1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "backref.h" 23 #include "ulist.h" 24 #include "transaction.h" 25 #include "delayed-ref.h" 26 #include "locking.h" 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 struct extent_inode_elem *next; 32 }; 33 34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 35 struct btrfs_file_extent_item *fi, 36 u64 extent_item_pos, 37 struct extent_inode_elem **eie) 38 { 39 u64 data_offset; 40 u64 data_len; 41 struct extent_inode_elem *e; 42 43 data_offset = btrfs_file_extent_offset(eb, fi); 44 data_len = btrfs_file_extent_num_bytes(eb, fi); 45 46 if (extent_item_pos < data_offset || 47 extent_item_pos >= data_offset + data_len) 48 return 1; 49 50 e = kmalloc(sizeof(*e), GFP_NOFS); 51 if (!e) 52 return -ENOMEM; 53 54 e->next = *eie; 55 e->inum = key->objectid; 56 e->offset = key->offset + (extent_item_pos - data_offset); 57 *eie = e; 58 59 return 0; 60 } 61 62 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 63 u64 extent_item_pos, 64 struct extent_inode_elem **eie) 65 { 66 u64 disk_byte; 67 struct btrfs_key key; 68 struct btrfs_file_extent_item *fi; 69 int slot; 70 int nritems; 71 int extent_type; 72 int ret; 73 74 /* 75 * from the shared data ref, we only have the leaf but we need 76 * the key. thus, we must look into all items and see that we 77 * find one (some) with a reference to our extent item. 78 */ 79 nritems = btrfs_header_nritems(eb); 80 for (slot = 0; slot < nritems; ++slot) { 81 btrfs_item_key_to_cpu(eb, &key, slot); 82 if (key.type != BTRFS_EXTENT_DATA_KEY) 83 continue; 84 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 85 extent_type = btrfs_file_extent_type(eb, fi); 86 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 87 continue; 88 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 89 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 90 if (disk_byte != wanted_disk_byte) 91 continue; 92 93 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 94 if (ret < 0) 95 return ret; 96 } 97 98 return 0; 99 } 100 101 /* 102 * this structure records all encountered refs on the way up to the root 103 */ 104 struct __prelim_ref { 105 struct list_head list; 106 u64 root_id; 107 struct btrfs_key key_for_search; 108 int level; 109 int count; 110 struct extent_inode_elem *inode_list; 111 u64 parent; 112 u64 wanted_disk_byte; 113 }; 114 115 /* 116 * the rules for all callers of this function are: 117 * - obtaining the parent is the goal 118 * - if you add a key, you must know that it is a correct key 119 * - if you cannot add the parent or a correct key, then we will look into the 120 * block later to set a correct key 121 * 122 * delayed refs 123 * ============ 124 * backref type | shared | indirect | shared | indirect 125 * information | tree | tree | data | data 126 * --------------------+--------+----------+--------+---------- 127 * parent logical | y | - | - | - 128 * key to resolve | - | y | y | y 129 * tree block logical | - | - | - | - 130 * root for resolving | y | y | y | y 131 * 132 * - column 1: we've the parent -> done 133 * - column 2, 3, 4: we use the key to find the parent 134 * 135 * on disk refs (inline or keyed) 136 * ============================== 137 * backref type | shared | indirect | shared | indirect 138 * information | tree | tree | data | data 139 * --------------------+--------+----------+--------+---------- 140 * parent logical | y | - | y | - 141 * key to resolve | - | - | - | y 142 * tree block logical | y | y | y | y 143 * root for resolving | - | y | y | y 144 * 145 * - column 1, 3: we've the parent -> done 146 * - column 2: we take the first key from the block to find the parent 147 * (see __add_missing_keys) 148 * - column 4: we use the key to find the parent 149 * 150 * additional information that's available but not required to find the parent 151 * block might help in merging entries to gain some speed. 152 */ 153 154 static int __add_prelim_ref(struct list_head *head, u64 root_id, 155 struct btrfs_key *key, int level, 156 u64 parent, u64 wanted_disk_byte, int count) 157 { 158 struct __prelim_ref *ref; 159 160 /* in case we're adding delayed refs, we're holding the refs spinlock */ 161 ref = kmalloc(sizeof(*ref), GFP_ATOMIC); 162 if (!ref) 163 return -ENOMEM; 164 165 ref->root_id = root_id; 166 if (key) 167 ref->key_for_search = *key; 168 else 169 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 170 171 ref->inode_list = NULL; 172 ref->level = level; 173 ref->count = count; 174 ref->parent = parent; 175 ref->wanted_disk_byte = wanted_disk_byte; 176 list_add_tail(&ref->list, head); 177 178 return 0; 179 } 180 181 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 182 struct ulist *parents, int level, 183 struct btrfs_key *key_for_search, u64 time_seq, 184 u64 wanted_disk_byte, 185 const u64 *extent_item_pos) 186 { 187 int ret = 0; 188 int slot; 189 struct extent_buffer *eb; 190 struct btrfs_key key; 191 struct btrfs_file_extent_item *fi; 192 struct extent_inode_elem *eie = NULL; 193 u64 disk_byte; 194 195 if (level != 0) { 196 eb = path->nodes[level]; 197 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 198 if (ret < 0) 199 return ret; 200 return 0; 201 } 202 203 /* 204 * We normally enter this function with the path already pointing to 205 * the first item to check. But sometimes, we may enter it with 206 * slot==nritems. In that case, go to the next leaf before we continue. 