1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 * Copyright (C) 2022 Christoph Hellwig. 5 */ 6 7 #include <linux/bio.h> 8 #include "bio.h" 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "raid56.h" 12 #include "async-thread.h" 13 #include "dev-replace.h" 14 #include "rcu-string.h" 15 #include "zoned.h" 16 #include "file-item.h" 17 #include "raid-stripe-tree.h" 18 19 static struct bio_set btrfs_bioset; 20 static struct bio_set btrfs_clone_bioset; 21 static struct bio_set btrfs_repair_bioset; 22 static mempool_t btrfs_failed_bio_pool; 23 24 struct btrfs_failed_bio { 25 struct btrfs_bio *bbio; 26 int num_copies; 27 atomic_t repair_count; 28 }; 29 30 /* Is this a data path I/O that needs storage layer checksum and repair? */ 31 static inline bool is_data_bbio(struct btrfs_bio *bbio) 32 { 33 return bbio->inode && is_data_inode(&bbio->inode->vfs_inode); 34 } 35 36 static bool bbio_has_ordered_extent(struct btrfs_bio *bbio) 37 { 38 return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE; 39 } 40 41 /* 42 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it 43 * is already initialized by the block layer. 44 */ 45 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info, 46 btrfs_bio_end_io_t end_io, void *private) 47 { 48 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 49 bbio->fs_info = fs_info; 50 bbio->end_io = end_io; 51 bbio->private = private; 52 atomic_set(&bbio->pending_ios, 1); 53 } 54 55 /* 56 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for 57 * btrfs, and is used for all I/O submitted through btrfs_submit_bio. 58 * 59 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by 60 * a mempool. 61 */ 62 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf, 63 struct btrfs_fs_info *fs_info, 64 btrfs_bio_end_io_t end_io, void *private) 65 { 66 struct btrfs_bio *bbio; 67 struct bio *bio; 68 69 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset); 70 bbio = btrfs_bio(bio); 71 btrfs_bio_init(bbio, fs_info, end_io, private); 72 return bbio; 73 } 74 75 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info, 76 struct btrfs_bio *orig_bbio, 77 u64 map_length, bool use_append) 78 { 79 struct btrfs_bio *bbio; 80 struct bio *bio; 81 82 if (use_append) { 83 unsigned int nr_segs; 84 85 bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs, 86 &btrfs_clone_bioset, map_length); 87 } else { 88 bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, 89 GFP_NOFS, &btrfs_clone_bioset); 90 } 91 bbio = btrfs_bio(bio); 92 btrfs_bio_init(bbio, fs_info, NULL, orig_bbio); 93 bbio->inode = orig_bbio->inode; 94 bbio->file_offset = orig_bbio->file_offset; 95 orig_bbio->file_offset += map_length; 96 if (bbio_has_ordered_extent(bbio)) { 97 refcount_inc(&orig_bbio->ordered->refs); 98 bbio->ordered = orig_bbio->ordered; 99 } 100 atomic_inc(&orig_bbio->pending_ios); 101 return bbio; 102 } 103 104 /* Free a bio that was never submitted to the underlying device. */ 105 static void btrfs_cleanup_bio(struct btrfs_bio *bbio) 106 { 107 if (bbio_has_ordered_extent(bbio)) 108 btrfs_put_ordered_extent(bbio->ordered); 109 bio_put(&bbio->bio); 110 } 111 112 static void __btrfs_bio_end_io(struct btrfs_bio *bbio) 113 { 114 if (bbio_has_ordered_extent(bbio)) { 115 struct btrfs_ordered_extent *ordered = bbio->ordered; 116 117 bbio->end_io(bbio); 118 btrfs_put_ordered_extent(ordered); 119 } else { 120 bbio->end_io(bbio); 121 } 122 } 123 124 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status) 125 { 126 bbio->bio.bi_status = status; 127 __btrfs_bio_end_io(bbio); 128 } 129 130 static void btrfs_orig_write_end_io(struct bio *bio); 131 132 static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio, 133 struct btrfs_bio *orig_bbio) 134 { 135 /* 136 * For writes we tolerate nr_mirrors - 1 write failures, so we can't 137 * just blindly propagate a write failure here. Instead increment the 138 * error count in the original I/O context so that it is guaranteed to 139 * be larger than the error tolerance. 