1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 * Copyright (C) 2022 Christoph Hellwig. 5 */ 6 7 #include <linux/bio.h> 8 #include "bio.h" 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "raid56.h" 12 #include "async-thread.h" 13 #include "dev-replace.h" 14 #include "zoned.h" 15 #include "file-item.h" 16 #include "raid-stripe-tree.h" 17 18 static struct bio_set btrfs_bioset; 19 static struct bio_set btrfs_clone_bioset; 20 static struct bio_set btrfs_repair_bioset; 21 static mempool_t btrfs_failed_bio_pool; 22 23 struct btrfs_failed_bio { 24 struct btrfs_bio *bbio; 25 int num_copies; 26 atomic_t repair_count; 27 }; 28 29 /* Is this a data path I/O that needs storage layer checksum and repair? */ 30 static inline bool is_data_bbio(const struct btrfs_bio *bbio) 31 { 32 return bbio->inode && is_data_inode(bbio->inode); 33 } 34 35 static bool bbio_has_ordered_extent(const struct btrfs_bio *bbio) 36 { 37 return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE; 38 } 39 40 /* 41 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it 42 * is already initialized by the block layer. 43 */ 44 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info, 45 btrfs_bio_end_io_t end_io, void *private) 46 { 47 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 48 bbio->fs_info = fs_info; 49 bbio->end_io = end_io; 50 bbio->private = private; 51 atomic_set(&bbio->pending_ios, 1); 52 WRITE_ONCE(bbio->status, BLK_STS_OK); 53 } 54 55 /* 56 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for 57 * btrfs, and is used for all I/O submitted through btrfs_submit_bbio(). 58 * 59 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by 60 * a mempool. 61 */ 62 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf, 63 struct btrfs_fs_info *fs_info, 64 btrfs_bio_end_io_t end_io, void *private) 65 { 66 struct btrfs_bio *bbio; 67 struct bio *bio; 68 69 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset); 70 bbio = btrfs_bio(bio); 71 btrfs_bio_init(bbio, fs_info, end_io, private); 72 return bbio; 73 } 74 75 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info, 76 struct btrfs_bio *orig_bbio, 77 u64 map_length) 78 { 79 struct btrfs_bio *bbio; 80 struct bio *bio; 81 82 bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS, 83 &btrfs_clone_bioset); 84 if (IS_ERR(bio)) 85 return ERR_CAST(bio); 86 87 bbio = btrfs_bio(bio); 88 btrfs_bio_init(bbio, fs_info, NULL, orig_bbio); 89 bbio->inode = orig_bbio->inode; 90 bbio->file_offset = orig_bbio->file_offset; 91 orig_bbio->file_offset += map_length; 92 if (bbio_has_ordered_extent(bbio)) { 93 refcount_inc(&orig_bbio->ordered->refs); 94 bbio->ordered = orig_bbio->ordered; 95 } 96 bbio->csum_search_commit_root = orig_bbio->csum_search_commit_root; 97 atomic_inc(&orig_bbio->pending_ios); 98 return bbio; 99 } 100 101 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status) 102 { 103 bbio->bio.bi_status = status; 104 if (bbio->bio.bi_pool == &btrfs_clone_bioset) { 105 struct btrfs_bio *orig_bbio = bbio->private; 106 107 /* Free bio that was never submitted to the underlying device. */ 108 if (bbio_has_ordered_extent(bbio)) 109 btrfs_put_ordered_extent(bbio->ordered); 110 bio_put(&bbio->bio); 111 112 bbio = orig_bbio; 113 } 114 115 /* 116 * At this point, bbio always points to the original btrfs_bio. Save 117 * the first error in it. 118 */ 119 if (status != BLK_STS_OK) 120 cmpxchg(&bbio->status, BLK_STS_OK, status); 121 122 if (atomic_dec_and_test(&bbio->pending_ios)) { 123 /* Load split bio's error which might be set above. */ 124 if (status == BLK_STS_OK) 125 bbio->bio.bi_status = READ_ONCE(bbio->status); 126 127 if (bbio_has_ordered_extent(bbio)) { 