1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 * Copyright (C) 2022 Christoph Hellwig. 5 */ 6 7 #include <linux/bio.h> 8 #include "bio.h" 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "raid56.h" 12 #include "async-thread.h" 13 #include "dev-replace.h" 14 #include "rcu-string.h" 15 #include "zoned.h" 16 #include "file-item.h" 17 #include "raid-stripe-tree.h" 18 19 static struct bio_set btrfs_bioset; 20 static struct bio_set btrfs_clone_bioset; 21 static struct bio_set btrfs_repair_bioset; 22 static mempool_t btrfs_failed_bio_pool; 23 24 struct btrfs_failed_bio { 25 struct btrfs_bio *bbio; 26 int num_copies; 27 atomic_t repair_count; 28 }; 29 30 /* Is this a data path I/O that needs storage layer checksum and repair? */ 31 static inline bool is_data_bbio(struct btrfs_bio *bbio) 32 { 33 return bbio->inode && is_data_inode(&bbio->inode->vfs_inode); 34 } 35 36 static bool bbio_has_ordered_extent(struct btrfs_bio *bbio) 37 { 38 return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE; 39 } 40 41 /* 42 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it 43 * is already initialized by the block layer. 44 */ 45 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info, 46 btrfs_bio_end_io_t end_io, void *private) 47 { 48 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 49 bbio->fs_info = fs_info; 50 bbio->end_io = end_io; 51 bbio->private = private; 52 atomic_set(&bbio->pending_ios, 1); 53 } 54 55 /* 56 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for 57 * btrfs, and is used for all I/O submitted through btrfs_submit_bio. 58 * 59 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by 60 * a mempool. 61 */ 62 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf, 63 struct btrfs_fs_info *fs_info, 64 btrfs_bio_end_io_t end_io, void *private) 65 { 66 struct btrfs_bio *bbio; 67 struct bio *bio; 68 69 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset); 70 bbio = btrfs_bio(bio); 71 btrfs_bio_init(bbio, fs_info, end_io, private); 72 return bbio; 73 } 74 75 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info, 76 struct btrfs_bio *orig_bbio, 77 u64 map_length, bool use_append) 78 { 79 struct btrfs_bio *bbio; 80 struct bio *bio; 81 82 if (use_append) { 83 unsigned int nr_segs; 84 85 bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs, 86 &btrfs_clone_bioset, map_length); 87 } else { 88 bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, 89 GFP_NOFS, &btrfs_clone_bioset); 90 } 91 bbio = btrfs_bio(bio); 92 btrfs_bio_init(bbio, fs_info, NULL, orig_bbio); 93 bbio->inode = orig_bbio->inode; 94 bbio->file_offset = orig_bbio->file_offset; 95 orig_bbio->file_offset += map_length; 96 if (bbio_has_ordered_extent(bbio)) { 97 refcount_inc(&orig_bbio->ordered->refs); 98 bbio->ordered = orig_bbio->ordered; 99 } 100 atomic_inc(&orig_bbio->pending_ios); 101 return bbio; 102 } 103 104 /* Free a bio that was never submitted to the underlying device. */ 105 static void btrfs_cleanup_bio(struct btrfs_bio *bbio) 106 { 107 if (bbio_has_ordered_extent(bbio)) 108 btrfs_put_ordered_extent(bbio->ordered); 109 bio_put(&bbio->bio); 110 } 111 112 static void __btrfs_bio_end_io(struct btrfs_bio *bbio) 113 { 114 if (bbio_has_ordered_extent(bbio)) { 115 struct btrfs_ordered_extent *ordered = bbio->ordered; 116 117 bbio->end_io(bbio); 118 btrfs_put_ordered_extent(ordered); 119 } else { 120 bbio->end_io(bbio); 121 } 122 } 123 124 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status) 125 { 126 bbio->bio.bi_status = status; 127 __btrfs_bio_end_io(bbio); 128 } 129 130 static void btrfs_orig_write_end_io(struct bio *bio); 131 132 static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio, 133 struct btrfs_bio *orig_bbio) 134 { 135 /* 136 * For writes we tolerate nr_mirrors - 1 write failures, so we can't 137 * just blindly propagate a write failure here. Instead increment the 138 * error count in the original I/O context so that it is guaranteed to 139 * be larger than the error tolerance. 