1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 * Copyright (C) 2022 Christoph Hellwig. 5 */ 6 7 #include <linux/bio.h> 8 #include "bio.h" 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "raid56.h" 12 #include "async-thread.h" 13 #include "dev-replace.h" 14 #include "zoned.h" 15 #include "file-item.h" 16 #include "raid-stripe-tree.h" 17 18 static struct bio_set btrfs_bioset; 19 static struct bio_set btrfs_clone_bioset; 20 static struct bio_set btrfs_repair_bioset; 21 static mempool_t btrfs_failed_bio_pool; 22 23 struct btrfs_failed_bio { 24 struct btrfs_bio *bbio; 25 int num_copies; 26 atomic_t repair_count; 27 }; 28 29 /* Is this a data path I/O that needs storage layer checksum and repair? */ 30 static inline bool is_data_bbio(const struct btrfs_bio *bbio) 31 { 32 return bbio->inode && is_data_inode(bbio->inode); 33 } 34 35 static bool bbio_has_ordered_extent(const struct btrfs_bio *bbio) 36 { 37 return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE; 38 } 39 40 /* 41 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it 42 * is already initialized by the block layer. 43 */ 44 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info, 45 btrfs_bio_end_io_t end_io, void *private) 46 { 47 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 48 bbio->fs_info = fs_info; 49 bbio->end_io = end_io; 50 bbio->private = private; 51 atomic_set(&bbio->pending_ios, 1); 52 WRITE_ONCE(bbio->status, BLK_STS_OK); 53 } 54 55 /* 56 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for 57 * btrfs, and is used for all I/O submitted through btrfs_submit_bbio(). 58 * 59 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by 60 * a mempool. 61 */ 62 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf, 63 struct btrfs_fs_info *fs_info, 64 btrfs_bio_end_io_t end_io, void *private) 65 { 66 struct btrfs_bio *bbio; 67 struct bio *bio; 68 69 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset); 70 bbio = btrfs_bio(bio); 71 btrfs_bio_init(bbio, fs_info, end_io, private); 72 return bbio; 73 } 74 75 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info, 76 struct btrfs_bio *orig_bbio, 77 u64 map_length) 78 { 79 struct btrfs_bio *bbio; 80 struct bio *bio; 81 82 bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS, 83 &btrfs_clone_bioset); 84 if (IS_ERR(bio)) 85 return ERR_CAST(bio); 86 87 bbio = btrfs_bio(bio); 88 btrfs_bio_init(bbio, fs_info, NULL, orig_bbio); 89 bbio->inode = orig_bbio->inode; 90 bbio->file_offset = orig_bbio->file_offset; 91 orig_bbio->file_offset += map_length; 92 if (bbio_has_ordered_extent(bbio)) { 93 refcount_inc(&orig_bbio->ordered->refs); 94 bbio->ordered = orig_bbio->ordered; 95 } 96 atomic_inc(&orig_bbio->pending_ios); 97 return bbio; 98 } 99 100 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status) 101 { 102 bbio->bio.bi_status = status; 103 if (bbio->bio.bi_pool == &btrfs_clone_bioset) { 104 struct btrfs_bio *orig_bbio = bbio->private; 105 106 /* Free bio that was never submitted to the underlying device. */ 107 if (bbio_has_ordered_extent(bbio)) 108 btrfs_put_ordered_extent(bbio->ordered); 109 bio_put(&bbio->bio); 110 111 bbio = orig_bbio; 112 } 113 114 /* 115 * At this point, bbio always points to the original btrfs_bio. Save 116 * the first error in it. 117 */ 118 if (status != BLK_STS_OK) 119 cmpxchg(&bbio->status, BLK_STS_OK, status); 120 121 if (atomic_dec_and_test(&bbio->pending_ios)) { 122 /* Load split bio's error which might be set above. */ 123 if (status == BLK_STS_OK) 124 bbio->bio.bi_status = READ_ONCE(bbio->status); 125 126 if (bbio_has_ordered_extent(bbio)) { 127 struct btrfs_ordered_extent *ordered = bbio->ordered; 128 129 bbio->end_io(bbio); 130 btrfs_put_ordered_extent(ordered); 131 } else { 132 bbio->end_io(bbio); 133 } 134 } 135 } 136 137 static int next_repair_mirror(const struct btrfs_failed_bio *fbio, int cur_mirror) 138 { 139 if (cur_mirror == fbio->num_copies) 140 return cur_mirror + 1 - fbio->num_copies; 141 return cur_mirror + 1; 142 } 143 144 static int prev_repair_mirror(const struct