xref: /linux/fs/btrfs/backref.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	struct extent_inode_elem *next;
32 };
33 
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 				struct btrfs_file_extent_item *fi,
36 				u64 extent_item_pos,
37 				struct extent_inode_elem **eie)
38 {
39 	u64 data_offset;
40 	u64 data_len;
41 	struct extent_inode_elem *e;
42 
43 	data_offset = btrfs_file_extent_offset(eb, fi);
44 	data_len = btrfs_file_extent_num_bytes(eb, fi);
45 
46 	if (extent_item_pos < data_offset ||
47 	    extent_item_pos >= data_offset + data_len)
48 		return 1;
49 
50 	e = kmalloc(sizeof(*e), GFP_NOFS);
51 	if (!e)
52 		return -ENOMEM;
53 
54 	e->next = *eie;
55 	e->inum = key->objectid;
56 	e->offset = key->offset + (extent_item_pos - data_offset);
57 	*eie = e;
58 
59 	return 0;
60 }
61 
62 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
63 				u64 extent_item_pos,
64 				struct extent_inode_elem **eie)
65 {
66 	u64 disk_byte;
67 	struct btrfs_key key;
68 	struct btrfs_file_extent_item *fi;
69 	int slot;
70 	int nritems;
71 	int extent_type;
72 	int ret;
73 
74 	/*
75 	 * from the shared data ref, we only have the leaf but we need
76 	 * the key. thus, we must look into all items and see that we
77 	 * find one (some) with a reference to our extent item.
78 	 */
79 	nritems = btrfs_header_nritems(eb);
80 	for (slot = 0; slot < nritems; ++slot) {
81 		btrfs_item_key_to_cpu(eb, &key, slot);
82 		if (key.type != BTRFS_EXTENT_DATA_KEY)
83 			continue;
84 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
85 		extent_type = btrfs_file_extent_type(eb, fi);
86 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
87 			continue;
88 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
89 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
90 		if (disk_byte != wanted_disk_byte)
91 			continue;
92 
93 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
94 		if (ret < 0)
95 			return ret;
96 	}
97 
98 	return 0;
99 }
100 
101 /*
102  * this structure records all encountered refs on the way up to the root
103  */
104 struct __prelim_ref {
105 	struct list_head list;
106 	u64 root_id;
107 	struct btrfs_key key_for_search;
108 	int level;
109 	int count;
110 	struct extent_inode_elem *inode_list;
111 	u64 parent;
112 	u64 wanted_disk_byte;
113 };
114 
115 /*
116  * the rules for all callers of this function are:
117  * - obtaining the parent is the goal
118  * - if you add a key, you must know that it is a correct key
119  * - if you cannot add the parent or a correct key, then we will look into the
120  *   block later to set a correct key
121  *
122  * delayed refs
123  * ============
124  *        backref type | shared | indirect | shared | indirect
125  * information         |   tree |     tree |   data |     data
126  * --------------------+--------+----------+--------+----------
127  *      parent logical |    y   |     -    |    -   |     -
128  *      key to resolve |    -   |     y    |    y   |     y
129  *  tree block logical |    -   |     -    |    -   |     -
130  *  root for resolving |    y   |     y    |    y   |     y
131  *
132  * - column 1:       we've the parent -> done
133  * - column 2, 3, 4: we use the key to find the parent
134  *
135  * on disk refs (inline or keyed)
136  * ==============================
137  *        backref type | shared | indirect | shared | indirect
138  * information         |   tree |     tree |   data |     data
139  * --------------------+--------+----------+--------+----------
140  *      parent logical |    y   |     -    |    y   |     -
141  *      key to resolve |    -   |     -    |    -   |     y
142  *  tree block logical |    y   |     y    |    y   |     y
143  *  root for resolving |    -   |     y    |    y   |     y
144  *
145  * - column 1, 3: we've the parent -> done
146  * - column 2:    we take the first key from the block to find the parent
147  *                (see __add_missing_keys)
148  * - column 4:    we use the key to find the parent
149  *
150  * additional information that's available but not required to find the parent
151  * block might help in merging entries to gain some speed.
152  */
153 
154 static int __add_prelim_ref(struct list_head *head, u64 root_id,
155 			    struct btrfs_key *key, int level,
156 			    u64 parent, u64 wanted_disk_byte, int count)
157 {
158 	struct __prelim_ref *ref;
159 
160 	/* in case we're adding delayed refs, we're holding the refs spinlock */
161 	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
162 	if (!ref)
163 		return -ENOMEM;
164 
165 	ref->root_id = root_id;
166 	if (key)
167 		ref->key_for_search = *key;
168 	else
169 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
170 
171 	ref->inode_list = NULL;
172 	ref->level = level;
173 	ref->count = count;
174 	ref->parent = parent;
175 	ref->wanted_disk_byte = wanted_disk_byte;
176 	list_add_tail(&ref->list, head);
177 
178 	return 0;
179 }
180 
181 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
182 				struct ulist *parents, int level,
183 				struct btrfs_key *key_for_search, u64 time_seq,
184 				u64 wanted_disk_byte,
185 				const u64 *extent_item_pos)
186 {
187 	int ret = 0;
188 	int slot;
189 	struct extent_buffer *eb;
190 	struct btrfs_key key;
191 	struct btrfs_file_extent_item *fi;
192 	struct extent_inode_elem *eie = NULL;
193 	u64 disk_byte;
194 
195 	if (level != 0) {
196 		eb = path->nodes[level];
197 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
198 		if (ret < 0)
199 			return ret;
200 		return 0;
201 	}
202 
203 	/*
204 	 * We normally enter this function with the path already pointing to
205 	 * the first item to check. But sometimes, we may enter it with
206 	 * slot==nritems. In that case, go to the next leaf before we continue.