128 struct btrfs_ordered_extent *ordered = bbio->ordered; 129 130 bbio->end_io(bbio); 131 btrfs_put_ordered_extent(ordered); 132 } else { 133 bbio->end_io(bbio); 134 } 135 } 136 } 137 138 static int next_repair_mirror(const struct btrfs_failed_bio *fbio, int cur_mirror) 139 { 140 if (cur_mirror == fbio->num_copies) 141 return cur_mirror + 1 - fbio->num_copies; 142 return cur_mirror + 1; 143 } 144 145 static int prev_repair_mirror(const struct btrfs_failed_bio *fbio, int cur_mirror) 146 { 147 if (cur_mirror == 1) 148 return fbio->num_copies; 149 return cur_mirror - 1; 150 } 151 152 static void btrfs_repair_done(struct btrfs_failed_bio *fbio) 153 { 154 if (atomic_dec_and_test(&fbio->repair_count)) { 155 btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status); 156 mempool_free(fbio, &btrfs_failed_bio_pool); 157 } 158 } 159 160 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio, 161 struct btrfs_device *dev) 162 { 163 struct btrfs_failed_bio *fbio = repair_bbio->private; 164 struct btrfs_inode *inode = repair_bbio->inode; 165 struct btrfs_fs_info *fs_info = inode->root->fs_info; 166 struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio); 167 int mirror = repair_bbio->mirror_num; 168 169 if (repair_bbio->bio.bi_status || 170 !btrfs_data_csum_ok(repair_bbio, dev, 0, bvec_phys(bv))) { 171 bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ); 172 repair_bbio->bio.bi_iter = repair_bbio->saved_iter; 173 174 mirror = next_repair_mirror(fbio, mirror); 175 if (mirror == fbio->bbio->mirror_num) { 176 btrfs_debug(fs_info, "no mirror left"); 177 fbio->bbio->bio.bi_status = BLK_STS_IOERR; 178 goto done; 179 } 180 181 btrfs_submit_bbio(repair_bbio, mirror); 182 return; 183 } 184 185 do { 186 mirror = prev_repair_mirror(fbio, mirror); 187 btrfs_repair_io_failure(fs_info, btrfs_ino(inode), 188 repair_bbio->file_offset, fs_info->sectorsize, 189 repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT, 190 bvec_phys(bv), mirror); 191 } while (mirror != fbio->bbio->mirror_num); 192 193 done: 194 btrfs_repair_done(fbio); 195 bio_put(&repair_bbio->bio); 196 } 197 198 /* 199 * Try to kick off a repair read to the next available mirror for a bad sector. 200 * 201 * This primarily tries to recover good data to serve the actual read request, 202 * but also tries to write the good data back to the bad mirror(s) when a 203 * read succeeded to restore the redundancy. 204 */ 205 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio, 206 u32 bio_offset, 207 phys_addr_t paddr, 208 struct btrfs_failed_bio *fbio) 209 { 210 struct btrfs_inode *inode = failed_bbio->inode; 211 struct btrfs_fs_info *fs_info = inode->root->fs_info; 212 struct folio *folio = page_folio(phys_to_page(paddr)); 213 const u32 sectorsize = fs_info->sectorsize; 214 const u32 foff = offset_in_folio(folio, paddr); 215 const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT); 216 struct btrfs_bio *repair_bbio; 217 struct bio *repair_bio; 218 int num_copies; 219 int mirror; 220 221 ASSERT(foff + sectorsize <= folio_size(folio)); 222 btrfs_debug(fs_info, "repair read error: read error at %llu", 223 failed_bbio->file_offset + bio_offset); 224 225 num_copies = btrfs_num_copies(fs_info, logical, sectorsize); 226 if (num_copies == 1) { 227 btrfs_debug(fs_info, "no copy to repair from"); 228 failed_bbio->bio.bi_status = BLK_STS_IOERR; 229 return fbio; 230 } 231 232 if (!fbio) { 233 fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS); 234 fbio->bbio = failed_bbio; 235 fbio->num_copies = num_copies; 236 atomic_set(&fbio->repair_count, 1); 237 } 238 239 atomic_inc(&fbio->repair_count); 240 241 repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, 