1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "extent-tree.h" 21 #include "relocation.h" 22 #include "tree-checker.h" 23 24 /* Just arbitrary numbers so we can be sure one of these happened. */ 25 #define BACKREF_FOUND_SHARED 6 26 #define BACKREF_FOUND_NOT_SHARED 7 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 u64 num_bytes; 32 struct extent_inode_elem *next; 33 }; 34 35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 36 const struct btrfs_key *key, 37 const struct extent_buffer *eb, 38 const struct btrfs_file_extent_item *fi, 39 struct extent_inode_elem **eie) 40 { 41 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi); 42 u64 offset = key->offset; 43 struct extent_inode_elem *e; 44 const u64 *root_ids; 45 int root_count; 46 bool cached; 47 48 if (!btrfs_file_extent_compression(eb, fi) && 49 !btrfs_file_extent_encryption(eb, fi) && 50 !btrfs_file_extent_other_encoding(eb, fi)) { 51 u64 data_offset; 52 53 data_offset = btrfs_file_extent_offset(eb, fi); 54 55 if (ctx->extent_item_pos < data_offset || 56 ctx->extent_item_pos >= data_offset + data_len) 57 return 1; 58 offset += ctx->extent_item_pos - data_offset; 59 } 60 61 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup) 62 goto add_inode_elem; 63 64 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids, 65 &root_count); 66 if (!cached) 67 goto add_inode_elem; 68 69 for (int i = 0; i < root_count; i++) { 70 int ret; 71 72 ret = ctx->indirect_ref_iterator(key->objectid, offset, 73 data_len, root_ids[i], 74 ctx->user_ctx); 75 if (ret) 76 return ret; 77 } 78 79 add_inode_elem: 80 e = kmalloc(sizeof(*e), GFP_NOFS); 81 if (!e) 82 return -ENOMEM; 83 84 e->next = *eie; 85 e->inum = key->objectid; 86 e->offset = offset; 87 e->num_bytes = data_len; 88 *eie = e; 89 90 return 0; 91 } 92 93 static void free_inode_elem_list(struct extent_inode_elem *eie) 94 { 95 struct extent_inode_elem *eie_next; 96 97 for (; eie; eie = eie_next) { 98 eie_next = eie->next; 99 kfree(eie); 100 } 101 } 102 103 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 104 const struct extent_buffer *eb, 105 struct extent_inode_elem **eie) 106 { 107 u64 disk_byte; 108 struct btrfs_key key; 109 struct btrfs_file_extent_item *fi; 110 int slot; 111 int nritems; 112 int extent_type; 113 int ret; 114 115 /* 116 * from the shared data ref, we only have the leaf but we need 117 * the key. thus, we must look into all items and see that we 118 * find one (some) with a reference to our extent item. 119 */ 120 nritems = btrfs_header_nritems(eb); 121 for (slot = 0; slot < nritems; ++slot) { 122 btrfs_item_key_to_cpu(eb, &key, slot); 123 if (key.type != BTRFS_EXTENT_DATA_KEY) 124 continue; 125 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 126 extent_type = btrfs_file_extent_type(eb, fi); 127 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 128 continue; 129 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 130 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 131 if (disk_byte != ctx->bytenr) 132 continue; 133 134 ret = check_extent_in_eb(ctx, &key, eb, fi, eie); 135 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 136 return ret; 137 } 138 139 return 0; 140 } 141 142 struct preftree { 143 struct rb_root_cached root; 144 unsigned int count; 145 }; 146 147 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 148 149 struct preftrees { 150 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 151 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 152 struct preftree indirect_missing_keys; 153 }; 154 155 /* 156 * Checks for a shared extent during backref search. 157 * 158 * The share_count tracks prelim_refs (direct and indirect) having a 159 * ref->count >0: 160 * - incremented when a ref->count transitions to >0 161 * - decremented when a ref->count transitions to <1 162 */ 163 struct share_check { 164 struct btrfs_backref_share_check_ctx *ctx; 165 struct btrfs_root *root; 166 u64 inum; 167 u64 data_bytenr; 168 u64 data_extent_gen; 169 /* 170 * Counts number of inodes that refer to an extent (different inodes in 171 * the same root or different roots) that we could find. The sharedness 172 * check typically stops once this counter gets greater than 1, so it 173 * may not reflect the total number of inodes. 174 */ 175 int share_count; 176 /* 177 * The number of times we found our inode refers to the data extent we 178 * are determining the sharedness. In other words, how many file extent 179 * items we could find for our inode that point to our target data 180 * extent. The value we get here after finishing the extent sharedness 181 * check may be smaller than reality, but if it ends up being greater 182 * than 1, then we know for sure the inode has multiple file extent 183 * items that point to our inode, and we can safely assume it's useful 184 * to cache the sharedness check result. 185 */ 186 int self_ref_count; 187 bool have_delayed_delete_refs; 188 }; 189 190 static inline int extent_is_shared(struct share_check *sc) 191 { 192 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 193 } 194 195 static struct kmem_cache *btrfs_prelim_ref_cache; 196 197 int __init btrfs_prelim_ref_init(void) 198 { 199 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 200 sizeof(struct prelim_ref), 201 0, 202 SLAB_MEM_SPREAD, 203 NULL); 204 if (!btrfs_prelim_ref_cache) 205 return -ENOMEM; 206 return 0; 207 } 208 209 void __cold btrfs_prelim_ref_exit(void) 210 { 211 kmem_cache_destroy(btrfs_prelim_ref_cache); 212 } 213 214 static void free_pref(struct prelim_ref *ref) 215 { 216 kmem_cache_free(btrfs_prelim_ref_cache, ref); 217 } 218 219 /* 220 * Return 0 when both refs are for the same block (and can be merged). 221 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 222 * indicates a 'higher' block. 223 */ 224 static int prelim_ref_compare(struct prelim_ref *ref1, 225 struct prelim_ref *ref2) 226 { 227 if (ref1->level < ref2->level) 228 return -1; 229 if (ref1->level > ref2->level) 230 return 1; 231 if (ref1->root_id < ref2->root_id) 232 return -1; 233 if (ref1->root_id > ref2->root_id) 234 return 1; 235 if (ref1->key_for_search.type < ref2->key_for_search.type) 236 return -1; 237 if (ref1->key_for_search.type > ref2->key_for_search.type) 238 return 1; 239 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 240 return -1; 241 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 242 return 1; 243 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 244 return -1; 245 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 246 return 1; 247 if (ref1->parent < ref2->parent) 248 return -1; 249 if (ref1->parent > ref2->parent) 250 return 1; 251 252 return 0; 253 } 254 255 static void update_share_count(struct share_check *sc, int oldcount, 256 int newcount, struct prelim_ref *newref) 257 { 258 if ((!sc) || (oldcount == 0 && newcount < 1)) 259 return; 260 261 if (oldcount > 0 && newcount < 1) 262 sc->share_count--; 263 else if (oldcount < 1 && newcount > 0) 264 sc->share_count++; 265 266 if (newref->root_id == sc->root->root_key.objectid && 267 newref->wanted_disk_byte == sc->data_bytenr && 268 newref->key_for_search.objectid == sc->inum) 269 sc->self_ref_count += newref->count; 270 } 271 272 /* 273 * Add @newref to the @root rbtree, merging identical refs. 274 * 275 * Callers should assume that newref has been freed after calling. 276 */ 277 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 278 struct preftree *preftree, 279 struct prelim_ref *newref, 280 struct share_check *sc) 281 { 282 struct rb_root_cached *root; 283 struct rb_node **p; 284 struct rb_node *parent = NULL; 285 struct prelim_ref *ref; 286 int result; 287 bool leftmost = true; 288 289 root = &preftree->root; 290 p = &root->rb_root.rb_node; 291 292 while (*p) { 293 parent = *p; 294 ref = rb_entry(parent, struct prelim_ref, rbnode); 295 result = prelim_ref_compare(ref, newref); 296 if (result < 0) { 297 p = &(*p)->rb_left; 298 } else if (result > 0) { 299 p = &(*p)->rb_right; 300 leftmost = false; 301 } else { 302 /* Identical refs, merge them and free @newref */ 303 struct extent_inode_elem *eie = ref->inode_list; 304 305 while (eie && eie->next) 306 eie = eie->next; 307 308 if (!eie) 309 ref->inode_list = newref->inode_list; 310 else 311 eie->next = newref->inode_list; 312 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 313 preftree->count); 314 /* 315 * A delayed ref can have newref->count < 0. 316 * The ref->count is updated to follow any 317 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 318 */ 319 update_share_count(sc, ref->count, 320 ref->count + newref->count, newref); 321 ref->count += newref->count; 322 free_pref(newref); 323 return; 324 } 325 } 326 327 update_share_count(sc, 0, newref->count, newref); 328 preftree->count++; 329 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 330 rb_link_node(&newref->rbnode, parent, p); 331 rb_insert_color_cached(&newref->rbnode, root, leftmost); 332 } 333 334 /* 335 * Release the entire tree. We don't care about internal consistency so 336 * just free everything and then reset the tree root. 337 */ 338 static void prelim_release(struct preftree *preftree) 339 { 340 struct prelim_ref *ref, *next_ref; 341 342 rbtree_postorder_for_each_entry_safe(ref, next_ref, 343 &preftree->root.rb_root, rbnode) { 344 free_inode_elem_list(ref->inode_list); 345 free_pref(ref); 346 } 347 348 preftree->root = RB_ROOT_CACHED; 349 preftree->count = 0; 350 } 351 352 /* 353 * the rules for all callers of this function are: 354 * - obtaining the parent is the goal 355 * - if you add a key, you must know that it is a correct key 356 * - if you cannot add the parent or a correct key, then we will look into the 357 * block later to set a correct key 358 * 359 * delayed refs 360 * ============ 361 * backref type | shared | indirect | shared | indirect 362 * information | tree | tree | data | data 363 * --------------------+--------+----------+--------+---------- 364 * parent logical | y | - | - | - 365 * key to resolve | - | y | y | y 366 * tree block logical | - | - | - | - 367 * root for resolving | y | y | y | y 368 * 369 * - column 1: we've the parent -> done 370 * - column 2, 3, 4: we use the key to find the parent 371 * 372 * on disk refs (inline or keyed) 373 * ============================== 374 * backref type | shared | indirect | shared | indirect 375 * information | tree | tree | data | data 376 * --------------------+--------+----------+--------+---------- 377 * parent logical | y | - | y | - 378 * key to resolve | - | - | - | y 379 * tree block logical | y | y | y | y 380 * root for resolving | - | y | y | y 381 * 382 * - column 1, 3: we've the parent -> done 383 * - column 2: we take the first key from the block to find the parent 384 * (see add_missing_keys) 385 * - column 4: we use the key to find the parent 386 * 387 * additional information that's available but not required to find the parent 388 * block might help in merging entries to gain some speed. 389 */ 390 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 391 struct preftree *preftree, u64 root_id, 392 const struct btrfs_key *key, int level, u64 parent, 393 u64 wanted_disk_byte, int count, 394 struct share_check *sc, gfp_t gfp_mask) 395 { 396 struct prelim_ref *ref; 397 398 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 399 return 0; 400 401 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 402 if (!ref) 403 return -ENOMEM; 404 405 ref->root_id = root_id; 406 if (key) 407 ref->key_for_search = *key; 408 else 409 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 410 411 ref->inode_list = NULL; 412 ref->level = level; 413 ref->count = count; 414 ref->parent = parent; 415 ref->wanted_disk_byte = wanted_disk_byte; 416 prelim_ref_insert(fs_info, preftree, ref, sc); 417 return extent_is_shared(sc); 418 } 419 420 /* direct refs use root == 0, key == NULL */ 421 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 422 struct preftrees *preftrees, int level, u64 parent, 423 u64 wanted_disk_byte, int count, 424 struct share_check *sc, gfp_t gfp_mask) 425 { 426 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 427 parent, wanted_disk_byte, count, sc, gfp_mask); 428 } 429 430 /* indirect refs use parent == 0 */ 431 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 432 struct preftrees *preftrees, u64 root_id, 433 const struct btrfs_key *key, int level, 434 u64 wanted_disk_byte, int count, 435 struct share_check *sc, gfp_t gfp_mask) 436 { 437 struct preftree *tree = &preftrees->indirect; 438 439 if (!key) 440 tree = &preftrees->indirect_missing_keys; 441 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 442 wanted_disk_byte, count, sc, gfp_mask); 443 } 444 445 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 446 { 447 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 448 struct rb_node *parent = NULL; 449 struct prelim_ref *ref = NULL; 450 struct prelim_ref target = {}; 451 int result; 452 453 target.parent = bytenr; 454 455 while (*p) { 456 parent = *p; 457 ref = rb_entry(parent, struct prelim_ref, rbnode); 458 result = prelim_ref_compare(ref, &target); 459 460 if (result < 0) 461 p = &(*p)->rb_left; 462 else if (result > 0) 463 p = &(*p)->rb_right; 464 else 465 return 1; 466 } 467 return 0; 468 } 469 470 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx, 471 struct btrfs_root *root, struct btrfs_path *path, 472 struct ulist *parents, 473 struct preftrees *preftrees, struct prelim_ref *ref, 474 int level) 475 { 476 int ret = 0; 477 int slot; 478 struct extent_buffer *eb; 479 struct btrfs_key key; 480 struct btrfs_key *key_for_search = &ref->key_for_search; 481 struct btrfs_file_extent_item *fi; 482 struct extent_inode_elem *eie = NULL, *old = NULL; 483 u64 disk_byte; 484 u64 wanted_disk_byte = ref->wanted_disk_byte; 485 u64 count = 0; 486 u64 data_offset; 487 u8 type; 488 489 if (level != 0) { 490 eb = path->nodes[level]; 491 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 492 if (ret < 0) 493 return ret; 494 return 0; 495 } 496 497 /* 498 * 1. We normally enter this function with the path already pointing to 499 * the first item to check. But sometimes, we may enter it with 500 * slot == nritems. 