207 	 */
208 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
209 		ret = btrfs_next_old_leaf(root, path, time_seq);
210 
211 	while (!ret) {
212 		eb = path->nodes[0];
213 		slot = path->slots[0];
214 
215 		btrfs_item_key_to_cpu(eb, &key, slot);
216 
217 		if (key.objectid != key_for_search->objectid ||
218 		    key.type != BTRFS_EXTENT_DATA_KEY)
219 			break;
220 
221 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
222 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
223 
224 		if (disk_byte == wanted_disk_byte) {
225 			eie = NULL;
226 			if (extent_item_pos) {
227 				ret = check_extent_in_eb(&key, eb, fi,
228 						*extent_item_pos,
229 						&eie);
230 				if (ret < 0)
231 					break;
232 			}
233 			if (!ret) {
234 				ret = ulist_add(parents, eb->start,
235 						(uintptr_t)eie, GFP_NOFS);
236 				if (ret < 0)
237 					break;
238 				if (!extent_item_pos) {
239 					ret = btrfs_next_old_leaf(root, path,
240 							time_seq);
241 					continue;
242 				}
243 			}
244 		}
245 		ret = btrfs_next_old_item(root, path, time_seq);
246 	}
247 
248 	if (ret > 0)
249 		ret = 0;
250 	return ret;
251 }
252 
253 /*
254  * resolve an indirect backref in the form (root_id, key, level)
255  * to a logical address
256  */
257 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
258 					int search_commit_root,
259 					u64 time_seq,
260 					struct __prelim_ref *ref,
261 					struct ulist *parents,
262 					const u64 *extent_item_pos)
263 {
264 	struct btrfs_path *path;
265 	struct btrfs_root *root;
266 	struct btrfs_key root_key;
267 	struct extent_buffer *eb;
268 	int ret = 0;
269 	int root_level;
270 	int level = ref->level;
271 
272 	path = btrfs_alloc_path();
273 	if (!path)
274 		return -ENOMEM;
275 	path->search_commit_root = !!search_commit_root;
276 
277 	root_key.objectid = ref->root_id;
278 	root_key.type = BTRFS_ROOT_ITEM_KEY;
279 	root_key.offset = (u64)-1;
280 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
281 	if (IS_ERR(root)) {
282 		ret = PTR_ERR(root);
283 		goto out;
284 	}
285 
286 	root_level = btrfs_old_root_level(root, time_seq);
287 
288 	if (root_level + 1 == level)
289 		goto out;
290 
291 	path->lowest_level = level;
292 	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
293 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
294 		 "%d for key (%llu %u %llu)\n",
295 		 (unsigned long long)ref->root_id, level, ref->count, ret,
296 		 (unsigned long long)ref->key_for_search.objectid,
297 		 ref->key_for_search.type,
298 		 (unsigned long long)ref->key_for_search.offset);
299 	if (ret < 0)
300 		goto out;
301 
302 	eb = path->nodes[level];
303 	while (!eb) {
304 		if (!level) {
305 			WARN_ON(1);
306 			ret = 1;
307 			goto out;
308 		}
309 		level--;
310 		eb = path->nodes[level];
311 	}
312 
313 	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
314 				time_seq, ref->wanted_disk_byte,
315 				extent_item_pos);
316 out:
317 	btrfs_free_path(path);
318 	return ret;
319 }
320 
321 /*
322  * resolve all indirect backrefs from the list
323  */
324 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
325 				   int search_commit_root, u64 time_seq,
326 				   struct list_head *head,
327 				   const u64 *extent_item_pos)
328 {
329 	int err;
330 	int ret = 0;
331 	struct __prelim_ref *ref;
332 	struct __prelim_ref *ref_safe;
333 	struct __prelim_ref *new_ref;
334 	struct ulist *parents;
335 	struct ulist_node *node;
336 	struct ulist_iterator uiter;
337 
338 	parents = ulist_alloc(GFP_NOFS);
339 	if (!parents)
340 		return -ENOMEM;
341 
342 	/*
343 	 * _safe allows us to insert directly after the current item without
344 	 * iterating over the newly inserted items.
345 	 * we're also allowed to re-assign ref during iteration.
346 	 */
347 	list_for_each_entry_safe(ref, ref_safe, head, list) {
348 		if (ref->parent)	/* already direct */
349 			continue;
350 		if (ref->count == 0)
351 			continue;
352 		err = __resolve_indirect_ref(fs_info, search_commit_root,
353 					     time_seq, ref, parents,
354 					     extent_item_pos);
355 		if (err) {
356 			if (ret == 0)
357 				ret = err;
358 			continue;
359 		}
360 
361 		/* we put the first parent into the ref at hand */
362 		ULIST_ITER_INIT(&uiter);
363 		node = ulist_next(parents, &uiter);
364 		ref->parent = node ? node->val : 0;
365 		ref->inode_list = node ?
366 			(struct extent_inode_elem *)(uintptr_t)node->aux : 0;
367 
368 		/* additional parents require new refs being added here */
369 		while ((node = ulist_next(parents, &uiter))) {
370 			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
371 			if (!new_ref) {
372 				ret = -ENOMEM;
373 				break;
374 			}
375 			memcpy(new_ref, ref, sizeof(*ref));
376 			new_ref->parent = node->val;
377 			new_ref->inode_list = (struct extent_inode_elem *)
378 							(uintptr_t)node->aux;
379 			list_add(&new_ref->list, &ref->list);
380 		}
381 		ulist_reinit(parents);
382 	}
383 
384 	ulist_free(parents);
385 	return ret;
386 }
387 
388 static inline int ref_for_same_block(struct __prelim_ref *ref1,
389 				     struct __prelim_ref *ref2)
390 {
391 	if (ref1->level != ref2->level)
392 		return 0;
393 	if (ref1->root_id != ref2->root_id)
394 		return 0;
395 	if (ref1->key_for_search.type != ref2->key_for_search.type)
396 		return 0;
397 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
398 		return 0;
399 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
400 		return 0;
401 	if (ref1->parent != ref2->parent)
402 		return 0;
403 
404 	return 1;
405 }
406 
407 /*
408  * read tree blocks and add keys where required.
409  */
410 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
411 			      struct list_head *head)
412 {
413 	struct list_head *pos;
414 	struct extent_buffer *eb;
415 
416 	list_for_each(pos, head) {
417 		struct __prelim_ref *ref;
418 		ref = list_entry(pos, struct __prelim_ref, list);
419 
420 		if (ref->parent)
421 			continue;
422 		if (ref->key_for_search.type)
423 			continue;
424 		BUG_ON(!ref->wanted_disk_byte);
425 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
426 				     fs_info->tree_root->leafsize, 0);
427 		BUG_ON(!eb);
428 		btrfs_tree_read_lock(eb);
429 		if (btrfs_header_level(eb) == 0)
430 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
431 		else
432 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
433 		btrfs_tree_read_unlock(eb);
434 		free_extent_buffer(eb);
435 	}
436 	return 0;
437 }
438 
439 /*
440  * merge two lists of backrefs and adjust counts accordingly
441  *
442  * mode = 1: merge identical keys, if key is set
443  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
444  *           additionally, we could even add a key range for the blocks we
445  *           looked into to merge even more (-> replace unresolved refs by those
446  *           having a parent).