242 &btrfs_repair_bioset); 243 repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector; 244 bio_add_folio_nofail(repair_bio, folio, sectorsize, foff); 245 246 repair_bbio = btrfs_bio(repair_bio); 247 btrfs_bio_init(repair_bbio, fs_info, NULL, fbio); 248 repair_bbio->inode = failed_bbio->inode; 249 repair_bbio->file_offset = failed_bbio->file_offset + bio_offset; 250 251 mirror = next_repair_mirror(fbio, failed_bbio->mirror_num); 252 btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror); 253 btrfs_submit_bbio(repair_bbio, mirror); 254 return fbio; 255 } 256 257 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev) 258 { 259 struct btrfs_inode *inode = bbio->inode; 260 struct btrfs_fs_info *fs_info = inode->root->fs_info; 261 u32 sectorsize = fs_info->sectorsize; 262 struct bvec_iter *iter = &bbio->saved_iter; 263 blk_status_t status = bbio->bio.bi_status; 264 struct btrfs_failed_bio *fbio = NULL; 265 phys_addr_t paddr; 266 u32 offset = 0; 267 268 /* Read-repair requires the inode field to be set by the submitter. */ 269 ASSERT(inode); 270 271 /* 272 * Hand off repair bios to the repair code as there is no upper level 273 * submitter for them. 274 */ 275 if (bbio->bio.bi_pool == &btrfs_repair_bioset) { 276 btrfs_end_repair_bio(bbio, dev); 277 return; 278 } 279 280 /* Clear the I/O error. A failed repair will reset it. */ 281 bbio->bio.bi_status = BLK_STS_OK; 282 283 btrfs_bio_for_each_block(paddr, &bbio->bio, iter, fs_info->sectorsize) { 284 if (status || !btrfs_data_csum_ok(bbio, dev, offset, paddr)) 285 fbio = repair_one_sector(bbio, offset, paddr, fbio); 286 offset += sectorsize; 287 } 288 if (bbio->csum != bbio->csum_inline) 289 kfree(bbio->csum); 290 291 if (fbio) 292 btrfs_repair_done(fbio); 293 else 294 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 295 } 296 297 static void btrfs_log_dev_io_error(const struct bio *bio, struct btrfs_device *dev) 298 { 299 if (!dev || !dev->bdev) 300 return; 301 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET) 302 return; 303 304 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 305 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 306 else if (!(bio->bi_opf & REQ_RAHEAD)) 307 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 308 if (bio->bi_opf & REQ_PREFLUSH) 309 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); 310 } 311 312 static struct workqueue_struct *btrfs_end_io_wq(const struct btrfs_fs_info *fs_info, 313 const struct bio *bio) 314 { 315 if (bio->bi_opf & REQ_META) 316 return fs_info->endio_meta_workers; 317 return fs_info->endio_workers; 318 } 319 320 static void btrfs_end_bio_work(struct work_struct *work) 321 { 322 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work); 323 324 /* Metadata reads are checked and repaired by the submitter. */ 325 if (is_data_bbio(bbio)) 326 btrfs_check_read_bio(bbio, bbio->bio.bi_private); 327 else 328 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 329 } 330 331 static void btrfs_simple_end_io(struct bio *bio) 332 { 333 struct btrfs_bio *bbio = btrfs_bio(bio); 334 struct btrfs_device *dev = bio->bi_private; 335 struct btrfs_fs_info *fs_info = bbio->fs_info; 336 337 btrfs_bio_counter_dec(fs_info); 338 339 if (bio->bi_status) 340 btrfs_log_dev_io_error(bio, dev); 341 342 if (bio_op(bio) == REQ_OP_READ) { 343 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work); 344 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work); 345 } else { 346 if (bio_is_zone_append(bio) && !bio->bi_status) 347 btrfs_record_physical_zoned(bbio); 348 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 349 } 350 } 351 352 static void