207 */ 208 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) 209 ret = btrfs_next_old_leaf(root, path, time_seq); 210 211 while (!ret) { 212 eb = path->nodes[0]; 213 slot = path->slots[0]; 214 215 btrfs_item_key_to_cpu(eb, &key, slot); 216 217 if (key.objectid != key_for_search->objectid || 218 key.type != BTRFS_EXTENT_DATA_KEY) 219 break; 220 221 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 222 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 223 224 if (disk_byte == wanted_disk_byte) { 225 eie = NULL; 226 if (extent_item_pos) { 227 ret = check_extent_in_eb(&key, eb, fi, 228 *extent_item_pos, 229 &eie); 230 if (ret < 0) 231 break; 232 } 233 if (!ret) { 234 ret = ulist_add(parents, eb->start, 235 (uintptr_t)eie, GFP_NOFS); 236 if (ret < 0) 237 break; 238 if (!extent_item_pos) { 239 ret = btrfs_next_old_leaf(root, path, 240 time_seq); 241 continue; 242 } 243 } 244 } 245 ret = btrfs_next_old_item(root, path, time_seq); 246 } 247 248 if (ret > 0) 249 ret = 0; 250 return ret; 251 } 252 253 /* 254 * resolve an indirect backref in the form (root_id, key, level) 255 * to a logical address 256 */ 257 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 258 int search_commit_root, 259 u64 time_seq, 260 struct __prelim_ref *ref, 261 struct ulist *parents, 262 const u64 *extent_item_pos) 263 { 264 struct btrfs_path *path; 265 struct btrfs_root *root; 266 struct btrfs_key root_key; 267 struct extent_buffer *eb; 268 int ret = 0; 269 int root_level; 270 int level = ref->level; 271 272 path = btrfs_alloc_path(); 273 if (!path) 274 return -ENOMEM; 275 path->search_commit_root = !!search_commit_root; 276 277 root_key.objectid = ref->root_id; 278 root_key.type = BTRFS_ROOT_ITEM_KEY; 279 root_key.offset = (u64)-1; 280 root = btrfs_read_fs_root_no_name(fs_info, &root_key); 281 if (IS_ERR(root)) { 282 ret = PTR_ERR(root); 283 goto out; 284 } 285 286 root_level = btrfs_old_root_level(root, time_seq); 287 288 if (root_level + 1 == level) 289 goto out; 290 291 path->lowest_level = level; 292 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq); 293 pr_debug("search slot in root %llu (level %d, ref count %d) returned " 294 "%d for key (%llu %u %llu)\n", 295 (unsigned long long)ref->root_id, level, ref->count, ret, 296 (unsigned long long)ref->key_for_search.objectid, 297 ref->key_for_search.type, 298 (unsigned long long)ref->key_for_search.offset); 299 if (ret < 0) 300 goto out; 301 302 eb = path->nodes[level]; 303 while (!eb) { 304 if (!level) { 305 WARN_ON(1); 306 ret = 1; 307 goto out; 308 } 309 level--; 310 eb = path->nodes[level]; 311 } 312 313 ret = add_all_parents(root, path, parents, level, &ref->key_for_search, 314 time_seq, ref->wanted_disk_byte, 315 extent_item_pos); 316 out: 317 btrfs_free_path(path); 318 return ret; 319 } 320 321 /* 322 * resolve all indirect backrefs from the list 323 */ 324 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 325 int search_commit_root, u64 time_seq, 326 struct list_head *head, 327 const u64 *extent_item_pos) 328 { 329 int err; 330 int ret = 0; 331 struct __prelim_ref *ref; 332 struct __prelim_ref *ref_safe; 333 struct __prelim_ref *new_ref; 334 struct ulist *parents; 335 struct ulist_node *node; 336 struct ulist_iterator uiter; 337 338 parents = ulist_alloc(GFP_NOFS); 339 if (!parents) 340 return -ENOMEM; 341 342 /* 343 * _safe allows us to insert directly after the current item without 344 * iterating over the newly inserted items. 345 * we're also allowed to re-assign ref during iteration. 346 */ 347 list_for_each_entry_safe(ref, ref_safe, head, list) { 348 if (ref->parent) /* already direct */ 349 continue; 350 if (ref->count == 0) 351 continue; 352 err = __resolve_indirect_ref(fs_info, search_commit_root, 353 time_seq, ref, parents, 354 extent_item_pos); 355 if (err) { 356 if (ret == 0) 357 ret = err; 358 continue; 359 } 360 361 /* we put the first parent into the ref at hand */ 362 ULIST_ITER_INIT(&uiter); 363 node = ulist_next(parents, &uiter); 364 ref->parent = node ? node->val : 0; 365 ref->inode_list = node ? 366 (struct extent_inode_elem *)(uintptr_t)node->aux : 0; 367 368 /* additional parents require new refs being added here */ 369 while ((node = ulist_next(parents, &uiter))) { 370 new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS); 371 if (!new_ref) { 372 ret = -ENOMEM; 373 break; 374 } 375 memcpy(new_ref, ref, sizeof(*ref)); 376 new_ref->parent = node->val; 377 new_ref->inode_list = (struct extent_inode_elem *) 378 (uintptr_t)node->aux; 379 list_add(&new_ref->list, &ref->list); 380 } 381 ulist_reinit(parents); 382 } 383 384 ulist_free(parents); 385 return ret; 386 } 387 388 static inline int ref_for_same_block(struct __prelim_ref *ref1, 389 struct __prelim_ref *ref2) 390 { 391 if (ref1->level != ref2->level) 392 return 0; 393 if (ref1->root_id != ref2->root_id) 394 return 0; 395 if (ref1->key_for_search.type != ref2->key_for_search.type) 396 return 0; 397 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 398 return 0; 399 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 400 return 0; 401 if (ref1->parent != ref2->parent) 402 return 0; 403 404 return 1; 405 } 406 407 /* 408 * read tree blocks and add keys where required. 409 */ 410 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 411 struct list_head *head) 412 { 413 struct list_head *pos; 414 struct extent_buffer *eb; 415 416 list_for_each(pos, head) { 417 struct __prelim_ref *ref; 418 ref = list_entry(pos, struct __prelim_ref, list); 419 420 if (ref->parent) 421 continue; 422 if (ref->key_for_search.type) 423 continue; 424 BUG_ON(!ref->wanted_disk_byte); 425 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 426 fs_info->tree_root->leafsize, 0); 427 BUG_ON(!eb); 428 btrfs_tree_read_lock(eb); 429 if (btrfs_header_level(eb) == 0) 430 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 431 else 432 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 433 btrfs_tree_read_unlock(eb); 434 free_extent_buffer(eb); 435 } 436 return 0; 437 } 438 439 /* 440 * merge two lists of backrefs and adjust counts accordingly 441 * 442 * mode = 1: merge identical keys, if key is set 443 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 444 * additionally, we could even add a key range for the blocks we 445 * looked into to merge even more (-> replace unresolved refs by those 446 * having a parent). 