1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #ifndef BTRFS_BACKREF_H 7 #define BTRFS_BACKREF_H 8 9 #include <linux/types.h> 10 #include <linux/rbtree.h> 11 #include <linux/list.h> 12 #include <linux/slab.h> 13 #include <uapi/linux/btrfs.h> 14 #include <uapi/linux/btrfs_tree.h> 15 #include "messages.h" 16 #include "locking.h" 17 #include "disk-io.h" 18 #include "extent_io.h" 19 #include "ctree.h" 20 21 struct extent_inode_elem; 22 struct ulist; 23 struct btrfs_extent_item; 24 struct btrfs_trans_handle; 25 struct btrfs_fs_info; 26 27 /* 28 * Used by implementations of iterate_extent_inodes_t (see definition below) to 29 * signal that backref iteration can stop immediately and no error happened. 30 * The value must be non-negative and must not be 0, 1 (which is a common return 31 * value from things like btrfs_search_slot() and used internally in the backref 32 * walking code) and different from BACKREF_FOUND_SHARED and 33 * BACKREF_FOUND_NOT_SHARED 34 */ 35 #define BTRFS_ITERATE_EXTENT_INODES_STOP 5 36 37 /* 38 * Should return 0 if no errors happened and iteration of backrefs should 39 * continue. Can return BTRFS_ITERATE_EXTENT_INODES_STOP or any other non-zero 40 * value to immediately stop iteration and possibly signal an error back to 41 * the caller. 42 */ 43 typedef int (iterate_extent_inodes_t)(u64 inum, u64 offset, u64 num_bytes, 44 u64 root, void *ctx); 45 46 /* 47 * Context and arguments for backref walking functions. Some of the fields are 48 * to be filled by the caller of such functions while other are filled by the 49 * functions themselves, as described below. 50 */ 51 struct btrfs_backref_walk_ctx { 52 /* 53 * The address of the extent for which we are doing backref walking. 54 * Can be either a data extent or a metadata extent. 55 * 56 * Must always be set by the top level caller. 57 */ 58 u64 bytenr; 59 /* 60 * Offset relative to the target extent. This is only used for data 61 * extents, and it's meaningful because we can have file extent items 62 * that point only to a section of a data extent ("bookend" extents), 63 * and we want to filter out any that don't point to a section of the 64 * data extent containing the given offset. 65 * 66 * Must always be set by the top level caller. 67 */ 68 u64 extent_item_pos; 69 /* 70 * If true and bytenr corresponds to a data extent, then references from 71 * all file extent items that point to the data extent are considered, 72 * @extent_item_pos is ignored. 73 */ 74 bool ignore_extent_item_pos; 75 /* 76 * If true and bytenr corresponds to a data extent, then the inode list 77 * (each member describing inode number, file offset and root) is not 78 * added to each reference added to the @refs ulist. 79 */ 80 bool skip_inode_ref_list; 81 /* A valid transaction handle or NULL. */ 82 struct btrfs_trans_handle *trans; 83 /* 84 * The file system's info object, can not be NULL. 85 * 86 * Must always be set by the top level caller. 87 */ 88 struct btrfs_fs_info *fs_info; 89 /* 90 * Time sequence acquired from btrfs_get_tree_mod_seq(), in case the 91 * caller joined the tree mod log to get a consistent view of b+trees 92 * while we do backref walking, or BTRFS_SEQ_LAST. 93 * When using BTRFS_SEQ_LAST, delayed refs are not checked and it uses 94 * commit roots when searching b+trees - this is a special case for 95 * qgroups used during a transaction commit. 96 */ 97 u64 time_seq; 98 /* 99 * Used to collect the bytenr of metadata extents that point to the 100 * target extent. 101 */ 102 struct ulist *refs; 103 /* 104 * List used to collect the IDs of the roots from which the target 105 * extent is accessible. Can be NULL in case the caller does not care 106 * about collecting root IDs. 107 */ 108 struct ulist *roots; 109 /* 110 * Used by iterate_extent_inodes() and the main backref walk code 111 * (find_parent_nodes()). Lookup and store functions for an optional 112 * cache which maps the logical address (bytenr) of leaves to an array 113 * of root IDs. 114 */ 115 bool (*cache_lookup)(u64 leaf_bytenr, void *user_ctx, 116 const u64 **root_ids_ret, int *root_count_ret); 117 void (*cache_store)(u64 leaf_bytenr, const struct ulist *root_ids, 118 void *user_ctx); 119 /* 120 * If this is not NULL, then the backref walking code will call this 121 * for each indirect data extent reference as soon as it finds one, 122 * before collecting all the remaining backrefs and before resolving 123 * indirect backrefs. This allows for the caller to terminate backref 124 * walking as soon as it finds one backref that matches some specific 125 * criteria. The @cache_lookup and @cache_store callbacks should not 126 * be NULL in order to use this callback. 