140 */ 141 if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) { 142 struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private; 143 struct btrfs_io_context *orig_bioc = orig_stripe->bioc; 144 145 atomic_add(orig_bioc->max_errors, &orig_bioc->error); 146 } else { 147 orig_bbio->bio.bi_status = bbio->bio.bi_status; 148 } 149 } 150 151 static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio) 152 { 153 if (bbio->bio.bi_pool == &btrfs_clone_bioset) { 154 struct btrfs_bio *orig_bbio = bbio->private; 155 156 if (bbio->bio.bi_status) 157 btrfs_bbio_propagate_error(bbio, orig_bbio); 158 btrfs_cleanup_bio(bbio); 159 bbio = orig_bbio; 160 } 161 162 if (atomic_dec_and_test(&bbio->pending_ios)) 163 __btrfs_bio_end_io(bbio); 164 } 165 166 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 167 { 168 if (cur_mirror == fbio->num_copies) 169 return cur_mirror + 1 - fbio->num_copies; 170 return cur_mirror + 1; 171 } 172 173 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 174 { 175 if (cur_mirror == 1) 176 return fbio->num_copies; 177 return cur_mirror - 1; 178 } 179 180 static void btrfs_repair_done(struct btrfs_failed_bio *fbio) 181 { 182 if (atomic_dec_and_test(&fbio->repair_count)) { 183 btrfs_orig_bbio_end_io(fbio->bbio); 184 mempool_free(fbio, &btrfs_failed_bio_pool); 185 } 186 } 187 188 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio, 189 struct btrfs_device *dev) 190 { 191 struct btrfs_failed_bio *fbio = repair_bbio->private; 192 struct btrfs_inode *inode = repair_bbio->inode; 193 struct btrfs_fs_info *fs_info = inode->root->fs_info; 194 struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio); 195 int mirror = repair_bbio->mirror_num; 196 197 if (repair_bbio->bio.bi_status || 198 !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) { 199 bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ); 200 repair_bbio->bio.bi_iter = repair_bbio->saved_iter; 201 202 mirror = next_repair_mirror(fbio, mirror); 203 if (mirror == fbio->bbio->mirror_num) { 204 btrfs_debug(fs_info, "no mirror left"); 205 fbio->bbio->bio.bi_status = BLK_STS_IOERR; 206 goto done; 207 } 208 209 btrfs_submit_bio(repair_bbio, mirror); 210 return; 211 } 212 213 do { 214 mirror = prev_repair_mirror(fbio, mirror); 215 btrfs_repair_io_failure(fs_info, btrfs_ino(inode), 216 repair_bbio->file_offset, fs_info->sectorsize, 217 repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT, 218 bv->bv_page, bv->bv_offset, mirror); 219 } while (mirror != fbio->bbio->mirror_num); 220 221 done: 222 btrfs_repair_done(fbio); 223 bio_put(&repair_bbio->bio); 224 } 225 226 /* 227 * Try to kick off a repair read to the next available mirror for a bad sector. 228 * 229 * This primarily tries to recover good data to serve the actual read request, 230 * but also tries to write the good data back to the bad mirror(s) when a 231 * read succeeded to restore the redundancy. 232 */ 233 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio, 234 u32 bio_offset, 235 struct bio_vec *bv, 236 struct btrfs_failed_bio *fbio) 237 { 238 struct btrfs_inode *inode = failed_bbio->inode; 239 struct btrfs_fs_info *fs_info = inode->root->fs_info; 240 const u32 sectorsize = fs_info->sectorsize; 241 const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT); 242 struct btrfs_bio *repair_bbio; 243 struct bio *repair_bio; 244 int num_copies; 245 int mirror; 246 247 btrfs_debug(fs_info, "repair read error: read error at %llu", 248 failed_bbio->file_offset + bio_offset); 249 250 num_copies = btrfs_num_copies(fs_info, logical, sectorsize); 251 if (num_copies == 1) { 252 btrfs_debug(fs_info, "no copy to repair from"); 253 failed_bbio->bio.bi_status = BLK_STS_IOERR; 254 return fbio; 255 } 256 257 if (!fbio) { 258 fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS); 259 