501 * 2. We are searching for normal backref but bytenr of this leaf 502 * matches shared data backref 503 * 3. The leaf owner is not equal to the root we are searching 504 * 505 * For these cases, go to the next leaf before we continue. 506 */ 507 eb = path->nodes[0]; 508 if (path->slots[0] >= btrfs_header_nritems(eb) || 509 is_shared_data_backref(preftrees, eb->start) || 510 ref->root_id != btrfs_header_owner(eb)) { 511 if (ctx->time_seq == BTRFS_SEQ_LAST) 512 ret = btrfs_next_leaf(root, path); 513 else 514 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 515 } 516 517 while (!ret && count < ref->count) { 518 eb = path->nodes[0]; 519 slot = path->slots[0]; 520 521 btrfs_item_key_to_cpu(eb, &key, slot); 522 523 if (key.objectid != key_for_search->objectid || 524 key.type != BTRFS_EXTENT_DATA_KEY) 525 break; 526 527 /* 528 * We are searching for normal backref but bytenr of this leaf 529 * matches shared data backref, OR 530 * the leaf owner is not equal to the root we are searching for 531 */ 532 if (slot == 0 && 533 (is_shared_data_backref(preftrees, eb->start) || 534 ref->root_id != btrfs_header_owner(eb))) { 535 if (ctx->time_seq == BTRFS_SEQ_LAST) 536 ret = btrfs_next_leaf(root, path); 537 else 538 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 539 continue; 540 } 541 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 542 type = btrfs_file_extent_type(eb, fi); 543 if (type == BTRFS_FILE_EXTENT_INLINE) 544 goto next; 545 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 546 data_offset = btrfs_file_extent_offset(eb, fi); 547 548 if (disk_byte == wanted_disk_byte) { 549 eie = NULL; 550 old = NULL; 551 if (ref->key_for_search.offset == key.offset - data_offset) 552 count++; 553 else 554 goto next; 555 if (!ctx->ignore_extent_item_pos) { 556 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie); 557 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 558 ret < 0) 559 break; 560 } 561 if (ret > 0) 562 goto next; 563 ret = ulist_add_merge_ptr(parents, eb->start, 564 eie, (void **)&old, GFP_NOFS); 565 if (ret < 0) 566 break; 567 if (!ret && !ctx->ignore_extent_item_pos) { 568 while (old->next) 569 old = old->next; 570 old->next = eie; 571 } 572 eie = NULL; 573 } 574 next: 575 if (ctx->time_seq == BTRFS_SEQ_LAST) 576 ret = btrfs_next_item(root, path); 577 else 578 ret = btrfs_next_old_item(root, path, ctx->time_seq); 579 } 580 581 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 582 free_inode_elem_list(eie); 583 else if (ret > 0) 584 ret = 0; 585 586 return ret; 587 } 588 589 /* 590 * resolve an indirect backref in the form (root_id, key, level) 591 * to a logical address 592 */ 593 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx, 594 struct btrfs_path *path, 595 struct preftrees *preftrees, 596 struct prelim_ref *ref, struct ulist *parents) 597 { 598 struct btrfs_root *root; 599 struct extent_buffer *eb; 600 int ret = 0; 601 int root_level; 602 int level = ref->level; 603 struct btrfs_key search_key = ref->key_for_search; 604 605 /* 606 * If we're search_commit_root we could possibly be holding locks on 607 * other tree nodes. This happens when qgroups does backref walks when 608 * adding new delayed refs. To deal with this we need to look in cache 609 * for the root, and if we don't find it then we need to search the 610 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 611 * here. 612 */ 613 if (path->search_commit_root) 614 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id); 615 else 616 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false); 617 if (IS_ERR(root)) { 618 ret = PTR_ERR(root); 619 goto out_free; 620 } 621 622 if (!path->search_commit_root && 623 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 624 ret = -ENOENT; 625 goto out; 626 } 627 628 if (btrfs_is_testing(ctx->fs_info)) { 629 ret = -ENOENT; 630 goto out; 631 } 632 633 if (path->search_commit_root) 634 root_level = btrfs_header_level(root->commit_root); 635 else if (ctx->time_seq == BTRFS_SEQ_LAST) 636 root_level = btrfs_header_level(root->node); 637 else 638 root_level = btrfs_old_root_level(root, ctx->time_seq); 639 640 if (root_level + 1 == level) 641 goto out; 642 643 /* 644 * We can often find data backrefs with an offset that is too large 645 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 646 * subtracting a file's offset with the data offset of its 647 * corresponding extent data item. This can happen for example in the 648 * clone ioctl. 649 * 650 * So if we detect such case we set the search key's offset to zero to 651 * make sure we will find the matching file extent item at 652 * add_all_parents(), otherwise we will miss it because the offset 653 * taken form the backref is much larger then the offset of the file 654 * extent item. This can make us scan a very large number of file 655 * extent items, but at least it will not make us miss any. 656 * 657 * This is an ugly workaround for a behaviour that should have never 658 * existed, but it does and a fix for the clone ioctl would touch a lot 659 * of places, cause backwards incompatibility and would not fix the 660 * problem for extents cloned with older kernels. 661 */ 662 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 663 search_key.offset >= LLONG_MAX) 664 search_key.offset = 0; 665 path->lowest_level = level; 666 if (ctx->time_seq == BTRFS_SEQ_LAST) 667 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 668 else 669 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq); 670 671 btrfs_debug(ctx->fs_info, 672 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 673 ref->root_id, level, ref->count, ret, 674 ref->key_for_search.objectid, ref->key_for_search.type, 675 ref->key_for_search.offset); 676 if (ret < 0) 677 goto out; 678 679 eb = path->nodes[level]; 680 while (!eb) { 681 if (WARN_ON(!level)) { 682 ret = 1; 683 goto out; 684 } 685 level--; 686 eb = path->nodes[level]; 687 } 688 689 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level); 690 out: 691 btrfs_put_root(root); 692 out_free: 693 path->lowest_level = 0; 694 btrfs_release_path(path); 695 return ret; 696 } 697 698 static struct extent_inode_elem * 699 unode_aux_to_inode_list(struct ulist_node *node) 700 { 701 if (!node) 702 return NULL; 703 return (struct extent_inode_elem *)(uintptr_t)node->aux; 704 } 705 706 static void free_leaf_list(struct ulist *ulist) 707 { 708 struct ulist_node *node; 709 struct ulist_iterator uiter; 710 711 ULIST_ITER_INIT(&uiter); 712 while ((node = ulist_next(ulist, &uiter))) 713 free_inode_elem_list(unode_aux_to_inode_list(node)); 714 715 ulist_free(ulist); 716 } 717 718 /* 719 * We maintain three separate rbtrees: one for direct refs, one for 720 * indirect refs which have a key, and one for indirect refs which do not 721 * have a key. Each tree does merge on insertion. 722 * 723 * Once all of the references are located, we iterate over the tree of 724 * indirect refs with missing keys. An appropriate key is located and 725 * the ref is moved onto the tree for indirect refs. After all missing 726 * keys are thus located, we iterate over the indirect ref tree, resolve 727 * each reference, and then insert the resolved reference onto the 728 * direct tree (merging there too). 729 * 730 * New backrefs (i.e., for parent nodes) are added to the appropriate 731 * rbtree as they are encountered. The new backrefs are subsequently 732 * resolved as above. 733 */ 734 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx, 735 struct btrfs_path *path, 736 struct preftrees *preftrees, 737 struct share_check *sc) 738 { 739 int err; 740 int ret = 0; 741 struct ulist *parents; 742 struct ulist_node *node; 743 struct ulist_iterator uiter; 744 struct rb_node *rnode; 745 746 parents = ulist_alloc(GFP_NOFS); 747 if (!parents) 748 return -ENOMEM; 749 750 /* 751 * We could trade memory usage for performance here by iterating 752 * the tree, allocating new refs for each insertion, and then 753 * freeing the entire indirect tree when we're done. In some test 754 * cases, the tree can grow quite large (~200k objects). 755 */ 756 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 757 struct prelim_ref *ref; 758 759 ref = rb_entry(rnode, struct prelim_ref, rbnode); 760 if (WARN(ref->parent, 761 "BUG: direct ref found in indirect tree")) { 762 ret = -EINVAL; 763 goto out; 764 } 765 766 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 767 preftrees->indirect.count--; 768 769 if (ref->count == 0) { 770 free_pref(ref); 771 continue; 772 } 773 774 if (sc && ref->root_id != sc->root->root_key.objectid) { 775 free_pref(ref); 776 ret = BACKREF_FOUND_SHARED; 777 goto out; 778 } 779 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents); 780 /* 781 * we can only tolerate ENOENT,otherwise,we should catch error 782 * and return directly. 783 */ 784 if (err == -ENOENT) { 785 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, 786 NULL); 787 continue; 788 } else if (err) { 789 free_pref(ref); 790 ret = err; 791 goto out; 792 } 793 794 /* we put the first parent into the ref at hand */ 795 ULIST_ITER_INIT(&uiter); 796 node = ulist_next(parents, &uiter); 797 ref->parent = node ? node->val : 0; 798 ref->inode_list = unode_aux_to_inode_list(node); 799 800 /* Add a prelim_ref(s) for any other parent(s). */ 801 while ((node = ulist_next(parents, &uiter))) { 802 struct prelim_ref *new_ref; 803 804 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 805 GFP_NOFS); 806 if (!new_ref) { 807 free_pref(ref); 808 ret = -ENOMEM; 809 goto out; 810 } 811 memcpy(new_ref, ref, sizeof(*ref)); 812 new_ref->parent = node->val; 813 new_ref->inode_list = unode_aux_to_inode_list(node); 814 prelim_ref_insert(ctx->fs_info, &preftrees->direct, 815 new_ref, NULL); 816 } 817 818 /* 819 * Now it's a direct ref, put it in the direct tree. We must 820 * do this last because the ref could be merged/freed here. 821 */ 822 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL); 823 824 ulist_reinit(parents); 825 cond_resched(); 826 } 827 out: 828 /* 829 * We may have inode lists attached to refs in the parents ulist, so we 830 * must free them before freeing the ulist and its refs. 831 */ 832 free_leaf_list(parents); 833 return ret; 834 } 835 836 /* 837 * read tree blocks and add keys where required. 838 */ 839 static int add_missing_keys(struct btrfs_fs_info *fs_info, 840 struct preftrees *preftrees, bool lock) 841 { 842 struct prelim_ref *ref; 843 struct extent_buffer *eb; 844 struct preftree *tree = &preftrees->indirect_missing_keys; 845 struct rb_node *node; 846 847 while ((node = rb_first_cached(&tree->root))) { 848 struct btrfs_tree_parent_check check = { 0 }; 849 850 ref = rb_entry(node, struct prelim_ref, rbnode); 851 rb_erase_cached(node, &tree->root); 852 853 BUG_ON(ref->parent); /* should not be a direct ref */ 854 BUG_ON(ref->key_for_search.type); 855 BUG_ON(!ref->wanted_disk_byte); 856 857 check.level = ref->level - 1; 858 check.owner_root = ref->root_id; 859 860 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check); 861 if (IS_ERR(eb)) { 862 free_pref(ref); 863 return PTR_ERR(eb); 864 } 865 if (!extent_buffer_uptodate(eb)) { 866 free_pref(ref); 867 free_extent_buffer(eb); 868 return -EIO; 869 } 870 871 if (lock) 872 btrfs_tree_read_lock(eb); 873 if (btrfs_header_level(eb) == 0) 874 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 875 else 876 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 877 if (lock) 878 btrfs_tree_read_unlock(eb); 879 free_extent_buffer(eb); 880 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 881 cond_resched(); 882 } 883 return 0; 884 } 885 886 /* 887 * add all currently queued delayed refs from this head whose seq nr is 888 * smaller or equal that seq to the list 889 */ 890 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 891 struct btrfs_delayed_ref_head *head, u64 seq, 892 struct preftrees *preftrees, struct share_check *sc) 893 { 894 struct btrfs_delayed_ref_node *node; 895 struct btrfs_key key; 896 struct rb_node *n; 897 int count; 898 int ret = 0; 899 900 spin_lock(&head->lock); 901 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 902 node = rb_entry(n, struct btrfs_delayed_ref_node, 903 ref_node); 904 if (node->seq > seq) 905 continue; 906 907 switch (node->action) { 908 case BTRFS_ADD_DELAYED_EXTENT: 909 case BTRFS_UPDATE_DELAYED_HEAD: 910 WARN_ON(1); 911 continue; 912 case BTRFS_ADD_DELAYED_REF: 913 count = node->ref_mod; 914 break; 915 case BTRFS_DROP_DELAYED_REF: 916 count = node->ref_mod * -1; 917 break; 918 default: 919 BUG(); 920 } 921 switch (node->type) { 922 case BTRFS_TREE_BLOCK_REF_KEY: { 923 /* NORMAL INDIRECT METADATA backref */ 924 struct btrfs_delayed_tree_ref *ref; 925 struct btrfs_key *key_ptr = NULL; 926 927 if (head->extent_op && head->extent_op->update_key) { 928 btrfs_disk_key_to_cpu(&key, &head->extent_op->key); 929 key_ptr = &key; 930 } 931 932 ref = btrfs_delayed_node_to_tree_ref(node); 933 ret = add_indirect_ref(fs_info, preftrees, ref->root, 934 key_ptr, ref->level + 1, 935 node->bytenr, count, sc, 936 GFP_ATOMIC); 937 break; 938 } 939 case BTRFS_SHARED_BLOCK_REF_KEY: { 940 /* SHARED DIRECT METADATA backref */ 941 struct btrfs_delayed_tree_ref *ref; 942 943 ref = btrfs_delayed_node_to_tree_ref(node); 944 945 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 946 ref->parent, node->bytenr, count, 947 sc, GFP_ATOMIC); 948 break; 949 } 950 case BTRFS_EXTENT_DATA_REF_KEY: { 951 /* NORMAL INDIRECT DATA backref */ 952 struct btrfs_delayed_data_ref *ref; 953 ref = btrfs_delayed_node_to_data_ref(node); 954 955 key.objectid = ref->objectid; 956 key.type = BTRFS_EXTENT_DATA_KEY; 957 key.offset = ref->offset; 958 959 /* 960 * If we have a share check context and a reference for 961 * another inode, we can't exit immediately. This is 962 * because even if this is a BTRFS_ADD_DELAYED_REF 963 * reference we may find next a BTRFS_DROP_DELAYED_REF 964 * which cancels out this ADD reference. 