447 * mode = 2: merge identical parents 448 */ 449 static int __merge_refs(struct list_head *head, int mode) 450 { 451 struct list_head *pos1; 452 453 list_for_each(pos1, head) { 454 struct list_head *n2; 455 struct list_head *pos2; 456 struct __prelim_ref *ref1; 457 458 ref1 = list_entry(pos1, struct __prelim_ref, list); 459 460 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head; 461 pos2 = n2, n2 = pos2->next) { 462 struct __prelim_ref *ref2; 463 struct __prelim_ref *xchg; 464 465 ref2 = list_entry(pos2, struct __prelim_ref, list); 466 467 if (mode == 1) { 468 if (!ref_for_same_block(ref1, ref2)) 469 continue; 470 if (!ref1->parent && ref2->parent) { 471 xchg = ref1; 472 ref1 = ref2; 473 ref2 = xchg; 474 } 475 ref1->count += ref2->count; 476 } else { 477 if (ref1->parent != ref2->parent) 478 continue; 479 ref1->count += ref2->count; 480 } 481 list_del(&ref2->list); 482 kfree(ref2); 483 } 484 485 } 486 return 0; 487 } 488 489 /* 490 * add all currently queued delayed refs from this head whose seq nr is 491 * smaller or equal that seq to the list 492 */ 493 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 494 struct list_head *prefs) 495 { 496 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 497 struct rb_node *n = &head->node.rb_node; 498 struct btrfs_key key; 499 struct btrfs_key op_key = {0}; 500 int sgn; 501 int ret = 0; 502 503 if (extent_op && extent_op->update_key) 504 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 505 506 while ((n = rb_prev(n))) { 507 struct btrfs_delayed_ref_node *node; 508 node = rb_entry(n, struct btrfs_delayed_ref_node, 509 rb_node); 510 if (node->bytenr != head->node.bytenr) 511 break; 512 WARN_ON(node->is_head); 513 514 if (node->seq > seq) 515 continue; 516 517 switch (node->action) { 518 case BTRFS_ADD_DELAYED_EXTENT: 519 case BTRFS_UPDATE_DELAYED_HEAD: 520 WARN_ON(1); 521 continue; 522 case BTRFS_ADD_DELAYED_REF: 523 sgn = 1; 524 break; 525 case BTRFS_DROP_DELAYED_REF: 526 sgn = -1; 527 break; 528 default: 529 BUG_ON(1); 530 } 531 switch (node->type) { 532 case BTRFS_TREE_BLOCK_REF_KEY: { 533 struct btrfs_delayed_tree_ref *ref; 534 535 ref = btrfs_delayed_node_to_tree_ref(node); 536 ret = __add_prelim_ref(prefs, ref->root, &op_key, 537 ref->level + 1, 0, node->bytenr, 538 node->ref_mod * sgn); 539 break; 540 } 541 case BTRFS_SHARED_BLOCK_REF_KEY: { 542 struct btrfs_delayed_tree_ref *ref; 543 544 ref = btrfs_delayed_node_to_tree_ref(node); 545 ret = __add_prelim_ref(prefs, ref->root, NULL, 546 ref->level + 1, ref->parent, 547 node->bytenr, 548 node->ref_mod * sgn); 549 break; 550 } 551 case BTRFS_EXTENT_DATA_REF_KEY: { 552 struct btrfs_delayed_data_ref *ref; 553 ref = btrfs_delayed_node_to_data_ref(node); 554 555 key.objectid = ref->objectid; 556 key.type = BTRFS_EXTENT_DATA_KEY; 557 key.offset = ref->offset; 558 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 559 node->bytenr, 560 node->ref_mod * sgn); 561 break; 562 } 563 case BTRFS_SHARED_DATA_REF_KEY: { 564 struct btrfs_delayed_data_ref *ref; 565 566 ref = btrfs_delayed_node_to_data_ref(node); 567 568 key.objectid = ref->objectid; 569 key.type = BTRFS_EXTENT_DATA_KEY; 570 key.offset = ref->offset; 571 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 572 ref->parent, node->bytenr, 573 node->ref_mod * sgn); 574 break; 575 } 576 default: 577 WARN_ON(1); 578 } 579 BUG_ON(ret); 580 } 581 582 return 0; 583 } 584 585 /* 586 * add all inline backrefs for bytenr to the list 587 */ 588 static int __add_inline_refs(struct btrfs_fs_info *fs_info, 589 struct btrfs_path *path, u64 bytenr, 590 int *info_level, struct list_head *prefs) 591 { 592 int ret = 0; 593 int slot; 594 struct extent_buffer *leaf; 595 struct btrfs_key key; 596 unsigned long ptr; 597 unsigned long end; 598 struct btrfs_extent_item *ei; 599 u64 flags; 600 u64 item_size; 601 602 /* 603 * enumerate all inline refs 604 */ 605 leaf = path->nodes[0]; 606 slot = path->slots[0]; 607 608 item_size = btrfs_item_size_nr(leaf, slot); 609 BUG_ON(item_size < sizeof(*ei)); 610 611 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 612 flags = btrfs_extent_flags(leaf, ei); 613 614 ptr = (unsigned long)(ei + 1); 615 end = (unsigned long)ei + item_size; 616 617 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 618 struct btrfs_tree_block_info *info; 619 620 info = (struct btrfs_tree_block_info *)ptr; 621 *info_level = btrfs_tree_block_level(leaf, info); 622 ptr += sizeof(struct btrfs_tree_block_info); 623 BUG_ON(ptr > end); 624 } else { 625 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 626 } 627 628 while (ptr < end) { 629 struct btrfs_extent_inline_ref *iref; 630 u64 offset; 631 int type; 632 633 iref = (struct btrfs_extent_inline_ref *)ptr; 634 type = btrfs_extent_inline_ref_type(leaf, iref); 635 offset = btrfs_extent_inline_ref_offset(leaf, iref); 636 637 switch (type) { 638 case BTRFS_SHARED_BLOCK_REF_KEY: 639 ret = __add_prelim_ref(prefs, 0, NULL, 640 *info_level + 1, offset, 641 bytenr, 1); 642 break; 643 case BTRFS_SHARED_DATA_REF_KEY: { 644 struct btrfs_shared_data_ref *sdref; 645 int count; 646 647 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 648 count = btrfs_shared_data_ref_count(leaf, sdref); 649 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 650 bytenr, count); 651 break; 652 } 653 case BTRFS_TREE_BLOCK_REF_KEY: 654 ret = __add_prelim_ref(prefs, offset, NULL, 655 *info_level + 1, 0, 656 bytenr, 1); 657 break; 658 case BTRFS_EXTENT_DATA_REF_KEY: { 659 struct btrfs_extent_data_ref *dref; 660 int count; 661 u64 root; 662 663 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 664 count = btrfs_extent_data_ref_count(leaf, dref); 665 key.objectid = btrfs_extent_data_ref_objectid(leaf, 666 dref); 667 key.type = BTRFS_EXTENT_DATA_KEY; 668 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 669 root = btrfs_extent_data_ref_root(leaf, dref); 670 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 671 bytenr, count); 672 break; 673 } 674 default: 675 WARN_ON(1); 676 } 677 BUG_ON(ret); 678 ptr += btrfs_extent_inline_ref_size(type); 679 } 680 681 return 0; 682 } 683 684 /* 685 * add all non-inline backrefs for bytenr to the list 686 */ 687 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 688 struct btrfs_path *path, u64 bytenr, 689 int info_level, struct list_head *prefs) 690 { 691 struct btrfs_root *extent_root = fs_info->extent_root; 692 int ret; 693 int slot; 694 struct extent_buffer *leaf; 695 struct btrfs_key key; 696 697 while (1) { 698 ret = btrfs_next_item(extent_root, path); 699 if (ret < 0) 700 break; 701 if (ret) { 702 ret = 0; 703 break; 704 } 705 706 slot = path->slots[0]; 707 leaf = path->nodes[0]; 708 btrfs_item_key_to_cpu(leaf, &key, slot); 709 710 if (key.objectid != bytenr) 711 break; 712 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 713 continue; 714 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 715 break; 716 717 switch (key.type) { 718 case BTRFS_SHARED_BLOCK_REF_KEY: 719 ret = __add_prelim_ref(prefs, 