140 */ 141 if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) { 142 struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private; 143 struct btrfs_io_context *orig_bioc = orig_stripe->bioc; 144 145 atomic_add(orig_bioc->max_errors, &orig_bioc->error); 146 } else { 147 orig_bbio->bio.bi_status = bbio->bio.bi_status; 148 } 149 } 150 151 static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio) 152 { 153 if (bbio->bio.bi_pool == &btrfs_clone_bioset) { 154 struct btrfs_bio *orig_bbio = bbio->private; 155 156 if (bbio->bio.bi_status) 157 btrfs_bbio_propagate_error(bbio, orig_bbio); 158 btrfs_cleanup_bio(bbio); 159 bbio = orig_bbio; 160 } 161 162 if (atomic_dec_and_test(&bbio->pending_ios)) 163 __btrfs_bio_end_io(bbio); 164 } 165 166 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 167 { 168 if (cur_mirror == fbio->num_copies) 169 return cur_mirror + 1 - fbio->num_copies; 170 return cur_mirror + 1; 171 } 172 173 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 174 { 175 if (cur_mirror == 1) 176 return fbio->num_copies; 177 return cur_mirror - 1; 178 } 179 180 static void btrfs_repair_done(struct btrfs_failed_bio *fbio) 181 { 182 if (atomic_dec_and_test(&fbio->repair_count)) { 183 btrfs_orig_bbio_end_io(fbio->bbio); 184 mempool_free(fbio, &btrfs_failed_bio_pool); 185 } 186 } 187 188 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio, 189 struct btrfs_device *dev) 190 { 191 struct btrfs_failed_bio *fbio = repair_bbio->private; 192 struct btrfs_inode *inode = repair_bbio->inode; 193 struct btrfs_fs_info *fs_info = inode->root->fs_info; 194 struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio); 195 int mirror = repair_bbio->mirror_num; 196 197 /* 198 * We can only trigger this for data bio, which doesn't support larger 199 * folios yet. 200 */ 201 ASSERT(folio_order(page_folio(bv->bv_page)) == 0); 202 203 if (repair_bbio->bio.bi_status || 204 !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) { 205 bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ); 206 repair_bbio->bio.bi_iter = repair_bbio->saved_iter; 207 208 mirror = next_repair_mirror(fbio, mirror); 209 if (mirror == fbio->bbio->mirror_num) { 210 btrfs_debug(fs_info, "no mirror left"); 211 fbio->bbio->bio.bi_status = BLK_STS_IOERR; 212 goto done; 213 } 214 215 btrfs_submit_bio(repair_bbio, mirror); 216 return; 217 } 218 219 do { 220 mirror = prev_repair_mirror(fbio, mirror); 221 btrfs_repair_io_failure(fs_info, btrfs_ino(inode), 222 repair_bbio->file_offset, fs_info->sectorsize, 223 repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT, 224 page_folio(bv->bv_page), bv->bv_offset, mirror); 225 } while (mirror != fbio->bbio->mirror_num); 226 227 done: 228 btrfs_repair_done(fbio); 229 bio_put(&repair_bbio->bio); 230 } 231 232 /* 233 * Try to kick off a repair read to the next available mirror for a bad sector. 234 * 235 * This primarily tries to recover good data to serve the actual read request, 236 * but also tries to write the good data back to the bad mirror(s) when a 237 * read succeeded to restore the redundancy. 238 */ 239 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio, 240 u32 bio_offset, 241 struct bio_vec *bv, 242 struct btrfs_failed_bio *fbio) 243 { 244 struct btrfs_inode *inode = failed_bbio->inode; 245 struct btrfs_fs_info *fs_info = inode->root->fs_info; 246 const u32 sectorsize = fs_info->sectorsize; 247 const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT); 248 struct btrfs_bio *repair_bbio; 249 struct bio *repair_bio; 250 int num_copies; 251 int mirror; 252 253 btrfs_debug(fs_info, "repair read error: read error at %llu", 254 failed_bbio->file_offset + bio_offset); 255 256 num_copies = btrfs_num_copies(fs_info, logical, sectorsize); 257 if (num_copies == 1) { 258 btrfs_debug(fs_info, "no copy to repair from"); 259 failed_bbio->bio.bi_status = BLK_STS_IOERR; 