965 * 966 * If this is a DROP reference and there was no previous 967 * ADD reference, then we need to signal that when we 968 * process references from the extent tree (through 969 * add_inline_refs() and add_keyed_refs()), we should 970 * not exit early if we find a reference for another 971 * inode, because one of the delayed DROP references 972 * may cancel that reference in the extent tree. 973 */ 974 if (sc && count < 0) 975 sc->have_delayed_delete_refs = true; 976 977 ret = add_indirect_ref(fs_info, preftrees, ref->root, 978 &key, 0, node->bytenr, count, sc, 979 GFP_ATOMIC); 980 break; 981 } 982 case BTRFS_SHARED_DATA_REF_KEY: { 983 /* SHARED DIRECT FULL backref */ 984 struct btrfs_delayed_data_ref *ref; 985 986 ref = btrfs_delayed_node_to_data_ref(node); 987 988 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 989 node->bytenr, count, sc, 990 GFP_ATOMIC); 991 break; 992 } 993 default: 994 WARN_ON(1); 995 } 996 /* 997 * We must ignore BACKREF_FOUND_SHARED until all delayed 998 * refs have been checked. 999 */ 1000 if (ret && (ret != BACKREF_FOUND_SHARED)) 1001 break; 1002 } 1003 if (!ret) 1004 ret = extent_is_shared(sc); 1005 1006 spin_unlock(&head->lock); 1007 return ret; 1008 } 1009 1010 /* 1011 * add all inline backrefs for bytenr to the list 1012 * 1013 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1014 */ 1015 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx, 1016 struct btrfs_path *path, 1017 int *info_level, struct preftrees *preftrees, 1018 struct share_check *sc) 1019 { 1020 int ret = 0; 1021 int slot; 1022 struct extent_buffer *leaf; 1023 struct btrfs_key key; 1024 struct btrfs_key found_key; 1025 unsigned long ptr; 1026 unsigned long end; 1027 struct btrfs_extent_item *ei; 1028 u64 flags; 1029 u64 item_size; 1030 1031 /* 1032 * enumerate all inline refs 1033 */ 1034 leaf = path->nodes[0]; 1035 slot = path->slots[0]; 1036 1037 item_size = btrfs_item_size(leaf, slot); 1038 BUG_ON(item_size < sizeof(*ei)); 1039 1040 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1041 1042 if (ctx->check_extent_item) { 1043 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx); 1044 if (ret) 1045 return ret; 1046 } 1047 1048 flags = btrfs_extent_flags(leaf, ei); 1049 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1050 1051 ptr = (unsigned long)(ei + 1); 1052 end = (unsigned long)ei + item_size; 1053 1054 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 1055 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1056 struct btrfs_tree_block_info *info; 1057 1058 info = (struct btrfs_tree_block_info *)ptr; 1059 *info_level = btrfs_tree_block_level(leaf, info); 1060 ptr += sizeof(struct btrfs_tree_block_info); 1061 BUG_ON(ptr > end); 1062 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1063 *info_level = found_key.offset; 1064 } else { 1065 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1066 } 1067 1068 while (ptr < end) { 1069 struct btrfs_extent_inline_ref *iref; 1070 u64 offset; 1071 int type; 1072 1073 iref = (struct btrfs_extent_inline_ref *)ptr; 1074 type = btrfs_get_extent_inline_ref_type(leaf, iref, 1075 BTRFS_REF_TYPE_ANY); 1076 if (type == BTRFS_REF_TYPE_INVALID) 1077 return -EUCLEAN; 1078 1079 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1080 1081 switch (type) { 1082 case BTRFS_SHARED_BLOCK_REF_KEY: 1083 ret = add_direct_ref(ctx->fs_info, preftrees, 1084 *info_level + 1, offset, 1085 ctx->bytenr, 1, NULL, GFP_NOFS); 1086 break; 1087 case BTRFS_SHARED_DATA_REF_KEY: { 1088 struct btrfs_shared_data_ref *sdref; 1089 int count; 1090 1091 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1092 count = btrfs_shared_data_ref_count(leaf, sdref); 1093 1094 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset, 1095 ctx->bytenr, count, sc, GFP_NOFS); 1096 break; 1097 } 1098 case BTRFS_TREE_BLOCK_REF_KEY: 1099 ret = add_indirect_ref(ctx->fs_info, preftrees, offset, 1100 NULL, *info_level + 1, 1101 ctx->bytenr, 1, NULL, GFP_NOFS); 1102 break; 1103 case BTRFS_EXTENT_DATA_REF_KEY: { 1104 struct btrfs_extent_data_ref *dref; 1105 int count; 1106 u64 root; 1107 1108 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1109 count = btrfs_extent_data_ref_count(leaf, dref); 1110 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1111 dref); 1112 key.type = BTRFS_EXTENT_DATA_KEY; 1113 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1114 1115 if (sc && key.objectid != sc->inum && 1116 !sc->have_delayed_delete_refs) { 1117 ret = BACKREF_FOUND_SHARED; 1118 break; 1119 } 1120 1121 root = btrfs_extent_data_ref_root(leaf, dref); 1122 1123 if (!ctx->skip_data_ref || 1124 !ctx->skip_data_ref(root, key.objectid, key.offset, 1125 ctx->user_ctx)) 1126 ret = add_indirect_ref(ctx->fs_info, preftrees, 1127 root, &key, 0, ctx->bytenr, 1128 count, sc, GFP_NOFS); 1129 break; 1130 } 1131 default: 1132 WARN_ON(1); 1133 } 1134 if (ret) 1135 return ret; 1136 ptr += btrfs_extent_inline_ref_size(type); 1137 } 1138 1139 return 0; 1140 } 1141 1142 /* 1143 * add all non-inline backrefs for bytenr to the list 1144 * 1145 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1146 */ 1147 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx, 1148 struct btrfs_root *extent_root, 1149 struct btrfs_path *path, 1150 int info_level, struct preftrees *preftrees, 1151 struct share_check *sc) 1152 { 1153 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1154 int ret; 1155 int slot; 1156 struct extent_buffer *leaf; 1157 struct btrfs_key key; 1158 1159 while (1) { 1160 ret = btrfs_next_item(extent_root, path); 1161 if (ret < 0) 1162 break; 1163 if (ret) { 1164 ret = 0; 1165 break; 1166 } 1167 1168 slot = path->slots[0]; 1169 leaf = path->nodes[0]; 1170 btrfs_item_key_to_cpu(leaf, &key, slot); 1171 1172 if (key.objectid != ctx->bytenr) 1173 break; 1174 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1175 continue; 1176 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1177 break; 1178 1179 switch (key.type) { 1180 case BTRFS_SHARED_BLOCK_REF_KEY: 1181 /* SHARED DIRECT METADATA backref */ 1182 ret = add_direct_ref(fs_info, preftrees, 1183 info_level + 1, key.offset, 1184 ctx->bytenr, 1, NULL, GFP_NOFS); 1185 break; 1186 case BTRFS_SHARED_DATA_REF_KEY: { 1187 /* SHARED DIRECT FULL backref */ 1188 struct btrfs_shared_data_ref *sdref; 1189 int count; 1190 1191 sdref = btrfs_item_ptr(leaf, slot, 1192 struct btrfs_shared_data_ref); 1193 count = btrfs_shared_data_ref_count(leaf, sdref); 1194 ret = add_direct_ref(fs_info, preftrees, 0, 1195 key.offset, ctx->bytenr, count, 1196 sc, GFP_NOFS); 1197 break; 1198 } 1199 case BTRFS_TREE_BLOCK_REF_KEY: 1200 /* NORMAL INDIRECT METADATA backref */ 1201 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1202 NULL, info_level + 1, ctx->bytenr, 1203 1, NULL, GFP_NOFS); 1204 break; 1205 case BTRFS_EXTENT_DATA_REF_KEY: { 1206 /* NORMAL INDIRECT DATA backref */ 1207 struct btrfs_extent_data_ref *dref; 1208 int count; 1209 u64 root; 1210 1211 dref = btrfs_item_ptr(leaf, slot, 1212 struct btrfs_extent_data_ref); 1213 count = btrfs_extent_data_ref_count(leaf, dref); 1214 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1215 dref); 1216 key.type = BTRFS_EXTENT_DATA_KEY; 1217 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1218 1219 if (sc && key.objectid != sc->inum && 1220 !sc->have_delayed_delete_refs) { 1221 ret = BACKREF_FOUND_SHARED; 1222 break; 1223 } 1224 1225 root = btrfs_extent_data_ref_root(leaf, dref); 1226 1227 if (!ctx->skip_data_ref || 1228 !ctx->skip_data_ref(root, key.objectid, key.offset, 1229 ctx->user_ctx)) 1230 ret = add_indirect_ref(fs_info, preftrees, root, 1231 &key, 0, ctx->bytenr, 1232 count, sc, GFP_NOFS); 1233 break; 1234 } 1235 default: 1236 WARN_ON(1); 1237 } 1238 if (ret) 1239 return ret; 1240 1241 } 1242 1243 return ret; 1244 } 1245 1246 /* 1247 * The caller has joined a transaction or is holding a read lock on the 1248 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1249 * snapshot field changing while updating or checking the cache. 1250 */ 1251 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1252 struct btrfs_root *root, 1253 u64 bytenr, int level, bool *is_shared) 1254 { 1255 const struct btrfs_fs_info *fs_info = root->fs_info; 1256 struct btrfs_backref_shared_cache_entry *entry; 1257 1258 if (!current->journal_info) 1259 lockdep_assert_held(&fs_info->commit_root_sem); 1260 1261 if (!ctx->use_path_cache) 1262 return false; 1263 1264 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1265 return false; 1266 1267 /* 1268 * Level -1 is used for the data extent, which is not reliable to cache 1269 * because its reference count can increase or decrease without us 1270 * realizing. We cache results only for extent buffers that lead from 1271 * the root node down to the leaf with the file extent item. 1272 */ 1273 ASSERT(level >= 0); 1274 1275 entry = &ctx->path_cache_entries[level]; 1276 1277 /* Unused cache entry or being used for some other extent buffer. */ 1278 if (entry->bytenr != bytenr) 1279 return false; 1280 1281 /* 1282 * We cached a false result, but the last snapshot generation of the 1283 * root changed, so we now have a snapshot. Don't trust the result. 1284 */ 1285 if (!entry->is_shared && 1286 entry->gen != btrfs_root_last_snapshot(&root->root_item)) 1287 return false; 1288 1289 /* 1290 * If we cached a true result and the last generation used for dropping 1291 * a root changed, we can not trust the result, because the dropped root 1292 * could be a snapshot sharing this extent buffer. 1293 */ 1294 if (entry->is_shared && 1295 entry->gen != btrfs_get_last_root_drop_gen(fs_info)) 1296 return false; 1297 1298 *is_shared = entry->is_shared; 1299 /* 1300 * If the node at this level is shared, than all nodes below are also 1301 * shared. Currently some of the nodes below may be marked as not shared 1302 * because we have just switched from one leaf to another, and switched 1303 * also other nodes above the leaf and below the current level, so mark 1304 * them as shared. 1305 */ 1306 if (*is_shared) { 1307 for (int i = 0; i < level; i++) { 1308 ctx->path_cache_entries[i].is_shared = true; 1309 ctx->path_cache_entries[i].gen = entry->gen; 1310 } 1311 } 1312 1313 return true; 1314 } 1315 1316 /* 1317 * The caller has joined a transaction or is holding a read lock on the 1318 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1319 * snapshot field changing while updating or checking the cache. 1320 */ 1321 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1322 struct btrfs_root *root, 1323 u64 bytenr, int level, bool is_shared) 1324 { 1325 const struct btrfs_fs_info *fs_info = root->fs_info; 1326 struct btrfs_backref_shared_cache_entry *entry; 1327 u64 gen; 1328 1329 if (!current->journal_info) 1330 lockdep_assert_held(&fs_info->commit_root_sem); 1331 1332 if (!ctx->use_path_cache) 1333 return; 1334 1335 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1336 return; 1337 1338 /* 1339 * Level -1 is used for the data extent, which is not reliable to cache 1340 * because its reference count can increase or decrease without us 1341 * realizing. We cache results only for extent buffers that lead from 1342 * the root node down to the leaf with the file extent item. 1343 */ 1344 ASSERT(level >= 0); 1345 1346 if (is_shared) 1347 gen = btrfs_get_last_root_drop_gen(fs_info); 1348 else 1349 gen = btrfs_root_last_snapshot(&root->root_item); 1350 1351 entry = &ctx->path_cache_entries[level]; 1352 entry->bytenr = bytenr; 1353 entry->is_shared = is_shared; 1354 entry->gen = gen; 1355 1356 /* 1357 * If we found an extent buffer is shared, set the cache result for all 1358 * extent buffers below it to true. As nodes in the path are COWed, 1359 * their sharedness is moved to their children, and if a leaf is COWed, 1360 * then the sharedness of a data extent becomes direct, the refcount of 1361 * data extent is increased in the extent item at the extent tree. 1362 */ 1363 if (is_shared) { 1364 for (int i = 0; i < level; i++) { 1365 entry = &ctx->path_cache_entries[i]; 1366 entry->is_shared = is_shared; 1367 entry->gen = gen; 1368 } 1369 } 1370 } 1371 1372 /* 1373 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1374 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1375 * indirect refs to their parent bytenr. 1376 * When roots are found, they're added to the roots list 1377 * 1378 * @ctx: Backref walking context object, must be not NULL. 1379 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a 1380 * shared extent is detected. 1381 * 1382 * Otherwise this returns 0 for success and <0 for an error. 