0, NULL, 720 info_level + 1, key.offset, 721 bytenr, 1); 722 break; 723 case BTRFS_SHARED_DATA_REF_KEY: { 724 struct btrfs_shared_data_ref *sdref; 725 int count; 726 727 sdref = btrfs_item_ptr(leaf, slot, 728 struct btrfs_shared_data_ref); 729 count = btrfs_shared_data_ref_count(leaf, sdref); 730 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 731 bytenr, count); 732 break; 733 } 734 case BTRFS_TREE_BLOCK_REF_KEY: 735 ret = __add_prelim_ref(prefs, key.offset, NULL, 736 info_level + 1, 0, 737 bytenr, 1); 738 break; 739 case BTRFS_EXTENT_DATA_REF_KEY: { 740 struct btrfs_extent_data_ref *dref; 741 int count; 742 u64 root; 743 744 dref = btrfs_item_ptr(leaf, slot, 745 struct btrfs_extent_data_ref); 746 count = btrfs_extent_data_ref_count(leaf, dref); 747 key.objectid = btrfs_extent_data_ref_objectid(leaf, 748 dref); 749 key.type = BTRFS_EXTENT_DATA_KEY; 750 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 751 root = btrfs_extent_data_ref_root(leaf, dref); 752 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 753 bytenr, count); 754 break; 755 } 756 default: 757 WARN_ON(1); 758 } 759 BUG_ON(ret); 760 } 761 762 return ret; 763 } 764 765 /* 766 * this adds all existing backrefs (inline backrefs, backrefs and delayed 767 * refs) for the given bytenr to the refs list, merges duplicates and resolves 768 * indirect refs to their parent bytenr. 769 * When roots are found, they're added to the roots list 770 * 771 * FIXME some caching might speed things up 772 */ 773 static int find_parent_nodes(struct btrfs_trans_handle *trans, 774 struct btrfs_fs_info *fs_info, u64 bytenr, 775 u64 time_seq, struct ulist *refs, 776 struct ulist *roots, const u64 *extent_item_pos) 777 { 778 struct btrfs_key key; 779 struct btrfs_path *path; 780 struct btrfs_delayed_ref_root *delayed_refs = NULL; 781 struct btrfs_delayed_ref_head *head; 782 int info_level = 0; 783 int ret; 784 int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT); 785 struct list_head prefs_delayed; 786 struct list_head prefs; 787 struct __prelim_ref *ref; 788 789 INIT_LIST_HEAD(&prefs); 790 INIT_LIST_HEAD(&prefs_delayed); 791 792 key.objectid = bytenr; 793 key.type = BTRFS_EXTENT_ITEM_KEY; 794 key.offset = (u64)-1; 795 796 path = btrfs_alloc_path(); 797 if (!path) 798 return -ENOMEM; 799 path->search_commit_root = !!search_commit_root; 800 801 /* 802 * grab both a lock on the path and a lock on the delayed ref head. 803 * We need both to get a consistent picture of how the refs look 804 * at a specified point in time 805 */ 806 again: 807 head = NULL; 808 809 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 810 if (ret < 0) 811 goto out; 812 BUG_ON(ret == 0); 813 814 if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) { 815 /* 816 * look if there are updates for this ref queued and lock the 817 * head 818 */ 819 delayed_refs = &trans->transaction->delayed_refs; 820 spin_lock(&delayed_refs->lock); 821 head = btrfs_find_delayed_ref_head(trans, bytenr); 822 if (head) { 823 if (!mutex_trylock(&head->mutex)) { 824 atomic_inc(&head->node.refs); 825 spin_unlock(&delayed_refs->lock); 826 827 btrfs_release_path(path); 828 829 /* 830 * Mutex was contended, block until it's 831 * released and try again 832 */ 833 mutex_lock(&head->mutex); 834 mutex_unlock(&head->mutex); 835 btrfs_put_delayed_ref(&head->node); 836 goto again; 837 } 838 ret = __add_delayed_refs(head, time_seq, 839 &prefs_delayed); 840 mutex_unlock(&head->mutex); 841 if (ret) { 842 spin_unlock(&delayed_refs->lock); 843 goto out; 844 } 845 } 846 spin_unlock(&delayed_refs->lock); 847 } 848 849 if (path->slots[0]) { 850 struct extent_buffer *leaf; 851 int slot; 852 853 path->slots[0]--; 854 leaf = path->nodes[0]; 855 slot = path->slots[0]; 856 btrfs_item_key_to_cpu(leaf, &key, slot); 857 if (key.objectid == bytenr && 858 key.type == BTRFS_EXTENT_ITEM_KEY) { 859 ret = __add_inline_refs(fs_info, path, bytenr, 860 &info_level, &prefs); 861 if (ret) 862 goto out; 863 ret = __add_keyed_refs(fs_info, path, bytenr, 864 info_level, &prefs); 865 if (ret) 866 goto out; 867 } 868 } 869 btrfs_release_path(path); 870 871 list_splice_init(&prefs_delayed, &prefs); 872 873 ret = __add_missing_keys(fs_info, &prefs); 874 if (ret) 875 goto out; 876 877 ret = __merge_refs(&prefs, 1); 878 if (ret) 879 goto out; 880 881 ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq, 882 &prefs, extent_item_pos); 883 if (ret) 884 goto out; 885 886 ret = __merge_refs(&prefs, 2); 887 if (ret) 888 goto out; 889 890 while (!list_empty(&prefs)) { 891 ref = list_first_entry(&prefs, struct __prelim_ref, list); 892 list_del(&ref->list); 893 if (ref->count < 0) 894 WARN_ON(1); 895 if (ref->count && ref->root_id && ref->parent == 0) { 896 /* no parent == root of tree */ 897 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 898 BUG_ON(ret < 0); 899 } 900 if (ref->count && ref->parent) { 901 struct extent_inode_elem *eie = NULL; 902 if (extent_item_pos && !ref->inode_list) { 903 u32 bsz; 904 struct extent_buffer *eb; 905 bsz = btrfs_level_size(fs_info->extent_root, 906 info_level); 907 eb = read_tree_block(fs_info->extent_root, 908 ref->parent, bsz, 0); 909 BUG_ON(!eb); 910 ret = find_extent_in_eb(eb, bytenr, 911 *extent_item_pos, &eie); 912 ref->inode_list = eie; 913 free_extent_buffer(eb); 914 } 915 ret = ulist_add_merge(refs, ref->parent, 916 (uintptr_t)ref->inode_list, 917 (u64 *)&eie, GFP_NOFS); 918 if (!ret && extent_item_pos) { 919 /* 920 * we've recorded that parent, so we must extend 921 * its inode list here 922 */ 923 BUG_ON(!eie); 924 while (eie->next) 925 eie = eie->next; 926 eie->next = ref->inode_list; 927 } 928 BUG_ON(ret < 0); 929 } 930 kfree(ref); 931 } 932 933 out: 934 btrfs_free_path(path); 935 while (!list_empty(&prefs)) { 936 ref = list_first_entry(&prefs, struct __prelim_ref, list); 937 list_del(&ref->list); 938 kfree(ref); 939 } 940 while (!list_empty(&prefs_delayed)) { 941 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 942 list); 943 list_del(&ref->list); 944 kfree(ref); 945 } 946 947 return ret; 948 } 949 950 static void free_leaf_list(struct ulist *blocks) 951 { 952 struct ulist_node *node = NULL; 953 struct extent_inode_elem *eie; 954 struct extent_inode_elem *eie_next; 955 struct ulist_iterator uiter; 956 957 