260 return fbio; 261 } 262 263 if (!fbio) { 264 fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS); 265 fbio->bbio = failed_bbio; 266 fbio->num_copies = num_copies; 267 atomic_set(&fbio->repair_count, 1); 268 } 269 270 atomic_inc(&fbio->repair_count); 271 272 repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, 273 &btrfs_repair_bioset); 274 repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector; 275 __bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset); 276 277 repair_bbio = btrfs_bio(repair_bio); 278 btrfs_bio_init(repair_bbio, fs_info, NULL, fbio); 279 repair_bbio->inode = failed_bbio->inode; 280 repair_bbio->file_offset = failed_bbio->file_offset + bio_offset; 281 282 mirror = next_repair_mirror(fbio, failed_bbio->mirror_num); 283 btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror); 284 btrfs_submit_bio(repair_bbio, mirror); 285 return fbio; 286 } 287 288 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev) 289 { 290 struct btrfs_inode *inode = bbio->inode; 291 struct btrfs_fs_info *fs_info = inode->root->fs_info; 292 u32 sectorsize = fs_info->sectorsize; 293 struct bvec_iter *iter = &bbio->saved_iter; 294 blk_status_t status = bbio->bio.bi_status; 295 struct btrfs_failed_bio *fbio = NULL; 296 u32 offset = 0; 297 298 /* Read-repair requires the inode field to be set by the submitter. */ 299 ASSERT(inode); 300 301 /* 302 * Hand off repair bios to the repair code as there is no upper level 303 * submitter for them. 304 */ 305 if (bbio->bio.bi_pool == &btrfs_repair_bioset) { 306 btrfs_end_repair_bio(bbio, dev); 307 return; 308 } 309 310 /* Clear the I/O error. A failed repair will reset it. */ 311 bbio->bio.bi_status = BLK_STS_OK; 312 313 while (iter->bi_size) { 314 struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter); 315 316 bv.bv_len = min(bv.bv_len, sectorsize); 317 if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv)) 318 fbio = repair_one_sector(bbio, offset, &bv, fbio); 319 320 bio_advance_iter_single(&bbio->bio, iter, sectorsize); 321 offset += sectorsize; 322 } 323 324 if (bbio->csum != bbio->csum_inline) 325 kfree(bbio->csum); 326 327 if (fbio) 328 btrfs_repair_done(fbio); 329 else 330 btrfs_orig_bbio_end_io(bbio); 331 } 332 333 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev) 334 { 335 if (!dev || !dev->bdev) 336 return; 337 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET) 338 return; 339 340 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 341 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 342 else if (!(bio->bi_opf & REQ_RAHEAD)) 343 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 344 if (bio->bi_opf & REQ_PREFLUSH) 345 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); 346 } 347 348 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info, 349 struct bio *bio) 350 { 351 if (bio->bi_opf & REQ_META) 352 return fs_info->endio_meta_workers; 353 return fs_info->endio_workers; 354 } 355 356 static void btrfs_end_bio_work(struct work_struct *work) 357 { 358 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work); 359 360 /* Metadata reads are checked and repaired by the submitter. */ 361 if (is_data_bbio(bbio)) 362 btrfs_check_read_bio(bbio, bbio->bio.bi_private); 363 else 364 btrfs_orig_bbio_end_io(bbio); 365 } 366 367 static void btrfs_simple_end_io(struct bio *bio) 368 { 369 struct btrfs_bio *bbio = btrfs_bio(bio); 370 struct btrfs_device *dev = bio->bi_private; 371 struct btrfs_fs_info *fs_info = bbio->fs_info; 372 373 btrfs_bio_counter_dec(fs_info); 374 375 if (bio->bi_status) 376 btrfs_log_dev_io_error(bio, dev); 377 378 if (bio_op(bio) == REQ_OP_READ) { 379 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work); 380 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work); 381 } else { 382 if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status) 383 btrfs_record_physical_zoned(bbio); 384 btrfs_orig_bbio_end_io(bbio); 