1383 * 1384 * FIXME some caching might speed things up 1385 */ 1386 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx, 1387 struct share_check *sc) 1388 { 1389 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr); 1390 struct btrfs_key key; 1391 struct btrfs_path *path; 1392 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1393 struct btrfs_delayed_ref_head *head; 1394 int info_level = 0; 1395 int ret; 1396 struct prelim_ref *ref; 1397 struct rb_node *node; 1398 struct extent_inode_elem *eie = NULL; 1399 struct preftrees preftrees = { 1400 .direct = PREFTREE_INIT, 1401 .indirect = PREFTREE_INIT, 1402 .indirect_missing_keys = PREFTREE_INIT 1403 }; 1404 1405 /* Roots ulist is not needed when using a sharedness check context. */ 1406 if (sc) 1407 ASSERT(ctx->roots == NULL); 1408 1409 key.objectid = ctx->bytenr; 1410 key.offset = (u64)-1; 1411 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA)) 1412 key.type = BTRFS_METADATA_ITEM_KEY; 1413 else 1414 key.type = BTRFS_EXTENT_ITEM_KEY; 1415 1416 path = btrfs_alloc_path(); 1417 if (!path) 1418 return -ENOMEM; 1419 if (!ctx->trans) { 1420 path->search_commit_root = 1; 1421 path->skip_locking = 1; 1422 } 1423 1424 if (ctx->time_seq == BTRFS_SEQ_LAST) 1425 path->skip_locking = 1; 1426 1427 again: 1428 head = NULL; 1429 1430 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1431 if (ret < 0) 1432 goto out; 1433 if (ret == 0) { 1434 /* This shouldn't happen, indicates a bug or fs corruption. */ 1435 ASSERT(ret != 0); 1436 ret = -EUCLEAN; 1437 goto out; 1438 } 1439 1440 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) && 1441 ctx->time_seq != BTRFS_SEQ_LAST) { 1442 /* 1443 * We have a specific time_seq we care about and trans which 1444 * means we have the path lock, we need to grab the ref head and 1445 * lock it so we have a consistent view of the refs at the given 1446 * time. 1447 */ 1448 delayed_refs = &ctx->trans->transaction->delayed_refs; 1449 spin_lock(&delayed_refs->lock); 1450 head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr); 1451 if (head) { 1452 if (!mutex_trylock(&head->mutex)) { 1453 refcount_inc(&head->refs); 1454 spin_unlock(&delayed_refs->lock); 1455 1456 btrfs_release_path(path); 1457 1458 /* 1459 * Mutex was contended, block until it's 1460 * released and try again 1461 */ 1462 mutex_lock(&head->mutex); 1463 mutex_unlock(&head->mutex); 1464 btrfs_put_delayed_ref_head(head); 1465 goto again; 1466 } 1467 spin_unlock(&delayed_refs->lock); 1468 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq, 1469 &preftrees, sc); 1470 mutex_unlock(&head->mutex); 1471 if (ret) 1472 goto out; 1473 } else { 1474 spin_unlock(&delayed_refs->lock); 1475 } 1476 } 1477 1478 if (path->slots[0]) { 1479 struct extent_buffer *leaf; 1480 int slot; 1481 1482 path->slots[0]--; 1483 leaf = path->nodes[0]; 1484 slot = path->slots[0]; 1485 btrfs_item_key_to_cpu(leaf, &key, slot); 1486 if (key.objectid == ctx->bytenr && 1487 (key.type == BTRFS_EXTENT_ITEM_KEY || 1488 key.type == BTRFS_METADATA_ITEM_KEY)) { 1489 ret = add_inline_refs(ctx, path, &info_level, 1490 &preftrees, sc); 1491 if (ret) 1492 goto out; 1493 ret = add_keyed_refs(ctx, root, path, info_level, 1494 &preftrees, sc); 1495 if (ret) 1496 goto out; 1497 } 1498 } 1499 1500 /* 1501 * If we have a share context and we reached here, it means the extent 1502 * is not directly shared (no multiple reference items for it), 1503 * otherwise we would have exited earlier with a return value of 1504 * BACKREF_FOUND_SHARED after processing delayed references or while 1505 * processing inline or keyed references from the extent tree. 1506 * The extent may however be indirectly shared through shared subtrees 1507 * as a result from creating snapshots, so we determine below what is 1508 * its parent node, in case we are dealing with a metadata extent, or 1509 * what's the leaf (or leaves), from a fs tree, that has a file extent 1510 * item pointing to it in case we are dealing with a data extent. 1511 */ 1512 ASSERT(extent_is_shared(sc) == 0); 1513 1514 /* 1515 * If we are here for a data extent and we have a share_check structure 1516 * it means the data extent is not directly shared (does not have 1517 * multiple reference items), so we have to check if a path in the fs 1518 * tree (going from the root node down to the leaf that has the file 1519 * extent item pointing to the data extent) is shared, that is, if any 1520 * of the extent buffers in the path is referenced by other trees. 1521 */ 1522 if (sc && ctx->bytenr == sc->data_bytenr) { 1523 /* 1524 * If our data extent is from a generation more recent than the 1525 * last generation used to snapshot the root, then we know that 1526 * it can not be shared through subtrees, so we can skip 1527 * resolving indirect references, there's no point in 1528 * determining the extent buffers for the path from the fs tree 1529 * root node down to the leaf that has the file extent item that 1530 * points to the data extent. 1531 */ 1532 if (sc->data_extent_gen > 1533 btrfs_root_last_snapshot(&sc->root->root_item)) { 1534 ret = BACKREF_FOUND_NOT_SHARED; 1535 goto out; 1536 } 1537 1538 /* 1539 * If we are only determining if a data extent is shared or not 1540 * and the corresponding file extent item is located in the same 1541 * leaf as the previous file extent item, we can skip resolving 1542 * indirect references for a data extent, since the fs tree path 1543 * is the same (same leaf, so same path). We skip as long as the 1544 * cached result for the leaf is valid and only if there's only 1545 * one file extent item pointing to the data extent, because in 1546 * the case of multiple file extent items, they may be located 1547 * in different leaves and therefore we have multiple paths. 1548 */ 1549 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr && 1550 sc->self_ref_count == 1) { 1551 bool cached; 1552 bool is_shared; 1553 1554 cached = lookup_backref_shared_cache(sc->ctx, sc->root, 1555 sc->ctx->curr_leaf_bytenr, 1556 0, &is_shared); 1557 if (cached) { 1558 if (is_shared) 1559 ret = BACKREF_FOUND_SHARED; 1560 else 1561 ret = BACKREF_FOUND_NOT_SHARED; 1562 goto out; 1563 } 1564 } 1565 } 1566 1567 btrfs_release_path(path); 1568 1569 ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0); 1570 if (ret) 1571 goto out; 1572 1573 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1574 1575 ret = resolve_indirect_refs(ctx, path, &preftrees, sc); 1576 if (ret) 1577 goto out; 1578 1579 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1580 1581 /* 1582 * This walks the tree of merged and resolved refs. Tree blocks are 1583 * read in as needed. Unique entries are added to the ulist, and 1584 * the list of found roots is updated. 1585 * 1586 * We release the entire tree in one go before returning. 1587 */ 1588 node = rb_first_cached(&preftrees.direct.root); 1589 while (node) { 1590 ref = rb_entry(node, struct prelim_ref, rbnode); 1591 node = rb_next(&ref->rbnode); 1592 /* 1593 * ref->count < 0 can happen here if there are delayed 1594 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1595 * prelim_ref_insert() relies on this when merging 1596 * identical refs to keep the overall count correct. 1597 * prelim_ref_insert() will merge only those refs 1598 * which compare identically. Any refs having 1599 * e.g. different offsets would not be merged, 1600 * and would retain their original ref->count < 0. 1601 */ 1602 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) { 1603 /* no parent == root of tree */ 1604 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS); 1605 if (ret < 0) 1606 goto out; 1607 } 1608 if (ref->count && ref->parent) { 1609 if (!ctx->ignore_extent_item_pos && !ref->inode_list && 1610 ref->level == 0) { 1611 struct btrfs_tree_parent_check check = { 0 }; 1612 struct extent_buffer *eb; 1613 1614 check.level = ref->level; 1615 1616 eb = read_tree_block(ctx->fs_info, ref->parent, 1617 &check); 1618 if (IS_ERR(eb)) { 1619 ret = PTR_ERR(eb); 1620 goto out; 1621 } 1622 if (!extent_buffer_uptodate(eb)) { 1623 free_extent_buffer(eb); 1624 ret = -EIO; 1625 goto out; 1626 } 1627 1628 if (!path->skip_locking) 1629 btrfs_tree_read_lock(eb); 1630 ret = find_extent_in_eb(ctx, eb, &eie); 1631 if (!path->skip_locking) 1632 btrfs_tree_read_unlock(eb); 1633 free_extent_buffer(eb); 1634 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1635 ret < 0) 1636 goto out; 1637 ref->inode_list = eie; 1638 /* 1639 * We transferred the list ownership to the ref, 1640 * so set to NULL to avoid a double free in case 1641 * an error happens after this. 1642 */ 1643 eie = NULL; 1644 } 1645 ret = ulist_add_merge_ptr(ctx->refs, ref->parent, 1646 ref->inode_list, 1647 (void **)&eie, GFP_NOFS); 1648 if (ret < 0) 1649 goto out; 1650 if (!ret && !ctx->ignore_extent_item_pos) { 1651 /* 1652 * We've recorded that parent, so we must extend 1653 * its inode list here. 1654 * 1655 * However if there was corruption we may not 1656 * have found an eie, return an error in this 1657 * case. 1658 */ 1659 ASSERT(eie); 1660 if (!eie) { 1661 ret = -EUCLEAN; 1662 goto out; 1663 } 1664 while (eie->next) 1665 eie = eie->next; 1666 eie->next = ref->inode_list; 1667 } 1668 eie = NULL; 1669 /* 1670 * We have transferred the inode list ownership from 1671 * this ref to the ref we added to the 'refs' ulist. 1672 * So set this ref's inode list to NULL to avoid 1673 * use-after-free when our caller uses it or double 1674 * frees in case an error happens before we return. 1675 */ 1676 ref->inode_list = NULL; 1677 } 1678 cond_resched(); 1679 } 1680 1681 out: 1682 btrfs_free_path(path); 1683 1684 prelim_release(&preftrees.direct); 1685 prelim_release(&preftrees.indirect); 1686 prelim_release(&preftrees.indirect_missing_keys); 1687 1688 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 1689 free_inode_elem_list(eie); 1690 return ret; 1691 } 1692 1693 /* 1694 * Finds all leaves with a reference to the specified combination of 1695 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are 1696 * added to the ulist at @ctx->refs, and that ulist is allocated by this 1697 * function. The caller should free the ulist with free_leaf_list() if 1698 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is 1699 * enough. 1700 * 1701 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated. 1702 */ 1703 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx) 1704 { 1705 int ret; 1706 1707 ASSERT(ctx->refs == NULL); 1708 1709 ctx->refs = ulist_alloc(GFP_NOFS); 1710 if (!ctx->refs) 1711 return -ENOMEM; 1712 1713 ret = find_parent_nodes(ctx, NULL); 1714 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1715 (ret < 0 && ret != -ENOENT)) { 1716 free_leaf_list(ctx->refs); 1717 ctx->refs = NULL; 1718 return ret; 1719 } 1720 1721 return 0; 1722 } 1723 1724 /* 1725 * Walk all backrefs for a given extent to find all roots that reference this 1726 * extent. Walking a backref means finding all extents that reference this 1727 * extent and in turn walk the backrefs of those, too. Naturally this is a 1728 * recursive process, but here it is implemented in an iterative fashion: We 1729 * find all referencing extents for the extent in question and put them on a 1730 * list. In turn, we find all referencing extents for those, further appending 1731 * to the list. The way we iterate the list allows adding more elements after 1732 * the current while iterating. The process stops when we reach the end of the 1733 * list. 1734 * 1735 * Found roots are added to @ctx->roots, which is allocated by this function if 1736 * it points to NULL, in which case the caller is responsible for freeing it 1737 * after it's not needed anymore. 1738 * This function requires @ctx->refs to be NULL, as it uses it for allocating a 1739 * ulist to do temporary work, and frees it before returning. 1740 * 1741 * Returns 0 on success, < 0 on error. 1742 */ 1743 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx) 1744 { 1745 const u64 orig_bytenr = ctx->bytenr; 1746 const bool orig_ignore_extent_item_pos = ctx->ignore_extent_item_pos; 1747 bool roots_ulist_allocated = false; 1748 struct ulist_iterator uiter; 1749 int ret = 0; 1750 1751 ASSERT(ctx->refs == NULL); 1752 1753 ctx->refs = ulist_alloc(GFP_NOFS); 1754 if (!ctx->refs) 1755 return -ENOMEM; 1756 1757 if (!ctx->roots) { 1758 ctx->roots = ulist_alloc(GFP_NOFS); 1759 if (!ctx->roots) { 1760 ulist_free(ctx->refs); 1761 ctx->refs = NULL; 1762 return -ENOMEM; 1763 } 1764 roots_ulist_allocated = true; 1765 } 1766 1767 ctx->ignore_extent_item_pos = true; 1768 1769 ULIST_ITER_INIT(&uiter); 1770 while (1) { 1771 struct ulist_node *node; 1772 1773 ret = find_parent_nodes(ctx, NULL); 1774 if (ret < 0 && ret != -ENOENT) { 1775 if (roots_ulist_allocated) { 1776 ulist_free(ctx->roots); 1777 ctx->roots = NULL; 1778 } 1779 break; 1780 } 1781 ret = 0; 1782 node = ulist_next(ctx->refs, &uiter); 1783 if (!node) 1784 break; 1785 ctx->bytenr = node->val; 1786 cond_resched(); 1787 } 1788 1789 ulist_free(ctx->refs); 1790 ctx->refs = NULL; 1791 ctx->bytenr = orig_bytenr; 1792 ctx->ignore_extent_item_pos = orig_ignore_extent_item_pos; 1793 1794 return ret; 1795 } 1796 1797 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, 1798 bool skip_commit_root_sem) 1799 { 1800 int ret; 1801 1802 if (!ctx->trans && !skip_commit_root_sem) 1803 down_read(&ctx->fs_info->commit_root_sem); 1804 ret = btrfs_find_all_roots_safe(ctx); 1805 if (!ctx->trans && !skip_commit_root_sem) 1806 up_read(&ctx->fs_info->commit_root_sem); 1807 return ret; 1808 } 1809 1810 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void) 1811 { 1812 struct btrfs_backref_share_check_ctx *ctx; 1813 1814 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1815 if (!ctx) 1816 return NULL; 1817 1818 ulist_init(&ctx->refs); 1819 1820 return ctx; 1821 } 1822 1823 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx) 1824 { 1825 if (!ctx) 1826 return; 1827 1828 ulist_release(&ctx->refs); 1829 kfree(ctx); 1830 } 1831 1832 /* 1833 * Check if a data extent is shared or not. 1834 * 1835 * @inode: The inode whose extent we are checking. 