ULIST_ITER_INIT(&uiter); 958 while ((node = ulist_next(blocks, &uiter))) { 959 if (!node->aux) 960 continue; 961 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 962 for (; eie; eie = eie_next) { 963 eie_next = eie->next; 964 kfree(eie); 965 } 966 node->aux = 0; 967 } 968 969 ulist_free(blocks); 970 } 971 972 /* 973 * Finds all leafs with a reference to the specified combination of bytenr and 974 * offset. key_list_head will point to a list of corresponding keys (caller must 975 * free each list element). The leafs will be stored in the leafs ulist, which 976 * must be freed with ulist_free. 977 * 978 * returns 0 on success, <0 on error 979 */ 980 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 981 struct btrfs_fs_info *fs_info, u64 bytenr, 982 u64 time_seq, struct ulist **leafs, 983 const u64 *extent_item_pos) 984 { 985 struct ulist *tmp; 986 int ret; 987 988 tmp = ulist_alloc(GFP_NOFS); 989 if (!tmp) 990 return -ENOMEM; 991 *leafs = ulist_alloc(GFP_NOFS); 992 if (!*leafs) { 993 ulist_free(tmp); 994 return -ENOMEM; 995 } 996 997 ret = find_parent_nodes(trans, fs_info, bytenr, 998 time_seq, *leafs, tmp, extent_item_pos); 999 ulist_free(tmp); 1000 1001 if (ret < 0 && ret != -ENOENT) { 1002 free_leaf_list(*leafs); 1003 return ret; 1004 } 1005 1006 return 0; 1007 } 1008 1009 /* 1010 * walk all backrefs for a given extent to find all roots that reference this 1011 * extent. Walking a backref means finding all extents that reference this 1012 * extent and in turn walk the backrefs of those, too. Naturally this is a 1013 * recursive process, but here it is implemented in an iterative fashion: We 1014 * find all referencing extents for the extent in question and put them on a 1015 * list. In turn, we find all referencing extents for those, further appending 1016 * to the list. The way we iterate the list allows adding more elements after 1017 * the current while iterating. The process stops when we reach the end of the 1018 * list. Found roots are added to the roots list. 1019 * 1020 * returns 0 on success, < 0 on error. 1021 */ 1022 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1023 struct btrfs_fs_info *fs_info, u64 bytenr, 1024 u64 time_seq, struct ulist **roots) 1025 { 1026 struct ulist *tmp; 1027 struct ulist_node *node = NULL; 1028 struct ulist_iterator uiter; 1029 int ret; 1030 1031 tmp = ulist_alloc(GFP_NOFS); 1032 if (!tmp) 1033 return -ENOMEM; 1034 *roots = ulist_alloc(GFP_NOFS); 1035 if (!*roots) { 1036 ulist_free(tmp); 1037 return -ENOMEM; 1038 } 1039 1040 ULIST_ITER_INIT(&uiter); 1041 while (1) { 1042 ret = find_parent_nodes(trans, fs_info, bytenr, 1043 time_seq, tmp, *roots, NULL); 1044 if (ret < 0 && ret != -ENOENT) { 1045 ulist_free(tmp); 1046 ulist_free(*roots); 1047 return ret; 1048 } 1049 node = ulist_next(tmp, &uiter); 1050 if (!node) 1051 break; 1052 bytenr = node->val; 1053 } 1054 1055 ulist_free(tmp); 1056 return 0; 1057 } 1058 1059 1060 static int __inode_info(u64 inum, u64 ioff, u8 key_type, 1061 struct btrfs_root *fs_root, struct btrfs_path *path, 1062 struct btrfs_key *found_key) 1063 { 1064 int ret; 1065 struct btrfs_key key; 1066 struct extent_buffer *eb; 1067 1068 key.type = key_type; 1069 key.objectid = inum; 1070 key.offset = ioff; 1071 1072 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1073 if (ret < 0) 1074 return ret; 1075 1076 eb = path->nodes[0]; 1077 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1078 ret = btrfs_next_leaf(fs_root, path); 1079 if (ret) 1080 return ret; 1081 eb = path->nodes[0]; 1082 } 1083 1084 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1085 if (found_key->type != key.type || found_key->objectid != key.objectid) 1086 return 1; 1087 1088 return 0; 1089 } 1090 1091 /* 1092 * this makes the path point to (inum INODE_ITEM ioff) 1093 */ 1094 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1095 struct btrfs_path *path) 1096 { 1097 struct btrfs_key key; 1098 return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path, 1099 &key); 1100 } 1101 1102 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1103 struct btrfs_path *path, 1104 struct btrfs_key *found_key) 1105 { 1106 return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path, 1107 found_key); 1108 } 1109 1110 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1111 u64 start_off, struct btrfs_path *path, 1112 struct btrfs_inode_extref **ret_extref, 1113 u64 *found_off) 1114 { 1115 int ret, slot; 1116 struct btrfs_key key; 1117 struct btrfs_key found_key; 1118 struct btrfs_inode_extref *extref; 1119 struct extent_buffer *leaf; 1120 unsigned long ptr; 1121 1122 key.objectid = inode_objectid; 1123 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY); 1124 key.offset = start_off; 1125 1126 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1127 if (ret < 0) 1128 return ret; 1129 1130 while (1) { 1131 leaf = path->nodes[0]; 1132 slot = path->slots[0]; 1133 if (slot >= btrfs_header_nritems(leaf)) { 1134 /* 1135 * If the item at offset is not found, 1136 * btrfs_search_slot will point us to the slot 1137 * where it should be inserted. In our case 1138 * that will be the slot directly before the 1139 * next INODE_REF_KEY_V2 item. In the case 1140 * that we're pointing to the last slot in a 1141 * leaf, we must move one leaf over. 1142 */ 1143 ret = btrfs_next_leaf(root, path); 1144 if (ret) { 1145 if (ret >= 1) 1146 ret = -ENOENT; 1147 break; 1148 } 1149 continue; 1150 } 1151 1152 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1153 1154 /* 1155 * Check that we're still looking at an extended ref key for 1156 * this particular objectid. If we have different 1157 * objectid or type then there are no more to be found 1158 * in the tree and we can exit. 1159 */ 1160 ret = -ENOENT; 1161 if (found_key.objectid != inode_objectid) 1162 break; 1163 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY) 1164 break; 1165 1166 ret = 0; 1167 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1168 extref = (struct btrfs_inode_extref *)ptr; 1169 *ret_extref = extref; 1170 if (found_off) 1171 *found_off = found_key.offset; 1172 break; 1173 } 1174 1175 return ret; 1176 } 1177 1178 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1179 u32 name_len, unsigned long name_off, 1180 