xref: /linux/fs/btrfs/backref.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "extent-tree.h"
21 #include "relocation.h"
22 #include "tree-checker.h"
23 
24 /* Just arbitrary numbers so we can be sure one of these happened. */
25 #define BACKREF_FOUND_SHARED     6
26 #define BACKREF_FOUND_NOT_SHARED 7
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	u64 num_bytes;
32 	struct extent_inode_elem *next;
33 };
34 
35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36 			      const struct btrfs_key *key,
37 			      const struct extent_buffer *eb,
38 			      const struct btrfs_file_extent_item *fi,
39 			      struct extent_inode_elem **eie)
40 {
41 	const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
42 	u64 offset = key->offset;
43 	struct extent_inode_elem *e;
44 	const u64 *root_ids;
45 	int root_count;
46 	bool cached;
47 
48 	if (!ctx->ignore_extent_item_pos &&
49 	    !btrfs_file_extent_compression(eb, fi) &&
50 	    !btrfs_file_extent_encryption(eb, fi) &&
51 	    !btrfs_file_extent_other_encoding(eb, fi)) {
52 		u64 data_offset;
53 
54 		data_offset = btrfs_file_extent_offset(eb, fi);
55 
56 		if (ctx->extent_item_pos < data_offset ||
57 		    ctx->extent_item_pos >= data_offset + data_len)
58 			return 1;
59 		offset += ctx->extent_item_pos - data_offset;
60 	}
61 
62 	if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
63 		goto add_inode_elem;
64 
65 	cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
66 				   &root_count);
67 	if (!cached)
68 		goto add_inode_elem;
69 
70 	for (int i = 0; i < root_count; i++) {
71 		int ret;
72 
73 		ret = ctx->indirect_ref_iterator(key->objectid, offset,
74 						 data_len, root_ids[i],
75 						 ctx->user_ctx);
76 		if (ret)
77 			return ret;
78 	}
79 
80 add_inode_elem:
81 	e = kmalloc(sizeof(*e), GFP_NOFS);
82 	if (!e)
83 		return -ENOMEM;
84 
85 	e->next = *eie;
86 	e->inum = key->objectid;
87 	e->offset = offset;
88 	e->num_bytes = data_len;
89 	*eie = e;
90 
91 	return 0;
92 }
93 
94 static void free_inode_elem_list(struct extent_inode_elem *eie)
95 {
96 	struct extent_inode_elem *eie_next;
97 
98 	for (; eie; eie = eie_next) {
99 		eie_next = eie->next;
100 		kfree(eie);
101 	}
102 }
103 
104 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
105 			     const struct extent_buffer *eb,
106 			     struct extent_inode_elem **eie)
107 {
108 	u64 disk_byte;
109 	struct btrfs_key key;
110 	struct btrfs_file_extent_item *fi;
111 	int slot;
112 	int nritems;
113 	int extent_type;
114 	int ret;
115 
116 	/*
117 	 * from the shared data ref, we only have the leaf but we need
118 	 * the key. thus, we must look into all items and see that we
119 	 * find one (some) with a reference to our extent item.
120 	 */
121 	nritems = btrfs_header_nritems(eb);
122 	for (slot = 0; slot < nritems; ++slot) {
123 		btrfs_item_key_to_cpu(eb, &key, slot);
124 		if (key.type != BTRFS_EXTENT_DATA_KEY)
125 			continue;
126 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
127 		extent_type = btrfs_file_extent_type(eb, fi);
128 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
129 			continue;
130 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
131 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
132 		if (disk_byte != ctx->bytenr)
133 			continue;
134 
135 		ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
136 		if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
137 			return ret;
138 	}
139 
140 	return 0;
141 }
142 
143 struct preftree {
144 	struct rb_root_cached root;
145 	unsigned int count;
146 };
147 
148 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
149 
150 struct preftrees {
151 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
152 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
153 	struct preftree indirect_missing_keys;
154 };
155 
156 /*
157  * Checks for a shared extent during backref search.
158  *
159  * The share_count tracks prelim_refs (direct and indirect) having a
160  * ref->count >0:
161  *  - incremented when a ref->count transitions to >0
162  *  - decremented when a ref->count transitions to <1
163  */
164 struct share_check {
165 	struct btrfs_backref_share_check_ctx *ctx;
166 	struct btrfs_root *root;
167 	u64 inum;
168 	u64 data_bytenr;
169 	u64 data_extent_gen;
170 	/*
171 	 * Counts number of inodes that refer to an extent (different inodes in
172 	 * the same root or different roots) that we could find. The sharedness
173 	 * check typically stops once this counter gets greater than 1, so it
174 	 * may not reflect the total number of inodes.
175 	 */
176 	int share_count;
177 	/*
178 	 * The number of times we found our inode refers to the data extent we
179 	 * are determining the sharedness. In other words, how many file extent
180 	 * items we could find for our inode that point to our target data
181 	 * extent. The value we get here after finishing the extent sharedness
182 	 * check may be smaller than reality, but if it ends up being greater
183 	 * than 1, then we know for sure the inode has multiple file extent
184 	 * items that point to our inode, and we can safely assume it's useful
185 	 * to cache the sharedness check result.
186 	 */
187 	int self_ref_count;
188 	bool have_delayed_delete_refs;
189 };
190 
191 static inline int extent_is_shared(struct share_check *sc)
192 {
193 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
194 }
195 
196 static struct kmem_cache *btrfs_prelim_ref_cache;
197 
198 int __init btrfs_prelim_ref_init(void)
199 {
200 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
201 					sizeof(struct prelim_ref), 0, 0, NULL);
202 	if (!btrfs_prelim_ref_cache)
203 		return -ENOMEM;
204 	return 0;
205 }
206 
207 void __cold btrfs_prelim_ref_exit(void)
208 {
209 	kmem_cache_destroy(btrfs_prelim_ref_cache);
210 }
211 
212 static void free_pref(struct prelim_ref *ref)
213 {
214 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
215 }
216 
217 /*
218  * Return 0 when both refs are for the same block (and can be merged).
219  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
220  * indicates a 'higher' block.
221  */
222 static int prelim_ref_compare(struct prelim_ref *ref1,
223 			      struct prelim_ref *ref2)
224 {
225 	if (ref1->level < ref2->level)
226 		return -1;
227 	if (ref1->level > ref2->level)
228 		return 1;
229 	if (ref1->root_id < ref2->root_id)
230 		return -1;
231 	if (ref1->root_id > ref2->root_id)
232 		return 1;
233 	if (ref1->key_for_search.type < ref2->key_for_search.type)
234 		return -1;
235 	if (ref1->key_for_search.type > ref2->key_for_search.type)
236 		return 1;
237 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
238 		return -1;
239 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
240 		return 1;
241 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
242 		return -1;
243 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
244 		return 1;
245 	if (ref1->parent < ref2->parent)
246 		return -1;
247 	if (ref1->parent > ref2->parent)
248 		return 1;
249 
250 	return 0;
251 }
252 
253 static void update_share_count(struct share_check *sc, int oldcount,
254 			       int newcount, struct prelim_ref *newref)
255 {
256 	if ((!sc) || (oldcount == 0 && newcount < 1))
257 		return;
258 
259 	if (oldcount > 0 && newcount < 1)
260 		sc->share_count--;
261 	else if (oldcount < 1 && newcount > 0)
262 		sc->share_count++;
263 
264 	if (newref->root_id == sc->root->root_key.objectid &&
265 	    newref->wanted_disk_byte == sc->data_bytenr &&
266 	    newref->key_for_search.objectid == sc->inum)
267 		sc->self_ref_count += newref->count;
268 }
269 
270 /*
271  * Add @newref to the @root rbtree, merging identical refs.
272  *
273  * Callers should assume that newref has been freed after calling.
274  */
275 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
276 			      struct preftree *preftree,
277 			      struct prelim_ref *newref,
278 			      struct share_check *sc)
279 {
280 	struct rb_root_cached *root;
281 	struct rb_node **p;
282 	struct rb_node *parent = NULL;
283 	struct prelim_ref *ref;
284 	int result;
285 	bool leftmost = true;
286 
287 	root = &preftree->root;
288 	p = &root->rb_root.rb_node;
289 
290 	while (*p) {
291 		parent = *p;
292 		ref = rb_entry(parent, struct prelim_ref, rbnode);
293 		result = prelim_ref_compare(ref, newref);
294 		if (result < 0) {
295 			p = &(*p)->rb_left;
296 		} else if (result > 0) {
297 			p = &(*p)->rb_right;
298 			leftmost = false;
299 		} else {
300 			/* Identical refs, merge them and free @newref */
301 			struct extent_inode_elem *eie = ref->inode_list;
302 
303 			while (eie && eie->next)
304 				eie = eie->next;
305 
306 			if (!eie)
307 				ref->inode_list = newref->inode_list;
308 			else
309 				eie->next = newref->inode_list;
310 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
311 						     preftree->count);
312 			/*
313 			 * A delayed ref can have newref->count < 0.
314 			 * The ref->count is updated to follow any
315 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
316 			 */
317 			update_share_count(sc, ref->count,
318 					   ref->count + newref->count, newref);
319 			ref->count += newref->count;
320 			free_pref(newref);
321 			return;
322 		}
323 	}
324 
325 	update_share_count(sc, 0, newref->count, newref);
326 	preftree->count++;
327 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
328 	rb_link_node(&newref->rbnode, parent, p);
329 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
330 }
331 
332 /*
333  * Release the entire tree.  We don't care about internal consistency so
334  * just free everything and then reset the tree root.
335  */
336 static void prelim_release(struct preftree *preftree)
337 {
338 	struct prelim_ref *ref, *next_ref;
339 
340 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
341 					     &preftree->root.rb_root, rbnode) {
342 		free_inode_elem_list(ref->inode_list);
343 		free_pref(ref);
344 	}
345 
346 	preftree->root = RB_ROOT_CACHED;
347 	preftree->count = 0;
348 }
349 
350 /*
351  * the rules for all callers of this function are:
352  * - obtaining the parent is the goal
353  * - if you add a key, you must know that it is a correct key
354  * - if you cannot add the parent or a correct key, then we will look into the
355  *   block later to set a correct key
356  *
357  * delayed refs
358  * ============
359  *        backref type | shared | indirect | shared | indirect
360  * information         |   tree |     tree |   data |     data
361  * --------------------+--------+----------+--------+----------
362  *      parent logical |    y   |     -    |    -   |     -
363  *      key to resolve |    -   |     y    |    y   |     y
364  *  tree block logical |    -   |     -    |    -   |     -
365  *  root for resolving |    y   |     y    |    y   |     y
366  *
367  * - column 1:       we've the parent -> done
368  * - column 2, 3, 4: we use the key to find the parent
369  *
370  * on disk refs (inline or keyed)
371  * ==============================
372  *        backref type | shared | indirect | shared | indirect
373  * information         |   tree |     tree |   data |     data
374  * --------------------+--------+----------+--------+----------
375  *      parent logical |    y   |     -    |    y   |     -
376  *      key to resolve |    -   |     -    |    -   |     y
377  *  tree block logical |    y   |     y    |    y   |     y
378  *  root for resolving |    -   |     y    |    y   |     y
379  *
380  * - column 1, 3: we've the parent -> done
381  * - column 2:    we take the first key from the block to find the parent
382  *                (see add_missing_keys)
383  * - column 4:    we use the key to find the parent
384  *
385  * additional information that's available but not required to find the parent
386  * block might help in merging entries to gain some speed.
387  */
388 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
389 			  struct preftree *preftree, u64 root_id,
390 			  const struct btrfs_key *key, int level, u64 parent,
391 			  u64 wanted_disk_byte, int count,
392 			  struct share_check *sc, gfp_t gfp_mask)
393 {
394 	struct prelim_ref *ref;
395 
396 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
397 		return 0;
398 
399 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
400 	if (!ref)
401 		return -ENOMEM;
402 
403 	ref->root_id = root_id;
404 	if (key)
405 		ref->key_for_search = *key;
406 	else
407 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
408 
409 	ref->inode_list = NULL;
410 	ref->level = level;
411 	ref->count = count;
412 	ref->parent = parent;
413 	ref->wanted_disk_byte = wanted_disk_byte;
414 	prelim_ref_insert(fs_info, preftree, ref, sc);
415 	return extent_is_shared(sc);
416 }
417 
418 /* direct refs use root == 0, key == NULL */
419 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
420 			  struct preftrees *preftrees, int level, u64 parent,
421 			  u64 wanted_disk_byte, int count,
422 			  struct share_check *sc, gfp_t gfp_mask)
423 {
424 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
425 			      parent, wanted_disk_byte, count, sc, gfp_mask);
426 }
427 
428 /* indirect refs use parent == 0 */
429 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
430 			    struct preftrees *preftrees, u64 root_id,
431 			    const struct btrfs_key *key, int level,
432 			    u64 wanted_disk_byte, int count,
433 			    struct share_check *sc, gfp_t gfp_mask)
434 {
435 	struct preftree *tree = &preftrees->indirect;
436 
437 	if (!key)
438 		tree = &preftrees->indirect_missing_keys;
439 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
440 			      wanted_disk_byte, count, sc, gfp_mask);
441 }
442 
443 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
444 {
445 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
446 	struct rb_node *parent = NULL;
447 	struct prelim_ref *ref = NULL;
448 	struct prelim_ref target = {};
449 	int result;
450 
451 	target.parent = bytenr;
452 
453 	while (*p) {
454 		parent = *p;
455 		ref = rb_entry(parent, struct prelim_ref, rbnode);
456 		result = prelim_ref_compare(ref, &target);
457 
458 		if (result < 0)
459 			p = &(*p)->rb_left;
460 		else if (result > 0)
461 			p = &(*p)->rb_right;
462 		else
463 			return 1;
464 	}
465 	return 0;
466 }
467 
468 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
469 			   struct btrfs_root *root, struct btrfs_path *path,
470 			   struct ulist *parents,
471 			   struct preftrees *preftrees, struct prelim_ref *ref,
472 			   int level)
473 {
474 	int ret = 0;
475 	int slot;
476 	struct extent_buffer *eb;
477 	struct btrfs_key key;
478 	struct btrfs_key *key_for_search = &ref->key_for_search;
479 	struct btrfs_file_extent_item *fi;
480 	struct extent_inode_elem *eie = NULL, *old = NULL;
481 	u64 disk_byte;
482 	u64 wanted_disk_byte = ref->wanted_disk_byte;
483 	u64 count = 0;
484 	u64 data_offset;
485 	u8 type;
486 
487 	if (level != 0) {
488 		eb = path->nodes[level];
489 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
490 		if (ret < 0)
491 			return ret;
492 		return 0;
493 	}
494 
495 	/*
496 	 * 1. We normally enter this function with the path already pointing to
497 	 *    the first item to check. But sometimes, we may enter it with
498 	 *    slot == nritems.