1836 * @bytenr: Logical bytenr of the extent we are checking. 1837 * @extent_gen: Generation of the extent (file extent item) or 0 if it is 1838 * not known. 1839 * @ctx: A backref sharedness check context. 1840 * 1841 * btrfs_is_data_extent_shared uses the backref walking code but will short 1842 * circuit as soon as it finds a root or inode that doesn't match the 1843 * one passed in. This provides a significant performance benefit for 1844 * callers (such as fiemap) which want to know whether the extent is 1845 * shared but do not need a ref count. 1846 * 1847 * This attempts to attach to the running transaction in order to account for 1848 * delayed refs, but continues on even when no running transaction exists. 1849 * 1850 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1851 */ 1852 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, 1853 u64 extent_gen, 1854 struct btrfs_backref_share_check_ctx *ctx) 1855 { 1856 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 1857 struct btrfs_root *root = inode->root; 1858 struct btrfs_fs_info *fs_info = root->fs_info; 1859 struct btrfs_trans_handle *trans; 1860 struct ulist_iterator uiter; 1861 struct ulist_node *node; 1862 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1863 int ret = 0; 1864 struct share_check shared = { 1865 .ctx = ctx, 1866 .root = root, 1867 .inum = btrfs_ino(inode), 1868 .data_bytenr = bytenr, 1869 .data_extent_gen = extent_gen, 1870 .share_count = 0, 1871 .self_ref_count = 0, 1872 .have_delayed_delete_refs = false, 1873 }; 1874 int level; 1875 bool leaf_cached; 1876 bool leaf_is_shared; 1877 1878 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) { 1879 if (ctx->prev_extents_cache[i].bytenr == bytenr) 1880 return ctx->prev_extents_cache[i].is_shared; 1881 } 1882 1883 ulist_init(&ctx->refs); 1884 1885 trans = btrfs_join_transaction_nostart(root); 1886 if (IS_ERR(trans)) { 1887 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1888 ret = PTR_ERR(trans); 1889 goto out; 1890 } 1891 trans = NULL; 1892 down_read(&fs_info->commit_root_sem); 1893 } else { 1894 btrfs_get_tree_mod_seq(fs_info, &elem); 1895 walk_ctx.time_seq = elem.seq; 1896 } 1897 1898 ctx->use_path_cache = true; 1899 1900 /* 1901 * We may have previously determined that the current leaf is shared. 1902 * If it is, then we have a data extent that is shared due to a shared 1903 * subtree (caused by snapshotting) and we don't need to check for data 1904 * backrefs. If the leaf is not shared, then we must do backref walking 1905 * to determine if the data extent is shared through reflinks. 1906 */ 1907 leaf_cached = lookup_backref_shared_cache(ctx, root, 1908 ctx->curr_leaf_bytenr, 0, 1909 &leaf_is_shared); 1910 if (leaf_cached && leaf_is_shared) { 1911 ret = 1; 1912 goto out_trans; 1913 } 1914 1915 walk_ctx.ignore_extent_item_pos = true; 1916 walk_ctx.trans = trans; 1917 walk_ctx.fs_info = fs_info; 1918 walk_ctx.refs = &ctx->refs; 1919 1920 /* -1 means we are in the bytenr of the data extent. */ 1921 level = -1; 1922 ULIST_ITER_INIT(&uiter); 1923 while (1) { 1924 const unsigned long prev_ref_count = ctx->refs.nnodes; 1925 1926 walk_ctx.bytenr = bytenr; 1927 ret = find_parent_nodes(&walk_ctx, &shared); 1928 if (ret == BACKREF_FOUND_SHARED || 1929 ret == BACKREF_FOUND_NOT_SHARED) { 1930 /* If shared must return 1, otherwise return 0. */ 1931 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0; 1932 if (level >= 0) 1933 store_backref_shared_cache(ctx, root, bytenr, 1934 level, ret == 1); 1935 break; 1936 } 1937 if (ret < 0 && ret != -ENOENT) 1938 break; 1939 ret = 0; 1940 1941 /* 1942 * More than one extent buffer (bytenr) may have been added to 1943 * the ctx->refs ulist, in which case we have to check multiple 1944 * tree paths in case the first one is not shared, so we can not 1945 * use the path cache which is made for a single path. Multiple 1946 * extent buffers at the current level happen when: 1947 * 1948 * 1) level -1, the data extent: If our data extent was not 1949 * directly shared (without multiple reference items), then 1950 * it might have a single reference item with a count > 1 for 1951 * the same offset, which means there are 2 (or more) file 1952 * extent items that point to the data extent - this happens 1953 * when a file extent item needs to be split and then one 1954 * item gets moved to another leaf due to a b+tree leaf split 1955 * when inserting some item. In this case the file extent 1956 * items may be located in different leaves and therefore 1957 * some of the leaves may be referenced through shared 1958 * subtrees while others are not. Since our extent buffer 1959 * cache only works for a single path (by far the most common 1960 * case and simpler to deal with), we can not use it if we 1961 * have multiple leaves (which implies multiple paths). 1962 * 1963 * 2) level >= 0, a tree node/leaf: We can have a mix of direct 1964 * and indirect references on a b+tree node/leaf, so we have 1965 * to check multiple paths, and the extent buffer (the 1966 * current bytenr) may be shared or not. One example is 1967 * during relocation as we may get a shared tree block ref 1968 * (direct ref) and a non-shared tree block ref (indirect 1969 * ref) for the same node/leaf. 1970 */ 1971 if ((ctx->refs.nnodes - prev_ref_count) > 1) 1972 ctx->use_path_cache = false; 1973 1974 if (level >= 0) 1975 store_backref_shared_cache(ctx, root, bytenr, 1976 level, false); 1977 node = ulist_next(&ctx->refs, &uiter); 1978 if (!node) 1979 break; 1980 bytenr = node->val; 1981 if (ctx->use_path_cache) { 1982 bool is_shared; 1983 bool cached; 1984 1985 level++; 1986 cached = lookup_backref_shared_cache(ctx, root, bytenr, 1987 level, &is_shared); 1988 if (cached) { 1989 ret = (is_shared ? 1 : 0); 1990 break; 1991 } 1992 } 1993 shared.share_count = 0; 1994 shared.have_delayed_delete_refs = false; 1995 cond_resched(); 1996 } 1997 1998 /* 1999 * If the path cache is disabled, then it means at some tree level we 2000 * got multiple parents due to a mix of direct and indirect backrefs or 2001 * multiple leaves with file extent items pointing to the same data 2002 * extent. We have to invalidate the cache and cache only the sharedness 2003 * result for the levels where we got only one node/reference. 2004 */ 2005 if (!ctx->use_path_cache) { 2006 int i = 0; 2007 2008 level--; 2009 if (ret >= 0 && level >= 0) { 2010 bytenr = ctx->path_cache_entries[level].bytenr; 2011 ctx->use_path_cache = true; 2012 store_backref_shared_cache(ctx, root, bytenr, level, ret); 2013 i = level + 1; 2014 } 2015 2016 for ( ; i < BTRFS_MAX_LEVEL; i++) 2017 ctx->path_cache_entries[i].bytenr = 0; 2018 } 2019 2020 /* 2021 * Cache the sharedness result for the data extent if we know our inode 2022 * has more than 1 file extent item that refers to the data extent. 2023 */ 2024 if (ret >= 0 && shared.self_ref_count > 1) { 2025 int slot = ctx->prev_extents_cache_slot; 2026 2027 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr; 2028 ctx->prev_extents_cache[slot].is_shared = (ret == 1); 2029 2030 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; 2031 ctx->prev_extents_cache_slot = slot; 2032 } 2033 2034 out_trans: 2035 if (trans) { 2036 btrfs_put_tree_mod_seq(fs_info, &elem); 2037 btrfs_end_transaction(trans); 2038 } else { 2039 up_read(&fs_info->commit_root_sem); 2040 } 2041 out: 2042 ulist_release(&ctx->refs); 2043 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr; 2044 2045 return ret; 2046 } 2047 2048 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 2049 u64 start_off, struct btrfs_path *path, 2050 struct btrfs_inode_extref **ret_extref, 2051 u64 *found_off) 2052 { 2053 int ret, slot; 2054 struct btrfs_key key; 2055 struct btrfs_key found_key; 2056 struct btrfs_inode_extref *extref; 2057 const struct extent_buffer *leaf; 2058 unsigned long ptr; 2059 2060 key.objectid = inode_objectid; 2061 key.type = BTRFS_INODE_EXTREF_KEY; 2062 key.offset = start_off; 2063 2064 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2065 if (ret < 0) 2066 return ret; 2067 2068 while (1) { 2069 leaf = path->nodes[0]; 2070 slot = path->slots[0]; 2071 if (slot >= btrfs_header_nritems(leaf)) { 2072 /* 2073 * If the item at offset is not found, 2074 * btrfs_search_slot will point us to the slot 2075 * where it should be inserted. In our case 2076 * that will be the slot directly before the 2077 * next INODE_REF_KEY_V2 item. In the case 2078 * that we're pointing to the last slot in a 2079 * leaf, we must move one leaf over. 2080 */ 2081 ret = btrfs_next_leaf(root, path); 2082 if (ret) { 2083 if (ret >= 1) 2084 ret = -ENOENT; 2085 break; 2086 } 2087 continue; 2088 } 2089 2090 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2091 2092 /* 2093 * Check that we're still looking at an extended ref key for 2094 * this particular objectid. If we have different 2095 * objectid or type then there are no more to be found 2096 * in the tree and we can exit. 2097 */ 2098 ret = -ENOENT; 2099 if (found_key.objectid != inode_objectid) 2100 break; 2101 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 2102 break; 2103 2104 ret = 0; 2105 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 2106 extref = (struct btrfs_inode_extref *)ptr; 2107 *ret_extref = extref; 2108 if (found_off) 2109 *found_off = found_key.offset; 2110 break; 2111 } 2112 2113 return ret; 2114 } 2115 2116 /* 2117 * this iterates to turn a name (from iref/extref) into a full filesystem path. 2118 * Elements of the path are separated by '/' and the path is guaranteed to be 2119 * 0-terminated. the path is only given within the current file system. 2120 * Therefore, it never starts with a '/'. the caller is responsible to provide 2121 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 2122 * the start point of the resulting string is returned. this pointer is within 2123 * dest, normally. 2124 * in case the path buffer would overflow, the pointer is decremented further 2125 * as if output was written to the buffer, though no more output is actually 2126 * generated. that way, the caller can determine how much space would be 2127 * required for the path to fit into the buffer. in that case, the returned 2128 * value will be smaller than dest. callers must check this! 2129 */ 2130 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 2131 u32 name_len, unsigned long name_off, 2132 struct extent_buffer *eb_in, u64 parent, 2133 char *dest, u32 size) 2134 { 2135 int slot; 2136 u64 next_inum; 2137 int ret; 2138 s64 bytes_left = ((s64)size) - 1; 2139 struct extent_buffer *eb = eb_in; 2140 struct btrfs_key found_key; 2141 struct btrfs_inode_ref *iref; 2142 2143 if (bytes_left >= 0) 2144 dest[bytes_left] = '\0'; 2145 2146 while (1) { 2147 bytes_left -= name_len; 2148 if (bytes_left >= 0) 2149 read_extent_buffer(eb, dest + bytes_left, 2150 name_off, name_len); 2151 if (eb != eb_in) { 2152 if (!path->skip_locking) 2153 btrfs_tree_read_unlock(eb); 2154 free_extent_buffer(eb); 2155 } 2156 ret = btrfs_find_item(fs_root, path, parent, 0, 2157 BTRFS_INODE_REF_KEY, &found_key); 2158 if (ret > 0) 2159 ret = -ENOENT; 2160 if (ret) 2161 break; 2162 2163 next_inum = found_key.offset; 2164 2165 /* regular exit ahead */ 2166 if (parent == next_inum) 2167 break; 2168 2169 slot = path->slots[0]; 2170 eb = path->nodes[0]; 2171 /* make sure we can use eb after releasing the path */ 2172 if (eb != eb_in) { 2173 path->nodes[0] = NULL; 2174 path->locks[0] = 0; 2175 } 2176 btrfs_release_path(path); 2177 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2178 2179 name_len = btrfs_inode_ref_name_len(eb, iref); 2180 name_off = (unsigned long)(iref + 1); 2181 2182 parent = next_inum; 2183 --bytes_left; 2184 if (bytes_left >= 0) 2185 dest[bytes_left] = '/'; 2186 } 2187 2188 btrfs_release_path(path); 2189 2190 if (ret) 2191 return ERR_PTR(ret); 2192 2193 return dest + bytes_left; 2194 } 2195 2196 /* 2197 * this makes the path point to (logical EXTENT_ITEM *) 2198 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 2199 * tree blocks and <0 on error. 2200 */ 2201 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 2202 struct btrfs_path *path, struct btrfs_key *found_key, 2203 u64 *flags_ret) 2204 { 2205 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 2206 int ret; 2207 u64 flags; 2208 u64 size = 0; 2209 u32 item_size; 2210 const struct extent_buffer *eb; 2211 struct btrfs_extent_item *ei; 2212 struct btrfs_key key; 2213 2214 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2215 key.type = BTRFS_METADATA_ITEM_KEY; 2216 else 2217 key.type = BTRFS_EXTENT_ITEM_KEY; 2218 key.objectid = logical; 2219 key.offset = (u64)-1; 2220 2221 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2222 if (ret < 0) 2223 return ret; 2224 2225 ret = btrfs_previous_extent_item(extent_root, path, 0); 2226 if (ret) { 2227 if (ret > 0) 2228 ret = -ENOENT; 2229 return ret; 2230 } 2231 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 2232 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 2233 size = fs_info->nodesize; 2234 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 2235 size = found_key->offset; 2236 2237 if (found_key->objectid > logical || 2238 found_key->objectid + size <= logical) { 2239 btrfs_debug(fs_info, 2240 "logical %llu is not within any extent", logical); 2241 return -ENOENT; 2242 } 2243 2244 eb = path->nodes[0]; 2245 item_size = btrfs_item_size(eb, path->slots[0]); 2246 BUG_ON(item_size < sizeof(*ei)); 2247 2248 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 2249 flags = btrfs_extent_flags(eb, ei); 2250 2251 btrfs_debug(fs_info, 2252 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 2253 logical, logical - found_key->objectid, found_key->objectid, 2254 found_key->offset, flags, item_size); 2255 2256 WARN_ON(!flags_ret); 2257 if (flags_ret) { 2258 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2259 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 2260 else if (flags & BTRFS_EXTENT_FLAG_DATA) 2261 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 2262 else 2263 BUG(); 2264 return 0; 2265 } 2266 2267 return -EIO; 2268 } 2269 2270 /* 2271 * helper function to iterate extent inline refs. ptr must point to a 0 value 2272 * for the first call and may be modified. it is used to track state. 