btrfs_failed_bio *fbio, int cur_mirror) 145 { 146 if (cur_mirror == 1) 147 return fbio->num_copies; 148 return cur_mirror - 1; 149 } 150 151 static void btrfs_repair_done(struct btrfs_failed_bio *fbio) 152 { 153 if (atomic_dec_and_test(&fbio->repair_count)) { 154 btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status); 155 mempool_free(fbio, &btrfs_failed_bio_pool); 156 } 157 } 158 159 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio, 160 struct btrfs_device *dev) 161 { 162 struct btrfs_failed_bio *fbio = repair_bbio->private; 163 struct btrfs_inode *inode = repair_bbio->inode; 164 struct btrfs_fs_info *fs_info = inode->root->fs_info; 165 struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio); 166 int mirror = repair_bbio->mirror_num; 167 168 if (repair_bbio->bio.bi_status || 169 !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) { 170 bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ); 171 repair_bbio->bio.bi_iter = repair_bbio->saved_iter; 172 173 mirror = next_repair_mirror(fbio, mirror); 174 if (mirror == fbio->bbio->mirror_num) { 175 btrfs_debug(fs_info, "no mirror left"); 176 fbio->bbio->bio.bi_status = BLK_STS_IOERR; 177 goto done; 178 } 179 180 btrfs_submit_bbio(repair_bbio, mirror); 181 return; 182 } 183 184 do { 185 mirror = prev_repair_mirror(fbio, mirror); 186 btrfs_repair_io_failure(fs_info, btrfs_ino(inode), 187 repair_bbio->file_offset, fs_info->sectorsize, 188 repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT, 189 bvec_phys(bv), mirror); 190 } while (mirror != fbio->bbio->mirror_num); 191 192 done: 193 btrfs_repair_done(fbio); 194 bio_put(&repair_bbio->bio); 195 } 196 197 /* 198 * Try to kick off a repair read to the next available mirror for a bad sector. 199 * 200 * This primarily tries to recover good data to serve the actual read request, 201 * but also tries to write the good data back to the bad mirror(s) when a 202 * read succeeded to restore the redundancy. 203 */ 204 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio, 205 u32 bio_offset, 206 struct bio_vec *bv, 207 struct btrfs_failed_bio *fbio) 208 { 209 struct btrfs_inode *inode = failed_bbio->inode; 210 struct btrfs_fs_info *fs_info = inode->root->fs_info; 211 const u32 sectorsize = fs_info->sectorsize; 212 const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT); 213 struct btrfs_bio *repair_bbio; 214 struct bio *repair_bio; 215 int num_copies; 216 int mirror; 217 218 btrfs_debug(fs_info, "repair read error: read error at %llu", 219 failed_bbio->file_offset + bio_offset); 220 221 num_copies = btrfs_num_copies(fs_info, logical, sectorsize); 222 if (num_copies == 1) { 223 btrfs_debug(fs_info, "no copy to repair from"); 224 failed_bbio->bio.bi_status = BLK_STS_IOERR; 225 return fbio; 226 } 227 228 if (!fbio) { 229 fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS); 230 fbio->bbio = failed_bbio; 231 fbio->num_copies = num_copies; 232 atomic_set(&fbio->repair_count, 1); 233 } 234 235 atomic_inc(&fbio->repair_count); 236 237 repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, 238 &btrfs_repair_bioset); 239 repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector; 240 __bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset); 241 242 repair_bbio = btrfs_bio(repair_bio); 243 btrfs_bio_init(repair_bbio, fs_info, NULL, fbio); 244 repair_bbio->inode = failed_bbio->inode; 245 repair_bbio->file_offset = failed_bbio->file_offset + bio_offset; 246 247 mirror = next_repair_mirror(fbio, failed_bbio->mirror_num); 248 btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror); 249 btrfs_submit_bbio(repair_bbio, mirror); 250 return fbio; 251 } 252 253 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev) 254 { 255 struct btrfs_inode *inode = bbio->inode; 256 struct btrfs_fs_info *fs_info = inode->root->fs_info; 257 u32 sectorsize = fs_info->sectorsize; 258 struct bvec_iter *iter = &bbio->saved_iter; 259 blk_status_t status = bbio->bio.bi_status; 260 struct btrfs_failed_bio *fbio = NULL; 261 u32 offset = 0; 262 263 /* Read-repair