499 	 * 2. We are searching for normal backref but bytenr of this leaf
500 	 *    matches shared data backref
501 	 * 3. The leaf owner is not equal to the root we are searching
502 	 *
503 	 * For these cases, go to the next leaf before we continue.
504 	 */
505 	eb = path->nodes[0];
506 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
507 	    is_shared_data_backref(preftrees, eb->start) ||
508 	    ref->root_id != btrfs_header_owner(eb)) {
509 		if (ctx->time_seq == BTRFS_SEQ_LAST)
510 			ret = btrfs_next_leaf(root, path);
511 		else
512 			ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
513 	}
514 
515 	while (!ret && count < ref->count) {
516 		eb = path->nodes[0];
517 		slot = path->slots[0];
518 
519 		btrfs_item_key_to_cpu(eb, &key, slot);
520 
521 		if (key.objectid != key_for_search->objectid ||
522 		    key.type != BTRFS_EXTENT_DATA_KEY)
523 			break;
524 
525 		/*
526 		 * We are searching for normal backref but bytenr of this leaf
527 		 * matches shared data backref, OR
528 		 * the leaf owner is not equal to the root we are searching for
529 		 */
530 		if (slot == 0 &&
531 		    (is_shared_data_backref(preftrees, eb->start) ||
532 		     ref->root_id != btrfs_header_owner(eb))) {
533 			if (ctx->time_seq == BTRFS_SEQ_LAST)
534 				ret = btrfs_next_leaf(root, path);
535 			else
536 				ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
537 			continue;
538 		}
539 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
540 		type = btrfs_file_extent_type(eb, fi);
541 		if (type == BTRFS_FILE_EXTENT_INLINE)
542 			goto next;
543 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
544 		data_offset = btrfs_file_extent_offset(eb, fi);
545 
546 		if (disk_byte == wanted_disk_byte) {
547 			eie = NULL;
548 			old = NULL;
549 			if (ref->key_for_search.offset == key.offset - data_offset)
550 				count++;
551 			else
552 				goto next;
553 			if (!ctx->skip_inode_ref_list) {
554 				ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
555 				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
556 				    ret < 0)
557 					break;
558 			}
559 			if (ret > 0)
560 				goto next;
561 			ret = ulist_add_merge_ptr(parents, eb->start,
562 						  eie, (void **)&old, GFP_NOFS);
563 			if (ret < 0)
564 				break;
565 			if (!ret && !ctx->skip_inode_ref_list) {
566 				while (old->next)
567 					old = old->next;
568 				old->next = eie;
569 			}
570 			eie = NULL;
571 		}
572 next:
573 		if (ctx->time_seq == BTRFS_SEQ_LAST)
574 			ret = btrfs_next_item(root, path);
575 		else
576 			ret = btrfs_next_old_item(root, path, ctx->time_seq);
577 	}
578 
579 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
580 		free_inode_elem_list(eie);
581 	else if (ret > 0)
582 		ret = 0;
583 
584 	return ret;
585 }
586 
587 /*
588  * resolve an indirect backref in the form (root_id, key, level)
589  * to a logical address
590  */
591 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
592 				struct btrfs_path *path,
593 				struct preftrees *preftrees,
594 				struct prelim_ref *ref, struct ulist *parents)
595 {
596 	struct btrfs_root *root;
597 	struct extent_buffer *eb;
598 	int ret = 0;
599 	int root_level;
600 	int level = ref->level;
601 	struct btrfs_key search_key = ref->key_for_search;
602 
603 	/*
604 	 * If we're search_commit_root we could possibly be holding locks on
605 	 * other tree nodes.  This happens when qgroups does backref walks when
606 	 * adding new delayed refs.  To deal with this we need to look in cache
607 	 * for the root, and if we don't find it then we need to search the
608 	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
609 	 * here.
610 	 */
611 	if (path->search_commit_root)
612 		root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
613 	else
614 		root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
615 	if (IS_ERR(root)) {
616 		ret = PTR_ERR(root);
617 		goto out_free;
618 	}
619 
620 	if (!path->search_commit_root &&
621 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
622 		ret = -ENOENT;
623 		goto out;
624 	}
625 
626 	if (btrfs_is_testing(ctx->fs_info)) {
627 		ret = -ENOENT;
628 		goto out;
629 	}
630 
631 	if (path->search_commit_root)
632 		root_level = btrfs_header_level(root->commit_root);
633 	else if (ctx->time_seq == BTRFS_SEQ_LAST)
634 		root_level = btrfs_header_level(root->node);
635 	else
636 		root_level = btrfs_old_root_level(root, ctx->time_seq);
637 
638 	if (root_level + 1 == level)
639 		goto out;
640 
641 	/*
642 	 * We can often find data backrefs with an offset that is too large
643 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
644 	 * subtracting a file's offset with the data offset of its
645 	 * corresponding extent data item. This can happen for example in the
646 	 * clone ioctl.
647 	 *
648 	 * So if we detect such case we set the search key's offset to zero to
649 	 * make sure we will find the matching file extent item at
650 	 * add_all_parents(), otherwise we will miss it because the offset
651 	 * taken form the backref is much larger then the offset of the file
652 	 * extent item. This can make us scan a very large number of file
653 	 * extent items, but at least it will not make us miss any.
654 	 *
655 	 * This is an ugly workaround for a behaviour that should have never
656 	 * existed, but it does and a fix for the clone ioctl would touch a lot
657 	 * of places, cause backwards incompatibility and would not fix the
658 	 * problem for extents cloned with older kernels.
659 	 */
660 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
661 	    search_key.offset >= LLONG_MAX)
662 		search_key.offset = 0;
663 	path->lowest_level = level;
664 	if (ctx->time_seq == BTRFS_SEQ_LAST)
665 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
666 	else
667 		ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
668 
669 	btrfs_debug(ctx->fs_info,
670 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
671 		 ref->root_id, level, ref->count, ret,
672 		 ref->key_for_search.objectid, ref->key_for_search.type,
673 		 ref->key_for_search.offset);
674 	if (ret < 0)
675 		goto out;
676 
677 	eb = path->nodes[level];
678 	while (!eb) {
679 		if (WARN_ON(!level)) {
680 			ret = 1;
681 			goto out;
682 		}
683 		level--;
684 		eb = path->nodes[level];
685 	}
686 
687 	ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
688 out:
689 	btrfs_put_root(root);
690 out_free:
691 	path->lowest_level = 0;
692 	btrfs_release_path(path);
693 	return ret;
694 }
695 
696 static struct extent_inode_elem *
697 unode_aux_to_inode_list(struct ulist_node *node)
698 {
699 	if (!node)
700 		return NULL;
701 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
702 }
703 
704 static void free_leaf_list(struct ulist *ulist)
705 {
706 	struct ulist_node *node;
707 	struct ulist_iterator uiter;
708 
709 	ULIST_ITER_INIT(&uiter);
710 	while ((node = ulist_next(ulist, &uiter)))
711 		free_inode_elem_list(unode_aux_to_inode_list(node));
712 
713 	ulist_free(ulist);
714 }
715 
716 /*
717  * We maintain three separate rbtrees: one for direct refs, one for
718  * indirect refs which have a key, and one for indirect refs which do not
719  * have a key. Each tree does merge on insertion.
720  *
721  * Once all of the references are located, we iterate over the tree of
722  * indirect refs with missing keys. An appropriate key is located and
723  * the ref is moved onto the tree for indirect refs. After all missing
724  * keys are thus located, we iterate over the indirect ref tree, resolve
725  * each reference, and then insert the resolved reference onto the
726  * direct tree (merging there too).
727  *
728  * New backrefs (i.e., for parent nodes) are added to the appropriate
729  * rbtree as they are encountered. The new backrefs are subsequently
730  * resolved as above.
731  */
732 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
733 				 struct btrfs_path *path,
734 				 struct preftrees *preftrees,
735 				 struct share_check *sc)
736 {
737 	int err;
738 	int ret = 0;
739 	struct ulist *parents;
740 	struct ulist_node *node;
741 	struct ulist_iterator uiter;
742 	struct rb_node *rnode;
743 
744 	parents = ulist_alloc(GFP_NOFS);
745 	if (!parents)
746 		return -ENOMEM;
747 
748 	/*
749 	 * We could trade memory usage for performance here by iterating
750 	 * the tree, allocating new refs for each insertion, and then
751 	 * freeing the entire indirect tree when we're done.  In some test
752 	 * cases, the tree can grow quite large (~200k objects).
753 	 */
754 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
755 		struct prelim_ref *ref;
756 
757 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
758 		if (WARN(ref->parent,
759 			 "BUG: direct ref found in indirect tree")) {
760 			ret = -EINVAL;
761 			goto out;
762 		}
763 
764 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
765 		preftrees->indirect.count--;
766 
767 		if (ref->count == 0) {
768 			free_pref(ref);
769 			continue;
770 		}
771 
772 		if (sc && ref->root_id != sc->root->root_key.objectid) {
773 			free_pref(ref);
774 			ret = BACKREF_FOUND_SHARED;
775 			goto out;
776 		}
777 		err = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
778 		/*
779 		 * we can only tolerate ENOENT,otherwise,we should catch error
780 		 * and return directly.
781 		 */
782 		if (err == -ENOENT) {
783 			prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
784 					  NULL);
785 			continue;
786 		} else if (err) {
787 			free_pref(ref);
788 			ret = err;
789 			goto out;
790 		}
791 
792 		/* we put the first parent into the ref at hand */
793 		ULIST_ITER_INIT(&uiter);
794 		node = ulist_next(parents, &uiter);
795 		ref->parent = node ? node->val : 0;
796 		ref->inode_list = unode_aux_to_inode_list(node);
797 
798 		/* Add a prelim_ref(s) for any other parent(s). */
799 		while ((node = ulist_next(parents, &uiter))) {
800 			struct prelim_ref *new_ref;
801 
802 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
803 						   GFP_NOFS);
804 			if (!new_ref) {
805 				free_pref(ref);
806 				ret = -ENOMEM;
807 				goto out;
808 			}
809 			memcpy(new_ref, ref, sizeof(*ref));
810 			new_ref->parent = node->val;
811 			new_ref->inode_list = unode_aux_to_inode_list(node);
812 			prelim_ref_insert(ctx->fs_info, &preftrees->direct,
813 					  new_ref, NULL);
814 		}
815 
816 		/*
817 		 * Now it's a direct ref, put it in the direct tree. We must
818 		 * do this last because the ref could be merged/freed here.
819 		 */
820 		prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
821 
822 		ulist_reinit(parents);
823 		cond_resched();
824 	}
825 out:
826 	/*
827 	 * We may have inode lists attached to refs in the parents ulist, so we
828 	 * must free them before freeing the ulist and its refs.
829 	 */
830 	free_leaf_list(parents);
831 	return ret;
832 }
833 
834 /*
835  * read tree blocks and add keys where required.
836  */
837 static int add_missing_keys(struct btrfs_fs_info *fs_info,
838 			    struct preftrees *preftrees, bool lock)
839 {
840 	struct prelim_ref *ref;
841 	struct extent_buffer *eb;
842 	struct preftree *tree = &preftrees->indirect_missing_keys;
843 	struct rb_node *node;
844 
845 	while ((node = rb_first_cached(&tree->root))) {
846 		struct btrfs_tree_parent_check check = { 0 };
847 
848 		ref = rb_entry(node, struct prelim_ref, rbnode);
849 		rb_erase_cached(node, &tree->root);
850 
851 		BUG_ON(ref->parent);	/* should not be a direct ref */
852 		BUG_ON(ref->key_for_search.type);
853 		BUG_ON(!ref->wanted_disk_byte);
854 
855 		check.level = ref->level - 1;
856 		check.owner_root = ref->root_id;
857 
858 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
859 		if (IS_ERR(eb)) {
860 			free_pref(ref);
861 			return PTR_ERR(eb);
862 		}
863 		if (!extent_buffer_uptodate(eb)) {
864 			free_pref(ref);
865 			free_extent_buffer(eb);
866 			return -EIO;
867 		}
868 
869 		if (lock)
870 			btrfs_tree_read_lock(eb);
871 		if (btrfs_header_level(eb) == 0)
872 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
873 		else
874 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
875 		if (lock)
876 			btrfs_tree_read_unlock(eb);
877 		free_extent_buffer(eb);
878 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
879 		cond_resched();
880 	}
881 	return 0;
882 }
883 
884 /*
885  * add all currently queued delayed refs from this head whose seq nr is
886  * smaller or equal that seq to the list
887  */
888 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
889 			    struct btrfs_delayed_ref_head *head, u64 seq,
890 			    struct preftrees *preftrees, struct share_check *sc)
891 {
892 	struct btrfs_delayed_ref_node *node;
893 	struct btrfs_key key;
894 	struct rb_node *n;
895 	int count;
896 	int ret = 0;
897 
898 	spin_lock(&head->lock);
899 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
900 		node = rb_entry(n, struct btrfs_delayed_ref_node,
901 				ref_node);
902 		if (node->seq > seq)
903 			continue;
904 
905 		switch (node->action) {
906 		case BTRFS_ADD_DELAYED_EXTENT:
907 		case BTRFS_UPDATE_DELAYED_HEAD:
908 			WARN_ON(1);
909 			continue;
910 		case BTRFS_ADD_DELAYED_REF:
911 			count = node->ref_mod;
912 			break;
913 		case BTRFS_DROP_DELAYED_REF:
914 			count = node->ref_mod * -1;
915 			break;
916 		default:
917 			BUG();
918 		}
919 		switch (node->type) {
920 		case BTRFS_TREE_BLOCK_REF_KEY: {
921 			/* NORMAL INDIRECT METADATA backref */
922 			struct btrfs_delayed_tree_ref *ref;
923 			struct btrfs_key *key_ptr = NULL;
924 
925 			if (head->extent_op && head->extent_op->update_key) {
926 				btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
927 				key_ptr = &key;
928 			}
929 
930 			ref = btrfs_delayed_node_to_tree_ref(node);
931 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
932 					       key_ptr, ref->level + 1,
933 					       node->bytenr, count, sc,
934 					       GFP_ATOMIC);
935 			break;
936 		}
937 		case BTRFS_SHARED_BLOCK_REF_KEY: {
938 			/* SHARED DIRECT METADATA backref */
939 			struct btrfs_delayed_tree_ref *ref;
940 
941 			ref = btrfs_delayed_node_to_tree_ref(node);
942 
943 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
944 					     ref->parent, node->bytenr, count,
945 					     sc, GFP_ATOMIC);
946 			break;
947 		}
948 		case BTRFS_EXTENT_DATA_REF_KEY: {
949 			/* NORMAL INDIRECT DATA backref */
950 			struct btrfs_delayed_data_ref *ref;
951 			ref = btrfs_delayed_node_to_data_ref(node);
952 
953 			key.objectid = ref->objectid;
954 			key.type = BTRFS_EXTENT_DATA_KEY;
955 			key.offset = ref->offset;
956 
957 			/*
958 			 * If we have a share check context and a reference for
959 			 * another inode, we can't exit immediately. This is
960 			 * because even if this is a BTRFS_ADD_DELAYED_REF
961 			 * reference we may find next a BTRFS_DROP_DELAYED_REF
962 			 * which cancels out this ADD reference.