447  * mode = 2: merge identical parents
448  */
449 static int __merge_refs(struct list_head *head, int mode)
450 {
451 	struct list_head *pos1;
452 
453 	list_for_each(pos1, head) {
454 		struct list_head *n2;
455 		struct list_head *pos2;
456 		struct __prelim_ref *ref1;
457 
458 		ref1 = list_entry(pos1, struct __prelim_ref, list);
459 
460 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
461 		     pos2 = n2, n2 = pos2->next) {
462 			struct __prelim_ref *ref2;
463 			struct __prelim_ref *xchg;
464 
465 			ref2 = list_entry(pos2, struct __prelim_ref, list);
466 
467 			if (mode == 1) {
468 				if (!ref_for_same_block(ref1, ref2))
469 					continue;
470 				if (!ref1->parent && ref2->parent) {
471 					xchg = ref1;
472 					ref1 = ref2;
473 					ref2 = xchg;
474 				}
475 				ref1->count += ref2->count;
476 			} else {
477 				if (ref1->parent != ref2->parent)
478 					continue;
479 				ref1->count += ref2->count;
480 			}
481 			list_del(&ref2->list);
482 			kfree(ref2);
483 		}
484 
485 	}
486 	return 0;
487 }
488 
489 /*
490  * add all currently queued delayed refs from this head whose seq nr is
491  * smaller or equal that seq to the list
492  */
493 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
494 			      struct list_head *prefs)
495 {
496 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
497 	struct rb_node *n = &head->node.rb_node;
498 	struct btrfs_key key;
499 	struct btrfs_key op_key = {0};
500 	int sgn;
501 	int ret = 0;
502 
503 	if (extent_op && extent_op->update_key)
504 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
505 
506 	while ((n = rb_prev(n))) {
507 		struct btrfs_delayed_ref_node *node;
508 		node = rb_entry(n, struct btrfs_delayed_ref_node,
509 				rb_node);
510 		if (node->bytenr != head->node.bytenr)
511 			break;
512 		WARN_ON(node->is_head);
513 
514 		if (node->seq > seq)
515 			continue;
516 
517 		switch (node->action) {
518 		case BTRFS_ADD_DELAYED_EXTENT:
519 		case BTRFS_UPDATE_DELAYED_HEAD:
520 			WARN_ON(1);
521 			continue;
522 		case BTRFS_ADD_DELAYED_REF:
523 			sgn = 1;
524 			break;
525 		case BTRFS_DROP_DELAYED_REF:
526 			sgn = -1;
527 			break;
528 		default:
529 			BUG_ON(1);
530 		}
531 		switch (node->type) {
532 		case BTRFS_TREE_BLOCK_REF_KEY: {
533 			struct btrfs_delayed_tree_ref *ref;
534 
535 			ref = btrfs_delayed_node_to_tree_ref(node);
536 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
537 					       ref->level + 1, 0, node->bytenr,
538 					       node->ref_mod * sgn);
539 			break;
540 		}
541 		case BTRFS_SHARED_BLOCK_REF_KEY: {
542 			struct btrfs_delayed_tree_ref *ref;
543 
544 			ref = btrfs_delayed_node_to_tree_ref(node);
545 			ret = __add_prelim_ref(prefs, ref->root, NULL,
546 					       ref->level + 1, ref->parent,
547 					       node->bytenr,
548 					       node->ref_mod * sgn);
549 			break;
550 		}
551 		case BTRFS_EXTENT_DATA_REF_KEY: {
552 			struct btrfs_delayed_data_ref *ref;
553 			ref = btrfs_delayed_node_to_data_ref(node);
554 
555 			key.objectid = ref->objectid;
556 			key.type = BTRFS_EXTENT_DATA_KEY;
557 			key.offset = ref->offset;
558 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
559 					       node->bytenr,
560 					       node->ref_mod * sgn);
561 			break;
562 		}
563 		case BTRFS_SHARED_DATA_REF_KEY: {
564 			struct btrfs_delayed_data_ref *ref;
565 
566 			ref = btrfs_delayed_node_to_data_ref(node);
567 
568 			key.objectid = ref->objectid;
569 			key.type = BTRFS_EXTENT_DATA_KEY;
570 			key.offset = ref->offset;
571 			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
572 					       ref->parent, node->bytenr,
573 					       node->ref_mod * sgn);
574 			break;
575 		}
576 		default:
577 			WARN_ON(1);
578 		}
579 		BUG_ON(ret);
580 	}
581 
582 	return 0;
583 }
584 
585 /*
586  * add all inline backrefs for bytenr to the list
587  */
588 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
589 			     struct btrfs_path *path, u64 bytenr,
590 			     int *info_level, struct list_head *prefs)
591 {
592 	int ret = 0;
593 	int slot;
594 	struct extent_buffer *leaf;
595 	struct btrfs_key key;
596 	unsigned long ptr;
597 	unsigned long end;
598 	struct btrfs_extent_item *ei;
599 	u64 flags;
600 	u64 item_size;
601 
602 	/*
603 	 * enumerate all inline refs
604 	 */
605 	leaf = path->nodes[0];
606 	slot = path->slots[0];
607 
608 	item_size = btrfs_item_size_nr(leaf, slot);
609 	BUG_ON(item_size < sizeof(*ei));
610 
611 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
612 	flags = btrfs_extent_flags(leaf, ei);
613 
614 	ptr = (unsigned long)(ei + 1);
615 	end = (unsigned long)ei + item_size;
616 
617 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
618 		struct btrfs_tree_block_info *info;
619 
620 		info = (struct btrfs_tree_block_info *)ptr;
621 		*info_level = btrfs_tree_block_level(leaf, info);
622 		ptr += sizeof(struct btrfs_tree_block_info);
623 		BUG_ON(ptr > end);
624 	} else {
625 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
626 	}
627 
628 	while (ptr < end) {
629 		struct btrfs_extent_inline_ref *iref;
630 		u64 offset;
631 		int type;
632 
633 		iref = (struct btrfs_extent_inline_ref *)ptr;
634 		type = btrfs_extent_inline_ref_type(leaf, iref);
635 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
636 
637 		switch (type) {
638 		case BTRFS_SHARED_BLOCK_REF_KEY:
639 			ret = __add_prelim_ref(prefs, 0, NULL,
640 						*info_level + 1, offset,
641 						bytenr, 1);
642 			break;
643 		case BTRFS_SHARED_DATA_REF_KEY: {
644 			struct btrfs_shared_data_ref *sdref;
645 			int count;
646 
647 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
648 			count = btrfs_shared_data_ref_count(leaf, sdref);
649 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
650 					       bytenr, count);
651 			break;
652 		}
653 		case BTRFS_TREE_BLOCK_REF_KEY:
654 			ret = __add_prelim_ref(prefs, offset, NULL,
655 					       *info_level + 1, 0,
656 					       bytenr, 1);
657 			break;
658 		case BTRFS_EXTENT_DATA_REF_KEY: {
659 			struct btrfs_extent_data_ref *dref;
660 			int count;
661 			u64 root;
662 
663 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
664 			count = btrfs_extent_data_ref_count(leaf, dref);
665 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
666 								      dref);
667 			key.type = BTRFS_EXTENT_DATA_KEY;
668 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
669 			root = btrfs_extent_data_ref_root(leaf, dref);
670 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
671 					       bytenr, count);
672 			break;
673 		}
674 		default:
675 			WARN_ON(1);
676 		}
677 		BUG_ON(ret);
678 		ptr += btrfs_extent_inline_ref_size(type);
679 	}
680 
681 	return 0;
682 }
683 
684 /*
685  * add all non-inline backrefs for bytenr to the list
686  */
687 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
688 			    struct btrfs_path *path, u64 bytenr,
689 			    int info_level, struct list_head *prefs)
690 {
691 	struct btrfs_root *extent_root = fs_info->extent_root;
692 	int ret;
693 	int slot;
694 	struct extent_buffer *leaf;
695 	struct btrfs_key key;
696 
697 	while (1) {
698 		ret = btrfs_next_item(extent_root, path);
699 		if (ret < 0)
700 			break;
701 		if (ret) {
702 			ret = 0;
703 			break;
704 		}
705 
706 		slot = path->slots[0];
707 		leaf = path->nodes[0];
708 		btrfs_item_key_to_cpu(leaf, &key, slot);
709 
710 		if (key.objectid != bytenr)
711 			break;
712 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
713 			continue;
714 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
715 			break;
716 
717 		switch (key.type) {