requires the inode field to be set by the submitter. */ 264 ASSERT(inode); 265 266 /* 267 * Hand off repair bios to the repair code as there is no upper level 268 * submitter for them. 269 */ 270 if (bbio->bio.bi_pool == &btrfs_repair_bioset) { 271 btrfs_end_repair_bio(bbio, dev); 272 return; 273 } 274 275 /* Clear the I/O error. A failed repair will reset it. */ 276 bbio->bio.bi_status = BLK_STS_OK; 277 278 while (iter->bi_size) { 279 struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter); 280 281 bv.bv_len = min(bv.bv_len, sectorsize); 282 if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv)) 283 fbio = repair_one_sector(bbio, offset, &bv, fbio); 284 285 bio_advance_iter_single(&bbio->bio, iter, sectorsize); 286 offset += sectorsize; 287 } 288 289 if (bbio->csum != bbio->csum_inline) 290 kfree(bbio->csum); 291 292 if (fbio) 293 btrfs_repair_done(fbio); 294 else 295 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 296 } 297 298 static void btrfs_log_dev_io_error(const struct bio *bio, struct btrfs_device *dev) 299 { 300 if (!dev || !dev->bdev) 301 return; 302 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET) 303 return; 304 305 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 306 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 307 else if (!(bio->bi_opf & REQ_RAHEAD)) 308 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 309 if (bio->bi_opf & REQ_PREFLUSH) 310 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); 311 } 312 313 static struct workqueue_struct *btrfs_end_io_wq(const struct btrfs_fs_info *fs_info, 314 const struct bio *bio) 315 { 316 if (bio->bi_opf & REQ_META) 317 return fs_info->endio_meta_workers; 318 return fs_info->endio_workers; 319 } 320 321 static void btrfs_end_bio_work(struct work_struct *work) 322 { 323 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work); 324 325 /* Metadata reads are checked and repaired by the submitter. */ 326 if (is_data_bbio(bbio)) 327 btrfs_check_read_bio(bbio, bbio->bio.bi_private); 328 else 329 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 330 } 331 332 static void btrfs_simple_end_io(struct bio *bio) 333 { 334 struct btrfs_bio *bbio = btrfs_bio(bio); 335 struct btrfs_device *dev = bio->bi_private; 336 struct btrfs_fs_info *fs_info = bbio->fs_info; 337 338 btrfs_bio_counter_dec(fs_info); 339 340 if (bio->bi_status) 341 btrfs_log_dev_io_error(bio, dev); 342 343 if (bio_op(bio) == REQ_OP_READ) { 344 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work); 345 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work); 346 } else { 347 if (bio_is_zone_append(bio) && !bio->bi_status) 348 btrfs_record_physical_zoned(bbio); 349 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 350 } 351 } 352 353 static void btrfs_raid56_end_io(struct bio *bio) 354 { 355 struct btrfs_io_context *bioc = bio->bi_private; 356 struct btrfs_bio *bbio = btrfs_bio(bio); 357 358 btrfs_bio_counter_dec(bioc->fs_info); 359 bbio->mirror_num = bioc->mirror_num; 360 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) 361 btrfs_check_read_bio(bbio, NULL); 362 else 363 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 364 365 btrfs_put_bioc(bioc); 366 } 367 368 static void btrfs_orig_write_end_io(struct bio *bio) 369 { 370 struct btrfs_io_stripe *stripe = bio->bi_private; 371 struct btrfs_io_context *bioc = stripe->bioc; 372 struct btrfs_bio *bbio = btrfs_bio(bio); 373 374 btrfs_bio_counter_dec(bioc->fs_info); 375 376 if (bio->bi_status) { 377 atomic_inc(&bioc->error); 378 btrfs_log_dev_io_error(bio, stripe->dev); 379 } 380 381 /* 382 * Only send an error to the higher layers if it is beyond the tolerance 383 * threshold. 