btrfs_raid56_end_io(struct bio *bio) 353 { 354 struct btrfs_io_context *bioc = bio->bi_private; 355 struct btrfs_bio *bbio = btrfs_bio(bio); 356 357 btrfs_bio_counter_dec(bioc->fs_info); 358 bbio->mirror_num = bioc->mirror_num; 359 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) 360 btrfs_check_read_bio(bbio, NULL); 361 else 362 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 363 364 btrfs_put_bioc(bioc); 365 } 366 367 static void btrfs_orig_write_end_io(struct bio *bio) 368 { 369 struct btrfs_io_stripe *stripe = bio->bi_private; 370 struct btrfs_io_context *bioc = stripe->bioc; 371 struct btrfs_bio *bbio = btrfs_bio(bio); 372 373 btrfs_bio_counter_dec(bioc->fs_info); 374 375 if (bio->bi_status) { 376 atomic_inc(&bioc->error); 377 btrfs_log_dev_io_error(bio, stripe->dev); 378 } 379 380 /* 381 * Only send an error to the higher layers if it is beyond the tolerance 382 * threshold. 383 */ 384 if (atomic_read(&bioc->error) > bioc->max_errors) 385 bio->bi_status = BLK_STS_IOERR; 386 else 387 bio->bi_status = BLK_STS_OK; 388 389 if (bio_is_zone_append(bio) && !bio->bi_status) 390 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 391 392 btrfs_bio_end_io(bbio, bbio->bio.bi_status); 393 btrfs_put_bioc(bioc); 394 } 395 396 static void btrfs_clone_write_end_io(struct bio *bio) 397 { 398 struct btrfs_io_stripe *stripe = bio->bi_private; 399 400 if (bio->bi_status) { 401 atomic_inc(&stripe->bioc->error); 402 btrfs_log_dev_io_error(bio, stripe->dev); 403 } else if (bio_is_zone_append(bio)) { 404 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 405 } 406 407 /* Pass on control to the original bio this one was cloned from */ 408 bio_endio(stripe->bioc->orig_bio); 409 bio_put(bio); 410 } 411 412 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio) 413 { 414 if (!dev || !dev->bdev || 415 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 416 (btrfs_op(bio) == BTRFS_MAP_WRITE && 417 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 418 bio_io_error(bio); 419 return; 420 } 421 422 bio_set_dev(bio, dev->bdev); 423 424 /* 425 * For zone append writing, bi_sector must point the beginning of the 426 * zone 427 */ 428 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 429 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 430 u64 zone_start = round_down(physical, dev->fs_info->zone_size); 431 432 ASSERT(btrfs_dev_is_sequential(dev, physical)); 433 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 434 } 435 btrfs_debug(dev->fs_info, 436 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 437 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 438 (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev), 439 dev->devid, bio->bi_iter.bi_size); 440 441 /* 442 * Track reads if tracking is enabled; ignore I/O operations before the 443 * filesystem is fully initialized. 444 */ 445 if (dev->fs_devices->collect_fs_stats && bio_op(bio) == REQ_OP_READ && dev->fs_info) 446 percpu_counter_add(&dev->fs_info->stats_read_blocks, 447 bio->bi_iter.bi_size >> dev->fs_info->sectorsize_bits); 448 449 if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT) 450 blkcg_punt_bio_submit(bio); 451 else 452 submit_bio(bio); 453 } 454 455 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr) 456 { 457 struct bio *orig_bio = bioc->orig_bio, *bio; 458 459 ASSERT(bio_op(orig_bio) != REQ_OP_READ); 460 461 /* Reuse the bio embedded into the btrfs_bio for the last mirror */ 462 if (dev_nr == bioc->num_stripes - 1) { 463 bio = orig_bio; 464 bio->bi_end_io = btrfs_orig_write_end_io; 465 } else { 466 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set); 467 bio_inc_remaining(orig_bio); 