718 		case BTRFS_SHARED_BLOCK_REF_KEY:
719 			ret = __add_prelim_ref(prefs, 0, NULL,
720 						info_level + 1, key.offset,
721 						bytenr, 1);
722 			break;
723 		case BTRFS_SHARED_DATA_REF_KEY: {
724 			struct btrfs_shared_data_ref *sdref;
725 			int count;
726 
727 			sdref = btrfs_item_ptr(leaf, slot,
728 					      struct btrfs_shared_data_ref);
729 			count = btrfs_shared_data_ref_count(leaf, sdref);
730 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
731 						bytenr, count);
732 			break;
733 		}
734 		case BTRFS_TREE_BLOCK_REF_KEY:
735 			ret = __add_prelim_ref(prefs, key.offset, NULL,
736 					       info_level + 1, 0,
737 					       bytenr, 1);
738 			break;
739 		case BTRFS_EXTENT_DATA_REF_KEY: {
740 			struct btrfs_extent_data_ref *dref;
741 			int count;
742 			u64 root;
743 
744 			dref = btrfs_item_ptr(leaf, slot,
745 					      struct btrfs_extent_data_ref);
746 			count = btrfs_extent_data_ref_count(leaf, dref);
747 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
748 								      dref);
749 			key.type = BTRFS_EXTENT_DATA_KEY;
750 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
751 			root = btrfs_extent_data_ref_root(leaf, dref);
752 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
753 					       bytenr, count);
754 			break;
755 		}
756 		default:
757 			WARN_ON(1);
758 		}
759 		BUG_ON(ret);
760 	}
761 
762 	return ret;
763 }
764 
765 /*
766  * this adds all existing backrefs (inline backrefs, backrefs and delayed
767  * refs) for the given bytenr to the refs list, merges duplicates and resolves
768  * indirect refs to their parent bytenr.
769  * When roots are found, they're added to the roots list
770  *
771  * FIXME some caching might speed things up
772  */
773 static int find_parent_nodes(struct btrfs_trans_handle *trans,
774 			     struct btrfs_fs_info *fs_info, u64 bytenr,
775 			     u64 time_seq, struct ulist *refs,
776 			     struct ulist *roots, const u64 *extent_item_pos)
777 {
778 	struct btrfs_key key;
779 	struct btrfs_path *path;
780 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
781 	struct btrfs_delayed_ref_head *head;
782 	int info_level = 0;
783 	int ret;
784 	int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
785 	struct list_head prefs_delayed;
786 	struct list_head prefs;
787 	struct __prelim_ref *ref;
788 
789 	INIT_LIST_HEAD(&prefs);
790 	INIT_LIST_HEAD(&prefs_delayed);
791 
792 	key.objectid = bytenr;
793 	key.type = BTRFS_EXTENT_ITEM_KEY;
794 	key.offset = (u64)-1;
795 
796 	path = btrfs_alloc_path();
797 	if (!path)
798 		return -ENOMEM;
799 	path->search_commit_root = !!search_commit_root;
800 
801 	/*
802 	 * grab both a lock on the path and a lock on the delayed ref head.
803 	 * We need both to get a consistent picture of how the refs look
804 	 * at a specified point in time
805 	 */
806 again:
807 	head = NULL;
808 
809 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
810 	if (ret < 0)
811 		goto out;
812 	BUG_ON(ret == 0);
813 
814 	if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
815 		/*
816 		 * look if there are updates for this ref queued and lock the
817 		 * head
818 		 */
819 		delayed_refs = &trans->transaction->delayed_refs;
820 		spin_lock(&delayed_refs->lock);
821 		head = btrfs_find_delayed_ref_head(trans, bytenr);
822 		if (head) {
823 			if (!mutex_trylock(&head->mutex)) {
824 				atomic_inc(&head->node.refs);
825 				spin_unlock(&delayed_refs->lock);
826 
827 				btrfs_release_path(path);
828 
829 				/*
830 				 * Mutex was contended, block until it's
831 				 * released and try again
832 				 */
833 				mutex_lock(&head->mutex);
834 				mutex_unlock(&head->mutex);
835 				btrfs_put_delayed_ref(&head->node);
836 				goto again;
837 			}
838 			ret = __add_delayed_refs(head, time_seq,
839 						 &prefs_delayed);
840 			mutex_unlock(&head->mutex);
841 			if (ret) {
842 				spin_unlock(&delayed_refs->lock);
843 				goto out;
844 			}
845 		}
846 		spin_unlock(&delayed_refs->lock);
847 	}
848 
849 	if (path->slots[0]) {
850 		struct extent_buffer *leaf;
851 		int slot;
852 
853 		path->slots[0]--;
854 		leaf = path->nodes[0];
855 		slot = path->slots[0];
856 		btrfs_item_key_to_cpu(leaf, &key, slot);
857 		if (key.objectid == bytenr &&
858 		    key.type == BTRFS_EXTENT_ITEM_KEY) {
859 			ret = __add_inline_refs(fs_info, path, bytenr,
860 						&info_level, &prefs);
861 			if (ret)
862 				goto out;
863 			ret = __add_keyed_refs(fs_info, path, bytenr,
864 					       info_level, &prefs);
865 			if (ret)
866 				goto out;
867 		}
868 	}
869 	btrfs_release_path(path);
870 
871 	list_splice_init(&prefs_delayed, &prefs);
872 
873 	ret = __add_missing_keys(fs_info, &prefs);
874 	if (ret)
875 		goto out;
876 
877 	ret = __merge_refs(&prefs, 1);
878 	if (ret)
879 		goto out;
880 
881 	ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
882 				      &prefs, extent_item_pos);
883 	if (ret)
884 		goto out;
885 
886 	ret = __merge_refs(&prefs, 2);
887 	if (ret)
888 		goto out;
889 
890 	while (!list_empty(&prefs)) {
891 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
892 		list_del(&ref->list);
893 		if (ref->count < 0)
894 			WARN_ON(1);
895 		if (ref->count && ref->root_id && ref->parent == 0) {
896 			/* no parent == root of tree */
897 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
898 			BUG_ON(ret < 0);
899 		}
900 		if (ref->count && ref->parent) {
901 			struct extent_inode_elem *eie = NULL;
902 			if (extent_item_pos && !ref->inode_list) {
903 				u32 bsz;
904 				struct extent_buffer *eb;
905 				bsz = btrfs_level_size(fs_info->extent_root,
906 							info_level);
907 				eb = read_tree_block(fs_info->extent_root,
908 							   ref->parent, bsz, 0);
909 				BUG_ON(!eb);
910 				ret = find_extent_in_eb(eb, bytenr,
911 							*extent_item_pos, &eie);
912 				ref->inode_list = eie;
913 				free_extent_buffer(eb);
914 			}
915 			ret = ulist_add_merge(refs, ref->parent,
916 					      (uintptr_t)ref->inode_list,
917 					      (u64 *)&eie, GFP_NOFS);
918 			if (!ret && extent_item_pos) {
919 				/*
920 				 * we've recorded that parent, so we must extend
921 				 * its inode list here
922 				 */
923 				BUG_ON(!eie);
924 				while (eie->next)
925 					eie = eie->next;
926 				eie->next = ref->inode_list;
927 			}
928 			BUG_ON(ret < 0);
929 		}
930 		kfree(ref);
931 	}
932 
933 out:
934 	btrfs_free_path(path);
935 	while (!list_empty(&prefs)) {
936 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
937 		list_del(&ref->list);
938 		kfree(ref);
939 	}
940 	while (!list_empty(&prefs_delayed)) {
941 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
942 				       list);
943 		list_del(&ref->list);
944 		kfree(ref);
945 	}
946 
947 	return ret;
948 }
949 
950 static void free_leaf_list(struct ulist *blocks)
951 {
952 	struct ulist_node *node = NULL;
953 	struct extent_inode_elem *eie;
954 	struct extent_inode_elem *eie_next;
955 	struct ulist_iterator uiter;
956 
957 	ULIST_ITER_INIT(&uiter);
958 	while ((node = ulist_next(blocks, &uiter))) {
959 		if (!node->aux)
960 			continue;
961 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
962 		for (; eie; eie = eie_next) {
963 			eie_next = eie->next;
964 			kfree(eie);
965 		}
966 		node->aux = 0;
967 	}
968 
969 	ulist_free(blocks);
970 }
971 
972 /*
973  * Finds all leafs with a reference to the specified combination of bytenr and
974  * offset. key_list_head will point to a list of corresponding keys (caller must
975  * free each list element). The leafs will be stored in the leafs ulist, which
976  * must be freed with ulist_free.