384 */ 385 if (atomic_read(&bioc->error) > bioc->max_errors) 386 bio->bi_status = BLK_STS_IOERR; 387 else 388 bio->bi_status = BLK_STS_OK; 389 390 if (bio_is_zone_append(bio) && !bio->bi_status) 391 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 392 393 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 394 btrfs_put_bioc(bioc); 395 } 396 397 static void btrfs_clone_write_end_io(struct bio *bio) 398 { 399 struct btrfs_io_stripe *stripe = bio->bi_private; 400 401 if (bio->bi_status) { 402 atomic_inc(&stripe->bioc->error); 403 btrfs_log_dev_io_error(bio, stripe->dev); 404 } else if (bio_is_zone_append(bio)) { 405 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 406 } 407 408 /* Pass on control to the original bio this one was cloned from */ 409 bio_endio(stripe->bioc->orig_bio); 410 bio_put(bio); 411 } 412 413 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio) 414 { 415 if (!dev || !dev->bdev || 416 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 417 (btrfs_op(bio) == BTRFS_MAP_WRITE && 418 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 419 bio_io_error(bio); 420 return; 421 } 422 423 bio_set_dev(bio, dev->bdev); 424 425 /* 426 * For zone append writing, bi_sector must point the beginning of the 427 * zone 428 */ 429 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 430 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 431 u64 zone_start = round_down(physical, dev->fs_info->zone_size); 432 433 ASSERT(btrfs_dev_is_sequential(dev, physical)); 434 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 435 } 436 btrfs_debug(dev->fs_info, 437 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 438 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 439 (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev), 440 dev->devid, bio->bi_iter.bi_size); 441 442 /* 443 * Track reads if tracking is enabled; ignore I/O operations before the 444 * filesystem is fully initialized. 445 */ 446 if (dev->fs_devices->collect_fs_stats && bio_op(bio) == REQ_OP_READ && dev->fs_info) 447 percpu_counter_add(&dev->fs_info->stats_read_blocks, 448 bio->bi_iter.bi_size >> dev->fs_info->sectorsize_bits); 449 450 if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT) 451 blkcg_punt_bio_submit(bio); 452 else 453 submit_bio(bio); 454 } 455 456 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr) 457 { 458 struct bio *orig_bio = bioc->orig_bio, *bio; 459 460 ASSERT(bio_op(orig_bio) != REQ_OP_READ); 461 462 /* Reuse the bio embedded into the btrfs_bio for the last mirror */ 463 if (dev_nr == bioc->num_stripes - 1) { 464 bio = orig_bio; 465 bio->bi_end_io = btrfs_orig_write_end_io; 466 } else { 467 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set); 468 bio_inc_remaining(orig_bio); 469 bio->bi_end_io = btrfs_clone_write_end_io; 470 } 471 472 bio->bi_private = &bioc->stripes[dev_nr]; 473 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT; 474 bioc->stripes[dev_nr].bioc = bioc; 475 bioc->size = bio->bi_iter.bi_size; 476 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio); 477 } 478 479 static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc, 480 struct btrfs_io_stripe *smap, int mirror_num) 481 { 482 if (!bioc) { 483 /* Single mirror read/write fast path. */ 484 btrfs_bio(bio)->mirror_num = mirror_num; 485 bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT; 486 if (bio_op(bio) != REQ_OP_READ) 487 btrfs_bio(bio)->orig_physical = smap->physical; 488 bio->bi_private = smap->dev; 489 bio->bi_end_io = btrfs_simple_end_io; 490 btrfs_submit_dev_bio(smap->dev, bio); 491 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 492 /* Parity RAID write or read recovery. */ 493 bio->bi_private = bioc; 494 bio->bi_end_io = btrfs_raid56_end_io; 495 if (bio_op(bio) == REQ_OP_READ) 496 raid56_parity_recover(bio, bioc, mirror_num); 497 else 498 raid56_parity_write(bio, bioc); 499 } else { 500 /* Write to multiple mirrors. */ 501 int total_devs = bioc->num_stripes; 502 503 bioc->orig_bio = bio; 504 for (int dev_nr = 0; dev_nr < total_devs; dev_nr++) 505 btrfs_submit_mirrored_bio(bioc, dev_nr); 506 } 507 } 508 509 static int btrfs_bio_csum(struct btrfs_bio *bbio) 510 { 511 if (bbio->bio.bi_opf & REQ_META) 512 return btree_csum_one_bio(bbio); 513 return btrfs_csum_one_bio(bbio); 514 } 515 516 /* 517 * Async submit bios are used to offload expensive checksumming onto the worker 518 * threads. 