struct extent_buffer *eb_in, u64 parent, 1181 char *dest, u32 size) 1182 { 1183 int slot; 1184 u64 next_inum; 1185 int ret; 1186 s64 bytes_left = ((s64)size) - 1; 1187 struct extent_buffer *eb = eb_in; 1188 struct btrfs_key found_key; 1189 int leave_spinning = path->leave_spinning; 1190 struct btrfs_inode_ref *iref; 1191 1192 if (bytes_left >= 0) 1193 dest[bytes_left] = '\0'; 1194 1195 path->leave_spinning = 1; 1196 while (1) { 1197 bytes_left -= name_len; 1198 if (bytes_left >= 0) 1199 read_extent_buffer(eb, dest + bytes_left, 1200 name_off, name_len); 1201 if (eb != eb_in) { 1202 btrfs_tree_read_unlock_blocking(eb); 1203 free_extent_buffer(eb); 1204 } 1205 ret = inode_ref_info(parent, 0, fs_root, path, &found_key); 1206 if (ret > 0) 1207 ret = -ENOENT; 1208 if (ret) 1209 break; 1210 1211 next_inum = found_key.offset; 1212 1213 /* regular exit ahead */ 1214 if (parent == next_inum) 1215 break; 1216 1217 slot = path->slots[0]; 1218 eb = path->nodes[0]; 1219 /* make sure we can use eb after releasing the path */ 1220 if (eb != eb_in) { 1221 atomic_inc(&eb->refs); 1222 btrfs_tree_read_lock(eb); 1223 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1224 } 1225 btrfs_release_path(path); 1226 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1227 1228 name_len = btrfs_inode_ref_name_len(eb, iref); 1229 name_off = (unsigned long)(iref + 1); 1230 1231 parent = next_inum; 1232 --bytes_left; 1233 if (bytes_left >= 0) 1234 dest[bytes_left] = '/'; 1235 } 1236 1237 btrfs_release_path(path); 1238 path->leave_spinning = leave_spinning; 1239 1240 if (ret) 1241 return ERR_PTR(ret); 1242 1243 return dest + bytes_left; 1244 } 1245 1246 /* 1247 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements 1248 * of the path are separated by '/' and the path is guaranteed to be 1249 * 0-terminated. the path is only given within the current file system. 1250 * Therefore, it never starts with a '/'. the caller is responsible to provide 1251 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1252 * the start point of the resulting string is returned. this pointer is within 1253 * dest, normally. 1254 * in case the path buffer would overflow, the pointer is decremented further 1255 * as if output was written to the buffer, though no more output is actually 1256 * generated. that way, the caller can determine how much space would be 1257 * required for the path to fit into the buffer. in that case, the returned 1258 * value will be smaller than dest. callers must check this! 1259 */ 1260 char *btrfs_iref_to_path(struct btrfs_root *fs_root, 1261 struct btrfs_path *path, 1262 struct btrfs_inode_ref *iref, 1263 struct extent_buffer *eb_in, u64 parent, 1264 char *dest, u32 size) 1265 { 1266 return btrfs_ref_to_path(fs_root, path, 1267 btrfs_inode_ref_name_len(eb_in, iref), 1268 (unsigned long)(iref + 1), 1269 eb_in, parent, dest, size); 1270 } 1271 1272 /* 1273 * this makes the path point to (logical EXTENT_ITEM *) 1274 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1275 * tree blocks and <0 on error. 1276 */ 1277 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1278 struct btrfs_path *path, struct btrfs_key *found_key, 1279 u64 *flags_ret) 1280 { 1281 int ret; 1282 u64 flags; 1283 u32 item_size; 1284 struct extent_buffer *eb; 1285 struct btrfs_extent_item *ei; 1286 struct btrfs_key key; 1287 1288 key.type = BTRFS_EXTENT_ITEM_KEY; 1289 key.objectid = logical; 1290 key.offset = (u64)-1; 1291 1292 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1293 if (ret < 0) 1294 return ret; 1295 ret = btrfs_previous_item(fs_info->extent_root, path, 1296 0, BTRFS_EXTENT_ITEM_KEY); 1297 if (ret < 0) 1298 return ret; 1299 1300 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1301 if (found_key->type != BTRFS_EXTENT_ITEM_KEY || 1302 found_key->objectid > logical || 1303 found_key->objectid + found_key->offset <= logical) { 1304 pr_debug("logical %llu is not within any extent\n", 1305 (unsigned long long)logical); 1306 return -ENOENT; 1307 } 1308 1309 eb = path->nodes[0]; 1310 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1311 BUG_ON(item_size < sizeof(*ei)); 1312 1313 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1314 flags = btrfs_extent_flags(eb, ei); 1315 1316 pr_debug("logical %llu is at position %llu within the extent (%llu " 1317 "EXTENT_ITEM %llu) flags %#llx size %u\n", 1318 (unsigned long long)logical, 1319 (unsigned long long)(logical - found_key->objectid), 1320 (unsigned long long)found_key->objectid, 1321 (unsigned long long)found_key->offset, 1322 (unsigned long long)flags, item_size); 1323 1324 WARN_ON(!flags_ret); 1325 if (flags_ret) { 1326 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1327 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1328 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1329 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1330 else 1331 BUG_ON(1); 1332 return 0; 1333 } 1334 1335 return -EIO; 1336 } 1337 1338 /* 1339 * helper function to iterate extent inline refs. ptr must point to a 0 value 1340 * for the first call and may be modified. it is used to track state. 1341 * if more refs exist, 0 is returned and the next call to 1342 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1343 * next ref. after the last ref was processed, 1 is returned. 1344 * returns <0 on error 1345 */ 1346 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1347 struct btrfs_extent_item *ei, u32 item_size, 1348 struct btrfs_extent_inline_ref **out_eiref, 1349 int *out_type) 1350 { 1351 unsigned long end; 1352 u64 flags; 1353 struct btrfs_tree_block_info *info; 1354 1355 if (!*ptr) { 1356 /* first call */ 1357 flags = btrfs_extent_flags(eb, ei); 1358 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1359 info = (struct btrfs_tree_block_info *)(ei + 1); 1360 *out_eiref = 1361 (struct btrfs_extent_inline_ref *)(info + 1); 1362 } else { 1363 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1364 } 1365 *ptr = (unsigned long)*out_eiref; 1366 if ((void *)*ptr >= (void *)ei + item_size) 1367 return -ENOENT; 1368 } 1369 1370 end = (unsigned long)ei + item_size; 1371 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr; 1372 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1373 1374 *ptr += btrfs_extent_inline_ref_size(*out_type); 1375 WARN_ON(*ptr > end); 1376 if (*ptr == end) 1377 return 1; /* last */ 1378 1379 return 0; 1380 } 1381 1382 /* 1383 * reads the tree block backref for an extent. tree level and root are returned 1384 * through out_level and out_root. ptr must point to a 0 value for the first 1385 * call and may be modified (see __get_extent_inline_ref comment). 