977  *
978  * returns 0 on success, <0 on error
979  */
980 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
981 				struct btrfs_fs_info *fs_info, u64 bytenr,
982 				u64 time_seq, struct ulist **leafs,
983 				const u64 *extent_item_pos)
984 {
985 	struct ulist *tmp;
986 	int ret;
987 
988 	tmp = ulist_alloc(GFP_NOFS);
989 	if (!tmp)
990 		return -ENOMEM;
991 	*leafs = ulist_alloc(GFP_NOFS);
992 	if (!*leafs) {
993 		ulist_free(tmp);
994 		return -ENOMEM;
995 	}
996 
997 	ret = find_parent_nodes(trans, fs_info, bytenr,
998 				time_seq, *leafs, tmp, extent_item_pos);
999 	ulist_free(tmp);
1000 
1001 	if (ret < 0 && ret != -ENOENT) {
1002 		free_leaf_list(*leafs);
1003 		return ret;
1004 	}
1005 
1006 	return 0;
1007 }
1008 
1009 /*
1010  * walk all backrefs for a given extent to find all roots that reference this
1011  * extent. Walking a backref means finding all extents that reference this
1012  * extent and in turn walk the backrefs of those, too. Naturally this is a
1013  * recursive process, but here it is implemented in an iterative fashion: We
1014  * find all referencing extents for the extent in question and put them on a
1015  * list. In turn, we find all referencing extents for those, further appending
1016  * to the list. The way we iterate the list allows adding more elements after
1017  * the current while iterating. The process stops when we reach the end of the
1018  * list. Found roots are added to the roots list.
1019  *
1020  * returns 0 on success, < 0 on error.
1021  */
1022 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1023 				struct btrfs_fs_info *fs_info, u64 bytenr,
1024 				u64 time_seq, struct ulist **roots)
1025 {
1026 	struct ulist *tmp;
1027 	struct ulist_node *node = NULL;
1028 	struct ulist_iterator uiter;
1029 	int ret;
1030 
1031 	tmp = ulist_alloc(GFP_NOFS);
1032 	if (!tmp)
1033 		return -ENOMEM;
1034 	*roots = ulist_alloc(GFP_NOFS);
1035 	if (!*roots) {
1036 		ulist_free(tmp);
1037 		return -ENOMEM;
1038 	}
1039 
1040 	ULIST_ITER_INIT(&uiter);
1041 	while (1) {
1042 		ret = find_parent_nodes(trans, fs_info, bytenr,
1043 					time_seq, tmp, *roots, NULL);
1044 		if (ret < 0 && ret != -ENOENT) {
1045 			ulist_free(tmp);
1046 			ulist_free(*roots);
1047 			return ret;
1048 		}
1049 		node = ulist_next(tmp, &uiter);
1050 		if (!node)
1051 			break;
1052 		bytenr = node->val;
1053 	}
1054 
1055 	ulist_free(tmp);
1056 	return 0;
1057 }
1058 
1059 
1060 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1061 			struct btrfs_root *fs_root, struct btrfs_path *path,
1062 			struct btrfs_key *found_key)
1063 {
1064 	int ret;
1065 	struct btrfs_key key;
1066 	struct extent_buffer *eb;
1067 
1068 	key.type = key_type;
1069 	key.objectid = inum;
1070 	key.offset = ioff;
1071 
1072 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1073 	if (ret < 0)
1074 		return ret;
1075 
1076 	eb = path->nodes[0];
1077 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1078 		ret = btrfs_next_leaf(fs_root, path);
1079 		if (ret)
1080 			return ret;
1081 		eb = path->nodes[0];
1082 	}
1083 
1084 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1085 	if (found_key->type != key.type || found_key->objectid != key.objectid)
1086 		return 1;
1087 
1088 	return 0;
1089 }
1090 
1091 /*
1092  * this makes the path point to (inum INODE_ITEM ioff)
1093  */
1094 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1095 			struct btrfs_path *path)
1096 {
1097 	struct btrfs_key key;
1098 	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1099 				&key);
1100 }
1101 
1102 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1103 				struct btrfs_path *path,
1104 				struct btrfs_key *found_key)
1105 {
1106 	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1107 				found_key);
1108 }
1109 
1110 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1111 			  u64 start_off, struct btrfs_path *path,
1112 			  struct btrfs_inode_extref **ret_extref,
1113 			  u64 *found_off)
1114 {
1115 	int ret, slot;
1116 	struct btrfs_key key;
1117 	struct btrfs_key found_key;
1118 	struct btrfs_inode_extref *extref;
1119 	struct extent_buffer *leaf;
1120 	unsigned long ptr;
1121 
1122 	key.objectid = inode_objectid;
1123 	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1124 	key.offset = start_off;
1125 
1126 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1127 	if (ret < 0)
1128 		return ret;
1129 
1130 	while (1) {
1131 		leaf = path->nodes[0];
1132 		slot = path->slots[0];
1133 		if (slot >= btrfs_header_nritems(leaf)) {
1134 			/*
1135 			 * If the item at offset is not found,
1136 			 * btrfs_search_slot will point us to the slot
1137 			 * where it should be inserted. In our case
1138 			 * that will be the slot directly before the
1139 			 * next INODE_REF_KEY_V2 item. In the case
1140 			 * that we're pointing to the last slot in a
1141 			 * leaf, we must move one leaf over.