468 bio->bi_end_io = btrfs_clone_write_end_io; 469 } 470 471 bio->bi_private = &bioc->stripes[dev_nr]; 472 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT; 473 bioc->stripes[dev_nr].bioc = bioc; 474 bioc->size = bio->bi_iter.bi_size; 475 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio); 476 } 477 478 static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc, 479 struct btrfs_io_stripe *smap, int mirror_num) 480 { 481 if (!bioc) { 482 /* Single mirror read/write fast path. */ 483 btrfs_bio(bio)->mirror_num = mirror_num; 484 bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT; 485 if (bio_op(bio) != REQ_OP_READ) 486 btrfs_bio(bio)->orig_physical = smap->physical; 487 bio->bi_private = smap->dev; 488 bio->bi_end_io = btrfs_simple_end_io; 489 btrfs_submit_dev_bio(smap->dev, bio); 490 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 491 /* Parity RAID write or read recovery. */ 492 bio->bi_private = bioc; 493 bio->bi_end_io = btrfs_raid56_end_io; 494 if (bio_op(bio) == REQ_OP_READ) 495 raid56_parity_recover(bio, bioc, mirror_num); 496 else 497 raid56_parity_write(bio, bioc); 498 } else { 499 /* Write to multiple mirrors. */ 500 int total_devs = bioc->num_stripes; 501 502 bioc->orig_bio = bio; 503 for (int dev_nr = 0; dev_nr < total_devs; dev_nr++) 504 btrfs_submit_mirrored_bio(bioc, dev_nr); 505 } 506 } 507 508 static int btrfs_bio_csum(struct btrfs_bio *bbio) 509 { 510 if (bbio->bio.bi_opf & REQ_META) 511 return btree_csum_one_bio(bbio); 512 return btrfs_csum_one_bio(bbio); 513 } 514 515 /* 516 * Async submit bios are used to offload expensive checksumming onto the worker 517 * threads. 518 */ 519 struct async_submit_bio { 520 struct btrfs_bio *bbio; 521 struct btrfs_io_context *bioc; 522 struct btrfs_io_stripe smap; 523 int mirror_num; 524 struct btrfs_work work; 525 }; 526 527 /* 528 * In order to insert checksums into the metadata in large chunks, we wait 529 * until bio submission time. All the pages in the bio are checksummed and 530 * sums are attached onto the ordered extent record. 531 * 532 * At IO completion time the csums attached on the ordered extent record are 533 * inserted into the btree. 534 */ 535 static void run_one_async_start(struct btrfs_work *work) 536 { 537 struct async_submit_bio *async = 538 container_of(work, struct async_submit_bio, work); 539 int ret; 540 541 ret = btrfs_bio_csum(async->bbio); 542 if (ret) 543 async->bbio->bio.bi_status = errno_to_blk_status(ret); 544 } 545 546 /* 547 * In order to insert checksums into the metadata in large chunks, we wait 548 * until bio submission time. All the pages in the bio are checksummed and 549 * sums are attached onto the ordered extent record. 550 * 551 * At IO completion time the csums attached on the ordered extent record are 552 * inserted into the tree. 553 * 554 * If called with @do_free == true, then it will free the work struct. 555 */ 556 static void run_one_async_done(struct btrfs_work *work, bool do_free) 557 { 558 struct async_submit_bio *async = 559 container_of(work, struct async_submit_bio, work); 560 struct bio *bio = &async->bbio->bio; 561 562 if (do_free) { 563 kfree(container_of(work, struct async_submit_bio, work)); 564 return; 565 } 566 567 /* If an error occurred we just want to clean up the bio and move on. */ 568 if (bio->bi_status) { 569 btrfs_bio_end_io(async->bbio, bio->bi_status); 570 return; 571 } 572 573 /* 574 * All of the bios that pass through here are from async helpers. 