519 */ 520 struct async_submit_bio { 521 struct btrfs_bio *bbio; 522 struct btrfs_io_context *bioc; 523 struct btrfs_io_stripe smap; 524 int mirror_num; 525 struct btrfs_work work; 526 }; 527 528 /* 529 * In order to insert checksums into the metadata in large chunks, we wait 530 * until bio submission time. All the pages in the bio are checksummed and 531 * sums are attached onto the ordered extent record. 532 * 533 * At IO completion time the csums attached on the ordered extent record are 534 * inserted into the btree. 535 */ 536 static void run_one_async_start(struct btrfs_work *work) 537 { 538 struct async_submit_bio *async = 539 container_of(work, struct async_submit_bio, work); 540 int ret; 541 542 ret = btrfs_bio_csum(async->bbio); 543 if (ret) 544 async->bbio->bio.bi_status = errno_to_blk_status(ret); 545 } 546 547 /* 548 * In order to insert checksums into the metadata in large chunks, we wait 549 * until bio submission time. All the pages in the bio are checksummed and 550 * sums are attached onto the ordered extent record. 551 * 552 * At IO completion time the csums attached on the ordered extent record are 553 * inserted into the tree. 554 * 555 * If called with @do_free == true, then it will free the work struct. 556 */ 557 static void run_one_async_done(struct btrfs_work *work, bool do_free) 558 { 559 struct async_submit_bio *async = 560 container_of(work, struct async_submit_bio, work); 561 struct bio *bio = &async->bbio->bio; 562 563 if (do_free) { 564 kfree(container_of(work, struct async_submit_bio, work)); 565 return; 566 } 567 568 /* If an error occurred we just want to clean up the bio and move on. */ 569 if (bio->bi_status) { 570 btrfs_bio_end_io(async->bbio, bio->bi_status); 571 return; 572 } 573 574 /* 575 * All of the bios that pass through here are from async helpers. 576 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's 577 * context. This changes nothing when cgroups aren't in use. 578 */ 579 bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT; 580 btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num); 581 } 582 583 static bool should_async_write(struct btrfs_bio *bbio) 584 { 585 bool auto_csum_mode = true; 586 587 #ifdef CONFIG_BTRFS_EXPERIMENTAL 588 struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices; 589 enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode); 590 591 if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF) 592 return false; 593 594 auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO); 595 #endif 596 597 /* Submit synchronously if the checksum implementation is fast. */ 598 if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags)) 599 return false; 600 601 /* 602 * Try to defer the submission to a workqueue to parallelize the 603 * checksum calculation unless the I/O is issued synchronously. 604 */ 605 if (op_is_sync(bbio->bio.bi_opf)) 606 return false; 607 608 /* Zoned devices require I/O to be submitted in order. */ 609 if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info)) 610 return false; 611 612 return true; 613 } 614 615 /* 616 * Submit bio to an async queue. 617 * 618 * Return true if the work has been successfully submitted, else false. 619 */ 620 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio, 621 struct btrfs_io_context *bioc, 622 struct btrfs_io_stripe *smap, int mirror_num) 623 { 624 struct btrfs_fs_info *fs_info = bbio->fs_info; 625 struct async_submit_bio *async; 626 627 async = kmalloc(sizeof(*async), GFP_NOFS); 628 if (!async) 629 return false; 630 631 async->bbio = bbio; 632 async->bioc = bioc; 633 async->smap = *smap; 634 async->mirror_num = mirror_num; 635 636 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done); 637 btrfs_queue_work(fs_info->workers, &async->work); 638 return true; 639 } 640 641 static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length) 642 { 643 unsigned int nr_segs; 644 int sector_offset; 645 646 map_length = min(map_length, bbio->fs_info->max_zone_append_size); 647 sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits, 648 &nr_segs, map_length); 649 if (sector_offset) { 650 /* 651 * bio_split_rw_at() could split at a size smaller than our 652 * sectorsize and thus cause unaligned I/Os. Fix that by 653 * always rounding down to the nearest boundary. 