2273 * if more refs exist, 0 is returned and the next call to 2274 * get_extent_inline_ref must pass the modified ptr parameter to get the 2275 * next ref. after the last ref was processed, 1 is returned. 2276 * returns <0 on error 2277 */ 2278 static int get_extent_inline_ref(unsigned long *ptr, 2279 const struct extent_buffer *eb, 2280 const struct btrfs_key *key, 2281 const struct btrfs_extent_item *ei, 2282 u32 item_size, 2283 struct btrfs_extent_inline_ref **out_eiref, 2284 int *out_type) 2285 { 2286 unsigned long end; 2287 u64 flags; 2288 struct btrfs_tree_block_info *info; 2289 2290 if (!*ptr) { 2291 /* first call */ 2292 flags = btrfs_extent_flags(eb, ei); 2293 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2294 if (key->type == BTRFS_METADATA_ITEM_KEY) { 2295 /* a skinny metadata extent */ 2296 *out_eiref = 2297 (struct btrfs_extent_inline_ref *)(ei + 1); 2298 } else { 2299 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 2300 info = (struct btrfs_tree_block_info *)(ei + 1); 2301 *out_eiref = 2302 (struct btrfs_extent_inline_ref *)(info + 1); 2303 } 2304 } else { 2305 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 2306 } 2307 *ptr = (unsigned long)*out_eiref; 2308 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 2309 return -ENOENT; 2310 } 2311 2312 end = (unsigned long)ei + item_size; 2313 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 2314 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 2315 BTRFS_REF_TYPE_ANY); 2316 if (*out_type == BTRFS_REF_TYPE_INVALID) 2317 return -EUCLEAN; 2318 2319 *ptr += btrfs_extent_inline_ref_size(*out_type); 2320 WARN_ON(*ptr > end); 2321 if (*ptr == end) 2322 return 1; /* last */ 2323 2324 return 0; 2325 } 2326 2327 /* 2328 * reads the tree block backref for an extent. tree level and root are returned 2329 * through out_level and out_root. ptr must point to a 0 value for the first 2330 * call and may be modified (see get_extent_inline_ref comment). 2331 * returns 0 if data was provided, 1 if there was no more data to provide or 2332 * <0 on error. 2333 */ 2334 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 2335 struct btrfs_key *key, struct btrfs_extent_item *ei, 2336 u32 item_size, u64 *out_root, u8 *out_level) 2337 { 2338 int ret; 2339 int type; 2340 struct btrfs_extent_inline_ref *eiref; 2341 2342 if (*ptr == (unsigned long)-1) 2343 return 1; 2344 2345 while (1) { 2346 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 2347 &eiref, &type); 2348 if (ret < 0) 2349 return ret; 2350 2351 if (type == BTRFS_TREE_BLOCK_REF_KEY || 2352 type == BTRFS_SHARED_BLOCK_REF_KEY) 2353 break; 2354 2355 if (ret == 1) 2356 return 1; 2357 } 2358 2359 /* we can treat both ref types equally here */ 2360 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 2361 2362 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 2363 struct btrfs_tree_block_info *info; 2364 2365 info = (struct btrfs_tree_block_info *)(ei + 1); 2366 *out_level = btrfs_tree_block_level(eb, info); 2367 } else { 2368 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 2369 *out_level = (u8)key->offset; 2370 } 2371 2372 if (ret == 1) 2373 *ptr = (unsigned long)-1; 2374 2375 return 0; 2376 } 2377 2378 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 2379 struct extent_inode_elem *inode_list, 2380 u64 root, u64 extent_item_objectid, 2381 iterate_extent_inodes_t *iterate, void *ctx) 2382 { 2383 struct extent_inode_elem *eie; 2384 int ret = 0; 2385 2386 for (eie = inode_list; eie; eie = eie->next) { 2387 btrfs_debug(fs_info, 2388 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 2389 extent_item_objectid, eie->inum, 2390 eie->offset, root); 2391 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx); 2392 if (ret) { 2393 btrfs_debug(fs_info, 2394 "stopping iteration for %llu due to ret=%d", 2395 extent_item_objectid, ret); 2396 break; 2397 } 2398 } 2399 2400 return ret; 2401 } 2402 2403 /* 2404 * calls iterate() for every inode that references the extent identified by 2405 * the given parameters. 2406 * when the iterator function returns a non-zero value, iteration stops. 2407 */ 2408 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, 2409 bool search_commit_root, 2410 iterate_extent_inodes_t *iterate, void *user_ctx) 2411 { 2412 int ret; 2413 struct ulist *refs; 2414 struct ulist_node *ref_node; 2415 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 2416 struct ulist_iterator ref_uiter; 2417 2418 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu", 2419 ctx->bytenr); 2420 2421 ASSERT(ctx->trans == NULL); 2422 ASSERT(ctx->roots == NULL); 2423 2424 if (!search_commit_root) { 2425 struct btrfs_trans_handle *trans; 2426 2427 trans = btrfs_attach_transaction(ctx->fs_info->tree_root); 2428 if (IS_ERR(trans)) { 2429 if (PTR_ERR(trans) != -ENOENT && 2430 PTR_ERR(trans) != -EROFS) 2431 return PTR_ERR(trans); 2432 trans = NULL; 2433 } 2434 ctx->trans = trans; 2435 } 2436 2437 if (ctx->trans) { 2438 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem); 2439 ctx->time_seq = seq_elem.seq; 2440 } else { 2441 down_read(&ctx->fs_info->commit_root_sem); 2442 } 2443 2444 ret = btrfs_find_all_leafs(ctx); 2445 if (ret) 2446 goto out; 2447 refs = ctx->refs; 2448 ctx->refs = NULL; 2449 2450 ULIST_ITER_INIT(&ref_uiter); 2451 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2452 const u64 leaf_bytenr = ref_node->val; 2453 struct ulist_node *root_node; 2454 struct ulist_iterator root_uiter; 2455 struct extent_inode_elem *inode_list; 2456 2457 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux; 2458 2459 if (ctx->cache_lookup) { 2460 const u64 *root_ids; 2461 int root_count; 2462 bool cached; 2463 2464 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx, 2465 &root_ids, &root_count); 2466 if (cached) { 2467 for (int i = 0; i < root_count; i++) { 2468 ret = iterate_leaf_refs(ctx->fs_info, 2469 inode_list, 2470 root_ids[i], 2471 leaf_bytenr, 2472 iterate, 2473 user_ctx); 2474 if (ret) 2475 break; 2476 } 2477 continue; 2478 } 2479 } 2480 2481 if (!ctx->roots) { 2482 ctx->roots = ulist_alloc(GFP_NOFS); 2483 if (!ctx->roots) { 2484 ret = -ENOMEM; 2485 break; 2486 } 2487 } 2488 2489 ctx->bytenr = leaf_bytenr; 2490 ret = btrfs_find_all_roots_safe(ctx); 2491 if (ret) 2492 break; 2493 2494 if (ctx->cache_store) 2495 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx); 2496 2497 ULIST_ITER_INIT(&root_uiter); 2498 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) { 2499 btrfs_debug(ctx->fs_info, 2500 "root %llu references leaf %llu, data list %#llx", 2501 root_node->val, ref_node->val, 2502 ref_node->aux); 2503 ret = iterate_leaf_refs(ctx->fs_info, inode_list, 2504 root_node->val, ctx->bytenr, 2505 iterate, user_ctx); 2506 } 2507 ulist_reinit(ctx->roots); 2508 } 2509 2510 free_leaf_list(refs); 2511 out: 2512 if (ctx->trans) { 2513 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem); 2514 btrfs_end_transaction(ctx->trans); 2515 ctx->trans = NULL; 2516 } else { 2517 up_read(&ctx->fs_info->commit_root_sem); 2518 } 2519 2520 ulist_free(ctx->roots); 2521 ctx->roots = NULL; 2522 2523 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP) 2524 ret = 0; 2525 2526 return ret; 2527 } 2528 2529 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx) 2530 { 2531 struct btrfs_data_container *inodes = ctx; 2532 const size_t c = 3 * sizeof(u64); 2533 2534 if (inodes->bytes_left >= c) { 2535 inodes->bytes_left -= c; 2536 inodes->val[inodes->elem_cnt] = inum; 2537 inodes->val[inodes->elem_cnt + 1] = offset; 2538 inodes->val[inodes->elem_cnt + 2] = root; 2539 inodes->elem_cnt += 3; 2540 } else { 2541 inodes->bytes_missing += c - inodes->bytes_left; 2542 inodes->bytes_left = 0; 2543 inodes->elem_missed += 3; 2544 } 2545 2546 return 0; 2547 } 2548 2549 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2550 struct btrfs_path *path, 2551 void *ctx, bool ignore_offset) 2552 { 2553 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 2554 int ret; 2555 u64 flags = 0; 2556 struct btrfs_key found_key; 2557 int search_commit_root = path->search_commit_root; 2558 2559 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2560 btrfs_release_path(path); 2561 if (ret < 0) 2562 return ret; 2563 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2564 return -EINVAL; 2565 2566 walk_ctx.bytenr = found_key.objectid; 2567 if (ignore_offset) 2568 walk_ctx.ignore_extent_item_pos = true; 2569 else 2570 walk_ctx.extent_item_pos = logical - found_key.objectid; 2571 walk_ctx.fs_info = fs_info; 2572 2573 return iterate_extent_inodes(&walk_ctx, search_commit_root, 2574 build_ino_list, ctx); 2575 } 2576 2577 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2578 struct extent_buffer *eb, struct inode_fs_paths *ipath); 2579 2580 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath) 2581 { 2582 int ret = 0; 2583 int slot; 2584 u32 cur; 2585 u32 len; 2586 u32 name_len; 2587 u64 parent = 0; 2588 int found = 0; 2589 struct btrfs_root *fs_root = ipath->fs_root; 2590 struct btrfs_path *path = ipath->btrfs_path; 2591 struct extent_buffer *eb; 2592 struct btrfs_inode_ref *iref; 2593 struct btrfs_key found_key; 2594 2595 while (!ret) { 2596 ret = btrfs_find_item(fs_root, path, inum, 2597 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2598 &found_key); 2599 2600 if (ret < 0) 2601 break; 2602 if (ret) { 2603 ret = found ? 0 : -ENOENT; 2604 break; 2605 } 2606 ++found; 2607 2608 parent = found_key.offset; 2609 slot = path->slots[0]; 2610 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2611 if (!eb) { 2612 ret = -ENOMEM; 2613 break; 2614 } 2615 btrfs_release_path(path); 2616 2617 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2618 2619 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2620 name_len = btrfs_inode_ref_name_len(eb, iref); 2621 /* path must be released before calling iterate()! */ 2622 btrfs_debug(fs_root->fs_info, 2623 "following ref at offset %u for inode %llu in tree %llu", 2624 cur, found_key.objectid, 2625 fs_root->root_key.objectid); 2626 ret = inode_to_path(parent, name_len, 2627 (unsigned long)(iref + 1), eb, ipath); 2628 if (ret) 2629 break; 2630 len = sizeof(*iref) + name_len; 2631 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2632 } 2633 free_extent_buffer(eb); 2634 } 2635 2636 btrfs_release_path(path); 2637 2638 return ret; 2639 } 2640 2641 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath) 2642 { 2643 int ret; 2644 int slot; 2645 u64 offset = 0; 2646 u64 parent; 2647 int found = 0; 2648 struct btrfs_root *fs_root = ipath->fs_root; 2649 struct btrfs_path *path = ipath->btrfs_path; 2650 struct extent_buffer *eb; 2651 struct btrfs_inode_extref *extref; 2652 u32 item_size; 2653 u32 cur_offset; 2654 unsigned long ptr; 2655 2656 while (1) { 2657 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2658 &offset); 2659 if (ret < 0) 2660 break; 2661 if (ret) { 2662 ret = found ? 0 : -ENOENT; 2663 break; 2664 } 2665 ++found; 2666 2667 slot = path->slots[0]; 2668 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2669 if (!eb) { 2670 ret = -ENOMEM; 2671 break; 2672 } 2673 btrfs_release_path(path); 2674 2675 item_size = btrfs_item_size(eb, slot); 2676 ptr = btrfs_item_ptr_offset(eb, slot); 2677 cur_offset = 0; 2678 2679 while (cur_offset < item_size) { 2680 u32 name_len; 2681 2682 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2683 parent = btrfs_inode_extref_parent(eb, extref); 2684 name_len = btrfs_inode_extref_name_len(eb, extref); 2685 ret = inode_to_path(parent, name_len, 2686 (unsigned long)&extref->name, eb, ipath); 2687 if (ret) 2688 break; 2689 2690 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2691 cur_offset += sizeof(*extref); 2692 } 2693 free_extent_buffer(eb); 2694 2695 offset++; 2696 } 2697 2698 btrfs_release_path(path); 2699 2700 return ret; 2701 } 2702 2703 /* 2704 * returns 0 if the path could be dumped (probably truncated) 2705 * returns <0 in case of an error 2706 */ 2707 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2708 struct extent_buffer *eb, struct inode_fs_paths *ipath) 2709 { 2710 char *fspath; 2711 char *fspath_min; 2712 int i = ipath->fspath->elem_cnt; 2713 const int s_ptr = sizeof(char *); 2714 u32 bytes_left; 2715 2716 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2717 ipath->fspath->bytes_left - s_ptr : 0; 2718 2719 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2720 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2721 name_off, eb, inum, fspath_min, bytes_left); 2722 if (IS_ERR(fspath)) 2723 return PTR_ERR(fspath); 2724 2725 if (fspath > fspath_min) { 2726 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2727 ++ipath->fspath->elem_cnt; 2728 ipath->fspath->bytes_left = fspath - fspath_min; 2729 } else { 2730 ++ipath->fspath->elem_missed; 2731 ipath->fspath->bytes_missing += fspath_min - fspath; 2732 ipath->fspath->bytes_left = 0; 2733 } 2734 2735 return 0; 2736 } 2737 2738 /* 2739 * this dumps all file system paths to the inode into the ipath struct, provided 2740 * is has been created large enough. each path is zero-terminated and accessed 2741 * from ipath->fspath->val[i]. 