963 			 *
964 			 * If this is a DROP reference and there was no previous
965 			 * ADD reference, then we need to signal that when we
966 			 * process references from the extent tree (through
967 			 * add_inline_refs() and add_keyed_refs()), we should
968 			 * not exit early if we find a reference for another
969 			 * inode, because one of the delayed DROP references
970 			 * may cancel that reference in the extent tree.
971 			 */
972 			if (sc && count < 0)
973 				sc->have_delayed_delete_refs = true;
974 
975 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
976 					       &key, 0, node->bytenr, count, sc,
977 					       GFP_ATOMIC);
978 			break;
979 		}
980 		case BTRFS_SHARED_DATA_REF_KEY: {
981 			/* SHARED DIRECT FULL backref */
982 			struct btrfs_delayed_data_ref *ref;
983 
984 			ref = btrfs_delayed_node_to_data_ref(node);
985 
986 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
987 					     node->bytenr, count, sc,
988 					     GFP_ATOMIC);
989 			break;
990 		}
991 		default:
992 			WARN_ON(1);
993 		}
994 		/*
995 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
996 		 * refs have been checked.
997 		 */
998 		if (ret && (ret != BACKREF_FOUND_SHARED))
999 			break;
1000 	}
1001 	if (!ret)
1002 		ret = extent_is_shared(sc);
1003 
1004 	spin_unlock(&head->lock);
1005 	return ret;
1006 }
1007 
1008 /*
1009  * add all inline backrefs for bytenr to the list
1010  *
1011  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1012  */
1013 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1014 			   struct btrfs_path *path,
1015 			   int *info_level, struct preftrees *preftrees,
1016 			   struct share_check *sc)
1017 {
1018 	int ret = 0;
1019 	int slot;
1020 	struct extent_buffer *leaf;
1021 	struct btrfs_key key;
1022 	struct btrfs_key found_key;
1023 	unsigned long ptr;
1024 	unsigned long end;
1025 	struct btrfs_extent_item *ei;
1026 	u64 flags;
1027 	u64 item_size;
1028 
1029 	/*
1030 	 * enumerate all inline refs
1031 	 */
1032 	leaf = path->nodes[0];
1033 	slot = path->slots[0];
1034 
1035 	item_size = btrfs_item_size(leaf, slot);
1036 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1037 
1038 	if (ctx->check_extent_item) {
1039 		ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1040 		if (ret)
1041 			return ret;
1042 	}
1043 
1044 	flags = btrfs_extent_flags(leaf, ei);
1045 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
1046 
1047 	ptr = (unsigned long)(ei + 1);
1048 	end = (unsigned long)ei + item_size;
1049 
1050 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1051 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1052 		struct btrfs_tree_block_info *info;
1053 
1054 		info = (struct btrfs_tree_block_info *)ptr;
1055 		*info_level = btrfs_tree_block_level(leaf, info);
1056 		ptr += sizeof(struct btrfs_tree_block_info);
1057 		BUG_ON(ptr > end);
1058 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1059 		*info_level = found_key.offset;
1060 	} else {
1061 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1062 	}
1063 
1064 	while (ptr < end) {
1065 		struct btrfs_extent_inline_ref *iref;
1066 		u64 offset;
1067 		int type;
1068 
1069 		iref = (struct btrfs_extent_inline_ref *)ptr;
1070 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
1071 							BTRFS_REF_TYPE_ANY);
1072 		if (type == BTRFS_REF_TYPE_INVALID)
1073 			return -EUCLEAN;
1074 
1075 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1076 
1077 		switch (type) {
1078 		case BTRFS_SHARED_BLOCK_REF_KEY:
1079 			ret = add_direct_ref(ctx->fs_info, preftrees,
1080 					     *info_level + 1, offset,
1081 					     ctx->bytenr, 1, NULL, GFP_NOFS);
1082 			break;
1083 		case BTRFS_SHARED_DATA_REF_KEY: {
1084 			struct btrfs_shared_data_ref *sdref;
1085 			int count;
1086 
1087 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1088 			count = btrfs_shared_data_ref_count(leaf, sdref);
1089 
1090 			ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1091 					     ctx->bytenr, count, sc, GFP_NOFS);
1092 			break;
1093 		}
1094 		case BTRFS_TREE_BLOCK_REF_KEY:
1095 			ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
1096 					       NULL, *info_level + 1,
1097 					       ctx->bytenr, 1, NULL, GFP_NOFS);
1098 			break;
1099 		case BTRFS_EXTENT_DATA_REF_KEY: {
1100 			struct btrfs_extent_data_ref *dref;
1101 			int count;
1102 			u64 root;
1103 
1104 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1105 			count = btrfs_extent_data_ref_count(leaf, dref);
1106 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1107 								      dref);
1108 			key.type = BTRFS_EXTENT_DATA_KEY;
1109 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1110 
1111 			if (sc && key.objectid != sc->inum &&
1112 			    !sc->have_delayed_delete_refs) {
1113 				ret = BACKREF_FOUND_SHARED;
1114 				break;
1115 			}
1116 
1117 			root = btrfs_extent_data_ref_root(leaf, dref);
1118 
1119 			if (!ctx->skip_data_ref ||
1120 			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1121 						ctx->user_ctx))
1122 				ret = add_indirect_ref(ctx->fs_info, preftrees,
1123 						       root, &key, 0, ctx->bytenr,
1124 						       count, sc, GFP_NOFS);
1125 			break;
1126 		}
1127 		case BTRFS_EXTENT_OWNER_REF_KEY:
1128 			ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA));
1129 			break;
1130 		default:
1131 			WARN_ON(1);
1132 		}
1133 		if (ret)
1134 			return ret;
1135 		ptr += btrfs_extent_inline_ref_size(type);
1136 	}
1137 
1138 	return 0;
1139 }
1140 
1141 /*
1142  * add all non-inline backrefs for bytenr to the list
1143  *
1144  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1145  */
1146 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1147 			  struct btrfs_root *extent_root,
1148 			  struct btrfs_path *path,
1149 			  int info_level, struct preftrees *preftrees,
1150 			  struct share_check *sc)
1151 {
1152 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1153 	int ret;
1154 	int slot;
1155 	struct extent_buffer *leaf;
1156 	struct btrfs_key key;
1157 
1158 	while (1) {
1159 		ret = btrfs_next_item(extent_root, path);
1160 		if (ret < 0)
1161 			break;
1162 		if (ret) {
1163 			ret = 0;
1164 			break;
1165 		}
1166 
1167 		slot = path->slots[0];
1168 		leaf = path->nodes[0];
1169 		btrfs_item_key_to_cpu(leaf, &key, slot);
1170 
1171 		if (key.objectid != ctx->bytenr)
1172 			break;
1173 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1174 			continue;
1175 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1176 			break;
1177 
1178 		switch (key.type) {
1179 		case BTRFS_SHARED_BLOCK_REF_KEY:
1180 			/* SHARED DIRECT METADATA backref */
1181 			ret = add_direct_ref(fs_info, preftrees,
1182 					     info_level + 1, key.offset,
1183 					     ctx->bytenr, 1, NULL, GFP_NOFS);
1184 			break;
1185 		case BTRFS_SHARED_DATA_REF_KEY: {
1186 			/* SHARED DIRECT FULL backref */
1187 			struct btrfs_shared_data_ref *sdref;
1188 			int count;
1189 
1190 			sdref = btrfs_item_ptr(leaf, slot,
1191 					      struct btrfs_shared_data_ref);
1192 			count = btrfs_shared_data_ref_count(leaf, sdref);
1193 			ret = add_direct_ref(fs_info, preftrees, 0,
1194 					     key.offset, ctx->bytenr, count,
1195 					     sc, GFP_NOFS);
1196 			break;
1197 		}
1198 		case BTRFS_TREE_BLOCK_REF_KEY:
1199 			/* NORMAL INDIRECT METADATA backref */
1200 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1201 					       NULL, info_level + 1, ctx->bytenr,
1202 					       1, NULL, GFP_NOFS);
1203 			break;
1204 		case BTRFS_EXTENT_DATA_REF_KEY: {
1205 			/* NORMAL INDIRECT DATA backref */
1206 			struct btrfs_extent_data_ref *dref;
1207 			int count;
1208 			u64 root;
1209 
1210 			dref = btrfs_item_ptr(leaf, slot,
1211 					      struct btrfs_extent_data_ref);
1212 			count = btrfs_extent_data_ref_count(leaf, dref);
1213 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1214 								      dref);
1215 			key.type = BTRFS_EXTENT_DATA_KEY;
1216 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1217 
1218 			if (sc && key.objectid != sc->inum &&
1219 			    !sc->have_delayed_delete_refs) {
1220 				ret = BACKREF_FOUND_SHARED;
1221 				break;
1222 			}
1223 
1224 			root = btrfs_extent_data_ref_root(leaf, dref);
1225 
1226 			if (!ctx->skip_data_ref ||
1227 			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1228 						ctx->user_ctx))
1229 				ret = add_indirect_ref(fs_info, preftrees, root,
1230 						       &key, 0, ctx->bytenr,
1231 						       count, sc, GFP_NOFS);
1232 			break;
1233 		}
1234 		default:
1235 			WARN_ON(1);
1236 		}
1237 		if (ret)
1238 			return ret;
1239 
1240 	}
1241 
1242 	return ret;
1243 }
1244 
1245 /*
1246  * The caller has joined a transaction or is holding a read lock on the
1247  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1248  * snapshot field changing while updating or checking the cache.
1249  */
1250 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1251 					struct btrfs_root *root,
1252 					u64 bytenr, int level, bool *is_shared)
1253 {
1254 	const struct btrfs_fs_info *fs_info = root->fs_info;
1255 	struct btrfs_backref_shared_cache_entry *entry;
1256 
1257 	if (!current->journal_info)
1258 		lockdep_assert_held(&fs_info->commit_root_sem);
1259 
1260 	if (!ctx->use_path_cache)
1261 		return false;
1262 
1263 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1264 		return false;
1265 
1266 	/*
1267 	 * Level -1 is used for the data extent, which is not reliable to cache
1268 	 * because its reference count can increase or decrease without us
1269 	 * realizing. We cache results only for extent buffers that lead from
1270 	 * the root node down to the leaf with the file extent item.
1271 	 */
1272 	ASSERT(level >= 0);
1273 
1274 	entry = &ctx->path_cache_entries[level];
1275 
1276 	/* Unused cache entry or being used for some other extent buffer. */
1277 	if (entry->bytenr != bytenr)
1278 		return false;
1279 
1280 	/*
1281 	 * We cached a false result, but the last snapshot generation of the
1282 	 * root changed, so we now have a snapshot. Don't trust the result.
1283 	 */
1284 	if (!entry->is_shared &&
1285 	    entry->gen != btrfs_root_last_snapshot(&root->root_item))
1286 		return false;
1287 
1288 	/*
1289 	 * If we cached a true result and the last generation used for dropping
1290 	 * a root changed, we can not trust the result, because the dropped root
1291 	 * could be a snapshot sharing this extent buffer.
1292 	 */
1293 	if (entry->is_shared &&
1294 	    entry->gen != btrfs_get_last_root_drop_gen(fs_info))
1295 		return false;
1296 
1297 	*is_shared = entry->is_shared;
1298 	/*
1299 	 * If the node at this level is shared, than all nodes below are also
1300 	 * shared. Currently some of the nodes below may be marked as not shared
1301 	 * because we have just switched from one leaf to another, and switched
1302 	 * also other nodes above the leaf and below the current level, so mark
1303 	 * them as shared.
1304 	 */
1305 	if (*is_shared) {
1306 		for (int i = 0; i < level; i++) {
1307 			ctx->path_cache_entries[i].is_shared = true;
1308 			ctx->path_cache_entries[i].gen = entry->gen;
1309 		}
1310 	}
1311 
1312 	return true;
1313 }
1314 
1315 /*
1316  * The caller has joined a transaction or is holding a read lock on the
1317  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1318  * snapshot field changing while updating or checking the cache.
1319  */
1320 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1321 				       struct btrfs_root *root,
1322 				       u64 bytenr, int level, bool is_shared)
1323 {
1324 	const struct btrfs_fs_info *fs_info = root->fs_info;
1325 	struct btrfs_backref_shared_cache_entry *entry;
1326 	u64 gen;
1327 
1328 	if (!current->journal_info)
1329 		lockdep_assert_held(&fs_info->commit_root_sem);
1330 
1331 	if (!ctx->use_path_cache)
1332 		return;
1333 
1334 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1335 		return;
1336 
1337 	/*
1338 	 * Level -1 is used for the data extent, which is not reliable to cache
1339 	 * because its reference count can increase or decrease without us
1340 	 * realizing. We cache results only for extent buffers that lead from
1341 	 * the root node down to the leaf with the file extent item.