654 */ 655 return ALIGN_DOWN(sector_offset << SECTOR_SHIFT, bbio->fs_info->sectorsize); 656 } 657 return map_length; 658 } 659 660 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num) 661 { 662 struct btrfs_inode *inode = bbio->inode; 663 struct btrfs_fs_info *fs_info = bbio->fs_info; 664 struct bio *bio = &bbio->bio; 665 u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 666 u64 length = bio->bi_iter.bi_size; 667 u64 map_length = length; 668 bool use_append = btrfs_use_zone_append(bbio); 669 struct btrfs_io_context *bioc = NULL; 670 struct btrfs_io_stripe smap; 671 blk_status_t status; 672 int ret; 673 674 if (!bbio->inode || btrfs_is_data_reloc_root(inode->root)) 675 smap.rst_search_commit_root = true; 676 else 677 smap.rst_search_commit_root = false; 678 679 btrfs_bio_counter_inc_blocked(fs_info); 680 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 681 &bioc, &smap, &mirror_num); 682 if (ret) { 683 status = errno_to_blk_status(ret); 684 btrfs_bio_counter_dec(fs_info); 685 goto end_bbio; 686 } 687 688 map_length = min(map_length, length); 689 if (use_append) 690 map_length = btrfs_append_map_length(bbio, map_length); 691 692 if (map_length < length) { 693 struct btrfs_bio *split; 694 695 split = btrfs_split_bio(fs_info, bbio, map_length); 696 if (IS_ERR(split)) { 697 status = errno_to_blk_status(PTR_ERR(split)); 698 btrfs_bio_counter_dec(fs_info); 699 goto end_bbio; 700 } 701 bbio = split; 702 bio = &bbio->bio; 703 } 704 705 /* 706 * Save the iter for the end_io handler and preload the checksums for 707 * data reads. 708 */ 709 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) { 710 bbio->saved_iter = bio->bi_iter; 711 ret = btrfs_lookup_bio_sums(bbio); 712 status = errno_to_blk_status(ret); 713 if (status) 714 goto fail; 715 } 716 717 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 718 if (use_append) { 719 bio->bi_opf &= ~REQ_OP_WRITE; 720 bio->bi_opf |= REQ_OP_ZONE_APPEND; 721 } 722 723 if (is_data_bbio(bbio) && bioc && bioc->use_rst) { 724 /* 725 * No locking for the list update, as we only add to 726 * the list in the I/O submission path, and list 727 * iteration only happens in the completion path, which 728 * can't happen until after the last submission. 729 */ 730 btrfs_get_bioc(bioc); 731 list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list); 732 } 733 734 /* 735 * Csum items for reloc roots have already been cloned at this 736 * point, so they are handled as part of the no-checksum case. 737 */ 738 if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) && 739 !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) && 740 !btrfs_is_data_reloc_root(inode->root)) { 741 if (should_async_write(bbio) && 742 btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num)) 743 goto done; 744 745 ret = btrfs_bio_csum(bbio); 746 status = errno_to_blk_status(ret); 747 if (status) 748 goto fail; 749 } else if (use_append || 750 (btrfs_is_zoned(fs_info) && inode && 751 inode->flags & BTRFS_INODE_NODATASUM)) { 752 ret = btrfs_alloc_dummy_sum(bbio); 753 status = errno_to_blk_status(ret); 754 if (status) 755 goto fail; 756 } 757 } 758 759 btrfs_submit_bio(bio, bioc, &smap, mirror_num); 760 done: 761 return map_length == length; 762 763 fail: 764 btrfs_bio_counter_dec(fs_info); 765 /* 766 * We have split the original bbio, now we have to end both the current 767 * @bbio and remaining one, as the remaining one will never be submitted. 768 */ 769 if (map_length < length) { 770 struct btrfs_bio *remaining = bbio->private; 771 772 ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset); 773 ASSERT(remaining); 774 775 btrfs_bio_end_io(remaining, status); 776 } 777 end_bbio: 778 btrfs_bio_end_io(bbio, status); 779 /* Do not submit another chunk */ 780 return true; 781 } 782 783 void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num) 784 { 785 /* If bbio->inode is not populated, its file_offset must be 0. */ 786 ASSERT(bbio->inode || bbio->file_offset == 0); 787 788 while (!btrfs_submit_chunk(bbio, mirror_num)) 789 ; 790 } 791 792 /* 793 * Submit a repair write. 