575 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's 576 * context. This changes nothing when cgroups aren't in use. 577 */ 578 bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT; 579 btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num); 580 } 581 582 static bool should_async_write(struct btrfs_bio *bbio) 583 { 584 bool auto_csum_mode = true; 585 586 #ifdef CONFIG_BTRFS_EXPERIMENTAL 587 struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices; 588 enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode); 589 590 if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF) 591 return false; 592 593 auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO); 594 #endif 595 596 /* Submit synchronously if the checksum implementation is fast. */ 597 if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags)) 598 return false; 599 600 /* 601 * Try to defer the submission to a workqueue to parallelize the 602 * checksum calculation unless the I/O is issued synchronously. 603 */ 604 if (op_is_sync(bbio->bio.bi_opf)) 605 return false; 606 607 /* Zoned devices require I/O to be submitted in order. */ 608 if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info)) 609 return false; 610 611 return true; 612 } 613 614 /* 615 * Submit bio to an async queue. 616 * 617 * Return true if the work has been successfully submitted, else false. 618 */ 619 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio, 620 struct btrfs_io_context *bioc, 621 struct btrfs_io_stripe *smap, int mirror_num) 622 { 623 struct btrfs_fs_info *fs_info = bbio->fs_info; 624 struct async_submit_bio *async; 625 626 async = kmalloc(sizeof(*async), GFP_NOFS); 627 if (!async) 628 return false; 629 630 async->bbio = bbio; 631 async->bioc = bioc; 632 async->smap = *smap; 633 async->mirror_num = mirror_num; 634 635 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done); 636 btrfs_queue_work(fs_info->workers, &async->work); 637 return true; 638 } 639 640 static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length) 641 { 642 unsigned int nr_segs; 643 int sector_offset; 644 645 map_length = min(map_length, bbio->fs_info->max_zone_append_size); 646 sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits, 647 &nr_segs, map_length); 648 if (sector_offset) { 649 /* 650 * bio_split_rw_at() could split at a size smaller than our 651 * sectorsize and thus cause unaligned I/Os. Fix that by 652 * always rounding down to the nearest boundary. 653 */ 654 return ALIGN_DOWN(sector_offset << SECTOR_SHIFT, bbio->fs_info->sectorsize); 655 } 656 return map_length; 657 } 658 659 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num) 660 { 661 struct btrfs_inode *inode = bbio->inode; 662 struct btrfs_fs_info *fs_info = bbio->fs_info; 663 struct bio *bio = &bbio->bio; 664 u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 665 u64 length = bio->bi_iter.bi_size; 666 u64 map_length = length; 667 bool use_append = btrfs_use_zone_append(bbio); 668 struct btrfs_io_context *bioc = NULL; 669 struct btrfs_io_stripe smap; 670 blk_status_t status; 671 int ret; 672 673 if (!bbio->inode || btrfs_is_data_reloc_root(inode->root)) 674 smap.rst_search_commit_root = true; 675 else 676 smap.rst_search_commit_root = false; 677 678 btrfs_bio_counter_inc_blocked(fs_info); 679 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 680 &bioc, &smap, &mirror_num); 681 if (ret) { 682 status = errno_to_blk_status(ret); 683 btrfs_bio_counter_dec(fs_info); 684 goto end_bbio; 685 } 686 687 map_length = min(map_length, length); 688 if (use_append) 689 map_length = btrfs_append_map_length(bbio, map_length); 690 691 if (map_length < length) { 692 struct btrfs_bio *split; 693 694 split = btrfs_split_bio(fs_info, bbio, map_length); 695 if (IS_ERR(split)) { 696 status = errno_to_blk_status(PTR_ERR(split)); 697 btrfs_bio_counter_dec(fs_info); 698 goto end_bbio; 699 } 700 bbio = split; 701 bio = &bbio->bio; 702 } 703 704 /* 705 * Save the iter for the end_io handler and preload the checksums for 706 * data reads. 