127 */ 128 iterate_extent_inodes_t *indirect_ref_iterator; 129 /* 130 * If this is not NULL, then the backref walking code will call this for 131 * each extent item it's meant to process before it actually starts 132 * processing it. If this returns anything other than 0, then it stops 133 * the backref walking code immediately. 134 */ 135 int (*check_extent_item)(u64 bytenr, const struct btrfs_extent_item *ei, 136 const struct extent_buffer *leaf, void *user_ctx); 137 /* 138 * If this is not NULL, then the backref walking code will call this for 139 * each extent data ref it finds (BTRFS_EXTENT_DATA_REF_KEY keys) before 140 * processing that data ref. If this callback return false, then it will 141 * ignore this data ref and it will never resolve the indirect data ref, 142 * saving time searching for leaves in a fs tree with file extent items 143 * matching the data ref. 144 */ 145 bool (*skip_data_ref)(u64 root, u64 ino, u64 offset, void *user_ctx); 146 /* Context object to pass to the callbacks defined above. */ 147 void *user_ctx; 148 }; 149 150 struct inode_fs_paths { 151 struct btrfs_path *btrfs_path; 152 struct btrfs_root *fs_root; 153 struct btrfs_data_container *fspath; 154 }; 155 156 struct btrfs_backref_shared_cache_entry { 157 u64 bytenr; 158 u64 gen; 159 bool is_shared; 160 }; 161 162 #define BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE 8 163 164 struct btrfs_backref_share_check_ctx { 165 /* Ulists used during backref walking. */ 166 struct ulist refs; 167 /* 168 * The current leaf the caller of btrfs_is_data_extent_shared() is at. 169 * Typically the caller (at the moment only fiemap) tries to determine 170 * the sharedness of data extents point by file extent items from entire 171 * leaves. 172 */ 173 u64 curr_leaf_bytenr; 174 /* 175 * The previous leaf the caller was at in the previous call to 176 * btrfs_is_data_extent_shared(). This may be the same as the current 177 * leaf. On the first call it must be 0. 178 */ 179 u64 prev_leaf_bytenr; 180 /* 181 * A path from a root to a leaf that has a file extent item pointing to 182 * a given data extent should never exceed the maximum b+tree height. 183 */ 184 struct btrfs_backref_shared_cache_entry path_cache_entries[BTRFS_MAX_LEVEL]; 185 bool use_path_cache; 186 /* 187 * Cache the sharedness result for the last few extents we have found, 188 * but only for extents for which we have multiple file extent items 189 * that point to them. 190 * It's very common to have several file extent items that point to the 191 * same extent (bytenr) but with different offsets and lengths. This 192 * typically happens for COW writes, partial writes into prealloc 193 * extents, NOCOW writes after snapshoting a root, hole punching or 194 * reflinking within the same file (less common perhaps). 195 * So keep a small cache with the lookup results for the extent pointed 196 * by the last few file extent items. This cache is checked, with a 197 * linear scan, whenever btrfs_is_data_extent_shared() is called, so 198 * it must be small so that it does not negatively affect performance in 199 * case we don't have multiple file extent items that point to the same 200 * data extent. 201 */ 202 struct { 203 u64 bytenr; 204 bool is_shared; 205 } prev_extents_cache[BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE]; 206 /* 207 * The slot in the prev_extents_cache array that will be used for 208 * storing the sharedness result of a new data extent. 209 */ 210 int prev_extents_cache_slot; 211 }; 212 213 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void); 214 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx); 215 216 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 217 struct btrfs_path *path, struct btrfs_key *found_key, 218 u64 *flags); 219 220 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 221 struct btrfs_key *key, struct btrfs_extent_item *ei, 222 u32 item_size, u64 *out_root, u8 *out_level); 223 224 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, 225 bool search_commit_root, 226 iterate_extent_inodes_t *iterate, void *user_ctx); 227 228 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 229 struct btrfs_path *path, void *ctx, 230 bool ignore_offset); 231 232 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath); 233 234 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx); 235 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, 236 bool skip_commit_root_sem); 237 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 238 u32 name_len, unsigned long name_off, 239 struct extent_buffer *eb_in, u64 parent, 240 char *dest, u32 size); 241 242 struct btrfs_data_container *init_data_container(u32 total_bytes); 243 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 244 struct btrfs_path *path); 245 void free_ipath(struct inode_fs_paths *ipath); 246 247 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 248 u64 start_off, struct btrfs_path *path, 249 struct btrfs_inode_extref **ret_extref, 250 u64 *found_off); 251 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, 252 u64 extent_gen, 253 struct btrfs_backref_share_check_ctx *ctx); 254 255 int __init btrfs_prelim_ref_init(void); 256 void __cold btrfs_prelim_ref_exit(void); 257 258 struct prelim_ref { 259 struct rb_node rbnode; 260 u64 root_id; 261 struct btrfs_key key_for_search; 262 u8 level; 263 int count; 264 struct extent_inode_elem *inode_list; 265 u64 parent; 266 u64 wanted_disk_byte; 267 }; 268 269 /* 270 * Iterate backrefs of one extent. 271 * 272 * Now it only supports iteration of tree block in commit root. 273 */ 274 struct btrfs_backref_iter { 275 u64 bytenr; 276 struct btrfs_path *path; 277 struct btrfs_fs_info *fs_info; 278 struct btrfs_key cur_key; 279 u32 item_ptr; 280 u32 cur_ptr; 281 u32 end_ptr; 282 }; 283 284 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info); 285 286 /* 287 * For metadata with EXTENT_ITEM key (non-skinny) case, the first inline data 288 * is btrfs_tree_block_info, without a btrfs_extent_inline_ref header. 289 * 290 * This helper determines if that's the case. 291 */ 292 static inline bool btrfs_backref_has_tree_block_info( 293 struct btrfs_backref_iter *iter) 294 { 295 if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY && 296 iter->cur_ptr - iter->item_ptr == sizeof(struct btrfs_extent_item)) 297 return true; 298 return false; 299 } 300 301 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr); 302 303 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter); 304 305 static inline bool btrfs_backref_iter_is_inline_ref( 306 struct btrfs_backref_iter *iter) 307 { 308 if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY || 309 iter->cur_key.type == BTRFS_METADATA_ITEM_KEY) 310 return true; 311 return false; 312 } 313 314 static inline void btrfs_backref_iter_release(struct btrfs_backref_iter *iter) 315 { 316 iter->bytenr = 0; 317 iter->item_ptr = 0; 318 iter->cur_ptr = 0; 319 iter->end_ptr = 0; 320 btrfs_release_path(iter->path); 321 memset(&iter->cur_key, 0, sizeof(iter->cur_key)); 322 } 323 324 /* 325 * Backref cache related structures 326 * 327 * The whole objective of backref_cache is to build a bi-directional map 328 * of tree blocks (represented by backref_node) and all their parents. 329 */ 330 331 /* 332 * Represent a tree block in the backref cache 333 */ 334 struct btrfs_backref_node { 335 struct { 336 struct rb_node rb_node; 337 u64 bytenr; 338 }; /* Use rb_simple_node for search/insert */ 339 340 u64 new_bytenr; 341 /* Objectid of tree block owner, can be not uptodate */ 342 u64 owner; 343 /* Link to pending, changed or detached list */ 344 struct list_head list; 345 346 /* List of upper level edges, which link this node to its parents */ 347 struct list_head upper; 348 /* List of lower level edges, which link this node to its children */ 349 struct list_head lower; 350 351 /* NULL if this node is not tree root */ 352 struct btrfs_root *root; 353 /* Extent buffer got by COWing the block */ 354 struct extent_buffer *eb; 355 /* Level of the tree block */ 356 unsigned int level:8; 357 /* Is the block in a non-shareable tree */ 358 unsigned int cowonly:1; 359 /* 1 if no child node is in the cache */ 360 unsigned int lowest:1; 361 /* Is the extent buffer locked */ 362 unsigned int locked:1; 363 /* Has the block been processed */ 364 unsigned int processed:1; 365 /* Have backrefs of this block been checked */ 366 unsigned int checked:1; 367 /* 368 * 1 if corresponding block has been COWed but some upper level block 369 * pointers may not point to the new location 370 */ 371 unsigned int pending:1; 372 /* 1 if the backref node isn't connected to any other backref node */ 373 unsigned int detached:1; 374 375 /* 376 * For generic purpose backref cache, where we only care if it's a reloc 377 * root, doesn't care the source subvolid. 378 */ 379 unsigned int is_reloc_root:1; 380 }; 381 382 #define LOWER 0 383 #define UPPER 1 384 385 /* 386 * Represent an edge connecting upper and lower backref nodes. 387 */ 388 struct btrfs_backref_edge { 389 /* 390 * list[LOWER] is linked to btrfs_backref_node::upper of lower level 391 * node, and list[UPPER] is linked to btrfs_backref_node::lower of 392 * upper level node. 393 * 394 * Also, build_backref_tree() uses list[UPPER] for pending edges, before 395 * linking list[UPPER] to its upper level nodes. 