2742 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2743 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2744 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2745 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2746 * have been needed to return all paths. 2747 */ 2748 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2749 { 2750 int ret; 2751 int found_refs = 0; 2752 2753 ret = iterate_inode_refs(inum, ipath); 2754 if (!ret) 2755 ++found_refs; 2756 else if (ret != -ENOENT) 2757 return ret; 2758 2759 ret = iterate_inode_extrefs(inum, ipath); 2760 if (ret == -ENOENT && found_refs) 2761 return 0; 2762 2763 return ret; 2764 } 2765 2766 struct btrfs_data_container *init_data_container(u32 total_bytes) 2767 { 2768 struct btrfs_data_container *data; 2769 size_t alloc_bytes; 2770 2771 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2772 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2773 if (!data) 2774 return ERR_PTR(-ENOMEM); 2775 2776 if (total_bytes >= sizeof(*data)) { 2777 data->bytes_left = total_bytes - sizeof(*data); 2778 data->bytes_missing = 0; 2779 } else { 2780 data->bytes_missing = sizeof(*data) - total_bytes; 2781 data->bytes_left = 0; 2782 } 2783 2784 data->elem_cnt = 0; 2785 data->elem_missed = 0; 2786 2787 return data; 2788 } 2789 2790 /* 2791 * allocates space to return multiple file system paths for an inode. 2792 * total_bytes to allocate are passed, note that space usable for actual path 2793 * information will be total_bytes - sizeof(struct inode_fs_paths). 2794 * the returned pointer must be freed with free_ipath() in the end. 2795 */ 2796 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2797 struct btrfs_path *path) 2798 { 2799 struct inode_fs_paths *ifp; 2800 struct btrfs_data_container *fspath; 2801 2802 fspath = init_data_container(total_bytes); 2803 if (IS_ERR(fspath)) 2804 return ERR_CAST(fspath); 2805 2806 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2807 if (!ifp) { 2808 kvfree(fspath); 2809 return ERR_PTR(-ENOMEM); 2810 } 2811 2812 ifp->btrfs_path = path; 2813 ifp->fspath = fspath; 2814 ifp->fs_root = fs_root; 2815 2816 return ifp; 2817 } 2818 2819 void free_ipath(struct inode_fs_paths *ipath) 2820 { 2821 if (!ipath) 2822 return; 2823 kvfree(ipath->fspath); 2824 kfree(ipath); 2825 } 2826 2827 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info) 2828 { 2829 struct btrfs_backref_iter *ret; 2830 2831 ret = kzalloc(sizeof(*ret), GFP_NOFS); 2832 if (!ret) 2833 return NULL; 2834 2835 ret->path = btrfs_alloc_path(); 2836 if (!ret->path) { 2837 kfree(ret); 2838 return NULL; 2839 } 2840 2841 /* Current backref iterator only supports iteration in commit root */ 2842 ret->path->search_commit_root = 1; 2843 ret->path->skip_locking = 1; 2844 ret->fs_info = fs_info; 2845 2846 return ret; 2847 } 2848 2849 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2850 { 2851 struct btrfs_fs_info *fs_info = iter->fs_info; 2852 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2853 struct btrfs_path *path = iter->path; 2854 struct btrfs_extent_item *ei; 2855 struct btrfs_key key; 2856 int ret; 2857 2858 key.objectid = bytenr; 2859 key.type = BTRFS_METADATA_ITEM_KEY; 2860 key.offset = (u64)-1; 2861 iter->bytenr = bytenr; 2862 2863 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2864 if (ret < 0) 2865 return ret; 2866 if (ret == 0) { 2867 ret = -EUCLEAN; 2868 goto release; 2869 } 2870 if (path->slots[0] == 0) { 2871 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2872 ret = -EUCLEAN; 2873 goto release; 2874 } 2875 path->slots[0]--; 2876 2877 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2878 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2879 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2880 ret = -ENOENT; 2881 goto release; 2882 } 2883 memcpy(&iter->cur_key, &key, sizeof(key)); 2884 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2885 path->slots[0]); 2886 iter->end_ptr = (u32)(iter->item_ptr + 2887 btrfs_item_size(path->nodes[0], path->slots[0])); 2888 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2889 struct btrfs_extent_item); 2890 2891 /* 2892 * Only support iteration on tree backref yet. 2893 * 2894 * This is an extra precaution for non skinny-metadata, where 2895 * EXTENT_ITEM is also used for tree blocks, that we can only use 2896 * extent flags to determine if it's a tree block. 2897 */ 2898 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2899 ret = -ENOTSUPP; 2900 goto release; 2901 } 2902 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2903 2904 /* If there is no inline backref, go search for keyed backref */ 2905 if (iter->cur_ptr >= iter->end_ptr) { 2906 ret = btrfs_next_item(extent_root, path); 2907 2908 /* No inline nor keyed ref */ 2909 if (ret > 0) { 2910 ret = -ENOENT; 2911 goto release; 2912 } 2913 if (ret < 0) 2914 goto release; 2915 2916 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2917 path->slots[0]); 2918 if (iter->cur_key.objectid != bytenr || 2919 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2920 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2921 ret = -ENOENT; 2922 goto release; 2923 } 2924 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2925 path->slots[0]); 2926 iter->item_ptr = iter->cur_ptr; 2927 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2928 path->nodes[0], path->slots[0])); 2929 } 2930 2931 return 0; 2932 release: 2933 btrfs_backref_iter_release(iter); 2934 return ret; 2935 } 2936 2937 /* 2938 * Go to the next backref item of current bytenr, can be either inlined or 2939 * keyed. 2940 * 2941 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2942 * 2943 * Return 0 if we get next backref without problem. 2944 * Return >0 if there is no extra backref for this bytenr. 2945 * Return <0 if there is something wrong happened. 2946 */ 2947 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2948 { 2949 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2950 struct btrfs_root *extent_root; 2951 struct btrfs_path *path = iter->path; 2952 struct btrfs_extent_inline_ref *iref; 2953 int ret; 2954 u32 size; 2955 2956 if (btrfs_backref_iter_is_inline_ref(iter)) { 2957 /* We're still inside the inline refs */ 2958 ASSERT(iter->cur_ptr < iter->end_ptr); 2959 2960 if (btrfs_backref_has_tree_block_info(iter)) { 2961 /* First tree block info */ 2962 size = sizeof(struct btrfs_tree_block_info); 2963 } else { 2964 /* Use inline ref type to determine the size */ 2965 int type; 2966 2967 iref = (struct btrfs_extent_inline_ref *) 2968 ((unsigned long)iter->cur_ptr); 2969 type = btrfs_extent_inline_ref_type(eb, iref); 2970 2971 size = btrfs_extent_inline_ref_size(type); 2972 } 2973 iter->cur_ptr += size; 2974 if (iter->cur_ptr < iter->end_ptr) 2975 return 0; 2976 2977 /* All inline items iterated, fall through */ 2978 } 2979 2980 /* We're at keyed items, there is no inline item, go to the next one */ 2981 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); 2982 ret = btrfs_next_item(extent_root, iter->path); 2983 if (ret) 2984 return ret; 2985 2986 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2987 if (iter->cur_key.objectid != iter->bytenr || 2988 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2989 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2990 return 1; 2991 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2992 path->slots[0]); 2993 iter->cur_ptr = iter->item_ptr; 2994 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 2995 path->slots[0]); 2996 return 0; 2997 } 2998 2999 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 3000 struct btrfs_backref_cache *cache, int is_reloc) 3001 { 3002 int i; 3003 3004 cache->rb_root = RB_ROOT; 3005 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 3006 INIT_LIST_HEAD(&cache->pending[i]); 3007 INIT_LIST_HEAD(&cache->changed); 3008 INIT_LIST_HEAD(&cache->detached); 3009 INIT_LIST_HEAD(&cache->leaves); 3010 INIT_LIST_HEAD(&cache->pending_edge); 3011 INIT_LIST_HEAD(&cache->useless_node); 3012 cache->fs_info = fs_info; 3013 cache->is_reloc = is_reloc; 3014 } 3015 3016 struct btrfs_backref_node *btrfs_backref_alloc_node( 3017 struct btrfs_backref_cache *cache, u64 bytenr, int level) 3018 { 3019 struct btrfs_backref_node *node; 3020 3021 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 3022 node = kzalloc(sizeof(*node), GFP_NOFS); 3023 if (!node) 3024 return node; 3025 3026 INIT_LIST_HEAD(&node->list); 3027 INIT_LIST_HEAD(&node->upper); 3028 INIT_LIST_HEAD(&node->lower); 3029 RB_CLEAR_NODE(&node->rb_node); 3030 cache->nr_nodes++; 3031 node->level = level; 3032 node->bytenr = bytenr; 3033 3034 return node; 3035 } 3036 3037 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 3038 struct btrfs_backref_cache *cache) 3039 { 3040 struct btrfs_backref_edge *edge; 3041 3042 edge = kzalloc(sizeof(*edge), GFP_NOFS); 3043 if (edge) 3044 cache->nr_edges++; 3045 return edge; 3046 } 3047 3048 /* 3049 * Drop the backref node from cache, also cleaning up all its 3050 * upper edges and any uncached nodes in the path. 3051 * 3052 * This cleanup happens bottom up, thus the node should either 3053 * be the lowest node in the cache or a detached node. 3054 */ 3055 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 3056 struct btrfs_backref_node *node) 3057 { 3058 struct btrfs_backref_node *upper; 3059 struct btrfs_backref_edge *edge; 3060 3061 if (!node) 3062 return; 3063 3064 BUG_ON(!node->lowest && !node->detached); 3065 while (!list_empty(&node->upper)) { 3066 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 3067 list[LOWER]); 3068 upper = edge->node[UPPER]; 3069 list_del(&edge->list[LOWER]); 3070 list_del(&edge->list[UPPER]); 3071 btrfs_backref_free_edge(cache, edge); 3072 3073 /* 3074 * Add the node to leaf node list if no other child block 3075 * cached. 3076 */ 3077 if (list_empty(&upper->lower)) { 3078 list_add_tail(&upper->lower, &cache->leaves); 3079 upper->lowest = 1; 3080 } 3081 } 3082 3083 btrfs_backref_drop_node(cache, node); 3084 } 3085 3086 /* 3087 * Release all nodes/edges from current cache 3088 */ 3089 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 3090 { 3091 struct btrfs_backref_node *node; 3092 int i; 3093 3094 while (!list_empty(&cache->detached)) { 3095 node = list_entry(cache->detached.next, 3096 struct btrfs_backref_node, list); 3097 btrfs_backref_cleanup_node(cache, node); 3098 } 3099 3100 while (!list_empty(&cache->leaves)) { 3101 node = list_entry(cache->leaves.next, 3102 struct btrfs_backref_node, lower); 3103 btrfs_backref_cleanup_node(cache, node); 3104 } 3105 3106 cache->last_trans = 0; 3107 3108 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 3109 ASSERT(list_empty(&cache->pending[i])); 3110 ASSERT(list_empty(&cache->pending_edge)); 3111 ASSERT(list_empty(&cache->useless_node)); 3112 ASSERT(list_empty(&cache->changed)); 3113 ASSERT(list_empty(&cache->detached)); 3114 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 3115 ASSERT(!cache->nr_nodes); 3116 ASSERT(!cache->nr_edges); 3117 } 3118 3119 /* 3120 * Handle direct tree backref 3121 * 3122 * Direct tree backref means, the backref item shows its parent bytenr 3123 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 3124 * 3125 * @ref_key: The converted backref key. 3126 * For keyed backref, it's the item key. 3127 * For inlined backref, objectid is the bytenr, 3128 * type is btrfs_inline_ref_type, offset is 3129 * btrfs_inline_ref_offset. 3130 */ 3131 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 3132 struct btrfs_key *ref_key, 3133 struct btrfs_backref_node *cur) 3134 { 3135 struct btrfs_backref_edge *edge; 3136 struct btrfs_backref_node *upper; 3137 struct rb_node *rb_node; 3138 3139 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 3140 3141 /* Only reloc root uses backref pointing to itself */ 3142 if (ref_key->objectid == ref_key->offset) { 3143 struct btrfs_root *root; 3144 3145 cur->is_reloc_root = 1; 3146 /* Only reloc backref cache cares about a specific root */ 3147 if (cache->is_reloc) { 3148 root = find_reloc_root(cache->fs_info, cur->bytenr); 3149 if (!root) 3150 return -ENOENT; 3151 cur->root = root; 3152 } else { 3153 /* 3154 * For generic purpose backref cache, reloc root node 3155 * is useless. 3156 */ 3157 list_add(&cur->list, &cache->useless_node); 3158 } 3159 return 0; 3160 } 3161 3162 edge = btrfs_backref_alloc_edge(cache); 3163 if (!edge) 3164 return -ENOMEM; 3165 3166 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 3167 if (!rb_node) { 3168 /* Parent node not yet cached */ 3169 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 3170 cur->level + 1); 3171 if (!upper) { 3172 btrfs_backref_free_edge(cache, edge); 3173 return -ENOMEM; 3174 } 3175 3176 /* 3177 * Backrefs for the upper level block isn't cached, add the 3178 * block to pending list 3179 */ 3180 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3181 } else { 3182 /* Parent node already cached */ 3183 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 3184 ASSERT(upper->checked); 3185 INIT_LIST_HEAD(&edge->list[UPPER]); 3186 } 3187 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 3188 return 0; 3189 } 3190 3191 /* 3192 * Handle indirect tree backref 3193 * 3194 * Indirect tree backref means, we only know which tree the node belongs to. 3195 * We still need to do a tree search to find out the parents. This is for 3196 * TREE_BLOCK_REF backref (keyed or inlined). 