1342 	 */
1343 	ASSERT(level >= 0);
1344 
1345 	if (is_shared)
1346 		gen = btrfs_get_last_root_drop_gen(fs_info);
1347 	else
1348 		gen = btrfs_root_last_snapshot(&root->root_item);
1349 
1350 	entry = &ctx->path_cache_entries[level];
1351 	entry->bytenr = bytenr;
1352 	entry->is_shared = is_shared;
1353 	entry->gen = gen;
1354 
1355 	/*
1356 	 * If we found an extent buffer is shared, set the cache result for all
1357 	 * extent buffers below it to true. As nodes in the path are COWed,
1358 	 * their sharedness is moved to their children, and if a leaf is COWed,
1359 	 * then the sharedness of a data extent becomes direct, the refcount of
1360 	 * data extent is increased in the extent item at the extent tree.
1361 	 */
1362 	if (is_shared) {
1363 		for (int i = 0; i < level; i++) {
1364 			entry = &ctx->path_cache_entries[i];
1365 			entry->is_shared = is_shared;
1366 			entry->gen = gen;
1367 		}
1368 	}
1369 }
1370 
1371 /*
1372  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1373  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1374  * indirect refs to their parent bytenr.
1375  * When roots are found, they're added to the roots list
1376  *
1377  * @ctx:     Backref walking context object, must be not NULL.
1378  * @sc:      If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1379  *           shared extent is detected.
1380  *
1381  * Otherwise this returns 0 for success and <0 for an error.
1382  *
1383  * FIXME some caching might speed things up
1384  */
1385 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1386 			     struct share_check *sc)
1387 {
1388 	struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
1389 	struct btrfs_key key;
1390 	struct btrfs_path *path;
1391 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1392 	struct btrfs_delayed_ref_head *head;
1393 	int info_level = 0;
1394 	int ret;
1395 	struct prelim_ref *ref;
1396 	struct rb_node *node;
1397 	struct extent_inode_elem *eie = NULL;
1398 	struct preftrees preftrees = {
1399 		.direct = PREFTREE_INIT,
1400 		.indirect = PREFTREE_INIT,
1401 		.indirect_missing_keys = PREFTREE_INIT
1402 	};
1403 
1404 	/* Roots ulist is not needed when using a sharedness check context. */
1405 	if (sc)
1406 		ASSERT(ctx->roots == NULL);
1407 
1408 	key.objectid = ctx->bytenr;
1409 	key.offset = (u64)-1;
1410 	if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1411 		key.type = BTRFS_METADATA_ITEM_KEY;
1412 	else
1413 		key.type = BTRFS_EXTENT_ITEM_KEY;
1414 
1415 	path = btrfs_alloc_path();
1416 	if (!path)
1417 		return -ENOMEM;
1418 	if (!ctx->trans) {
1419 		path->search_commit_root = 1;
1420 		path->skip_locking = 1;
1421 	}
1422 
1423 	if (ctx->time_seq == BTRFS_SEQ_LAST)
1424 		path->skip_locking = 1;
1425 
1426 again:
1427 	head = NULL;
1428 
1429 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1430 	if (ret < 0)
1431 		goto out;
1432 	if (ret == 0) {
1433 		/*
1434 		 * Key with offset -1 found, there would have to exist an extent
1435 		 * item with such offset, but this is out of the valid range.
1436 		 */
1437 		ret = -EUCLEAN;
1438 		goto out;
1439 	}
1440 
1441 	if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1442 	    ctx->time_seq != BTRFS_SEQ_LAST) {
1443 		/*
1444 		 * We have a specific time_seq we care about and trans which
1445 		 * means we have the path lock, we need to grab the ref head and
1446 		 * lock it so we have a consistent view of the refs at the given
1447 		 * time.
1448 		 */
1449 		delayed_refs = &ctx->trans->transaction->delayed_refs;
1450 		spin_lock(&delayed_refs->lock);
1451 		head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr);
1452 		if (head) {
1453 			if (!mutex_trylock(&head->mutex)) {
1454 				refcount_inc(&head->refs);
1455 				spin_unlock(&delayed_refs->lock);
1456 
1457 				btrfs_release_path(path);
1458 
1459 				/*
1460 				 * Mutex was contended, block until it's
1461 				 * released and try again
1462 				 */
1463 				mutex_lock(&head->mutex);
1464 				mutex_unlock(&head->mutex);
1465 				btrfs_put_delayed_ref_head(head);
1466 				goto again;
1467 			}
1468 			spin_unlock(&delayed_refs->lock);
1469 			ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
1470 					       &preftrees, sc);
1471 			mutex_unlock(&head->mutex);
1472 			if (ret)
1473 				goto out;
1474 		} else {
1475 			spin_unlock(&delayed_refs->lock);
1476 		}
1477 	}
1478 
1479 	if (path->slots[0]) {
1480 		struct extent_buffer *leaf;
1481 		int slot;
1482 
1483 		path->slots[0]--;
1484 		leaf = path->nodes[0];
1485 		slot = path->slots[0];
1486 		btrfs_item_key_to_cpu(leaf, &key, slot);
1487 		if (key.objectid == ctx->bytenr &&
1488 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1489 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1490 			ret = add_inline_refs(ctx, path, &info_level,
1491 					      &preftrees, sc);
1492 			if (ret)
1493 				goto out;
1494 			ret = add_keyed_refs(ctx, root, path, info_level,
1495 					     &preftrees, sc);
1496 			if (ret)
1497 				goto out;
1498 		}
1499 	}
1500 
1501 	/*
1502 	 * If we have a share context and we reached here, it means the extent
1503 	 * is not directly shared (no multiple reference items for it),
1504 	 * otherwise we would have exited earlier with a return value of
1505 	 * BACKREF_FOUND_SHARED after processing delayed references or while
1506 	 * processing inline or keyed references from the extent tree.
1507 	 * The extent may however be indirectly shared through shared subtrees
1508 	 * as a result from creating snapshots, so we determine below what is
1509 	 * its parent node, in case we are dealing with a metadata extent, or
1510 	 * what's the leaf (or leaves), from a fs tree, that has a file extent
1511 	 * item pointing to it in case we are dealing with a data extent.
1512 	 */
1513 	ASSERT(extent_is_shared(sc) == 0);
1514 
1515 	/*
1516 	 * If we are here for a data extent and we have a share_check structure
1517 	 * it means the data extent is not directly shared (does not have
1518 	 * multiple reference items), so we have to check if a path in the fs
1519 	 * tree (going from the root node down to the leaf that has the file
1520 	 * extent item pointing to the data extent) is shared, that is, if any
1521 	 * of the extent buffers in the path is referenced by other trees.
1522 	 */
1523 	if (sc && ctx->bytenr == sc->data_bytenr) {
1524 		/*
1525 		 * If our data extent is from a generation more recent than the
1526 		 * last generation used to snapshot the root, then we know that
1527 		 * it can not be shared through subtrees, so we can skip
1528 		 * resolving indirect references, there's no point in
1529 		 * determining the extent buffers for the path from the fs tree
1530 		 * root node down to the leaf that has the file extent item that
1531 		 * points to the data extent.
1532 		 */
1533 		if (sc->data_extent_gen >
1534 		    btrfs_root_last_snapshot(&sc->root->root_item)) {
1535 			ret = BACKREF_FOUND_NOT_SHARED;
1536 			goto out;
1537 		}
1538 
1539 		/*
1540 		 * If we are only determining if a data extent is shared or not
1541 		 * and the corresponding file extent item is located in the same
1542 		 * leaf as the previous file extent item, we can skip resolving
1543 		 * indirect references for a data extent, since the fs tree path
1544 		 * is the same (same leaf, so same path). We skip as long as the
1545 		 * cached result for the leaf is valid and only if there's only
1546 		 * one file extent item pointing to the data extent, because in
1547 		 * the case of multiple file extent items, they may be located
1548 		 * in different leaves and therefore we have multiple paths.
1549 		 */
1550 		if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1551 		    sc->self_ref_count == 1) {
1552 			bool cached;
1553 			bool is_shared;
1554 
1555 			cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1556 						     sc->ctx->curr_leaf_bytenr,
1557 						     0, &is_shared);
1558 			if (cached) {
1559 				if (is_shared)
1560 					ret = BACKREF_FOUND_SHARED;
1561 				else
1562 					ret = BACKREF_FOUND_NOT_SHARED;
1563 				goto out;
1564 			}
1565 		}
1566 	}
1567 
1568 	btrfs_release_path(path);
1569 
1570 	ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0);
1571 	if (ret)
1572 		goto out;
1573 
1574 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1575 
1576 	ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
1577 	if (ret)
1578 		goto out;
1579 
1580 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1581 
1582 	/*
1583 	 * This walks the tree of merged and resolved refs. Tree blocks are
1584 	 * read in as needed. Unique entries are added to the ulist, and
1585 	 * the list of found roots is updated.
1586 	 *
1587 	 * We release the entire tree in one go before returning.
1588 	 */
1589 	node = rb_first_cached(&preftrees.direct.root);
1590 	while (node) {
1591 		ref = rb_entry(node, struct prelim_ref, rbnode);
1592 		node = rb_next(&ref->rbnode);
1593 		/*
1594 		 * ref->count < 0 can happen here if there are delayed
1595 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1596 		 * prelim_ref_insert() relies on this when merging
1597 		 * identical refs to keep the overall count correct.
1598 		 * prelim_ref_insert() will merge only those refs
1599 		 * which compare identically.  Any refs having
1600 		 * e.g. different offsets would not be merged,
1601 		 * and would retain their original ref->count < 0.
1602 		 */
1603 		if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1604 			/* no parent == root of tree */
1605 			ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
1606 			if (ret < 0)
1607 				goto out;
1608 		}
1609 		if (ref->count && ref->parent) {
1610 			if (!ctx->skip_inode_ref_list && !ref->inode_list &&
1611 			    ref->level == 0) {
1612 				struct btrfs_tree_parent_check check = { 0 };
1613 				struct extent_buffer *eb;
1614 
1615 				check.level = ref->level;
1616 
1617 				eb = read_tree_block(ctx->fs_info, ref->parent,
1618 						     &check);
1619 				if (IS_ERR(eb)) {
1620 					ret = PTR_ERR(eb);
1621 					goto out;
1622 				}
1623 				if (!extent_buffer_uptodate(eb)) {
1624 					free_extent_buffer(eb);
1625 					ret = -EIO;
1626 					goto out;
1627 				}
1628 
1629 				if (!path->skip_locking)
1630 					btrfs_tree_read_lock(eb);
1631 				ret = find_extent_in_eb(ctx, eb, &eie);
1632 				if (!path->skip_locking)
1633 					btrfs_tree_read_unlock(eb);
1634 				free_extent_buffer(eb);
1635 				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1636 				    ret < 0)
1637 					goto out;
1638 				ref->inode_list = eie;
1639 				/*
1640 				 * We transferred the list ownership to the ref,
1641 				 * so set to NULL to avoid a double free in case
1642 				 * an error happens after this.
1643 				 */
1644 				eie = NULL;
1645 			}
1646 			ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
1647 						  ref->inode_list,
1648 						  (void **)&eie, GFP_NOFS);
1649 			if (ret < 0)
1650 				goto out;
1651 			if (!ret && !ctx->skip_inode_ref_list) {
1652 				/*
1653 				 * We've recorded that parent, so we must extend
1654 				 * its inode list here.
1655 				 *
1656 				 * However if there was corruption we may not
1657 				 * have found an eie, return an error in this
1658 				 * case.
1659 				 */
1660 				ASSERT(eie);
1661 				if (!eie) {
1662 					ret = -EUCLEAN;
1663 					goto out;
1664 				}
1665 				while (eie->next)
1666 					eie = eie->next;
1667 				eie->next = ref->inode_list;
1668 			}
1669 			eie = NULL;
1670 			/*
1671 			 * We have transferred the inode list ownership from
1672 			 * this ref to the ref we added to the 'refs' ulist.
1673 			 * So set this ref's inode list to NULL to avoid
1674 			 * use-after-free when our caller uses it or double
1675 			 * frees in case an error happens before we return.
1676 			 */
1677 			ref->inode_list = NULL;
1678 		}
1679 		cond_resched();
1680 	}
1681 
1682 out:
1683 	btrfs_free_path(path);
1684 
1685 	prelim_release(&preftrees.direct);
1686 	prelim_release(&preftrees.indirect);
1687 	prelim_release(&preftrees.indirect_missing_keys);
1688 
1689 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1690 		free_inode_elem_list(eie);
1691 	return ret;
1692 }
1693 
1694 /*
1695  * Finds all leaves with a reference to the specified combination of
1696  * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1697  * added to the ulist at @ctx->refs, and that ulist is allocated by this
1698  * function. The caller should free the ulist with free_leaf_list() if
1699  * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is
1700  * enough.
1701  *
1702  * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1703  */
1704 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1705 {
1706 	int ret;
1707 
1708 	ASSERT(ctx->refs == NULL);
1709 
1710 	ctx->refs = ulist_alloc(GFP_NOFS);
1711 	if (!ctx->refs)
1712 		return -ENOMEM;
1713 
1714 	ret = find_parent_nodes(ctx, NULL);
1715 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1716 	    (ret < 0 && ret != -ENOENT)) {
1717 		free_leaf_list(ctx->refs);
1718 		ctx->refs = NULL;
1719 		return ret;
1720 	}
1721 
1722 	return 0;
1723 }
1724 
1725 /*
1726  * Walk all backrefs for a given extent to find all roots that reference this
1727  * extent. Walking a backref means finding all extents that reference this
1728  * extent and in turn walk the backrefs of those, too. Naturally this is a
1729  * recursive process, but here it is implemented in an iterative fashion: We
1730  * find all referencing extents for the extent in question and put them on a
1731  * list. In turn, we find all referencing extents for those, further appending
1732  * to the list. The way we iterate the list allows adding more elements after
1733  * the current while iterating. The process stops when we reach the end of the
1734  * list.