1142 			 */
1143 			ret = btrfs_next_leaf(root, path);
1144 			if (ret) {
1145 				if (ret >= 1)
1146 					ret = -ENOENT;
1147 				break;
1148 			}
1149 			continue;
1150 		}
1151 
1152 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1153 
1154 		/*
1155 		 * Check that we're still looking at an extended ref key for
1156 		 * this particular objectid. If we have different
1157 		 * objectid or type then there are no more to be found
1158 		 * in the tree and we can exit.
1159 		 */
1160 		ret = -ENOENT;
1161 		if (found_key.objectid != inode_objectid)
1162 			break;
1163 		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1164 			break;
1165 
1166 		ret = 0;
1167 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1168 		extref = (struct btrfs_inode_extref *)ptr;
1169 		*ret_extref = extref;
1170 		if (found_off)
1171 			*found_off = found_key.offset;
1172 		break;
1173 	}
1174 
1175 	return ret;
1176 }
1177 
1178 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1179 			u32 name_len, unsigned long name_off,
1180 			struct extent_buffer *eb_in, u64 parent,
1181 			char *dest, u32 size)
1182 {
1183 	int slot;
1184 	u64 next_inum;
1185 	int ret;
1186 	s64 bytes_left = ((s64)size) - 1;
1187 	struct extent_buffer *eb = eb_in;
1188 	struct btrfs_key found_key;
1189 	int leave_spinning = path->leave_spinning;
1190 	struct btrfs_inode_ref *iref;
1191 
1192 	if (bytes_left >= 0)
1193 		dest[bytes_left] = '\0';
1194 
1195 	path->leave_spinning = 1;
1196 	while (1) {
1197 		bytes_left -= name_len;
1198 		if (bytes_left >= 0)
1199 			read_extent_buffer(eb, dest + bytes_left,
1200 					   name_off, name_len);
1201 		if (eb != eb_in) {
1202 			btrfs_tree_read_unlock_blocking(eb);
1203 			free_extent_buffer(eb);
1204 		}
1205 		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1206 		if (ret > 0)
1207 			ret = -ENOENT;
1208 		if (ret)
1209 			break;
1210 
1211 		next_inum = found_key.offset;
1212 
1213 		/* regular exit ahead */
1214 		if (parent == next_inum)
1215 			break;
1216 
1217 		slot = path->slots[0];
1218 		eb = path->nodes[0];
1219 		/* make sure we can use eb after releasing the path */
1220 		if (eb != eb_in) {
1221 			atomic_inc(&eb->refs);
1222 			btrfs_tree_read_lock(eb);
1223 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1224 		}
1225 		btrfs_release_path(path);
1226 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1227 
1228 		name_len = btrfs_inode_ref_name_len(eb, iref);
1229 		name_off = (unsigned long)(iref + 1);
1230 
1231 		parent = next_inum;
1232 		--bytes_left;
1233 		if (bytes_left >= 0)
1234 			dest[bytes_left] = '/';
1235 	}
1236 
1237 	btrfs_release_path(path);
1238 	path->leave_spinning = leave_spinning;
1239 
1240 	if (ret)
1241 		return ERR_PTR(ret);
1242 
1243 	return dest + bytes_left;
1244 }
1245 
1246 /*
1247  * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
1248  * of the path are separated by '/' and the path is guaranteed to be
1249  * 0-terminated. the path is only given within the current file system.
1250  * Therefore, it never starts with a '/'. the caller is responsible to provide
1251  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1252  * the start point of the resulting string is returned. this pointer is within
1253  * dest, normally.
1254  * in case the path buffer would overflow, the pointer is decremented further
1255  * as if output was written to the buffer, though no more output is actually
1256  * generated. that way, the caller can determine how much space would be
1257  * required for the path to fit into the buffer. in that case, the returned
1258  * value will be smaller than dest. callers must check this!
1259  */
1260 char *btrfs_iref_to_path(struct btrfs_root *fs_root,
1261 			 struct btrfs_path *path,
1262 			 struct btrfs_inode_ref *iref,
1263 			 struct extent_buffer *eb_in, u64 parent,
1264 			 char *dest, u32 size)
1265 {
1266 	return btrfs_ref_to_path(fs_root, path,
1267 				 btrfs_inode_ref_name_len(eb_in, iref),
1268 				 (unsigned long)(iref + 1),
1269 				 eb_in, parent, dest, size);
1270 }
1271 
1272 /*
1273  * this makes the path point to (logical EXTENT_ITEM *)
1274  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1275  * tree blocks and <0 on error.
1276  */
1277 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1278 			struct btrfs_path *path, struct btrfs_key *found_key,
1279 			u64 *flags_ret)
1280 {
1281 	int ret;
1282 	u64 flags;
1283 	u32 item_size;
1284 	struct extent_buffer *eb;
1285 	struct btrfs_extent_item *ei;
1286 	struct btrfs_key key;
1287 
1288 	key.type = BTRFS_EXTENT_ITEM_KEY;
1289 	key.objectid = logical;
1290 	key.offset = (u64)-1;
1291 
1292 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1293 	if (ret < 0)
1294 		return ret;
1295 	ret = btrfs_previous_item(fs_info->extent_root, path,
1296 					0, BTRFS_EXTENT_ITEM_KEY);
1297 	if (ret < 0)
1298 		return ret;
1299 
1300 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1301 	if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1302 	    found_key->objectid > logical ||
1303 	    found_key->objectid + found_key->offset <= logical) {
1304 		pr_debug("logical %llu is not within any extent\n",
1305 			 (unsigned long long)logical);
1306 		return -ENOENT;
1307 	}
1308 
1309 	eb = path->nodes[0];
1310 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1311 	BUG_ON(item_size < sizeof(*ei));
1312 
1313 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1314 	flags = btrfs_extent_flags(eb, ei);
1315 
1316 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1317 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1318 		 (unsigned long long)logical,
1319 		 (unsigned long long)(logical - found_key->objectid),
1320 		 (unsigned long long)found_key->objectid,
1321 		 (unsigned long long)found_key->offset,
1322 		 (unsigned long long)flags, item_size);
1323 
1324 	WARN_ON(!flags_ret);
1325 	if (flags_ret) {
1326 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1327 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1328 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1329 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1330 		else
1331 			BUG_ON(1);
1332 		return 0;
1333 	}
1334 
1335 	return -EIO;
1336 }
1337 
1338 /*
1339  * helper function to iterate extent inline refs. ptr must point to a 0 value
1340  * for the first call and may be modified. it is used to track state.
1341  * if more refs exist, 0 is returned and the next call to
1342  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1343  * next ref. after the last ref was processed, 1 is returned.