1386 * returns 0 if data was provided, 1 if there was no more data to provide or 1387 * <0 on error. 1388 */ 1389 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1390 struct btrfs_extent_item *ei, u32 item_size, 1391 u64 *out_root, u8 *out_level) 1392 { 1393 int ret; 1394 int type; 1395 struct btrfs_tree_block_info *info; 1396 struct btrfs_extent_inline_ref *eiref; 1397 1398 if (*ptr == (unsigned long)-1) 1399 return 1; 1400 1401 while (1) { 1402 ret = __get_extent_inline_ref(ptr, eb, ei, item_size, 1403 &eiref, &type); 1404 if (ret < 0) 1405 return ret; 1406 1407 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1408 type == BTRFS_SHARED_BLOCK_REF_KEY) 1409 break; 1410 1411 if (ret == 1) 1412 return 1; 1413 } 1414 1415 /* we can treat both ref types equally here */ 1416 info = (struct btrfs_tree_block_info *)(ei + 1); 1417 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1418 *out_level = btrfs_tree_block_level(eb, info); 1419 1420 if (ret == 1) 1421 *ptr = (unsigned long)-1; 1422 1423 return 0; 1424 } 1425 1426 static int iterate_leaf_refs(struct extent_inode_elem *inode_list, 1427 u64 root, u64 extent_item_objectid, 1428 iterate_extent_inodes_t *iterate, void *ctx) 1429 { 1430 struct extent_inode_elem *eie; 1431 int ret = 0; 1432 1433 for (eie = inode_list; eie; eie = eie->next) { 1434 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " 1435 "root %llu\n", extent_item_objectid, 1436 eie->inum, eie->offset, root); 1437 ret = iterate(eie->inum, eie->offset, root, ctx); 1438 if (ret) { 1439 pr_debug("stopping iteration for %llu due to ret=%d\n", 1440 extent_item_objectid, ret); 1441 break; 1442 } 1443 } 1444 1445 return ret; 1446 } 1447 1448 /* 1449 * calls iterate() for every inode that references the extent identified by 1450 * the given parameters. 1451 * when the iterator function returns a non-zero value, iteration stops. 1452 */ 1453 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1454 u64 extent_item_objectid, u64 extent_item_pos, 1455 int search_commit_root, 1456 iterate_extent_inodes_t *iterate, void *ctx) 1457 { 1458 int ret; 1459 struct list_head data_refs = LIST_HEAD_INIT(data_refs); 1460 struct list_head shared_refs = LIST_HEAD_INIT(shared_refs); 1461 struct btrfs_trans_handle *trans; 1462 struct ulist *refs = NULL; 1463 struct ulist *roots = NULL; 1464 struct ulist_node *ref_node = NULL; 1465 struct ulist_node *root_node = NULL; 1466 struct seq_list tree_mod_seq_elem = {}; 1467 struct ulist_iterator ref_uiter; 1468 struct ulist_iterator root_uiter; 1469 1470 pr_debug("resolving all inodes for extent %llu\n", 1471 extent_item_objectid); 1472 1473 if (search_commit_root) { 1474 trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT; 1475 } else { 1476 trans = btrfs_join_transaction(fs_info->extent_root); 1477 if (IS_ERR(trans)) 1478 return PTR_ERR(trans); 1479 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1480 } 1481 1482 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1483 tree_mod_seq_elem.seq, &refs, 1484 &extent_item_pos); 1485 if (ret) 1486 goto out; 1487 1488 ULIST_ITER_INIT(&ref_uiter); 1489 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1490 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, 1491 tree_mod_seq_elem.seq, &roots); 1492 if (ret) 1493 break; 1494 ULIST_ITER_INIT(&root_uiter); 1495 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1496 pr_debug("root %llu references leaf %llu, data list " 1497 "%#llx\n", root_node->val, ref_node->val, 1498 (long long)ref_node->aux); 1499 ret = iterate_leaf_refs((struct extent_inode_elem *) 1500 (uintptr_t)ref_node->aux, 1501 root_node->val, 1502 extent_item_objectid, 1503 iterate, ctx); 1504 } 1505 ulist_free(roots); 1506 roots = NULL; 1507 } 1508 1509 free_leaf_list(refs); 1510 ulist_free(roots); 1511 out: 1512 if (!search_commit_root) { 1513 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1514 btrfs_end_transaction(trans, fs_info->extent_root); 1515 } 1516 1517 return ret; 1518 } 1519 1520 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1521 struct btrfs_path *path, 1522 iterate_extent_inodes_t *iterate, void *ctx) 1523 { 1524 int ret; 1525 u64 extent_item_pos; 1526 u64 flags = 0; 1527 struct btrfs_key found_key; 1528 int search_commit_root = path->search_commit_root; 1529 1530 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1531 btrfs_release_path(path); 1532 if (ret < 0) 1533 return ret; 1534 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1535 return -EINVAL; 1536 1537 extent_item_pos = logical - found_key.objectid; 1538 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1539 extent_item_pos, search_commit_root, 1540 iterate, ctx); 1541 1542 return ret; 1543 } 1544 1545 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1546 struct extent_buffer *eb, void *ctx); 1547 1548 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1549 struct btrfs_path *path, 1550 iterate_irefs_t *iterate, void *ctx) 1551 { 1552 int ret = 0; 1553 int slot; 1554 u32 cur; 1555 u32 len; 1556 u32 name_len; 1557 u64 parent = 0; 1558 int found = 0; 1559 struct extent_buffer *eb; 1560 struct btrfs_item *item; 1561 struct btrfs_inode_ref *iref; 1562 struct btrfs_key found_key; 1563 1564 while (!ret) { 1565 path->leave_spinning = 1; 1566 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, 1567 &found_key); 1568 if (ret < 0) 1569 break; 1570 if (ret) { 1571 ret = found ? 