3197 * 3198 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 3199 * @tree_key: The first key of this tree block. 3200 * @path: A clean (released) path, to avoid allocating path every time 3201 * the function get called. 3202 */ 3203 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 3204 struct btrfs_path *path, 3205 struct btrfs_key *ref_key, 3206 struct btrfs_key *tree_key, 3207 struct btrfs_backref_node *cur) 3208 { 3209 struct btrfs_fs_info *fs_info = cache->fs_info; 3210 struct btrfs_backref_node *upper; 3211 struct btrfs_backref_node *lower; 3212 struct btrfs_backref_edge *edge; 3213 struct extent_buffer *eb; 3214 struct btrfs_root *root; 3215 struct rb_node *rb_node; 3216 int level; 3217 bool need_check = true; 3218 int ret; 3219 3220 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 3221 if (IS_ERR(root)) 3222 return PTR_ERR(root); 3223 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3224 cur->cowonly = 1; 3225 3226 if (btrfs_root_level(&root->root_item) == cur->level) { 3227 /* Tree root */ 3228 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 3229 /* 3230 * For reloc backref cache, we may ignore reloc root. But for 3231 * general purpose backref cache, we can't rely on 3232 * btrfs_should_ignore_reloc_root() as it may conflict with 3233 * current running relocation and lead to missing root. 3234 * 3235 * For general purpose backref cache, reloc root detection is 3236 * completely relying on direct backref (key->offset is parent 3237 * bytenr), thus only do such check for reloc cache. 3238 */ 3239 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 3240 btrfs_put_root(root); 3241 list_add(&cur->list, &cache->useless_node); 3242 } else { 3243 cur->root = root; 3244 } 3245 return 0; 3246 } 3247 3248 level = cur->level + 1; 3249 3250 /* Search the tree to find parent blocks referring to the block */ 3251 path->search_commit_root = 1; 3252 path->skip_locking = 1; 3253 path->lowest_level = level; 3254 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 3255 path->lowest_level = 0; 3256 if (ret < 0) { 3257 btrfs_put_root(root); 3258 return ret; 3259 } 3260 if (ret > 0 && path->slots[level] > 0) 3261 path->slots[level]--; 3262 3263 eb = path->nodes[level]; 3264 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 3265 btrfs_err(fs_info, 3266 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 3267 cur->bytenr, level - 1, root->root_key.objectid, 3268 tree_key->objectid, tree_key->type, tree_key->offset); 3269 btrfs_put_root(root); 3270 ret = -ENOENT; 3271 goto out; 3272 } 3273 lower = cur; 3274 3275 /* Add all nodes and edges in the path */ 3276 for (; level < BTRFS_MAX_LEVEL; level++) { 3277 if (!path->nodes[level]) { 3278 ASSERT(btrfs_root_bytenr(&root->root_item) == 3279 lower->bytenr); 3280 /* Same as previous should_ignore_reloc_root() call */ 3281 if (btrfs_should_ignore_reloc_root(root) && 3282 cache->is_reloc) { 3283 btrfs_put_root(root); 3284 list_add(&lower->list, &cache->useless_node); 3285 } else { 3286 lower->root = root; 3287 } 3288 break; 3289 } 3290 3291 edge = btrfs_backref_alloc_edge(cache); 3292 if (!edge) { 3293 btrfs_put_root(root); 3294 ret = -ENOMEM; 3295 goto out; 3296 } 3297 3298 eb = path->nodes[level]; 3299 rb_node = rb_simple_search(&cache->rb_root, eb->start); 3300 if (!rb_node) { 3301 upper = btrfs_backref_alloc_node(cache, eb->start, 3302 lower->level + 1); 3303 if (!upper) { 3304 btrfs_put_root(root); 3305 btrfs_backref_free_edge(cache, edge); 3306 ret = -ENOMEM; 3307 goto out; 3308 } 3309 upper->owner = btrfs_header_owner(eb); 3310 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3311 upper->cowonly = 1; 3312 3313 /* 3314 * If we know the block isn't shared we can avoid 3315 * checking its backrefs. 3316 */ 3317 if (btrfs_block_can_be_shared(root, eb)) 3318 upper->checked = 0; 3319 else 3320 upper->checked = 1; 3321 3322 /* 3323 * Add the block to pending list if we need to check its 3324 * backrefs, we only do this once while walking up a 3325 * tree as we will catch anything else later on. 3326 */ 3327 if (!upper->checked && need_check) { 3328 need_check = false; 3329 list_add_tail(&edge->list[UPPER], 3330 &cache->pending_edge); 3331 } else { 3332 if (upper->checked) 3333 need_check = true; 3334 INIT_LIST_HEAD(&edge->list[UPPER]); 3335 } 3336 } else { 3337 upper = rb_entry(rb_node, struct btrfs_backref_node, 3338 rb_node); 3339 ASSERT(upper->checked); 3340 INIT_LIST_HEAD(&edge->list[UPPER]); 3341 if (!upper->owner) 3342 upper->owner = btrfs_header_owner(eb); 3343 } 3344 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 3345 3346 if (rb_node) { 3347 btrfs_put_root(root); 3348 break; 3349 } 3350 lower = upper; 3351 upper = NULL; 3352 } 3353 out: 3354 btrfs_release_path(path); 3355 return ret; 3356 } 3357 3358 /* 3359 * Add backref node @cur into @cache. 3360 * 3361 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 3362 * links aren't yet bi-directional. Needs to finish such links. 3363 * Use btrfs_backref_finish_upper_links() to finish such linkage. 3364 * 3365 * @path: Released path for indirect tree backref lookup 3366 * @iter: Released backref iter for extent tree search 3367 * @node_key: The first key of the tree block 3368 */ 3369 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 3370 struct btrfs_path *path, 3371 struct btrfs_backref_iter *iter, 3372 struct btrfs_key *node_key, 3373 struct btrfs_backref_node *cur) 3374 { 3375 struct btrfs_fs_info *fs_info = cache->fs_info; 3376 struct btrfs_backref_edge *edge; 3377 struct btrfs_backref_node *exist; 3378 int ret; 3379 3380 ret = btrfs_backref_iter_start(iter, cur->bytenr); 3381 if (ret < 0) 3382 return ret; 3383 /* 3384 * We skip the first btrfs_tree_block_info, as we don't use the key 3385 * stored in it, but fetch it from the tree block 3386 */ 3387 if (btrfs_backref_has_tree_block_info(iter)) { 3388 ret = btrfs_backref_iter_next(iter); 3389 if (ret < 0) 3390 goto out; 3391 /* No extra backref? This means the tree block is corrupted */ 3392 if (ret > 0) { 3393 ret = -EUCLEAN; 3394 goto out; 3395 } 3396 } 3397 WARN_ON(cur->checked); 3398 if (!list_empty(&cur->upper)) { 3399 /* 3400 * The backref was added previously when processing backref of 3401 * type BTRFS_TREE_BLOCK_REF_KEY 3402 */ 3403 ASSERT(list_is_singular(&cur->upper)); 3404 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 3405 list[LOWER]); 3406 ASSERT(list_empty(&edge->list[UPPER])); 3407 exist = edge->node[UPPER]; 3408 /* 3409 * Add the upper level block to pending list if we need check 3410 * its backrefs 3411 */ 3412 if (!exist->checked) 3413 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3414 } else { 3415 exist = NULL; 3416 } 3417 3418 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 3419 struct extent_buffer *eb; 3420 struct btrfs_key key; 3421 int type; 3422 3423 cond_resched(); 3424 eb = btrfs_backref_get_eb(iter); 3425 3426 key.objectid = iter->bytenr; 3427 if (btrfs_backref_iter_is_inline_ref(iter)) { 3428 struct btrfs_extent_inline_ref *iref; 3429 3430 /* Update key for inline backref */ 3431 iref = (struct btrfs_extent_inline_ref *) 3432 ((unsigned long)iter->cur_ptr); 3433 type = btrfs_get_extent_inline_ref_type(eb, iref, 3434 BTRFS_REF_TYPE_BLOCK); 3435 if (type == BTRFS_REF_TYPE_INVALID) { 3436 ret = -EUCLEAN; 3437 goto out; 3438 } 3439 key.type = type; 3440 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3441 } else { 3442 key.type = iter->cur_key.type; 3443 key.offset = iter->cur_key.offset; 3444 } 3445 3446 /* 3447 * Parent node found and matches current inline ref, no need to 3448 * rebuild this node for this inline ref 3449 */ 3450 if (exist && 3451 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 3452 exist->owner == key.offset) || 3453 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 3454 exist->bytenr == key.offset))) { 3455 exist = NULL; 3456 continue; 3457 } 3458 3459 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 3460 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 3461 ret = handle_direct_tree_backref(cache, &key, cur); 3462 if (ret < 0) 3463 goto out; 3464 continue; 3465 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 3466 ret = -EINVAL; 3467 btrfs_print_v0_err(fs_info); 3468 btrfs_handle_fs_error(fs_info, ret, NULL); 3469 goto out; 3470 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 3471 continue; 3472 } 3473 3474 /* 3475 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 3476 * means the root objectid. We need to search the tree to get 3477 * its parent bytenr. 3478 */ 3479 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 3480 cur); 3481 if (ret < 0) 3482 goto out; 3483 } 3484 ret = 0; 3485 cur->checked = 1; 3486 WARN_ON(exist); 3487 out: 3488 btrfs_backref_iter_release(iter); 3489 return ret; 3490 } 3491 3492 /* 3493 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 3494 */ 3495 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 3496 struct btrfs_backref_node *start) 3497 { 3498 struct list_head *useless_node = &cache->useless_node; 3499 struct btrfs_backref_edge *edge; 3500 struct rb_node *rb_node; 3501 LIST_HEAD(pending_edge); 3502 3503 ASSERT(start->checked); 3504 3505 /* Insert this node to cache if it's not COW-only */ 3506 if (!start->cowonly) { 3507 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 3508 &start->rb_node); 3509 if (rb_node) 3510 btrfs_backref_panic(cache->fs_info, start->bytenr, 3511 -EEXIST); 3512 list_add_tail(&start->lower, &cache->leaves); 3513 } 3514 3515 /* 3516 * Use breadth first search to iterate all related edges. 3517 * 3518 * The starting points are all the edges of this node 3519 */ 3520 list_for_each_entry(edge, &start->upper, list[LOWER]) 3521 list_add_tail(&edge->list[UPPER], &pending_edge); 3522 3523 while (!list_empty(&pending_edge)) { 3524 struct btrfs_backref_node *upper; 3525 struct btrfs_backref_node *lower; 3526 3527 edge = list_first_entry(&pending_edge, 3528 struct btrfs_backref_edge, list[UPPER]); 3529 list_del_init(&edge->list[UPPER]); 3530 upper = edge->node[UPPER]; 3531 lower = edge->node[LOWER]; 3532 3533 /* Parent is detached, no need to keep any edges */ 3534 if (upper->detached) { 3535 list_del(&edge->list[LOWER]); 3536 btrfs_backref_free_edge(cache, edge); 3537 3538 /* Lower node is orphan, queue for cleanup */ 3539 if (list_empty(&lower->upper)) 3540 list_add(&lower->list, useless_node); 3541 continue; 3542 } 3543 3544 /* 3545 * All new nodes added in current build_backref_tree() haven't 3546 * been linked to the cache rb tree. 3547 * So if we have upper->rb_node populated, this means a cache 3548 * hit. We only need to link the edge, as @upper and all its 3549 * parents have already been linked. 3550 */ 3551 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3552 if (upper->lowest) { 3553 list_del_init(&upper->lower); 3554 upper->lowest = 0; 3555 } 3556 3557 list_add_tail(&edge->list[UPPER], &upper->lower); 3558 continue; 3559 } 3560 3561 /* Sanity check, we shouldn't have any unchecked nodes */ 3562 if (!upper->checked) { 3563 ASSERT(0); 3564 return -EUCLEAN; 3565 } 3566 3567 /* Sanity check, COW-only node has non-COW-only parent */ 3568 if (start->cowonly != upper->cowonly) { 3569 ASSERT(0); 3570 return -EUCLEAN; 3571 } 3572 3573 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3574 if (!upper->cowonly) { 3575 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3576 &upper->rb_node); 3577 if (rb_node) { 3578 btrfs_backref_panic(cache->fs_info, 3579 upper->bytenr, -EEXIST); 3580 return -EUCLEAN; 3581 } 3582 } 3583 3584 list_add_tail(&edge->list[UPPER], &upper->lower); 3585 3586 /* 3587 * Also queue all the parent edges of this uncached node 3588 * to finish the upper linkage 3589 */ 3590 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3591 list_add_tail(&edge->list[UPPER], &pending_edge); 3592 } 3593 return 0; 3594 } 3595 3596 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3597 struct btrfs_backref_node *node) 3598 { 3599 struct btrfs_backref_node *lower; 3600 struct btrfs_backref_node *upper; 3601 struct btrfs_backref_edge *edge; 3602 3603 while (!list_empty(&cache->useless_node)) { 3604 lower = list_first_entry(&cache->useless_node, 3605 struct btrfs_backref_node, list); 3606 list_del_init(&lower->list); 3607 } 3608 while (!list_empty(&cache->pending_edge)) { 3609 edge = list_first_entry(&cache->pending_edge, 3610 struct btrfs_backref_edge, list[UPPER]); 3611 list_del(&edge->list[UPPER]); 3612 list_del(&edge->list[LOWER]); 3613 lower = edge->node[LOWER]; 3614 upper = edge->node[UPPER]; 3615 btrfs_backref_free_edge(cache, edge); 3616 3617 /* 3618 * Lower is no longer linked to any upper backref nodes and 3619 * isn't in the cache, we can free it ourselves. 3620 */ 3621 if (list_empty(&lower->upper) && 3622 RB_EMPTY_NODE(&lower->rb_node)) 3623 list_add(&lower->list, &cache->useless_node); 3624 3625 if (!RB_EMPTY_NODE(&upper->rb_node)) 3626 continue; 3627 3628 /* Add this guy's upper edges to the list to process */ 3629 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3630 list_add_tail(&edge->list[UPPER], 3631 &cache->pending_edge); 3632 if (list_empty(&upper->upper)) 3633 list_add(&upper->list, &cache->useless_node); 3634 } 3635 3636 while (!list_empty(&cache->useless_node)) { 3637 lower = list_first_entry(&cache->useless_node, 3638 struct btrfs_backref_node, list); 3639 list_del_init(&lower->list); 3640 if (lower == node) 3641 node = NULL; 3642 btrfs_backref_drop_node(cache, lower); 3643 } 3644 3645 btrfs_backref_cleanup_node(cache, node); 3646 ASSERT(list_empty(&cache->useless_node) && 3647 list_empty(&cache->pending_edge)); 3648 } 3649