1344  * returns <0 on error
1345  */
1346 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1347 				struct btrfs_extent_item *ei, u32 item_size,
1348 				struct btrfs_extent_inline_ref **out_eiref,
1349 				int *out_type)
1350 {
1351 	unsigned long end;
1352 	u64 flags;
1353 	struct btrfs_tree_block_info *info;
1354 
1355 	if (!*ptr) {
1356 		/* first call */
1357 		flags = btrfs_extent_flags(eb, ei);
1358 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1359 			info = (struct btrfs_tree_block_info *)(ei + 1);
1360 			*out_eiref =
1361 				(struct btrfs_extent_inline_ref *)(info + 1);
1362 		} else {
1363 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1364 		}
1365 		*ptr = (unsigned long)*out_eiref;
1366 		if ((void *)*ptr >= (void *)ei + item_size)
1367 			return -ENOENT;
1368 	}
1369 
1370 	end = (unsigned long)ei + item_size;
1371 	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1372 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1373 
1374 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1375 	WARN_ON(*ptr > end);
1376 	if (*ptr == end)
1377 		return 1; /* last */
1378 
1379 	return 0;
1380 }
1381 
1382 /*
1383  * reads the tree block backref for an extent. tree level and root are returned
1384  * through out_level and out_root. ptr must point to a 0 value for the first
1385  * call and may be modified (see __get_extent_inline_ref comment).
1386  * returns 0 if data was provided, 1 if there was no more data to provide or
1387  * <0 on error.
1388  */
1389 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1390 				struct btrfs_extent_item *ei, u32 item_size,
1391 				u64 *out_root, u8 *out_level)
1392 {
1393 	int ret;
1394 	int type;
1395 	struct btrfs_tree_block_info *info;
1396 	struct btrfs_extent_inline_ref *eiref;
1397 
1398 	if (*ptr == (unsigned long)-1)
1399 		return 1;
1400 
1401 	while (1) {
1402 		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1403 						&eiref, &type);
1404 		if (ret < 0)
1405 			return ret;
1406 
1407 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1408 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1409 			break;
1410 
1411 		if (ret == 1)
1412 			return 1;
1413 	}
1414 
1415 	/* we can treat both ref types equally here */
1416 	info = (struct btrfs_tree_block_info *)(ei + 1);
1417 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1418 	*out_level = btrfs_tree_block_level(eb, info);
1419 
1420 	if (ret == 1)
1421 		*ptr = (unsigned long)-1;
1422 
1423 	return 0;
1424 }
1425 
1426 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1427 				u64 root, u64 extent_item_objectid,
1428 				iterate_extent_inodes_t *iterate, void *ctx)
1429 {
1430 	struct extent_inode_elem *eie;
1431 	int ret = 0;
1432 
1433 	for (eie = inode_list; eie; eie = eie->next) {
1434 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1435 			 "root %llu\n", extent_item_objectid,
1436 			 eie->inum, eie->offset, root);
1437 		ret = iterate(eie->inum, eie->offset, root, ctx);
1438 		if (ret) {
1439 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1440 				 extent_item_objectid, ret);
1441 			break;
1442 		}
1443 	}
1444 
1445 	return ret;
1446 }
1447 
1448 /*
1449  * calls iterate() for every inode that references the extent identified by
1450  * the given parameters.
1451  * when the iterator function returns a non-zero value, iteration stops.
1452  */
1453 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1454 				u64 extent_item_objectid, u64 extent_item_pos,
1455 				int search_commit_root,
1456 				iterate_extent_inodes_t *iterate, void *ctx)
1457 {
1458 	int ret;
1459 	struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1460 	struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
1461 	struct btrfs_trans_handle *trans;
1462 	struct ulist *refs = NULL;
1463 	struct ulist *roots = NULL;
1464 	struct ulist_node *ref_node = NULL;
1465 	struct ulist_node *root_node = NULL;
1466 	struct seq_list tree_mod_seq_elem = {};
1467 	struct ulist_iterator ref_uiter;
1468 	struct ulist_iterator root_uiter;
1469 
1470 	pr_debug("resolving all inodes for extent %llu\n",
1471 			extent_item_objectid);
1472 
1473 	if (search_commit_root) {
1474 		trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1475 	} else {
1476 		trans = btrfs_join_transaction(fs_info->extent_root);
1477 		if (IS_ERR(trans))
1478 			return PTR_ERR(trans);
1479 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1480 	}
1481 
1482 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1483 				   tree_mod_seq_elem.seq, &refs,
1484 				   &extent_item_pos);
1485 	if (ret)
1486 		goto out;
1487 
1488 	ULIST_ITER_INIT(&ref_uiter);
1489 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1490 		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1491 					   tree_mod_seq_elem.seq, &roots);
1492 		if (ret)
1493 			break;
1494 		ULIST_ITER_INIT(&root_uiter);
1495 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1496 			pr_debug("root %llu references leaf %llu, data list "
1497 				 "%#llx\n", root_node->val, ref_node->val,
1498 				 (long long)ref_node->aux);
1499 			ret = iterate_leaf_refs((struct extent_inode_elem *)
1500 						(uintptr_t)ref_node->aux,
1501 						root_node->val,
1502 						extent_item_objectid,
1503 						iterate, ctx);
1504 		}
1505 		ulist_free(roots);
1506 		roots = NULL;
1507 	}
1508 
1509 	free_leaf_list(refs);
1510 	ulist_free(roots);
1511 out:
1512 	if (!search_commit_root) {
1513 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1514 		btrfs_end_transaction(trans, fs_info->extent_root);
1515 	}
1516 
1517 	return ret;
1518 }
1519 
1520 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1521 				struct btrfs_path *path,
1522 				iterate_extent_inodes_t *iterate, void *ctx)
1523 {
1524 	int ret;
1525 	u64 extent_item_pos;
1526 	u64 flags = 0;
1527 	struct btrfs_key found_key;
1528 	int search_commit_root = path->search_commit_root;
1529 
1530 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1531 	btrfs_release_path(path);
1532 	if (ret < 0)
1533 		return ret;
1534 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1535 		return -EINVAL;
1536 
1537 	extent_item_pos = logical - found_key.objectid;
1538 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1539 					extent_item_pos, search_commit_root,
1540 					iterate, ctx);
1541 
1542 	return ret;
1543 }
1544 
1545 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1546 			      struct extent_buffer *eb, void *ctx);
1547 
1548 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1549 			      struct btrfs_path *path,
1550 			      iterate_irefs_t *iterate, void *ctx)
1551 {
1552 	int ret = 0;
1553 	int slot;
1554 	u32 cur;
1555 	u32 len;
1556 	u32 name_len;
1557 	u64 parent = 0;
1558 	int found = 0;
1559 	struct extent_buffer *eb;
1560 	struct btrfs_item *item;
1561 	struct btrfs_inode_ref *iref;
1562 	struct btrfs_key found_key;
1563 
1564 	while (!ret) {
1565 		path->leave_spinning = 1;
1566 		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1567 				     &found_key);
1568 		if (ret < 0)
1569 			break;