0 : -ENOENT; 1572 break; 1573 } 1574 ++found; 1575 1576 parent = found_key.offset; 1577 slot = path->slots[0]; 1578 eb = path->nodes[0]; 1579 /* make sure we can use eb after releasing the path */ 1580 atomic_inc(&eb->refs); 1581 btrfs_tree_read_lock(eb); 1582 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1583 btrfs_release_path(path); 1584 1585 item = btrfs_item_nr(eb, slot); 1586 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1587 1588 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 1589 name_len = btrfs_inode_ref_name_len(eb, iref); 1590 /* path must be released before calling iterate()! */ 1591 pr_debug("following ref at offset %u for inode %llu in " 1592 "tree %llu\n", cur, 1593 (unsigned long long)found_key.objectid, 1594 (unsigned long long)fs_root->objectid); 1595 ret = iterate(parent, name_len, 1596 (unsigned long)(iref + 1), eb, ctx); 1597 if (ret) 1598 break; 1599 len = sizeof(*iref) + name_len; 1600 iref = (struct btrfs_inode_ref *)((char *)iref + len); 1601 } 1602 btrfs_tree_read_unlock_blocking(eb); 1603 free_extent_buffer(eb); 1604 } 1605 1606 btrfs_release_path(path); 1607 1608 return ret; 1609 } 1610 1611 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 1612 struct btrfs_path *path, 1613 iterate_irefs_t *iterate, void *ctx) 1614 { 1615 int ret; 1616 int slot; 1617 u64 offset = 0; 1618 u64 parent; 1619 int found = 0; 1620 struct extent_buffer *eb; 1621 struct btrfs_inode_extref *extref; 1622 struct extent_buffer *leaf; 1623 u32 item_size; 1624 u32 cur_offset; 1625 unsigned long ptr; 1626 1627 while (1) { 1628 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 1629 &offset); 1630 if (ret < 0) 1631 break; 1632 if (ret) { 1633 ret = found ? 0 : -ENOENT; 1634 break; 1635 } 1636 ++found; 1637 1638 slot = path->slots[0]; 1639 eb = path->nodes[0]; 1640 /* make sure we can use eb after releasing the path */ 1641 atomic_inc(&eb->refs); 1642 1643 btrfs_tree_read_lock(eb); 1644 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1645 btrfs_release_path(path); 1646 1647 leaf = path->nodes[0]; 1648 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1649 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1650 cur_offset = 0; 1651 1652 while (cur_offset < item_size) { 1653 u32 name_len; 1654 1655 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 1656 parent = btrfs_inode_extref_parent(eb, extref); 1657 name_len = btrfs_inode_extref_name_len(eb, extref); 1658 ret = iterate(parent, name_len, 1659 (unsigned long)&extref->name, eb, ctx); 1660 if (ret) 1661 break; 1662 1663 cur_offset += btrfs_inode_extref_name_len(leaf, extref); 1664 cur_offset += sizeof(*extref); 1665 } 1666 btrfs_tree_read_unlock_blocking(eb); 1667 free_extent_buffer(eb); 1668 1669 offset++; 1670 } 1671 1672 btrfs_release_path(path); 1673 1674 return ret; 1675 } 1676 1677 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 1678 struct btrfs_path *path, iterate_irefs_t *iterate, 1679 void *ctx) 1680 { 1681 int ret; 1682 int found_refs = 0; 1683 1684 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 1685 if (!ret) 1686 ++found_refs; 1687 else if (ret != -ENOENT) 1688 return ret; 1689 1690 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 1691 if (ret == -ENOENT && found_refs) 1692 return 0; 1693 1694 return ret; 1695 } 1696 1697 /* 1698 * returns 0 if the path could be dumped (probably truncated) 1699 * returns <0 in case of an error 1700 */ 1701 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 1702 struct extent_buffer *eb, void *ctx) 1703 { 1704 struct inode_fs_paths *ipath = ctx; 1705 char *fspath; 1706 char *fspath_min; 1707 int i = ipath->fspath->elem_cnt; 1708 const int s_ptr = sizeof(char *); 1709 u32 bytes_left; 1710 1711 bytes_left = ipath->fspath->bytes_left > s_ptr ? 1712 ipath->fspath->bytes_left - s_ptr : 0; 1713 1714 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 1715 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 1716 name_off, eb, inum, fspath_min, bytes_left); 1717 if (IS_ERR(fspath)) 1718 return PTR_ERR(fspath); 1719 1720 if (fspath > fspath_min) { 1721 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 1722 ++ipath->fspath->elem_cnt; 1723 ipath->fspath->bytes_left = fspath - fspath_min; 1724 } else { 1725 ++ipath->fspath->elem_missed; 1726 ipath->fspath->bytes_missing += fspath_min - fspath; 1727 ipath->fspath->bytes_left = 0; 1728 } 1729 1730 return 0; 1731 } 1732 1733 /* 1734 * this dumps all file system paths to the inode into the ipath struct, provided 1735 * is has been created large enough. each path is zero-terminated and accessed 1736 * from ipath->fspath->val[i]. 1737 * when it returns, there are ipath->fspath->elem_cnt number of paths available 1738 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 1739 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, 1740 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 1741 * have been needed to return all paths. 1742 */ 1743 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 1744 { 1745 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 1746 inode_to_path, ipath); 1747 } 1748 1749 struct btrfs_data_container *init_data_container(u32 total_bytes) 1750 { 1751 struct btrfs_data_container *data; 1752 size_t alloc_bytes; 1753 1754 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 1755 data = vmalloc(alloc_bytes); 1756 if (!data) 1757 return ERR_PTR(-ENOMEM); 1758 1759 if (total_bytes >= sizeof(*data)) { 1760 data->bytes_left = total_bytes - sizeof(*data); 1761 data->bytes_missing = 0; 1762 } else { 1763 data->bytes_missing = sizeof(*data) - total_bytes; 1764 data->bytes_left = 0; 1765 } 1766 1767 data->elem_cnt = 0; 1768 data->elem_missed = 0; 1769 1770 return data; 1771 } 1772 1773 /* 1774 * allocates space to return multiple file system paths for an inode. 1775 * total_bytes to allocate are passed, note that space usable for actual path 1776 * information will be total_bytes - sizeof(struct inode_fs_paths). 1777 * the returned pointer must be freed with free_ipath() in the end. 1778 */ 1779 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 1780 struct btrfs_path *path) 1781 { 1782 struct inode_fs_paths *ifp; 1783 struct btrfs_data_container *fspath; 1784 1785 fspath = init_data_container(total_bytes); 1786 if (IS_ERR(fspath)) 1787 return (void *)fspath; 1788 1789 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 1790 if (!ifp) { 1791 kfree(fspath); 1792 return ERR_PTR(-ENOMEM); 1793 } 1794 1795 ifp->btrfs_path = path; 1796 ifp->fspath = fspath; 1797 ifp->fs_root = fs_root; 1798 1799 return ifp; 1800 } 1801 1802 void free_ipath(struct inode_fs_paths *ipath) 1803 { 1804 if (!ipath) 1805 return; 1806 vfree(ipath->fspath); 1807 kfree(ipath); 1808 } 1809