707 */ 708 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) { 709 bbio->saved_iter = bio->bi_iter; 710 ret = btrfs_lookup_bio_sums(bbio); 711 status = errno_to_blk_status(ret); 712 if (status) 713 goto fail; 714 } 715 716 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 717 if (use_append) { 718 bio->bi_opf &= ~REQ_OP_WRITE; 719 bio->bi_opf |= REQ_OP_ZONE_APPEND; 720 } 721 722 if (is_data_bbio(bbio) && bioc && bioc->use_rst) { 723 /* 724 * No locking for the list update, as we only add to 725 * the list in the I/O submission path, and list 726 * iteration only happens in the completion path, which 727 * can't happen until after the last submission. 728 */ 729 btrfs_get_bioc(bioc); 730 list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list); 731 } 732 733 /* 734 * Csum items for reloc roots have already been cloned at this 735 * point, so they are handled as part of the no-checksum case. 736 */ 737 if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) && 738 !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) && 739 !btrfs_is_data_reloc_root(inode->root)) { 740 if (should_async_write(bbio) && 741 btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num)) 742 goto done; 743 744 ret = btrfs_bio_csum(bbio); 745 status = errno_to_blk_status(ret); 746 if (status) 747 goto fail; 748 } else if (use_append || 749 (btrfs_is_zoned(fs_info) && inode && 750 inode->flags & BTRFS_INODE_NODATASUM)) { 751 ret = btrfs_alloc_dummy_sum(bbio); 752 status = errno_to_blk_status(ret); 753 if (status) 754 goto fail; 755 } 756 } 757 758 btrfs_submit_bio(bio, bioc, &smap, mirror_num); 759 done: 760 return map_length == length; 761 762 fail: 763 btrfs_bio_counter_dec(fs_info); 764 /* 765 * We have split the original bbio, now we have to end both the current 766 * @bbio and remaining one, as the remaining one will never be submitted. 767 */ 768 if (map_length < length) { 769 struct btrfs_bio *remaining = bbio->private; 770 771 ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset); 772 ASSERT(remaining); 773 774 btrfs_bio_end_io(remaining, status); 775 } 776 end_bbio: 777 btrfs_bio_end_io(bbio, status); 778 /* Do not submit another chunk */ 779 return true; 780 } 781 782 static void assert_bbio_alignment(struct btrfs_bio *bbio) 783 { 784 #ifdef CONFIG_BTRFS_ASSERT 785 struct btrfs_fs_info *fs_info = bbio->fs_info; 786 struct bio_vec bvec; 787 struct bvec_iter iter; 788 const u32 blocksize = fs_info->sectorsize; 789 790 /* Metadata has no extra bs > ps alignment requirement. */ 791 if (!is_data_bbio(bbio)) 792 return; 793 794 bio_for_each_bvec(bvec, &bbio->bio, iter) 795 ASSERT(IS_ALIGNED(bvec.bv_offset, blocksize) && 796 IS_ALIGNED(bvec.bv_len, blocksize), 797 "root=%llu inode=%llu logical=%llu length=%u index=%u bv_offset=%u bv_len=%u", 798 btrfs_root_id(bbio->inode->root), 799 btrfs_ino(bbio->inode), 800 bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT, 801 bbio->bio.bi_iter.bi_size, iter.bi_idx, 802 bvec.bv_offset, 803 bvec.bv_len); 804 #endif 805 } 806 807 void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num) 808 { 809 /* If bbio->inode is not populated, its file_offset must be 0. */ 810 ASSERT(bbio->inode || bbio->file_offset == 0); 811 812 assert_bbio_alignment(bbio); 813 814 while (!btrfs_submit_chunk(bbio, mirror_num)) 815 ; 816 } 817 818 /* 819 * Submit a repair write. 820 * 821 * This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a 822 * RAID setup. Here we only want to write the one bad copy, so we do the 823 * mapping ourselves and submit the bio directly. 