fbio->bbio = failed_bbio; 260 fbio->num_copies = num_copies; 261 atomic_set(&fbio->repair_count, 1); 262 } 263 264 atomic_inc(&fbio->repair_count); 265 266 repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, 267 &btrfs_repair_bioset); 268 repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector; 269 __bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset); 270 271 repair_bbio = btrfs_bio(repair_bio); 272 btrfs_bio_init(repair_bbio, fs_info, NULL, fbio); 273 repair_bbio->inode = failed_bbio->inode; 274 repair_bbio->file_offset = failed_bbio->file_offset + bio_offset; 275 276 mirror = next_repair_mirror(fbio, failed_bbio->mirror_num); 277 btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror); 278 btrfs_submit_bio(repair_bbio, mirror); 279 return fbio; 280 } 281 282 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev) 283 { 284 struct btrfs_inode *inode = bbio->inode; 285 struct btrfs_fs_info *fs_info = inode->root->fs_info; 286 u32 sectorsize = fs_info->sectorsize; 287 struct bvec_iter *iter = &bbio->saved_iter; 288 blk_status_t status = bbio->bio.bi_status; 289 struct btrfs_failed_bio *fbio = NULL; 290 u32 offset = 0; 291 292 /* Read-repair requires the inode field to be set by the submitter. */ 293 ASSERT(inode); 294 295 /* 296 * Hand off repair bios to the repair code as there is no upper level 297 * submitter for them. 298 */ 299 if (bbio->bio.bi_pool == &btrfs_repair_bioset) { 300 btrfs_end_repair_bio(bbio, dev); 301 return; 302 } 303 304 /* Clear the I/O error. A failed repair will reset it. */ 305 bbio->bio.bi_status = BLK_STS_OK; 306 307 while (iter->bi_size) { 308 struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter); 309 310 bv.bv_len = min(bv.bv_len, sectorsize); 311 if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv)) 312 fbio = repair_one_sector(bbio, offset, &bv, fbio); 313 314 bio_advance_iter_single(&bbio->bio, iter, sectorsize); 315 offset += sectorsize; 316 } 317 318 if (bbio->csum != bbio->csum_inline) 319 kfree(bbio->csum); 320 321 if (fbio) 322 btrfs_repair_done(fbio); 323 else 324 btrfs_orig_bbio_end_io(bbio); 325 } 326 327 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev) 328 { 329 if (!dev || !dev->bdev) 330 return; 331 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET) 332 return; 333 334 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 335 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 336 else if (!(bio->bi_opf & REQ_RAHEAD)) 337 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 338 if (bio->bi_opf & REQ_PREFLUSH) 339 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); 340 } 341 342 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info, 343 struct bio *bio) 344 { 345 if (bio->bi_opf & REQ_META) 346 return fs_info->endio_meta_workers; 347 return fs_info->endio_workers; 348 } 349 350 static void btrfs_end_bio_work(struct work_struct *work) 351 { 352 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work); 353 354 /* Metadata reads are checked and repaired by the submitter. */ 355 if (is_data_bbio(bbio)) 356 btrfs_check_read_bio(bbio, bbio->bio.bi_private); 357 else 358 btrfs_orig_bbio_end_io(bbio); 359 } 360 361 static void btrfs_simple_end_io(struct bio *bio) 362 { 363 struct btrfs_bio *bbio = btrfs_bio(bio); 364 struct btrfs_device *dev = bio->bi_private; 365 struct btrfs_fs_info *fs_info = bbio->fs_info; 366 367 btrfs_bio_counter_dec(fs_info); 368 369 if (bio->bi_status) 370 btrfs_log_dev_io_error(bio, dev); 371 372 if (bio_op(bio) == REQ_OP_READ) { 373 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work); 374 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work); 375 } else { 376 if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status) 377 btrfs_record_physical_zoned(bbio); 378 btrfs_orig_bbio_end_io(bbio); 379 } 380 } 381 382 static void btrfs_raid56_end_io(struct bio *bio) 383 { 384 struct