1570 		if (ret) {
1571 			ret = found ? 0 : -ENOENT;
1572 			break;
1573 		}
1574 		++found;
1575 
1576 		parent = found_key.offset;
1577 		slot = path->slots[0];
1578 		eb = path->nodes[0];
1579 		/* make sure we can use eb after releasing the path */
1580 		atomic_inc(&eb->refs);
1581 		btrfs_tree_read_lock(eb);
1582 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1583 		btrfs_release_path(path);
1584 
1585 		item = btrfs_item_nr(eb, slot);
1586 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1587 
1588 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1589 			name_len = btrfs_inode_ref_name_len(eb, iref);
1590 			/* path must be released before calling iterate()! */
1591 			pr_debug("following ref at offset %u for inode %llu in "
1592 				 "tree %llu\n", cur,
1593 				 (unsigned long long)found_key.objectid,
1594 				 (unsigned long long)fs_root->objectid);
1595 			ret = iterate(parent, name_len,
1596 				      (unsigned long)(iref + 1), eb, ctx);
1597 			if (ret)
1598 				break;
1599 			len = sizeof(*iref) + name_len;
1600 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1601 		}
1602 		btrfs_tree_read_unlock_blocking(eb);
1603 		free_extent_buffer(eb);
1604 	}
1605 
1606 	btrfs_release_path(path);
1607 
1608 	return ret;
1609 }
1610 
1611 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1612 				 struct btrfs_path *path,
1613 				 iterate_irefs_t *iterate, void *ctx)
1614 {
1615 	int ret;
1616 	int slot;
1617 	u64 offset = 0;
1618 	u64 parent;
1619 	int found = 0;
1620 	struct extent_buffer *eb;
1621 	struct btrfs_inode_extref *extref;
1622 	struct extent_buffer *leaf;
1623 	u32 item_size;
1624 	u32 cur_offset;
1625 	unsigned long ptr;
1626 
1627 	while (1) {
1628 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1629 					    &offset);
1630 		if (ret < 0)
1631 			break;
1632 		if (ret) {
1633 			ret = found ? 0 : -ENOENT;
1634 			break;
1635 		}
1636 		++found;
1637 
1638 		slot = path->slots[0];
1639 		eb = path->nodes[0];
1640 		/* make sure we can use eb after releasing the path */
1641 		atomic_inc(&eb->refs);
1642 
1643 		btrfs_tree_read_lock(eb);
1644 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1645 		btrfs_release_path(path);
1646 
1647 		leaf = path->nodes[0];
1648 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1649 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1650 		cur_offset = 0;
1651 
1652 		while (cur_offset < item_size) {
1653 			u32 name_len;
1654 
1655 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1656 			parent = btrfs_inode_extref_parent(eb, extref);
1657 			name_len = btrfs_inode_extref_name_len(eb, extref);
1658 			ret = iterate(parent, name_len,
1659 				      (unsigned long)&extref->name, eb, ctx);
1660 			if (ret)
1661 				break;
1662 
1663 			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1664 			cur_offset += sizeof(*extref);
1665 		}
1666 		btrfs_tree_read_unlock_blocking(eb);
1667 		free_extent_buffer(eb);
1668 
1669 		offset++;
1670 	}
1671 
1672 	btrfs_release_path(path);
1673 
1674 	return ret;
1675 }
1676 
1677 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1678 			 struct btrfs_path *path, iterate_irefs_t *iterate,
1679 			 void *ctx)
1680 {
1681 	int ret;
1682 	int found_refs = 0;
1683 
1684 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1685 	if (!ret)
1686 		++found_refs;
1687 	else if (ret != -ENOENT)
1688 		return ret;
1689 
1690 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1691 	if (ret == -ENOENT && found_refs)
1692 		return 0;
1693 
1694 	return ret;
1695 }
1696 
1697 /*
1698  * returns 0 if the path could be dumped (probably truncated)
1699  * returns <0 in case of an error
1700  */
1701 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1702 			 struct extent_buffer *eb, void *ctx)
1703 {
1704 	struct inode_fs_paths *ipath = ctx;
1705 	char *fspath;
1706 	char *fspath_min;
1707 	int i = ipath->fspath->elem_cnt;
1708 	const int s_ptr = sizeof(char *);
1709 	u32 bytes_left;
1710 
1711 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1712 					ipath->fspath->bytes_left - s_ptr : 0;
1713 
1714 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1715 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1716 				   name_off, eb, inum, fspath_min, bytes_left);
1717 	if (IS_ERR(fspath))
1718 		return PTR_ERR(fspath);
1719 
1720 	if (fspath > fspath_min) {
1721 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1722 		++ipath->fspath->elem_cnt;
1723 		ipath->fspath->bytes_left = fspath - fspath_min;
1724 	} else {
1725 		++ipath->fspath->elem_missed;
1726 		ipath->fspath->bytes_missing += fspath_min - fspath;
1727 		ipath->fspath->bytes_left = 0;
1728 	}
1729 
1730 	return 0;
1731 }
1732 
1733 /*
1734  * this dumps all file system paths to the inode into the ipath struct, provided
1735  * is has been created large enough. each path is zero-terminated and accessed
1736  * from ipath->fspath->val[i].
1737  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1738  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1739  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1740  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1741  * have been needed to return all paths.
1742  */
1743 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1744 {
1745 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1746 			     inode_to_path, ipath);
1747 }
1748 
1749 struct btrfs_data_container *init_data_container(u32 total_bytes)
1750 {
1751 	struct btrfs_data_container *data;
1752 	size_t alloc_bytes;
1753 
1754 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1755 	data = vmalloc(alloc_bytes);
1756 	if (!data)
1757 		return ERR_PTR(-ENOMEM);
1758 
1759 	if (total_bytes >= sizeof(*data)) {
1760 		data->bytes_left = total_bytes - sizeof(*data);
1761 		data->bytes_missing = 0;
1762 	} else {
1763 		data->bytes_missing = sizeof(*data) - total_bytes;
1764 		data->bytes_left = 0;
1765 	}
1766 
1767 	data->elem_cnt = 0;
1768 	data->elem_missed = 0;
1769 
1770 	return data;
1771 }
1772 
1773 /*
1774  * allocates space to return multiple file system paths for an inode.
1775  * total_bytes to allocate are passed, note that space usable for actual path
1776  * information will be total_bytes - sizeof(struct inode_fs_paths).
1777  * the returned pointer must be freed with free_ipath() in the end.
1778  */
1779 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1780 					struct btrfs_path *path)
1781 {
1782 	struct inode_fs_paths *ifp;
1783 	struct btrfs_data_container *fspath;
1784 
1785 	fspath = init_data_container(total_bytes);
1786 	if (IS_ERR(fspath))
1787 		return (void *)fspath;
1788 
1789 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1790 	if (!ifp) {
1791 		kfree(fspath);
1792 		return ERR_PTR(-ENOMEM);
1793 	}
1794 
1795 	ifp->btrfs_path = path;
1796 	ifp->fspath = fspath;
1797 	ifp->fs_root = fs_root;
1798 
1799 	return ifp;
1800 }
1801 
1802 void free_ipath(struct inode_fs_paths *ipath)
1803 {
1804 	if (!ipath)
1805 		return;
1806 	vfree(ipath->fspath);
1807 	kfree(ipath);
1808 }
1809