385 } 386 } 387 388 static void btrfs_raid56_end_io(struct bio *bio) 389 { 390 struct btrfs_io_context *bioc = bio->bi_private; 391 struct btrfs_bio *bbio = btrfs_bio(bio); 392 393 btrfs_bio_counter_dec(bioc->fs_info); 394 bbio->mirror_num = bioc->mirror_num; 395 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) 396 btrfs_check_read_bio(bbio, NULL); 397 else 398 btrfs_orig_bbio_end_io(bbio); 399 400 btrfs_put_bioc(bioc); 401 } 402 403 static void btrfs_orig_write_end_io(struct bio *bio) 404 { 405 struct btrfs_io_stripe *stripe = bio->bi_private; 406 struct btrfs_io_context *bioc = stripe->bioc; 407 struct btrfs_bio *bbio = btrfs_bio(bio); 408 409 btrfs_bio_counter_dec(bioc->fs_info); 410 411 if (bio->bi_status) { 412 atomic_inc(&bioc->error); 413 btrfs_log_dev_io_error(bio, stripe->dev); 414 } 415 416 /* 417 * Only send an error to the higher layers if it is beyond the tolerance 418 * threshold. 419 */ 420 if (atomic_read(&bioc->error) > bioc->max_errors) 421 bio->bi_status = BLK_STS_IOERR; 422 else 423 bio->bi_status = BLK_STS_OK; 424 425 if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status) 426 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 427 428 btrfs_orig_bbio_end_io(bbio); 429 btrfs_put_bioc(bioc); 430 } 431 432 static void btrfs_clone_write_end_io(struct bio *bio) 433 { 434 struct btrfs_io_stripe *stripe = bio->bi_private; 435 436 if (bio->bi_status) { 437 atomic_inc(&stripe->bioc->error); 438 btrfs_log_dev_io_error(bio, stripe->dev); 439 } else if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 440 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 441 } 442 443 /* Pass on control to the original bio this one was cloned from */ 444 bio_endio(stripe->bioc->orig_bio); 445 bio_put(bio); 446 } 447 448 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio) 449 { 450 if (!dev || !dev->bdev || 451 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 452 (btrfs_op(bio) == BTRFS_MAP_WRITE && 453 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 454 bio_io_error(bio); 455 return; 456 } 457 458 bio_set_dev(bio, dev->bdev); 459 460 /* 461 * For zone append writing, bi_sector must point the beginning of the 462 * zone 463 */ 464 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 465 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 466 u64 zone_start = round_down(physical, dev->fs_info->zone_size); 467 468 ASSERT(btrfs_dev_is_sequential(dev, physical)); 469 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 470 } 471 btrfs_debug_in_rcu(dev->fs_info, 472 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 473 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 474 (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev), 475 dev->devid, bio->bi_iter.bi_size); 476 477 if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT) 478 blkcg_punt_bio_submit(bio); 479 else 480 submit_bio(bio); 481 } 482 483 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr) 484 { 485 struct bio *orig_bio = bioc->orig_bio, *bio; 486 487 ASSERT(bio_op(orig_bio) != REQ_OP_READ); 488 489 /* Reuse the bio embedded into the btrfs_bio for the last mirror */ 490 if (dev_nr == bioc->num_stripes - 1) { 491 bio = orig_bio; 492 bio->bi_end_io = btrfs_orig_write_end_io; 493 } else { 494 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set); 495 bio_inc_remaining(orig_bio); 496 bio->bi_end_io = btrfs_clone_write_end_io; 497 } 498 499 bio->bi_private = &bioc->stripes[dev_nr]; 500 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT; 501 bioc->stripes[dev_nr].bioc = bioc; 502 bioc->size = bio->bi_iter.bi_size; 503 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio); 504 } 505 506 static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc, 507 struct btrfs_io_stripe *smap, int mirror_num) 508 { 509 if (!bioc) { 510 /* Single mirror read/write fast path. */ 511 btrfs_bio(bio)->mirror_num = mirror_num; 512 if (bio_op(bio) != REQ_OP_READ) 513 btrfs_bio(bio)->orig_physical = smap->physical; 514 bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT; 515 if (bio_op(bio) != REQ_OP_READ) 516 btrfs_bio(bio)->orig_physical = smap->physical; 517 bio->bi_private = smap->dev; 518 bio->bi_end_io = btrfs_simple_end_io; 519 btrfs_submit_dev_bio(smap->dev, bio); 520 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 521 /* Parity RAID write or read recovery. */ 522 bio->bi_private = bioc; 523 bio->bi_end_io = btrfs_raid56_end_io; 524 if (bio_op(bio) == REQ_OP_READ) 525 raid56_parity_recover(bio, bioc, mirror_num); 526 else 527 raid56_parity_write(bio, bioc); 528 } else { 529 /* Write to multiple mirrors. */ 530 int total_devs = bioc->num_stripes; 531 532 bioc->orig_bio = bio; 533 for (int dev_nr = 0; dev_nr < total_devs; dev_nr++) 534 btrfs_submit_mirrored_bio(bioc, dev_nr); 535 } 536 } 537 538 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio) 539 { 540 if (bbio->bio.bi_opf & REQ_META) 541 return btree_csum_one_bio(bbio); 542 return btrfs_csum_one_bio(bbio); 543 } 544 545 /* 546 * Async submit bios are used to offload expensive checksumming onto the worker 547 * threads. 548 */ 549 struct async_submit_bio { 550 struct btrfs_bio *bbio; 551 struct btrfs_io_context *bioc; 552 struct btrfs_io_stripe smap; 553 int mirror_num; 554 struct btrfs_work work; 555 }; 556 557 /* 558 * In order to insert checksums into the metadata in large chunks, we wait 559 * until bio submission time. All the pages in the bio are checksummed and 560 * sums are attached onto the ordered extent record. 561 * 562 * At IO completion time the csums attached on the ordered extent record are 563 * inserted into the btree. 564 */ 565 static void run_one_async_start(struct btrfs_work *work) 566 { 567 struct async_submit_bio *async = 568 container_of(work, struct async_submit_bio, work); 569 blk_status_t ret; 570 571 ret = btrfs_bio_csum(async->bbio); 572 if (ret) 573 async->bbio->bio.bi_status = ret; 574 } 575 576 /* 577 * In order to insert checksums into the metadata in large chunks, we wait 578 * until bio submission time. All the pages in the bio are checksummed and 579 * sums are attached onto the ordered extent record. 580 * 581 * At IO completion time the csums attached on the ordered extent record are 582 * inserted into the tree. 583 * 584 * If called with @do_free == true, then it will free the work struct. 585 */ 586 static void run_one_async_done(struct btrfs_work *work, bool do_free) 587 { 588 struct async_submit_bio *async = 589 container_of(work, struct async_submit_bio, work); 590 struct bio *bio = &async->bbio->bio; 591 592 if (do_free) { 593 kfree(container_of(work, struct async_submit_bio, work)); 594 return; 595 } 596 597 /* If an error occurred we just want to clean up the bio and move on. */ 598 if (bio->bi_status) { 599 btrfs_orig_bbio_end_io(async->bbio); 600 return; 601 } 602 603 /* 604 * All of the bios that pass through here are from async helpers. 605 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's 606 * context. This changes nothing when cgroups aren't in use. 607 */ 608 bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT; 609 __btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num); 610 } 611 612 static bool should_async_write(struct btrfs_bio *bbio) 613 { 614 /* Submit synchronously if the checksum implementation is fast. */ 615 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags)) 616 return false; 617 618 /* 619 * Try to defer the submission to a workqueue to parallelize the 620 * checksum calculation unless the I/O is issued synchronously. 621 */ 622 if (op_is_sync(bbio->bio.bi_opf)) 623 return false; 624 625 /* Zoned devices require I/O to be submitted in order. */ 626 if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info)) 627 return false; 628 629 return true; 630 } 631 632 /* 633 * Submit bio to an async queue. 