396 */ 397 struct list_head list[2]; 398 399 /* Two related nodes */ 400 struct btrfs_backref_node *node[2]; 401 }; 402 403 struct btrfs_backref_cache { 404 /* Red black tree of all backref nodes in the cache */ 405 struct rb_root rb_root; 406 /* For passing backref nodes to btrfs_reloc_cow_block */ 407 struct btrfs_backref_node *path[BTRFS_MAX_LEVEL]; 408 /* 409 * List of blocks that have been COWed but some block pointers in upper 410 * level blocks may not reflect the new location 411 */ 412 struct list_head pending[BTRFS_MAX_LEVEL]; 413 /* List of backref nodes with no child node */ 414 struct list_head leaves; 415 /* List of blocks that have been COWed in current transaction */ 416 struct list_head changed; 417 /* List of detached backref node. */ 418 struct list_head detached; 419 420 u64 last_trans; 421 422 int nr_nodes; 423 int nr_edges; 424 425 /* List of unchecked backref edges during backref cache build */ 426 struct list_head pending_edge; 427 428 /* List of useless backref nodes during backref cache build */ 429 struct list_head useless_node; 430 431 struct btrfs_fs_info *fs_info; 432 433 /* 434 * Whether this cache is for relocation 435 * 436 * Reloction backref cache require more info for reloc root compared 437 * to generic backref cache. 438 */ 439 bool is_reloc; 440 }; 441 442 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 443 struct btrfs_backref_cache *cache, bool is_reloc); 444 struct btrfs_backref_node *btrfs_backref_alloc_node( 445 struct btrfs_backref_cache *cache, u64 bytenr, int level); 446 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 447 struct btrfs_backref_cache *cache); 448 449 #define LINK_LOWER (1 << 0) 450 #define LINK_UPPER (1 << 1) 451 static inline void btrfs_backref_link_edge(struct btrfs_backref_edge *edge, 452 struct btrfs_backref_node *lower, 453 struct btrfs_backref_node *upper, 454 int link_which) 455 { 456 ASSERT(upper && lower && upper->level == lower->level + 1); 457 edge->node[LOWER] = lower; 458 edge->node[UPPER] = upper; 459 if (link_which & LINK_LOWER) 460 list_add_tail(&edge->list[LOWER], &lower->upper); 461 if (link_which & LINK_UPPER) 462 list_add_tail(&edge->list[UPPER], &upper->lower); 463 } 464 465 static inline void btrfs_backref_free_node(struct btrfs_backref_cache *cache, 466 struct btrfs_backref_node *node) 467 { 468 if (node) { 469 ASSERT(list_empty(&node->list)); 470 ASSERT(list_empty(&node->lower)); 471 ASSERT(node->eb == NULL); 472 cache->nr_nodes--; 473 btrfs_put_root(node->root); 474 kfree(node); 475 } 476 } 477 478 static inline void btrfs_backref_free_edge(struct btrfs_backref_cache *cache, 479 struct btrfs_backref_edge *edge) 480 { 481 if (edge) { 482 cache->nr_edges--; 483 kfree(edge); 484 } 485 } 486 487 static inline void btrfs_backref_unlock_node_buffer( 488 struct btrfs_backref_node *node) 489 { 490 if (node->locked) { 491 btrfs_tree_unlock(node->eb); 492 node->locked = 0; 493 } 494 } 495 496 static inline void btrfs_backref_drop_node_buffer( 497 struct btrfs_backref_node *node) 498 { 499 if (node->eb) { 500 btrfs_backref_unlock_node_buffer(node); 501 free_extent_buffer(node->eb); 502 node->eb = NULL; 503 } 504 } 505 506 /* 507 * Drop the backref node from cache without cleaning up its children 508 * edges. 509 * 510 * This can only be called on node without parent edges. 511 * The children edges are still kept as is. 512 */ 513 static inline void btrfs_backref_drop_node(struct btrfs_backref_cache *tree, 514 struct btrfs_backref_node *node) 515 { 516 ASSERT(list_empty(&node->upper)); 517 518 btrfs_backref_drop_node_buffer(node); 519 list_del_init(&node->list); 520 list_del_init(&node->lower); 521 if (!RB_EMPTY_NODE(&node->rb_node)) 522 rb_erase(&node->rb_node, &tree->rb_root); 523 btrfs_backref_free_node(tree, node); 524 } 525 526 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 527 struct btrfs_backref_node *node); 528 529 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache); 530 531 static inline void btrfs_backref_panic(struct btrfs_fs_info *fs_info, 532 u64 bytenr, int error) 533 { 534 btrfs_panic(fs_info, error, 535 "Inconsistency in backref cache found at offset %llu", 536 bytenr); 537 } 538 539 int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans, 540 struct btrfs_backref_cache *cache, 541 struct btrfs_path *path, 542 struct btrfs_backref_iter *iter, 543 struct btrfs_key *node_key, 544 struct btrfs_backref_node *cur); 545 546 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 547 struct btrfs_backref_node *start); 548 549 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 550 struct btrfs_backref_node *node); 551 552 #endif 553