794 * 795 * This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a 796 * RAID setup. Here we only want to write the one bad copy, so we do the 797 * mapping ourselves and submit the bio directly. 798 * 799 * The I/O is issued synchronously to block the repair read completion from 800 * freeing the bio. 801 */ 802 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 803 u64 length, u64 logical, phys_addr_t paddr, int mirror_num) 804 { 805 struct btrfs_io_stripe smap = { 0 }; 806 struct bio_vec bvec; 807 struct bio bio; 808 int ret = 0; 809 810 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 811 BUG_ON(!mirror_num); 812 813 if (btrfs_repair_one_zone(fs_info, logical)) 814 return 0; 815 816 /* 817 * Avoid races with device replace and make sure our bioc has devices 818 * associated to its stripes that don't go away while we are doing the 819 * read repair operation. 820 */ 821 btrfs_bio_counter_inc_blocked(fs_info); 822 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 823 if (ret < 0) 824 goto out_counter_dec; 825 826 if (!smap.dev->bdev || 827 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) { 828 ret = -EIO; 829 goto out_counter_dec; 830 } 831 832 bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); 833 bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT; 834 __bio_add_page(&bio, phys_to_page(paddr), length, offset_in_page(paddr)); 835 ret = submit_bio_wait(&bio); 836 if (ret) { 837 /* try to remap that extent elsewhere? */ 838 btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS); 839 goto out_bio_uninit; 840 } 841 842 btrfs_info_rl(fs_info, 843 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 844 ino, start, btrfs_dev_name(smap.dev), 845 smap.physical >> SECTOR_SHIFT); 846 ret = 0; 847 848 out_bio_uninit: 849 bio_uninit(&bio); 850 out_counter_dec: 851 btrfs_bio_counter_dec(fs_info); 852 return ret; 853 } 854 855 /* 856 * Submit a btrfs_bio based repair write. 857 * 858 * If @dev_replace is true, the write would be submitted to dev-replace target. 859 */ 860 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace) 861 { 862 struct btrfs_fs_info *fs_info = bbio->fs_info; 863 u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 864 u64 length = bbio->bio.bi_iter.bi_size; 865 struct btrfs_io_stripe smap = { 0 }; 866 int ret; 867 868 ASSERT(fs_info); 869 ASSERT(mirror_num > 0); 870 ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE); 871 ASSERT(!bbio->inode); 872 873 btrfs_bio_counter_inc_blocked(fs_info); 874 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 875 if (ret < 0) 876 goto fail; 877 878 if (dev_replace) { 879 ASSERT(smap.dev == fs_info->dev_replace.srcdev); 880 smap.dev = fs_info->dev_replace.tgtdev; 881 } 882 btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num); 883 return; 884 885 fail: 886 btrfs_bio_counter_dec(fs_info); 887 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 888 } 889 890 int __init btrfs_bioset_init(void) 891 { 892 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 893 offsetof(struct btrfs_bio, bio), 894 BIOSET_NEED_BVECS)) 895 return -ENOMEM; 896 if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE, 897 offsetof(struct btrfs_bio, bio), 0)) 898 goto out; 899 if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE, 900 offsetof(struct btrfs_bio, bio), 901 BIOSET_NEED_BVECS)) 902 goto out; 903 if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE, 904 sizeof(struct btrfs_failed_bio))) 905 goto out; 906 return 0; 907 908 out: 909 btrfs_bioset_exit(); 910 return -ENOMEM; 911 } 912 913 void __cold btrfs_bioset_exit(void) 914 { 915 mempool_exit(&btrfs_failed_bio_pool); 916 bioset_exit(&btrfs_repair_bioset); 917 bioset_exit(&btrfs_clone_bioset); 918 bioset_exit(&btrfs_bioset); 919 } 920