1735  *
1736  * Found roots are added to @ctx->roots, which is allocated by this function if
1737  * it points to NULL, in which case the caller is responsible for freeing it
1738  * after it's not needed anymore.
1739  * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1740  * ulist to do temporary work, and frees it before returning.
1741  *
1742  * Returns 0 on success, < 0 on error.
1743  */
1744 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1745 {
1746 	const u64 orig_bytenr = ctx->bytenr;
1747 	const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list;
1748 	bool roots_ulist_allocated = false;
1749 	struct ulist_iterator uiter;
1750 	int ret = 0;
1751 
1752 	ASSERT(ctx->refs == NULL);
1753 
1754 	ctx->refs = ulist_alloc(GFP_NOFS);
1755 	if (!ctx->refs)
1756 		return -ENOMEM;
1757 
1758 	if (!ctx->roots) {
1759 		ctx->roots = ulist_alloc(GFP_NOFS);
1760 		if (!ctx->roots) {
1761 			ulist_free(ctx->refs);
1762 			ctx->refs = NULL;
1763 			return -ENOMEM;
1764 		}
1765 		roots_ulist_allocated = true;
1766 	}
1767 
1768 	ctx->skip_inode_ref_list = true;
1769 
1770 	ULIST_ITER_INIT(&uiter);
1771 	while (1) {
1772 		struct ulist_node *node;
1773 
1774 		ret = find_parent_nodes(ctx, NULL);
1775 		if (ret < 0 && ret != -ENOENT) {
1776 			if (roots_ulist_allocated) {
1777 				ulist_free(ctx->roots);
1778 				ctx->roots = NULL;
1779 			}
1780 			break;
1781 		}
1782 		ret = 0;
1783 		node = ulist_next(ctx->refs, &uiter);
1784 		if (!node)
1785 			break;
1786 		ctx->bytenr = node->val;
1787 		cond_resched();
1788 	}
1789 
1790 	ulist_free(ctx->refs);
1791 	ctx->refs = NULL;
1792 	ctx->bytenr = orig_bytenr;
1793 	ctx->skip_inode_ref_list = orig_skip_inode_ref_list;
1794 
1795 	return ret;
1796 }
1797 
1798 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1799 			 bool skip_commit_root_sem)
1800 {
1801 	int ret;
1802 
1803 	if (!ctx->trans && !skip_commit_root_sem)
1804 		down_read(&ctx->fs_info->commit_root_sem);
1805 	ret = btrfs_find_all_roots_safe(ctx);
1806 	if (!ctx->trans && !skip_commit_root_sem)
1807 		up_read(&ctx->fs_info->commit_root_sem);
1808 	return ret;
1809 }
1810 
1811 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1812 {
1813 	struct btrfs_backref_share_check_ctx *ctx;
1814 
1815 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1816 	if (!ctx)
1817 		return NULL;
1818 
1819 	ulist_init(&ctx->refs);
1820 
1821 	return ctx;
1822 }
1823 
1824 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1825 {
1826 	if (!ctx)
1827 		return;
1828 
1829 	ulist_release(&ctx->refs);
1830 	kfree(ctx);
1831 }
1832 
1833 /*
1834  * Check if a data extent is shared or not.
1835  *
1836  * @inode:       The inode whose extent we are checking.
1837  * @bytenr:      Logical bytenr of the extent we are checking.
1838  * @extent_gen:  Generation of the extent (file extent item) or 0 if it is
1839  *               not known.
1840  * @ctx:         A backref sharedness check context.
1841  *
1842  * btrfs_is_data_extent_shared uses the backref walking code but will short
1843  * circuit as soon as it finds a root or inode that doesn't match the
1844  * one passed in. This provides a significant performance benefit for
1845  * callers (such as fiemap) which want to know whether the extent is
1846  * shared but do not need a ref count.
1847  *
1848  * This attempts to attach to the running transaction in order to account for
1849  * delayed refs, but continues on even when no running transaction exists.
1850  *
1851  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1852  */
1853 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1854 				u64 extent_gen,
1855 				struct btrfs_backref_share_check_ctx *ctx)
1856 {
1857 	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1858 	struct btrfs_root *root = inode->root;
1859 	struct btrfs_fs_info *fs_info = root->fs_info;
1860 	struct btrfs_trans_handle *trans;
1861 	struct ulist_iterator uiter;
1862 	struct ulist_node *node;
1863 	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1864 	int ret = 0;
1865 	struct share_check shared = {
1866 		.ctx = ctx,
1867 		.root = root,
1868 		.inum = btrfs_ino(inode),
1869 		.data_bytenr = bytenr,
1870 		.data_extent_gen = extent_gen,
1871 		.share_count = 0,
1872 		.self_ref_count = 0,
1873 		.have_delayed_delete_refs = false,
1874 	};
1875 	int level;
1876 	bool leaf_cached;
1877 	bool leaf_is_shared;
1878 
1879 	for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1880 		if (ctx->prev_extents_cache[i].bytenr == bytenr)
1881 			return ctx->prev_extents_cache[i].is_shared;
1882 	}
1883 
1884 	ulist_init(&ctx->refs);
1885 
1886 	trans = btrfs_join_transaction_nostart(root);
1887 	if (IS_ERR(trans)) {
1888 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1889 			ret = PTR_ERR(trans);
1890 			goto out;
1891 		}
1892 		trans = NULL;
1893 		down_read(&fs_info->commit_root_sem);
1894 	} else {
1895 		btrfs_get_tree_mod_seq(fs_info, &elem);
1896 		walk_ctx.time_seq = elem.seq;
1897 	}
1898 
1899 	ctx->use_path_cache = true;
1900 
1901 	/*
1902 	 * We may have previously determined that the current leaf is shared.
1903 	 * If it is, then we have a data extent that is shared due to a shared
1904 	 * subtree (caused by snapshotting) and we don't need to check for data
1905 	 * backrefs. If the leaf is not shared, then we must do backref walking
1906 	 * to determine if the data extent is shared through reflinks.
1907 	 */
1908 	leaf_cached = lookup_backref_shared_cache(ctx, root,
1909 						  ctx->curr_leaf_bytenr, 0,
1910 						  &leaf_is_shared);
1911 	if (leaf_cached && leaf_is_shared) {
1912 		ret = 1;
1913 		goto out_trans;
1914 	}
1915 
1916 	walk_ctx.skip_inode_ref_list = true;
1917 	walk_ctx.trans = trans;
1918 	walk_ctx.fs_info = fs_info;
1919 	walk_ctx.refs = &ctx->refs;
1920 
1921 	/* -1 means we are in the bytenr of the data extent. */
1922 	level = -1;
1923 	ULIST_ITER_INIT(&uiter);
1924 	while (1) {
1925 		const unsigned long prev_ref_count = ctx->refs.nnodes;
1926 
1927 		walk_ctx.bytenr = bytenr;
1928 		ret = find_parent_nodes(&walk_ctx, &shared);
1929 		if (ret == BACKREF_FOUND_SHARED ||
1930 		    ret == BACKREF_FOUND_NOT_SHARED) {
1931 			/* If shared must return 1, otherwise return 0. */
1932 			ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1933 			if (level >= 0)
1934 				store_backref_shared_cache(ctx, root, bytenr,
1935 							   level, ret == 1);
1936 			break;
1937 		}
1938 		if (ret < 0 && ret != -ENOENT)
1939 			break;
1940 		ret = 0;
1941 
1942 		/*
1943 		 * More than one extent buffer (bytenr) may have been added to
1944 		 * the ctx->refs ulist, in which case we have to check multiple
1945 		 * tree paths in case the first one is not shared, so we can not
1946 		 * use the path cache which is made for a single path. Multiple
1947 		 * extent buffers at the current level happen when:
1948 		 *
1949 		 * 1) level -1, the data extent: If our data extent was not
1950 		 *    directly shared (without multiple reference items), then
1951 		 *    it might have a single reference item with a count > 1 for
1952 		 *    the same offset, which means there are 2 (or more) file
1953 		 *    extent items that point to the data extent - this happens
1954 		 *    when a file extent item needs to be split and then one
1955 		 *    item gets moved to another leaf due to a b+tree leaf split
1956 		 *    when inserting some item. In this case the file extent
1957 		 *    items may be located in different leaves and therefore
1958 		 *    some of the leaves may be referenced through shared
1959 		 *    subtrees while others are not. Since our extent buffer
1960 		 *    cache only works for a single path (by far the most common
1961 		 *    case and simpler to deal with), we can not use it if we
1962 		 *    have multiple leaves (which implies multiple paths).
1963 		 *
1964 		 * 2) level >= 0, a tree node/leaf: We can have a mix of direct
1965 		 *    and indirect references on a b+tree node/leaf, so we have
1966 		 *    to check multiple paths, and the extent buffer (the
1967 		 *    current bytenr) may be shared or not. One example is
1968 		 *    during relocation as we may get a shared tree block ref
1969 		 *    (direct ref) and a non-shared tree block ref (indirect
1970 		 *    ref) for the same node/leaf.
1971 		 */
1972 		if ((ctx->refs.nnodes - prev_ref_count) > 1)
1973 			ctx->use_path_cache = false;
1974 
1975 		if (level >= 0)
1976 			store_backref_shared_cache(ctx, root, bytenr,
1977 						   level, false);
1978 		node = ulist_next(&ctx->refs, &uiter);
1979 		if (!node)
1980 			break;
1981 		bytenr = node->val;
1982 		if (ctx->use_path_cache) {
1983 			bool is_shared;
1984 			bool cached;
1985 
1986 			level++;
1987 			cached = lookup_backref_shared_cache(ctx, root, bytenr,
1988 							     level, &is_shared);
1989 			if (cached) {
1990 				ret = (is_shared ? 1 : 0);
1991 				break;
1992 			}
1993 		}
1994 		shared.share_count = 0;
1995 		shared.have_delayed_delete_refs = false;
1996 		cond_resched();
1997 	}
1998 
1999 	/*
2000 	 * If the path cache is disabled, then it means at some tree level we
2001 	 * got multiple parents due to a mix of direct and indirect backrefs or
2002 	 * multiple leaves with file extent items pointing to the same data
2003 	 * extent. We have to invalidate the cache and cache only the sharedness
2004 	 * result for the levels where we got only one node/reference.
2005 	 */
2006 	if (!ctx->use_path_cache) {
2007 		int i = 0;
2008 
2009 		level--;
2010 		if (ret >= 0 && level >= 0) {
2011 			bytenr = ctx->path_cache_entries[level].bytenr;
2012 			ctx->use_path_cache = true;
2013 			store_backref_shared_cache(ctx, root, bytenr, level, ret);
2014 			i = level + 1;
2015 		}
2016 
2017 		for ( ; i < BTRFS_MAX_LEVEL; i++)
2018 			ctx->path_cache_entries[i].bytenr = 0;
2019 	}
2020 
2021 	/*
2022 	 * Cache the sharedness result for the data extent if we know our inode
2023 	 * has more than 1 file extent item that refers to the data extent.
2024 	 */
2025 	if (ret >= 0 && shared.self_ref_count > 1) {
2026 		int slot = ctx->prev_extents_cache_slot;
2027 
2028 		ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2029 		ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2030 
2031 		slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2032 		ctx->prev_extents_cache_slot = slot;
2033 	}
2034 
2035 out_trans:
2036 	if (trans) {
2037 		btrfs_put_tree_mod_seq(fs_info, &elem);
2038 		btrfs_end_transaction(trans);
2039 	} else {
2040 		up_read(&fs_info->commit_root_sem);
2041 	}
2042 out:
2043 	ulist_release(&ctx->refs);
2044 	ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2045 
2046 	return ret;
2047 }
2048 
2049 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2050 			  u64 start_off, struct btrfs_path *path,
2051 			  struct btrfs_inode_extref **ret_extref,
2052 			  u64 *found_off)
2053 {
2054 	int ret, slot;
2055 	struct btrfs_key key;
2056 	struct btrfs_key found_key;
2057 	struct btrfs_inode_extref *extref;
2058 	const struct extent_buffer *leaf;
2059 	unsigned long ptr;
2060 
2061 	key.objectid = inode_objectid;
2062 	key.type = BTRFS_INODE_EXTREF_KEY;
2063 	key.offset = start_off;
2064 
2065 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2066 	if (ret < 0)
2067 		return ret;
2068 
2069 	while (1) {
2070 		leaf = path->nodes[0];
2071 		slot = path->slots[0];
2072 		if (slot >= btrfs_header_nritems(leaf)) {
2073 			/*
2074 			 * If the item at offset is not found,
2075 			 * btrfs_search_slot will point us to the slot
2076 			 * where it should be inserted. In our case
2077 			 * that will be the slot directly before the
2078 			 * next INODE_REF_KEY_V2 item. In the case
2079 			 * that we're pointing to the last slot in a
2080 			 * leaf, we must move one leaf over.
2081 			 */
2082 			ret = btrfs_next_leaf(root, path);
2083 			if (ret) {
2084 				if (ret >= 1)
2085 					ret = -ENOENT;
2086 				break;
2087 			}
2088 			continue;
2089 		}
2090 
2091 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2092 
2093 		/*
2094 		 * Check that we're still looking at an extended ref key for
2095 		 * this particular objectid. If we have different
2096 		 * objectid or type then there are no more to be found
2097 		 * in the tree and we can exit.
2098 		 */
2099 		ret = -ENOENT;
2100 		if (found_key.objectid != inode_objectid)
2101 			break;
2102 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2103 			break;
2104 
2105 		ret = 0;
2106 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2107 		extref = (struct btrfs_inode_extref *)ptr;
2108 		*ret_extref = extref;
2109 		if (found_off)
2110 			*found_off = found_key.offset;
2111 		break;
2112 	}
2113 
2114 	return ret;
2115 }
2116 
2117 /*
2118  * this iterates to turn a name (from iref/extref) into a full filesystem path.
2119  * Elements of the path are separated by '/' and the path is guaranteed to be
2120  * 0-terminated. the path is only given within the current file system.
2121  * Therefore, it never starts with a '/'. the caller is responsible to provide
2122  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2123  * the start point of the resulting string is returned. this pointer is within
2124  * dest, normally.
2125  * in case the path buffer would overflow, the pointer is decremented further
2126  * as if output was written to the buffer, though no more output is actually
2127  * generated. that way, the caller can determine how much space would be
2128  * required for the path to fit into the buffer. in that case, the returned
2129  * value will be smaller than dest. callers must check this!