btrfs_io_context *bioc = bio->bi_private; 385 struct btrfs_bio *bbio = btrfs_bio(bio); 386 387 btrfs_bio_counter_dec(bioc->fs_info); 388 bbio->mirror_num = bioc->mirror_num; 389 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) 390 btrfs_check_read_bio(bbio, NULL); 391 else 392 btrfs_orig_bbio_end_io(bbio); 393 394 btrfs_put_bioc(bioc); 395 } 396 397 static void btrfs_orig_write_end_io(struct bio *bio) 398 { 399 struct btrfs_io_stripe *stripe = bio->bi_private; 400 struct btrfs_io_context *bioc = stripe->bioc; 401 struct btrfs_bio *bbio = btrfs_bio(bio); 402 403 btrfs_bio_counter_dec(bioc->fs_info); 404 405 if (bio->bi_status) { 406 atomic_inc(&bioc->error); 407 btrfs_log_dev_io_error(bio, stripe->dev); 408 } 409 410 /* 411 * Only send an error to the higher layers if it is beyond the tolerance 412 * threshold. 413 */ 414 if (atomic_read(&bioc->error) > bioc->max_errors) 415 bio->bi_status = BLK_STS_IOERR; 416 else 417 bio->bi_status = BLK_STS_OK; 418 419 if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status) 420 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 421 422 btrfs_orig_bbio_end_io(bbio); 423 btrfs_put_bioc(bioc); 424 } 425 426 static void btrfs_clone_write_end_io(struct bio *bio) 427 { 428 struct btrfs_io_stripe *stripe = bio->bi_private; 429 430 if (bio->bi_status) { 431 atomic_inc(&stripe->bioc->error); 432 btrfs_log_dev_io_error(bio, stripe->dev); 433 } else if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 434 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 435 } 436 437 /* Pass on control to the original bio this one was cloned from */ 438 bio_endio(stripe->bioc->orig_bio); 439 bio_put(bio); 440 } 441 442 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio) 443 { 444 if (!dev || !dev->bdev || 445 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 446 (btrfs_op(bio) == BTRFS_MAP_WRITE && 447 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 448 bio_io_error(bio); 449 return; 450 } 451 452 bio_set_dev(bio, dev->bdev); 453 454 /* 455 * For zone append writing, bi_sector must point the beginning of the 456 * zone 457 */ 458 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 459 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 460 u64 zone_start = round_down(physical, dev->fs_info->zone_size); 461 462 ASSERT(btrfs_dev_is_sequential(dev, physical)); 463 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 464 } 465 btrfs_debug_in_rcu(dev->fs_info, 466 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 467 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 468 (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev), 469 dev->devid, bio->bi_iter.bi_size); 470 471 if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT) 472 blkcg_punt_bio_submit(bio); 473 else 474 submit_bio(bio); 475 } 476 477 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr) 478 { 479 struct bio *orig_bio = bioc->orig_bio, *bio; 480 481 ASSERT(bio_op(orig_bio) != REQ_OP_READ); 482 483 /* Reuse the bio embedded into the btrfs_bio for the last mirror */ 484 if (dev_nr == bioc->num_stripes - 1) { 485 bio = orig_bio; 486 bio->bi_end_io = btrfs_orig_write_end_io; 487 } else { 488 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set); 489 bio_inc_remaining(orig_bio); 490 bio->bi_end_io = btrfs_clone_write_end_io; 491 } 492 493 bio->bi_private = &bioc->stripes[dev_nr]; 494 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT; 495 bioc->stripes[dev_nr].bioc = bioc; 496 bioc->size = bio->bi_iter.bi_size; 497 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio); 498 } 499 500 static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc, 501 struct btrfs_io_stripe *smap, int mirror_num) 502 { 503 if (!bioc) { 504 /* Single mirror read/write fast path. */ 505 btrfs_bio(bio)->mirror_num = mirror_num; 506 if (bio_op(bio) != REQ_OP_READ) 507 btrfs_bio(bio)->orig_physical = smap->physical; 508 bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT; 509 if (bio_op(bio) != REQ_OP_READ) 510 btrfs_bio(bio)->orig_physical = smap->physical; 511 bio->bi_private = smap->dev; 512 bio->bi_end_io = btrfs_simple_end_io; 513 btrfs_submit_dev_bio(smap->dev, bio); 514 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 515 /* Parity RAID write or read recovery. */ 516 bio->bi_private = bioc; 517 bio->bi_end_io = btrfs_raid56_end_io; 518 if (bio_op(bio) == REQ_OP_READ) 519 raid56_parity_recover(bio, bioc, mirror_num); 520 else 521 raid56_parity_write(bio, bioc); 522 } else { 523 /* Write to multiple mirrors. */ 524 int total_devs = bioc->num_stripes; 525 526 bioc->orig_bio = bio; 527 for (int dev_nr = 0; dev_nr < total_devs; dev_nr++) 528 btrfs_submit_mirrored_bio(bioc, dev_nr); 529 } 530 } 531 532 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio) 533 { 534 if (bbio->bio.bi_opf & REQ_META) 535 return btree_csum_one_bio(bbio); 536 return btrfs_csum_one_bio(bbio); 537 } 538 539 /* 540 * Async submit bios are used to offload expensive checksumming onto the worker 541 * threads. 542 */ 543 struct async_submit_bio { 544 struct btrfs_bio *bbio; 545 struct btrfs_io_context *bioc; 546 struct btrfs_io_stripe smap; 547 int mirror_num; 548 struct btrfs_work work; 549 }; 550 551 /* 552 * In order to insert checksums into the metadata in large chunks, we wait 553 * until bio submission time. All the pages in the bio are checksummed and 554 * sums are attached onto the ordered extent record. 555 * 556 * At IO completion time the csums attached on the ordered extent record are 557 * inserted into the btree. 558 */ 559 static void run_one_async_start(struct btrfs_work *work) 560 { 561 struct async_submit_bio *async = 562 container_of(work, struct async_submit_bio, work); 563 blk_status_t ret; 564 565 ret = btrfs_bio_csum(async->bbio); 566 if (ret) 567 async->bbio->bio.bi_status = ret; 568 } 569 570 /* 571 * In order to insert checksums into the metadata in large chunks, we wait 572 * until bio submission time. All the pages in the bio are checksummed and 573 * sums are attached onto the ordered extent record. 574 * 575 * At IO completion time the csums attached on the ordered extent record are 576 * inserted into the tree. 577 * 578 * If called with @do_free == true, then it will free the work struct. 579 */ 580 static void run_one_async_done(struct btrfs_work *work, bool do_free) 581 { 582 struct async_submit_bio *async = 583 container_of(work, struct async_submit_bio, work); 584 struct bio *bio = &async->bbio->bio; 585 586 if (do_free) { 587 kfree(container_of(work, struct async_submit_bio, work)); 588 return; 589 } 590 591 /* If an error occurred we just want to clean up the bio and move on. */ 592 if (bio->bi_status) { 593 btrfs_orig_bbio_end_io(async->bbio); 594 return; 595 } 596 597 /* 598 * All of the bios that pass through here are from async helpers. 599 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's 600 * context. This changes nothing when cgroups aren't in use. 601 */ 602 bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT; 603 __btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num); 604 } 605 606 static bool should_async_write(struct btrfs_bio *bbio) 607 { 608 /* Submit synchronously if the checksum implementation is fast. */ 609 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags)) 610 return false; 611 612 /* 613 * Try to defer the submission to a workqueue to parallelize the 614 * checksum calculation unless the I/O is issued synchronously. 615 */ 616 if (op_is_sync(bbio->bio.bi_opf)) 617 return false; 618 619 /* Zoned devices require I/O to be submitted in order. */ 620 if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info)) 621 return false; 622 623 return true; 624 } 625 626 /* 627 * Submit bio to an async queue. 628 * 629 * Return true if the work has been succesfuly submitted, else false. 