634 * 635 * Return true if the work has been successfully submitted, else false. 636 */ 637 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio, 638 struct btrfs_io_context *bioc, 639 struct btrfs_io_stripe *smap, int mirror_num) 640 { 641 struct btrfs_fs_info *fs_info = bbio->fs_info; 642 struct async_submit_bio *async; 643 644 async = kmalloc(sizeof(*async), GFP_NOFS); 645 if (!async) 646 return false; 647 648 async->bbio = bbio; 649 async->bioc = bioc; 650 async->smap = *smap; 651 async->mirror_num = mirror_num; 652 653 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done); 654 btrfs_queue_work(fs_info->workers, &async->work); 655 return true; 656 } 657 658 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num) 659 { 660 struct btrfs_inode *inode = bbio->inode; 661 struct btrfs_fs_info *fs_info = bbio->fs_info; 662 struct btrfs_bio *orig_bbio = bbio; 663 struct bio *bio = &bbio->bio; 664 u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 665 u64 length = bio->bi_iter.bi_size; 666 u64 map_length = length; 667 bool use_append = btrfs_use_zone_append(bbio); 668 struct btrfs_io_context *bioc = NULL; 669 struct btrfs_io_stripe smap; 670 blk_status_t ret; 671 int error; 672 673 smap.is_scrub = !bbio->inode; 674 675 btrfs_bio_counter_inc_blocked(fs_info); 676 error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 677 &bioc, &smap, &mirror_num); 678 if (error) { 679 ret = errno_to_blk_status(error); 680 goto fail; 681 } 682 683 map_length = min(map_length, length); 684 if (use_append) 685 map_length = min(map_length, fs_info->max_zone_append_size); 686 687 if (map_length < length) { 688 bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append); 689 bio = &bbio->bio; 690 } 691 692 /* 693 * Save the iter for the end_io handler and preload the checksums for 694 * data reads. 695 */ 696 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) { 697 bbio->saved_iter = bio->bi_iter; 698 ret = btrfs_lookup_bio_sums(bbio); 699 if (ret) 700 goto fail_put_bio; 701 } 702 703 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 704 if (use_append) { 705 bio->bi_opf &= ~REQ_OP_WRITE; 706 bio->bi_opf |= REQ_OP_ZONE_APPEND; 707 } 708 709 if (is_data_bbio(bbio) && bioc && 710 btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) { 711 /* 712 * No locking for the list update, as we only add to 713 * the list in the I/O submission path, and list 714 * iteration only happens in the completion path, which 715 * can't happen until after the last submission. 716 */ 717 btrfs_get_bioc(bioc); 718 list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list); 719 } 720 721 /* 722 * Csum items for reloc roots have already been cloned at this 723 * point, so they are handled as part of the no-checksum case. 724 */ 725 if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) && 726 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) && 727 !btrfs_is_data_reloc_root(inode->root)) { 728 if (should_async_write(bbio) && 729 btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num)) 730 goto done; 731 732 ret = btrfs_bio_csum(bbio); 733 if (ret) 734 goto fail_put_bio; 735 } else if (use_append) { 736 ret = btrfs_alloc_dummy_sum(bbio); 737 if (ret) 738 goto fail_put_bio; 739 } 740 } 741 742 __btrfs_submit_bio(bio, bioc, &smap, mirror_num); 743 done: 744 return map_length == length; 745 746 fail_put_bio: 747 if (map_length < length) 748 btrfs_cleanup_bio(bbio); 749 fail: 750 btrfs_bio_counter_dec(fs_info); 751 btrfs_bio_end_io(orig_bbio, ret); 752 /* Do not submit another chunk */ 753 return true; 754 } 755 756 void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num) 757 { 758 /* If bbio->inode is not populated, its file_offset must be 0. */ 759 ASSERT(bbio->inode || bbio->file_offset == 0); 760 761 while (!btrfs_submit_chunk(bbio, mirror_num)) 762 ; 763 } 764 765 /* 766 * Submit a repair write. 