2130  */
2131 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2132 			u32 name_len, unsigned long name_off,
2133 			struct extent_buffer *eb_in, u64 parent,
2134 			char *dest, u32 size)
2135 {
2136 	int slot;
2137 	u64 next_inum;
2138 	int ret;
2139 	s64 bytes_left = ((s64)size) - 1;
2140 	struct extent_buffer *eb = eb_in;
2141 	struct btrfs_key found_key;
2142 	struct btrfs_inode_ref *iref;
2143 
2144 	if (bytes_left >= 0)
2145 		dest[bytes_left] = '\0';
2146 
2147 	while (1) {
2148 		bytes_left -= name_len;
2149 		if (bytes_left >= 0)
2150 			read_extent_buffer(eb, dest + bytes_left,
2151 					   name_off, name_len);
2152 		if (eb != eb_in) {
2153 			if (!path->skip_locking)
2154 				btrfs_tree_read_unlock(eb);
2155 			free_extent_buffer(eb);
2156 		}
2157 		ret = btrfs_find_item(fs_root, path, parent, 0,
2158 				BTRFS_INODE_REF_KEY, &found_key);
2159 		if (ret > 0)
2160 			ret = -ENOENT;
2161 		if (ret)
2162 			break;
2163 
2164 		next_inum = found_key.offset;
2165 
2166 		/* regular exit ahead */
2167 		if (parent == next_inum)
2168 			break;
2169 
2170 		slot = path->slots[0];
2171 		eb = path->nodes[0];
2172 		/* make sure we can use eb after releasing the path */
2173 		if (eb != eb_in) {
2174 			path->nodes[0] = NULL;
2175 			path->locks[0] = 0;
2176 		}
2177 		btrfs_release_path(path);
2178 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2179 
2180 		name_len = btrfs_inode_ref_name_len(eb, iref);
2181 		name_off = (unsigned long)(iref + 1);
2182 
2183 		parent = next_inum;
2184 		--bytes_left;
2185 		if (bytes_left >= 0)
2186 			dest[bytes_left] = '/';
2187 	}
2188 
2189 	btrfs_release_path(path);
2190 
2191 	if (ret)
2192 		return ERR_PTR(ret);
2193 
2194 	return dest + bytes_left;
2195 }
2196 
2197 /*
2198  * this makes the path point to (logical EXTENT_ITEM *)
2199  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2200  * tree blocks and <0 on error.
2201  */
2202 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2203 			struct btrfs_path *path, struct btrfs_key *found_key,
2204 			u64 *flags_ret)
2205 {
2206 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
2207 	int ret;
2208 	u64 flags;
2209 	u64 size = 0;
2210 	u32 item_size;
2211 	const struct extent_buffer *eb;
2212 	struct btrfs_extent_item *ei;
2213 	struct btrfs_key key;
2214 
2215 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2216 		key.type = BTRFS_METADATA_ITEM_KEY;
2217 	else
2218 		key.type = BTRFS_EXTENT_ITEM_KEY;
2219 	key.objectid = logical;
2220 	key.offset = (u64)-1;
2221 
2222 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2223 	if (ret < 0)
2224 		return ret;
2225 	if (ret == 0) {
2226 		/*
2227 		 * Key with offset -1 found, there would have to exist an extent
2228 		 * item with such offset, but this is out of the valid range.
2229 		 */
2230 		return -EUCLEAN;
2231 	}
2232 
2233 	ret = btrfs_previous_extent_item(extent_root, path, 0);
2234 	if (ret) {
2235 		if (ret > 0)
2236 			ret = -ENOENT;
2237 		return ret;
2238 	}
2239 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
2240 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2241 		size = fs_info->nodesize;
2242 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2243 		size = found_key->offset;
2244 
2245 	if (found_key->objectid > logical ||
2246 	    found_key->objectid + size <= logical) {
2247 		btrfs_debug(fs_info,
2248 			"logical %llu is not within any extent", logical);
2249 		return -ENOENT;
2250 	}
2251 
2252 	eb = path->nodes[0];
2253 	item_size = btrfs_item_size(eb, path->slots[0]);
2254 
2255 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2256 	flags = btrfs_extent_flags(eb, ei);
2257 
2258 	btrfs_debug(fs_info,
2259 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2260 		 logical, logical - found_key->objectid, found_key->objectid,
2261 		 found_key->offset, flags, item_size);
2262 
2263 	WARN_ON(!flags_ret);
2264 	if (flags_ret) {
2265 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2266 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2267 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
2268 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
2269 		else
2270 			BUG();
2271 		return 0;
2272 	}
2273 
2274 	return -EIO;
2275 }
2276 
2277 /*
2278  * helper function to iterate extent inline refs. ptr must point to a 0 value
2279  * for the first call and may be modified. it is used to track state.
2280  * if more refs exist, 0 is returned and the next call to
2281  * get_extent_inline_ref must pass the modified ptr parameter to get the
2282  * next ref. after the last ref was processed, 1 is returned.
2283  * returns <0 on error
2284  */
2285 static int get_extent_inline_ref(unsigned long *ptr,
2286 				 const struct extent_buffer *eb,
2287 				 const struct btrfs_key *key,
2288 				 const struct btrfs_extent_item *ei,
2289 				 u32 item_size,
2290 				 struct btrfs_extent_inline_ref **out_eiref,
2291 				 int *out_type)
2292 {
2293 	unsigned long end;
2294 	u64 flags;
2295 	struct btrfs_tree_block_info *info;
2296 
2297 	if (!*ptr) {
2298 		/* first call */
2299 		flags = btrfs_extent_flags(eb, ei);
2300 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2301 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
2302 				/* a skinny metadata extent */
2303 				*out_eiref =
2304 				     (struct btrfs_extent_inline_ref *)(ei + 1);
2305 			} else {
2306 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2307 				info = (struct btrfs_tree_block_info *)(ei + 1);
2308 				*out_eiref =
2309 				   (struct btrfs_extent_inline_ref *)(info + 1);
2310 			}
2311 		} else {
2312 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2313 		}
2314 		*ptr = (unsigned long)*out_eiref;
2315 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2316 			return -ENOENT;
2317 	}
2318 
2319 	end = (unsigned long)ei + item_size;
2320 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2321 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2322 						     BTRFS_REF_TYPE_ANY);
2323 	if (*out_type == BTRFS_REF_TYPE_INVALID)
2324 		return -EUCLEAN;
2325 
2326 	*ptr += btrfs_extent_inline_ref_size(*out_type);
2327 	WARN_ON(*ptr > end);
2328 	if (*ptr == end)
2329 		return 1; /* last */
2330 
2331 	return 0;
2332 }
2333 
2334 /*
2335  * reads the tree block backref for an extent. tree level and root are returned
2336  * through out_level and out_root. ptr must point to a 0 value for the first
2337  * call and may be modified (see get_extent_inline_ref comment).
2338  * returns 0 if data was provided, 1 if there was no more data to provide or
2339  * <0 on error.
2340  */
2341 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2342 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
2343 			    u32 item_size, u64 *out_root, u8 *out_level)
2344 {
2345 	int ret;
2346 	int type;
2347 	struct btrfs_extent_inline_ref *eiref;
2348 
2349 	if (*ptr == (unsigned long)-1)
2350 		return 1;
2351 
2352 	while (1) {
2353 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2354 					      &eiref, &type);
2355 		if (ret < 0)
2356 			return ret;
2357 
2358 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2359 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
2360 			break;
2361 
2362 		if (ret == 1)
2363 			return 1;
2364 	}
2365 
2366 	/* we can treat both ref types equally here */
2367 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2368 
2369 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2370 		struct btrfs_tree_block_info *info;
2371 
2372 		info = (struct btrfs_tree_block_info *)(ei + 1);
2373 		*out_level = btrfs_tree_block_level(eb, info);
2374 	} else {
2375 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2376 		*out_level = (u8)key->offset;
2377 	}
2378 
2379 	if (ret == 1)
2380 		*ptr = (unsigned long)-1;
2381 
2382 	return 0;
2383 }
2384 
2385 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2386 			     struct extent_inode_elem *inode_list,
2387 			     u64 root, u64 extent_item_objectid,
2388 			     iterate_extent_inodes_t *iterate, void *ctx)
2389 {
2390 	struct extent_inode_elem *eie;
2391 	int ret = 0;
2392 
2393 	for (eie = inode_list; eie; eie = eie->next) {
2394 		btrfs_debug(fs_info,
2395 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2396 			    extent_item_objectid, eie->inum,
2397 			    eie->offset, root);
2398 		ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2399 		if (ret) {
2400 			btrfs_debug(fs_info,
2401 				    "stopping iteration for %llu due to ret=%d",
2402 				    extent_item_objectid, ret);
2403 			break;
2404 		}
2405 	}
2406 
2407 	return ret;
2408 }
2409 
2410 /*
2411  * calls iterate() for every inode that references the extent identified by
2412  * the given parameters.
2413  * when the iterator function returns a non-zero value, iteration stops.
2414  */
2415 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2416 			  bool search_commit_root,
2417 			  iterate_extent_inodes_t *iterate, void *user_ctx)
2418 {
2419 	int ret;
2420 	struct ulist *refs;
2421 	struct ulist_node *ref_node;
2422 	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2423 	struct ulist_iterator ref_uiter;
2424 
2425 	btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2426 		    ctx->bytenr);
2427 
2428 	ASSERT(ctx->trans == NULL);
2429 	ASSERT(ctx->roots == NULL);
2430 
2431 	if (!search_commit_root) {
2432 		struct btrfs_trans_handle *trans;
2433 
2434 		trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
2435 		if (IS_ERR(trans)) {
2436 			if (PTR_ERR(trans) != -ENOENT &&
2437 			    PTR_ERR(trans) != -EROFS)
2438 				return PTR_ERR(trans);
2439 			trans = NULL;
2440 		}
2441 		ctx->trans = trans;
2442 	}
2443 
2444 	if (ctx->trans) {
2445 		btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2446 		ctx->time_seq = seq_elem.seq;
2447 	} else {
2448 		down_read(&ctx->fs_info->commit_root_sem);
2449 	}
2450 
2451 	ret = btrfs_find_all_leafs(ctx);
2452 	if (ret)
2453 		goto out;
2454 	refs = ctx->refs;
2455 	ctx->refs = NULL;
2456 
2457 	ULIST_ITER_INIT(&ref_uiter);
2458 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2459 		const u64 leaf_bytenr = ref_node->val;
2460 		struct ulist_node *root_node;
2461 		struct ulist_iterator root_uiter;
2462 		struct extent_inode_elem *inode_list;
2463 
2464 		inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2465 
2466 		if (ctx->cache_lookup) {
2467 			const u64 *root_ids;
2468 			int root_count;
2469 			bool cached;
2470 
2471 			cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2472 						   &root_ids, &root_count);
2473 			if (cached) {
2474 				for (int i = 0; i < root_count; i++) {
2475 					ret = iterate_leaf_refs(ctx->fs_info,
2476 								inode_list,
2477 								root_ids[i],
2478 								leaf_bytenr,
2479 								iterate,
2480 								user_ctx);
2481 					if (ret)
2482 						break;
2483 				}
2484 				continue;
2485 			}
2486 		}
2487 
2488 		if (!ctx->roots) {
2489 			ctx->roots = ulist_alloc(GFP_NOFS);
2490 			if (!ctx->roots) {
2491 				ret = -ENOMEM;
2492 				break;
2493 			}
2494 		}
2495 
2496 		ctx->bytenr = leaf_bytenr;
2497 		ret = btrfs_find_all_roots_safe(ctx);
2498 		if (ret)
2499 			break;
2500 
2501 		if (ctx->cache_store)
2502 			ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2503 
2504 		ULIST_ITER_INIT(&root_uiter);
2505 		while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2506 			btrfs_debug(ctx->fs_info,
2507 				    "root %llu references leaf %llu, data list %#llx",
2508 				    root_node->val, ref_node->val,
2509 				    ref_node->aux);
2510 			ret = iterate_leaf_refs(ctx->fs_info, inode_list,
2511 						root_node->val, ctx->bytenr,
2512 						iterate, user_ctx);
2513 		}
2514 		ulist_reinit(ctx->roots);
2515 	}
2516 
2517 	free_leaf_list(refs);
2518 out:
2519 	if (ctx->trans) {
2520 		btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2521 		btrfs_end_transaction(ctx->trans);
2522 		ctx->trans = NULL;
2523 	} else {
2524 		up_read(&ctx->fs_info->commit_root_sem);
2525 	}
2526 
2527 	ulist_free(ctx->roots);
2528 	ctx->roots = NULL;
2529 
2530 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2531 		ret = 0;
2532 
2533 	return ret;
2534 }
2535 
2536 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2537 {
2538 	struct btrfs_data_container *inodes = ctx;
2539 	const size_t c = 3 * sizeof(u64);
2540 
2541 	if (inodes->bytes_left >= c) {
2542 		inodes->bytes_left -= c;
2543 		inodes->val[inodes->elem_cnt] = inum;
2544 		inodes->val[inodes->elem_cnt + 1] = offset;
2545 		inodes->val[inodes->elem_cnt + 2] = root;
2546 		inodes->elem_cnt += 3;
2547 	} else {
2548 		inodes->bytes_missing += c - inodes->bytes_left;
2549 		inodes->bytes_left = 0;
2550 		inodes->elem_missed += 3;
2551 	}
2552 
2553 	return 0;
2554 }
2555 
2556 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2557 				struct btrfs_path *path,
2558 				void *ctx, bool ignore_offset)
2559 {
2560 	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2561 	int ret;
2562 	u64 flags = 0;
2563 	struct btrfs_key found_key;
2564 	int search_commit_root = path->search_commit_root;
2565 
2566 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2567 	btrfs_release_path(path);
2568 	if (ret < 0)
2569 		return ret;
2570 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2571 		return -EINVAL;
2572 
2573 	walk_ctx.bytenr = found_key.objectid;
2574 	if (ignore_offset)
2575 		walk_ctx.ignore_extent_item_pos = true;
2576 	else
2577 		walk_ctx.extent_item_pos = logical - found_key.objectid;
2578 	walk_ctx.fs_info = fs_info;
2579 
2580 	return iterate_extent_inodes(&walk_ctx, search_commit_root,
2581 				     build_ino_list, ctx);
2582 }
2583 
2584 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2585 			 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2586 
2587 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2588 {
2589 	int ret = 0;
2590 	int slot;
2591 	u32 cur;
2592 	u32 len;
2593 	u32 name_len;
2594 	u64 parent = 0;
2595 	int found = 0;
2596 	struct btrfs_root *fs_root = ipath->fs_root;
2597 	struct btrfs_path *path = ipath->btrfs_path;
2598 	struct extent_buffer *eb;
2599 	struct btrfs_inode_ref *iref;
2600 	struct btrfs_key found_key;
2601 
2602 	while (!ret) {
2603 		ret = btrfs_find_item(fs_root, path, inum,
2604 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2605 				&found_key);
2606 
2607 		if (ret < 0)
2608 			break;
2609 		if (ret) {
2610 			ret = found ? 0 : -ENOENT;
2611 			break;
2612 		}
2613 		++found;
2614 
2615 		parent = found_key.offset;
2616 		slot = path->slots[0];
2617 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2618 		if (!eb) {
2619 			ret = -ENOMEM;
2620 			break;
2621 		}
2622 		btrfs_release_path(path);
2623 