630 */ 631 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio, 632 struct btrfs_io_context *bioc, 633 struct btrfs_io_stripe *smap, int mirror_num) 634 { 635 struct btrfs_fs_info *fs_info = bbio->fs_info; 636 struct async_submit_bio *async; 637 638 async = kmalloc(sizeof(*async), GFP_NOFS); 639 if (!async) 640 return false; 641 642 async->bbio = bbio; 643 async->bioc = bioc; 644 async->smap = *smap; 645 async->mirror_num = mirror_num; 646 647 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done); 648 btrfs_queue_work(fs_info->workers, &async->work); 649 return true; 650 } 651 652 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num) 653 { 654 struct btrfs_inode *inode = bbio->inode; 655 struct btrfs_fs_info *fs_info = bbio->fs_info; 656 struct btrfs_bio *orig_bbio = bbio; 657 struct bio *bio = &bbio->bio; 658 u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 659 u64 length = bio->bi_iter.bi_size; 660 u64 map_length = length; 661 bool use_append = btrfs_use_zone_append(bbio); 662 struct btrfs_io_context *bioc = NULL; 663 struct btrfs_io_stripe smap; 664 blk_status_t ret; 665 int error; 666 667 smap.is_scrub = !bbio->inode; 668 669 btrfs_bio_counter_inc_blocked(fs_info); 670 error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 671 &bioc, &smap, &mirror_num); 672 if (error) { 673 ret = errno_to_blk_status(error); 674 goto fail; 675 } 676 677 map_length = min(map_length, length); 678 if (use_append) 679 map_length = min(map_length, fs_info->max_zone_append_size); 680 681 if (map_length < length) { 682 bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append); 683 bio = &bbio->bio; 684 } 685 686 /* 687 * Save the iter for the end_io handler and preload the checksums for 688 * data reads. 689 */ 690 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) { 691 bbio->saved_iter = bio->bi_iter; 692 ret = btrfs_lookup_bio_sums(bbio); 693 if (ret) 694 goto fail_put_bio; 695 } 696 697 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 698 if (use_append) { 699 bio->bi_opf &= ~REQ_OP_WRITE; 700 bio->bi_opf |= REQ_OP_ZONE_APPEND; 701 } 702 703 if (is_data_bbio(bbio) && bioc && 704 btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) { 705 /* 706 * No locking for the list update, as we only add to 707 * the list in the I/O submission path, and list 708 * iteration only happens in the completion path, which 709 * can't happen until after the last submission. 710 */ 711 btrfs_get_bioc(bioc); 712 list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list); 713 } 714 715 /* 716 * Csum items for reloc roots have already been cloned at this 717 * point, so they are handled as part of the no-checksum case. 718 */ 719 if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) && 720 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) && 721 !btrfs_is_data_reloc_root(inode->root)) { 722 if (should_async_write(bbio) && 723 btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num)) 724 goto done; 725 726 ret = btrfs_bio_csum(bbio); 727 if (ret) 728 goto fail_put_bio; 729 } else if (use_append) { 730 ret = btrfs_alloc_dummy_sum(bbio); 731 if (ret) 732 goto fail_put_bio; 733 } 734 } 735 736 __btrfs_submit_bio(bio, bioc, &smap, mirror_num); 737 done: 738 return map_length == length; 739 740 fail_put_bio: 741 if (map_length < length) 742 btrfs_cleanup_bio(bbio); 743 fail: 744 btrfs_bio_counter_dec(fs_info); 745 btrfs_bio_end_io(orig_bbio, ret); 746 /* Do not submit another chunk */ 747 return true; 748 } 749 750 void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num) 751 { 752 /* If bbio->inode is not populated, its file_offset must be 0. */ 753 ASSERT(bbio->inode || bbio->file_offset == 0); 754 755 while (!btrfs_submit_chunk(bbio, mirror_num)) 756 ; 757 } 758 759 /* 760 * Submit a repair write. 