767 * 768 * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a 769 * RAID setup. Here we only want to write the one bad copy, so we do the 770 * mapping ourselves and submit the bio directly. 771 * 772 * The I/O is issued synchronously to block the repair read completion from 773 * freeing the bio. 774 */ 775 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 776 u64 length, u64 logical, struct folio *folio, 777 unsigned int folio_offset, int mirror_num) 778 { 779 struct btrfs_io_stripe smap = { 0 }; 780 struct bio_vec bvec; 781 struct bio bio; 782 int ret = 0; 783 784 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 785 BUG_ON(!mirror_num); 786 787 if (btrfs_repair_one_zone(fs_info, logical)) 788 return 0; 789 790 /* 791 * Avoid races with device replace and make sure our bioc has devices 792 * associated to its stripes that don't go away while we are doing the 793 * read repair operation. 794 */ 795 btrfs_bio_counter_inc_blocked(fs_info); 796 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 797 if (ret < 0) 798 goto out_counter_dec; 799 800 if (!smap.dev->bdev || 801 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) { 802 ret = -EIO; 803 goto out_counter_dec; 804 } 805 806 bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); 807 bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT; 808 ret = bio_add_folio(&bio, folio, length, folio_offset); 809 ASSERT(ret); 810 ret = submit_bio_wait(&bio); 811 if (ret) { 812 /* try to remap that extent elsewhere? */ 813 btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS); 814 goto out_bio_uninit; 815 } 816 817 btrfs_info_rl_in_rcu(fs_info, 818 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 819 ino, start, btrfs_dev_name(smap.dev), 820 smap.physical >> SECTOR_SHIFT); 821 ret = 0; 822 823 out_bio_uninit: 824 bio_uninit(&bio); 825 out_counter_dec: 826 btrfs_bio_counter_dec(fs_info); 827 return ret; 828 } 829 830 /* 831 * Submit a btrfs_bio based repair write. 832 * 833 * If @dev_replace is true, the write would be submitted to dev-replace target. 834 */ 835 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace) 836 { 837 struct btrfs_fs_info *fs_info = bbio->fs_info; 838 u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 839 u64 length = bbio->bio.bi_iter.bi_size; 840 struct btrfs_io_stripe smap = { 0 }; 841 int ret; 842 843 ASSERT(fs_info); 844 ASSERT(mirror_num > 0); 845 ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE); 846 ASSERT(!bbio->inode); 847 848 btrfs_bio_counter_inc_blocked(fs_info); 849 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 850 if (ret < 0) 851 goto fail; 852 853 if (dev_replace) { 854 ASSERT(smap.dev == fs_info->dev_replace.srcdev); 855 smap.dev = fs_info->dev_replace.tgtdev; 856 } 857 __btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num); 858 return; 859 860 fail: 861 btrfs_bio_counter_dec(fs_info); 862 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 863 } 864 865 int __init btrfs_bioset_init(void) 866 { 867 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 868 offsetof(struct btrfs_bio, bio), 869 BIOSET_NEED_BVECS)) 870 return -ENOMEM; 871 if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE, 872 offsetof(struct btrfs_bio, bio), 0)) 873 goto out_free_bioset; 874 if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE, 875 offsetof(struct btrfs_bio, bio), 876 BIOSET_NEED_BVECS)) 877 goto out_free_clone_bioset; 878 if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE, 879 sizeof(struct btrfs_failed_bio))) 880 goto out_free_repair_bioset; 881 return 0; 882 883 out_free_repair_bioset: 884 bioset_exit(&btrfs_repair_bioset); 885 out_free_clone_bioset: 886 bioset_exit(&btrfs_clone_bioset); 887 out_free_bioset: 888 bioset_exit(&btrfs_bioset); 889 return -ENOMEM; 890 } 891 892 void __cold btrfs_bioset_exit(void) 893 { 894 mempool_exit(&btrfs_failed_bio_pool); 895 bioset_exit(&btrfs_repair_bioset); 896 bioset_exit(&btrfs_clone_bioset); 897 bioset_exit(&btrfs_bioset); 898 } 899