2624 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2625 
2626 		for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2627 			name_len = btrfs_inode_ref_name_len(eb, iref);
2628 			/* path must be released before calling iterate()! */
2629 			btrfs_debug(fs_root->fs_info,
2630 				"following ref at offset %u for inode %llu in tree %llu",
2631 				cur, found_key.objectid,
2632 				fs_root->root_key.objectid);
2633 			ret = inode_to_path(parent, name_len,
2634 				      (unsigned long)(iref + 1), eb, ipath);
2635 			if (ret)
2636 				break;
2637 			len = sizeof(*iref) + name_len;
2638 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2639 		}
2640 		free_extent_buffer(eb);
2641 	}
2642 
2643 	btrfs_release_path(path);
2644 
2645 	return ret;
2646 }
2647 
2648 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2649 {
2650 	int ret;
2651 	int slot;
2652 	u64 offset = 0;
2653 	u64 parent;
2654 	int found = 0;
2655 	struct btrfs_root *fs_root = ipath->fs_root;
2656 	struct btrfs_path *path = ipath->btrfs_path;
2657 	struct extent_buffer *eb;
2658 	struct btrfs_inode_extref *extref;
2659 	u32 item_size;
2660 	u32 cur_offset;
2661 	unsigned long ptr;
2662 
2663 	while (1) {
2664 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2665 					    &offset);
2666 		if (ret < 0)
2667 			break;
2668 		if (ret) {
2669 			ret = found ? 0 : -ENOENT;
2670 			break;
2671 		}
2672 		++found;
2673 
2674 		slot = path->slots[0];
2675 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2676 		if (!eb) {
2677 			ret = -ENOMEM;
2678 			break;
2679 		}
2680 		btrfs_release_path(path);
2681 
2682 		item_size = btrfs_item_size(eb, slot);
2683 		ptr = btrfs_item_ptr_offset(eb, slot);
2684 		cur_offset = 0;
2685 
2686 		while (cur_offset < item_size) {
2687 			u32 name_len;
2688 
2689 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2690 			parent = btrfs_inode_extref_parent(eb, extref);
2691 			name_len = btrfs_inode_extref_name_len(eb, extref);
2692 			ret = inode_to_path(parent, name_len,
2693 				      (unsigned long)&extref->name, eb, ipath);
2694 			if (ret)
2695 				break;
2696 
2697 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2698 			cur_offset += sizeof(*extref);
2699 		}
2700 		free_extent_buffer(eb);
2701 
2702 		offset++;
2703 	}
2704 
2705 	btrfs_release_path(path);
2706 
2707 	return ret;
2708 }
2709 
2710 /*
2711  * returns 0 if the path could be dumped (probably truncated)
2712  * returns <0 in case of an error
2713  */
2714 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2715 			 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2716 {
2717 	char *fspath;
2718 	char *fspath_min;
2719 	int i = ipath->fspath->elem_cnt;
2720 	const int s_ptr = sizeof(char *);
2721 	u32 bytes_left;
2722 
2723 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2724 					ipath->fspath->bytes_left - s_ptr : 0;
2725 
2726 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2727 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2728 				   name_off, eb, inum, fspath_min, bytes_left);
2729 	if (IS_ERR(fspath))
2730 		return PTR_ERR(fspath);
2731 
2732 	if (fspath > fspath_min) {
2733 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2734 		++ipath->fspath->elem_cnt;
2735 		ipath->fspath->bytes_left = fspath - fspath_min;
2736 	} else {
2737 		++ipath->fspath->elem_missed;
2738 		ipath->fspath->bytes_missing += fspath_min - fspath;
2739 		ipath->fspath->bytes_left = 0;
2740 	}
2741 
2742 	return 0;
2743 }
2744 
2745 /*
2746  * this dumps all file system paths to the inode into the ipath struct, provided
2747  * is has been created large enough. each path is zero-terminated and accessed
2748  * from ipath->fspath->val[i].
2749  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2750  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2751  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2752  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2753  * have been needed to return all paths.
2754  */
2755 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2756 {
2757 	int ret;
2758 	int found_refs = 0;
2759 
2760 	ret = iterate_inode_refs(inum, ipath);
2761 	if (!ret)
2762 		++found_refs;
2763 	else if (ret != -ENOENT)
2764 		return ret;
2765 
2766 	ret = iterate_inode_extrefs(inum, ipath);
2767 	if (ret == -ENOENT && found_refs)
2768 		return 0;
2769 
2770 	return ret;
2771 }
2772 
2773 struct btrfs_data_container *init_data_container(u32 total_bytes)
2774 {
2775 	struct btrfs_data_container *data;
2776 	size_t alloc_bytes;
2777 
2778 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2779 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2780 	if (!data)
2781 		return ERR_PTR(-ENOMEM);
2782 
2783 	if (total_bytes >= sizeof(*data)) {
2784 		data->bytes_left = total_bytes - sizeof(*data);
2785 		data->bytes_missing = 0;
2786 	} else {
2787 		data->bytes_missing = sizeof(*data) - total_bytes;
2788 		data->bytes_left = 0;
2789 	}
2790 
2791 	data->elem_cnt = 0;
2792 	data->elem_missed = 0;
2793 
2794 	return data;
2795 }
2796 
2797 /*
2798  * allocates space to return multiple file system paths for an inode.
2799  * total_bytes to allocate are passed, note that space usable for actual path
2800  * information will be total_bytes - sizeof(struct inode_fs_paths).
2801  * the returned pointer must be freed with free_ipath() in the end.
2802  */
2803 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2804 					struct btrfs_path *path)
2805 {
2806 	struct inode_fs_paths *ifp;
2807 	struct btrfs_data_container *fspath;
2808 
2809 	fspath = init_data_container(total_bytes);
2810 	if (IS_ERR(fspath))
2811 		return ERR_CAST(fspath);
2812 
2813 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2814 	if (!ifp) {
2815 		kvfree(fspath);
2816 		return ERR_PTR(-ENOMEM);
2817 	}
2818 
2819 	ifp->btrfs_path = path;
2820 	ifp->fspath = fspath;
2821 	ifp->fs_root = fs_root;
2822 
2823 	return ifp;
2824 }
2825 
2826 void free_ipath(struct inode_fs_paths *ipath)
2827 {
2828 	if (!ipath)
2829 		return;
2830 	kvfree(ipath->fspath);
2831 	kfree(ipath);
2832 }
2833 
2834 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2835 {
2836 	struct btrfs_backref_iter *ret;
2837 
2838 	ret = kzalloc(sizeof(*ret), GFP_NOFS);
2839 	if (!ret)
2840 		return NULL;
2841 
2842 	ret->path = btrfs_alloc_path();
2843 	if (!ret->path) {
2844 		kfree(ret);
2845 		return NULL;
2846 	}
2847 
2848 	/* Current backref iterator only supports iteration in commit root */
2849 	ret->path->search_commit_root = 1;
2850 	ret->path->skip_locking = 1;
2851 	ret->fs_info = fs_info;
2852 
2853 	return ret;
2854 }
2855 
2856 static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
2857 {
2858 	iter->bytenr = 0;
2859 	iter->item_ptr = 0;
2860 	iter->cur_ptr = 0;
2861 	iter->end_ptr = 0;
2862 	btrfs_release_path(iter->path);
2863 	memset(&iter->cur_key, 0, sizeof(iter->cur_key));
2864 }
2865 
2866 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2867 {
2868 	struct btrfs_fs_info *fs_info = iter->fs_info;
2869 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2870 	struct btrfs_path *path = iter->path;
2871 	struct btrfs_extent_item *ei;
2872 	struct btrfs_key key;
2873 	int ret;
2874 
2875 	key.objectid = bytenr;
2876 	key.type = BTRFS_METADATA_ITEM_KEY;
2877 	key.offset = (u64)-1;
2878 	iter->bytenr = bytenr;
2879 
2880 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2881 	if (ret < 0)
2882 		return ret;
2883 	if (ret == 0) {
2884 		/*
2885 		 * Key with offset -1 found, there would have to exist an extent
2886 		 * item with such offset, but this is out of the valid range.
2887 		 */
2888 		ret = -EUCLEAN;
2889 		goto release;
2890 	}
2891 	if (path->slots[0] == 0) {
2892 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2893 		ret = -EUCLEAN;
2894 		goto release;
2895 	}
2896 	path->slots[0]--;
2897 
2898 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2899 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2900 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2901 		ret = -ENOENT;
2902 		goto release;
2903 	}
2904 	memcpy(&iter->cur_key, &key, sizeof(key));
2905 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2906 						    path->slots[0]);
2907 	iter->end_ptr = (u32)(iter->item_ptr +
2908 			btrfs_item_size(path->nodes[0], path->slots[0]));
2909 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2910 			    struct btrfs_extent_item);
2911 
2912 	/*
2913 	 * Only support iteration on tree backref yet.
2914 	 *
2915 	 * This is an extra precaution for non skinny-metadata, where
2916 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2917 	 * extent flags to determine if it's a tree block.
2918 	 */
2919 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2920 		ret = -ENOTSUPP;
2921 		goto release;
2922 	}
2923 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2924 
2925 	/* If there is no inline backref, go search for keyed backref */
2926 	if (iter->cur_ptr >= iter->end_ptr) {
2927 		ret = btrfs_next_item(extent_root, path);
2928 
2929 		/* No inline nor keyed ref */
2930 		if (ret > 0) {
2931 			ret = -ENOENT;
2932 			goto release;
2933 		}
2934 		if (ret < 0)
2935 			goto release;
2936 
2937 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2938 				path->slots[0]);
2939 		if (iter->cur_key.objectid != bytenr ||
2940 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2941 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2942 			ret = -ENOENT;
2943 			goto release;
2944 		}
2945 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2946 							   path->slots[0]);
2947 		iter->item_ptr = iter->cur_ptr;
2948 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2949 				      path->nodes[0], path->slots[0]));
2950 	}
2951 
2952 	return 0;
2953 release:
2954 	btrfs_backref_iter_release(iter);
2955 	return ret;
2956 }
2957 
2958 static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter)
2959 {
2960 	if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
2961 	    iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
2962 		return true;
2963 	return false;
2964 }
2965 
2966 /*
2967  * Go to the next backref item of current bytenr, can be either inlined or
2968  * keyed.
2969  *
2970  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2971  *
2972  * Return 0 if we get next backref without problem.
2973  * Return >0 if there is no extra backref for this bytenr.
2974  * Return <0 if there is something wrong happened.
2975  */
2976 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2977 {
2978 	struct extent_buffer *eb = iter->path->nodes[0];
2979 	struct btrfs_root *extent_root;
2980 	struct btrfs_path *path = iter->path;
2981 	struct btrfs_extent_inline_ref *iref;
2982 	int ret;
2983 	u32 size;
2984 
2985 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2986 		/* We're still inside the inline refs */
2987 		ASSERT(iter->cur_ptr < iter->end_ptr);
2988 
2989 		if (btrfs_backref_has_tree_block_info(iter)) {
2990 			/* First tree block info */
2991 			size = sizeof(struct btrfs_tree_block_info);
2992 		} else {
2993 			/* Use inline ref type to determine the size */
2994 			int type;
2995 
2996 			iref = (struct btrfs_extent_inline_ref *)
2997 				((unsigned long)iter->cur_ptr);
2998 			type = btrfs_extent_inline_ref_type(eb, iref);
2999 
3000 			size = btrfs_extent_inline_ref_size(type);
3001 		}
3002 		iter->cur_ptr += size;
3003 		if (iter->cur_ptr < iter->end_ptr)
3004 			return 0;
3005 
3006 		/* All inline items iterated, fall through */
3007 	}
3008 
3009 	/* We're at keyed items, there is no inline item, go to the next one */
3010 	extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
3011 	ret = btrfs_next_item(extent_root, iter->path);
3012 	if (ret)
3013 		return ret;
3014 
3015 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
3016 	if (iter->cur_key.objectid != iter->bytenr ||
3017 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
3018 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
3019 		return 1;
3020 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
3021 					path->slots[0]);
3022 	iter->cur_ptr = iter->item_ptr;
3023 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
3024 						path->slots[0]);
3025 	return 0;
3026 }
3027 
3028 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
3029 			      struct btrfs_backref_cache *cache, bool is_reloc)
3030 {
3031 	int i;
3032 
3033 	cache->rb_root = RB_ROOT;
3034 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3035 		INIT_LIST_HEAD(&cache->pending[i]);
3036 	INIT_LIST_HEAD(&cache->changed);
3037 	INIT_LIST_HEAD(&cache->detached);
3038 	INIT_LIST_HEAD(&cache->leaves);
3039 	INIT_LIST_HEAD(&cache->pending_edge);
3040 	INIT_LIST_HEAD(&cache->useless_node);
3041 	cache->fs_info = fs_info;
3042 	cache->is_reloc = is_reloc;
3043 }
3044 
3045 struct btrfs_backref_node *btrfs_backref_alloc_node(
3046 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
3047 {
3048 	struct btrfs_backref_node *node;
3049 
3050 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3051 	node = kzalloc(sizeof(*node), GFP_NOFS);
3052 	if (!node)
3053 		return node;
3054 
3055 	INIT_LIST_HEAD(&node->list);
3056 	INIT_LIST_HEAD(&node->upper);
3057 	INIT_LIST_HEAD(&node->lower);
3058 	RB_CLEAR_NODE(&node->rb_node);
3059 	cache->nr_nodes++;
3060 	node->level = level;
3061 	node->bytenr = bytenr;
3062 
3063 	return node;
3064 }
3065 
3066 void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
3067 			     struct btrfs_backref_node *node)
3068 {
3069 	if (node) {
3070 		ASSERT(list_empty(&node->list));
3071 		ASSERT(list_empty(&node->lower));
3072 		ASSERT(node->eb == NULL);
3073 		cache->nr_nodes--;
3074 		btrfs_put_root(node->root);
3075 		kfree(node);
3076 	}
3077 }
3078 
3079 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3080 		struct btrfs_backref_cache *cache)
3081 {
3082 	struct btrfs_backref_edge *edge;
3083 
3084 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
3085 	if (edge)
3086 		cache->nr_edges++;
3087 	return edge;
3088 }
3089 
3090 void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
3091 			     struct btrfs_backref_edge *edge)
3092 {
3093 	if (edge) {
3094 		cache->nr_edges--;
3095 		kfree(edge);
3096 	}
3097 }
3098 
3099 void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node)
3100 {
3101 	if (node->locked) {
3102 		btrfs_tree_unlock(node->eb);
3103 		node->locked = 0;
3104 	}
3105 }
3106 
3107 void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node)
3108 {
3109 	if (node->eb) {
3110 		btrfs_backref_unlock_node_buffer(node);
3111 		free_extent_buffer(node->eb);
3112 		node->eb = NULL;
3113 	}
3114 }
3115 
3116 /*
3117  * Drop the backref node from cache without cleaning up its children
3118  * edges.
