 848 return ret; 849 } 850 851 /* 852 * Submit a btrfs_bio based repair write. 853 * 854 * If @dev_replace is true, the write would be submitted to dev-replace target. 855 */ 856 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace) 857 { 858 struct btrfs_fs_info *fs_info = bbio->fs_info; 859 u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 860 u64 length = bbio->bio.bi_iter.bi_size; 861 struct btrfs_io_stripe smap = { 0 }; 862 int ret; 863 864 ASSERT(fs_info); 865 ASSERT(mirror_num > 0); 866 ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE); 867 ASSERT(!bbio->inode); 868 869 btrfs_bio_counter_inc_blocked(fs_info); 870 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 871 if (ret < 0) 872 goto fail; 873 874 if (dev_replace) { 875 ASSERT(smap.dev == fs_info->dev_replace.srcdev); 876 smap.dev = fs_info->dev_replace.tgtdev; 877 } 878 __btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num); 879 return; 880 881 fail: 882 btrfs_bio_counter_dec(fs_info); 883 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 884 } 885 886 int __init btrfs_bioset_init(void) 887 { 888 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 889 offsetof(struct btrfs_bio, bio), 890 BIOSET_NEED_BVECS)) 891 return -ENOMEM; 892 if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE, 893 offsetof(struct btrfs_bio, bio), 0)) 894 goto out_free_bioset; 895 if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE, 896 offsetof(struct btrfs_bio, bio), 897 BIOSET_NEED_BVECS)) 898 goto out_free_clone_bioset; 899 if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE, 900 sizeof(struct btrfs_failed_bio))) 901 goto out_free_repair_bioset; 902 return 0; 903 904 out_free_repair_bioset: 905 bioset_exit(&btrfs_repair_bioset); 906 out_free_clone_bioset: 907 bioset_exit(&btrfs_clone_bioset); 908 out_free_bioset: 909 bioset_exit(&btrfs_bioset); 910 return -ENOMEM; 911 } 912 913 void __cold btrfs_bioset_exit(void) 914 { 915 mempool_exit(&btrfs_failed_bio_pool); 916 bioset_exit(&btrfs_repair_bioset); 917 bioset_exit(&btrfs_clone_bioset); 918 bioset_exit(&btrfs_bioset); 919 } 920