761 * 762 * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a 763 * RAID setup. Here we only want to write the one bad copy, so we do the 764 * mapping ourselves and submit the bio directly. 765 * 766 * The I/O is issued synchronously to block the repair read completion from 767 * freeing the bio. 768 */ 769 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 770 u64 length, u64 logical, struct page *page, 771 unsigned int pg_offset, int mirror_num) 772 { 773 struct btrfs_io_stripe smap = { 0 }; 774 struct bio_vec bvec; 775 struct bio bio; 776 int ret = 0; 777 778 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 779 BUG_ON(!mirror_num); 780 781 if (btrfs_repair_one_zone(fs_info, logical)) 782 return 0; 783 784 /* 785 * Avoid races with device replace and make sure our bioc has devices 786 * associated to its stripes that don't go away while we are doing the 787 * read repair operation. 788 */ 789 btrfs_bio_counter_inc_blocked(fs_info); 790 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 791 if (ret < 0) 792 goto out_counter_dec; 793 794 if (!smap.dev->bdev || 795 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) { 796 ret = -EIO; 797 goto out_counter_dec; 798 } 799 800 bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); 801 bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT; 802 __bio_add_page(&bio, page, length, pg_offset); 803 ret = submit_bio_wait(&bio); 804 if (ret) { 805 /* try to remap that extent elsewhere? */ 806 btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS); 807 goto out_bio_uninit; 808 } 809 810 btrfs_info_rl_in_rcu(fs_info, 811 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 812 ino, start, btrfs_dev_name(smap.dev), 813 smap.physical >> SECTOR_SHIFT); 814 ret = 0; 815 816 out_bio_uninit: 817 bio_uninit(&bio); 818 out_counter_dec: 819 btrfs_bio_counter_dec(fs_info); 820 return ret; 821 } 822 823 /* 824 * Submit a btrfs_bio based repair write. 825 * 826 * If @dev_replace is true, the write would be submitted to dev-replace target. 827 */ 828 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace) 829 { 830 struct btrfs_fs_info *fs_info = bbio->fs_info; 831 u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 832 u64 length = bbio->bio.bi_iter.bi_size; 833 struct btrfs_io_stripe smap = { 0 }; 834 int ret; 835 836 ASSERT(fs_info); 837 ASSERT(mirror_num > 0); 838 ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE); 839 ASSERT(!bbio->inode); 840 841 btrfs_bio_counter_inc_blocked(fs_info); 842 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 843 if (ret < 0) 844 goto fail; 845 846 if (dev_replace) { 847 ASSERT(smap.dev == fs_info->dev_replace.srcdev); 848 smap.dev = fs_info->dev_replace.tgtdev; 849 } 850 __btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num); 851 return; 852 853 fail: 854 btrfs_bio_counter_dec(fs_info); 855 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 856 } 857 858 int __init btrfs_bioset_init(void) 859 { 860 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 861 offsetof(struct btrfs_bio, bio), 862 BIOSET_NEED_BVECS)) 863 return -ENOMEM; 864 if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE, 865 offsetof(struct btrfs_bio, bio), 0)) 866 goto out_free_bioset; 867 if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE, 868 offsetof(struct btrfs_bio, bio), 869 BIOSET_NEED_BVECS)) 870 goto out_free_clone_bioset; 871 if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE, 872 sizeof(struct btrfs_failed_bio))) 873 goto out_free_repair_bioset; 874 return 0; 875 876 out_free_repair_bioset: 877 bioset_exit(&btrfs_repair_bioset); 878 out_free_clone_bioset: 879 bioset_exit(&btrfs_clone_bioset); 880 out_free_bioset: 881 bioset_exit(&btrfs_bioset); 882 return -ENOMEM; 883 } 884 885 void __cold btrfs_bioset_exit(void) 886 { 887 mempool_exit(&btrfs_failed_bio_pool); 888 bioset_exit(&btrfs_repair_bioset); 889 bioset_exit(&btrfs_clone_bioset); 890 bioset_exit(&btrfs_bioset); 891 } 892