824 * 825 * The I/O is issued synchronously to block the repair read completion from 826 * freeing the bio. 827 */ 828 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 829 u64 length, u64 logical, phys_addr_t paddr, int mirror_num) 830 { 831 struct btrfs_io_stripe smap = { 0 }; 832 struct bio_vec bvec; 833 struct bio bio; 834 int ret = 0; 835 836 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 837 BUG_ON(!mirror_num); 838 839 if (btrfs_repair_one_zone(fs_info, logical)) 840 return 0; 841 842 /* 843 * Avoid races with device replace and make sure our bioc has devices 844 * associated to its stripes that don't go away while we are doing the 845 * read repair operation. 846 */ 847 btrfs_bio_counter_inc_blocked(fs_info); 848 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 849 if (ret < 0) 850 goto out_counter_dec; 851 852 if (unlikely(!smap.dev->bdev || 853 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state))) { 854 ret = -EIO; 855 goto out_counter_dec; 856 } 857 858 bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); 859 bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT; 860 __bio_add_page(&bio, phys_to_page(paddr), length, offset_in_page(paddr)); 861 ret = submit_bio_wait(&bio); 862 if (ret) { 863 /* try to remap that extent elsewhere? */ 864 btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS); 865 goto out_bio_uninit; 866 } 867 868 btrfs_info_rl(fs_info, 869 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 870 ino, start, btrfs_dev_name(smap.dev), 871 smap.physical >> SECTOR_SHIFT); 872 ret = 0; 873 874 out_bio_uninit: 875 bio_uninit(&bio); 876 out_counter_dec: 877 btrfs_bio_counter_dec(fs_info); 878 return ret; 879 } 880 881 /* 882 * Submit a btrfs_bio based repair write. 883 * 884 * If @dev_replace is true, the write would be submitted to dev-replace target. 885 */ 886 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace) 887 { 888 struct btrfs_fs_info *fs_info = bbio->fs_info; 889 u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 890 u64 length = bbio->bio.bi_iter.bi_size; 891 struct btrfs_io_stripe smap = { 0 }; 892 int ret; 893 894 ASSERT(fs_info); 895 ASSERT(mirror_num > 0); 896 ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE); 897 ASSERT(!bbio->inode); 898 899 btrfs_bio_counter_inc_blocked(fs_info); 900 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 901 if (ret < 0) 902 goto fail; 903 904 if (dev_replace) { 905 ASSERT(smap.dev == fs_info->dev_replace.srcdev); 906 smap.dev = fs_info->dev_replace.tgtdev; 907 } 908 btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num); 909 return; 910 911 fail: 912 btrfs_bio_counter_dec(fs_info); 913 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 914 } 915 916 int __init btrfs_bioset_init(void) 917 { 918 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 919 offsetof(struct btrfs_bio, bio), 920 BIOSET_NEED_BVECS)) 921 return -ENOMEM; 922 if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE, 923 offsetof(struct btrfs_bio, bio), 0)) 924 goto out; 925 if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE, 926 offsetof(struct btrfs_bio, bio), 927 BIOSET_NEED_BVECS)) 928 goto out; 929 if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE, 930 sizeof(struct btrfs_failed_bio))) 931 goto out; 932 return 0; 933 934 out: 935 btrfs_bioset_exit(); 936 return -ENOMEM; 937 } 938 939 void __cold btrfs_bioset_exit(void) 940 { 941 mempool_exit(&btrfs_failed_bio_pool); 942 bioset_exit(&btrfs_repair_bioset); 943 bioset_exit(&btrfs_clone_bioset); 944 bioset_exit(&btrfs_bioset); 945 } 946