3119  *
3120  * This can only be called on node without parent edges.
3121  * The children edges are still kept as is.
3122  */
3123 void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
3124 			     struct btrfs_backref_node *node)
3125 {
3126 	ASSERT(list_empty(&node->upper));
3127 
3128 	btrfs_backref_drop_node_buffer(node);
3129 	list_del_init(&node->list);
3130 	list_del_init(&node->lower);
3131 	if (!RB_EMPTY_NODE(&node->rb_node))
3132 		rb_erase(&node->rb_node, &tree->rb_root);
3133 	btrfs_backref_free_node(tree, node);
3134 }
3135 
3136 /*
3137  * Drop the backref node from cache, also cleaning up all its
3138  * upper edges and any uncached nodes in the path.
3139  *
3140  * This cleanup happens bottom up, thus the node should either
3141  * be the lowest node in the cache or a detached node.
3142  */
3143 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3144 				struct btrfs_backref_node *node)
3145 {
3146 	struct btrfs_backref_node *upper;
3147 	struct btrfs_backref_edge *edge;
3148 
3149 	if (!node)
3150 		return;
3151 
3152 	BUG_ON(!node->lowest && !node->detached);
3153 	while (!list_empty(&node->upper)) {
3154 		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
3155 				  list[LOWER]);
3156 		upper = edge->node[UPPER];
3157 		list_del(&edge->list[LOWER]);
3158 		list_del(&edge->list[UPPER]);
3159 		btrfs_backref_free_edge(cache, edge);
3160 
3161 		/*
3162 		 * Add the node to leaf node list if no other child block
3163 		 * cached.
3164 		 */
3165 		if (list_empty(&upper->lower)) {
3166 			list_add_tail(&upper->lower, &cache->leaves);
3167 			upper->lowest = 1;
3168 		}
3169 	}
3170 
3171 	btrfs_backref_drop_node(cache, node);
3172 }
3173 
3174 /*
3175  * Release all nodes/edges from current cache
3176  */
3177 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3178 {
3179 	struct btrfs_backref_node *node;
3180 	int i;
3181 
3182 	while (!list_empty(&cache->detached)) {
3183 		node = list_entry(cache->detached.next,
3184 				  struct btrfs_backref_node, list);
3185 		btrfs_backref_cleanup_node(cache, node);
3186 	}
3187 
3188 	while (!list_empty(&cache->leaves)) {
3189 		node = list_entry(cache->leaves.next,
3190 				  struct btrfs_backref_node, lower);
3191 		btrfs_backref_cleanup_node(cache, node);
3192 	}
3193 
3194 	cache->last_trans = 0;
3195 
3196 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3197 		ASSERT(list_empty(&cache->pending[i]));
3198 	ASSERT(list_empty(&cache->pending_edge));
3199 	ASSERT(list_empty(&cache->useless_node));
3200 	ASSERT(list_empty(&cache->changed));
3201 	ASSERT(list_empty(&cache->detached));
3202 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
3203 	ASSERT(!cache->nr_nodes);
3204 	ASSERT(!cache->nr_edges);
3205 }
3206 
3207 void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
3208 			     struct btrfs_backref_node *lower,
3209 			     struct btrfs_backref_node *upper,
3210 			     int link_which)
3211 {
3212 	ASSERT(upper && lower && upper->level == lower->level + 1);
3213 	edge->node[LOWER] = lower;
3214 	edge->node[UPPER] = upper;
3215 	if (link_which & LINK_LOWER)
3216 		list_add_tail(&edge->list[LOWER], &lower->upper);
3217 	if (link_which & LINK_UPPER)
3218 		list_add_tail(&edge->list[UPPER], &upper->lower);
3219 }
3220 /*
3221  * Handle direct tree backref
3222  *
3223  * Direct tree backref means, the backref item shows its parent bytenr
3224  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3225  *
3226  * @ref_key:	The converted backref key.
3227  *		For keyed backref, it's the item key.
3228  *		For inlined backref, objectid is the bytenr,
3229  *		type is btrfs_inline_ref_type, offset is
3230  *		btrfs_inline_ref_offset.
3231  */
3232 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3233 				      struct btrfs_key *ref_key,
3234 				      struct btrfs_backref_node *cur)
3235 {
3236 	struct btrfs_backref_edge *edge;
3237 	struct btrfs_backref_node *upper;
3238 	struct rb_node *rb_node;
3239 
3240 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3241 
3242 	/* Only reloc root uses backref pointing to itself */
3243 	if (ref_key->objectid == ref_key->offset) {
3244 		struct btrfs_root *root;
3245 
3246 		cur->is_reloc_root = 1;
3247 		/* Only reloc backref cache cares about a specific root */
3248 		if (cache->is_reloc) {
3249 			root = find_reloc_root(cache->fs_info, cur->bytenr);
3250 			if (!root)
3251 				return -ENOENT;
3252 			cur->root = root;
3253 		} else {
3254 			/*
3255 			 * For generic purpose backref cache, reloc root node
3256 			 * is useless.
3257 			 */
3258 			list_add(&cur->list, &cache->useless_node);
3259 		}
3260 		return 0;
3261 	}
3262 
3263 	edge = btrfs_backref_alloc_edge(cache);
3264 	if (!edge)
3265 		return -ENOMEM;
3266 
3267 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3268 	if (!rb_node) {
3269 		/* Parent node not yet cached */
3270 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3271 					   cur->level + 1);
3272 		if (!upper) {
3273 			btrfs_backref_free_edge(cache, edge);
3274 			return -ENOMEM;
3275 		}
3276 
3277 		/*
3278 		 *  Backrefs for the upper level block isn't cached, add the
3279 		 *  block to pending list
3280 		 */
3281 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3282 	} else {
3283 		/* Parent node already cached */
3284 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3285 		ASSERT(upper->checked);
3286 		INIT_LIST_HEAD(&edge->list[UPPER]);
3287 	}
3288 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
3289 	return 0;
3290 }
3291 
3292 /*
3293  * Handle indirect tree backref
3294  *
3295  * Indirect tree backref means, we only know which tree the node belongs to.
3296  * We still need to do a tree search to find out the parents. This is for
3297  * TREE_BLOCK_REF backref (keyed or inlined).
3298  *
3299  * @trans:	Transaction handle.
3300  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
3301  * @tree_key:	The first key of this tree block.
3302  * @path:	A clean (released) path, to avoid allocating path every time
3303  *		the function get called.
3304  */
3305 static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans,
3306 					struct btrfs_backref_cache *cache,
3307 					struct btrfs_path *path,
3308 					struct btrfs_key *ref_key,
3309 					struct btrfs_key *tree_key,
3310 					struct btrfs_backref_node *cur)
3311 {
3312 	struct btrfs_fs_info *fs_info = cache->fs_info;
3313 	struct btrfs_backref_node *upper;
3314 	struct btrfs_backref_node *lower;
3315 	struct btrfs_backref_edge *edge;
3316 	struct extent_buffer *eb;
3317 	struct btrfs_root *root;
3318 	struct rb_node *rb_node;
3319 	int level;
3320 	bool need_check = true;
3321 	int ret;
3322 
3323 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
3324 	if (IS_ERR(root))
3325 		return PTR_ERR(root);
3326 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3327 		cur->cowonly = 1;
3328 
3329 	if (btrfs_root_level(&root->root_item) == cur->level) {
3330 		/* Tree root */
3331 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3332 		/*
3333 		 * For reloc backref cache, we may ignore reloc root.  But for
3334 		 * general purpose backref cache, we can't rely on
3335 		 * btrfs_should_ignore_reloc_root() as it may conflict with
3336 		 * current running relocation and lead to missing root.
3337 		 *
3338 		 * For general purpose backref cache, reloc root detection is
3339 		 * completely relying on direct backref (key->offset is parent
3340 		 * bytenr), thus only do such check for reloc cache.
3341 		 */
3342 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3343 			btrfs_put_root(root);
3344 			list_add(&cur->list, &cache->useless_node);
3345 		} else {
3346 			cur->root = root;
3347 		}
3348 		return 0;
3349 	}
3350 
3351 	level = cur->level + 1;
3352 
3353 	/* Search the tree to find parent blocks referring to the block */
3354 	path->search_commit_root = 1;
3355 	path->skip_locking = 1;
3356 	path->lowest_level = level;
3357 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3358 	path->lowest_level = 0;
3359 	if (ret < 0) {
3360 		btrfs_put_root(root);
3361 		return ret;
3362 	}
3363 	if (ret > 0 && path->slots[level] > 0)
3364 		path->slots[level]--;
3365 
3366 	eb = path->nodes[level];
3367 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3368 		btrfs_err(fs_info,
3369 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
3370 			  cur->bytenr, level - 1, root->root_key.objectid,
3371 			  tree_key->objectid, tree_key->type, tree_key->offset);
3372 		btrfs_put_root(root);
3373 		ret = -ENOENT;
3374 		goto out;
3375 	}
3376 	lower = cur;
3377 
3378 	/* Add all nodes and edges in the path */
3379 	for (; level < BTRFS_MAX_LEVEL; level++) {
3380 		if (!path->nodes[level]) {
3381 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
3382 			       lower->bytenr);
3383 			/* Same as previous should_ignore_reloc_root() call */
3384 			if (btrfs_should_ignore_reloc_root(root) &&
3385 			    cache->is_reloc) {
3386 				btrfs_put_root(root);
3387 				list_add(&lower->list, &cache->useless_node);
3388 			} else {
3389 				lower->root = root;
3390 			}
3391 			break;
3392 		}
3393 
3394 		edge = btrfs_backref_alloc_edge(cache);
3395 		if (!edge) {
3396 			btrfs_put_root(root);
3397 			ret = -ENOMEM;
3398 			goto out;
3399 		}
3400 
3401 		eb = path->nodes[level];
3402 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
3403 		if (!rb_node) {
3404 			upper = btrfs_backref_alloc_node(cache, eb->start,
3405 							 lower->level + 1);
3406 			if (!upper) {
3407 				btrfs_put_root(root);
3408 				btrfs_backref_free_edge(cache, edge);
3409 				ret = -ENOMEM;
3410 				goto out;
3411 			}
3412 			upper->owner = btrfs_header_owner(eb);
3413 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3414 				upper->cowonly = 1;
3415 
3416 			/*
3417 			 * If we know the block isn't shared we can avoid
3418 			 * checking its backrefs.
3419 			 */
3420 			if (btrfs_block_can_be_shared(trans, root, eb))
3421 				upper->checked = 0;
3422 			else
3423 				upper->checked = 1;
3424 
3425 			/*
3426 			 * Add the block to pending list if we need to check its
3427 			 * backrefs, we only do this once while walking up a
3428 			 * tree as we will catch anything else later on.
3429 			 */
3430 			if (!upper->checked && need_check) {
3431 				need_check = false;
3432 				list_add_tail(&edge->list[UPPER],
3433 					      &cache->pending_edge);
3434 			} else {
3435 				if (upper->checked)
3436 					need_check = true;
3437 				INIT_LIST_HEAD(&edge->list[UPPER]);
3438 			}
3439 		} else {
3440 			upper = rb_entry(rb_node, struct btrfs_backref_node,
3441 					 rb_node);
3442 			ASSERT(upper->checked);
3443 			INIT_LIST_HEAD(&edge->list[UPPER]);
3444 			if (!upper->owner)
3445 				upper->owner = btrfs_header_owner(eb);
3446 		}
3447 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3448 
3449 		if (rb_node) {
3450 			btrfs_put_root(root);
3451 			break;
3452 		}
3453 		lower = upper;
3454 		upper = NULL;
3455 	}
3456 out:
3457 	btrfs_release_path(path);
3458 	return ret;
3459 }
3460 
3461 /*
3462  * Add backref node @cur into @cache.
3463  *
3464  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3465  *	 links aren't yet bi-directional. Needs to finish such links.
3466  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
3467  *
3468  * @trans:	Transaction handle.
3469  * @path:	Released path for indirect tree backref lookup
3470  * @iter:	Released backref iter for extent tree search
3471  * @node_key:	The first key of the tree block
3472  */
3473 int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
3474 				struct btrfs_backref_cache *cache,
3475 				struct btrfs_path *path,
3476 				struct btrfs_backref_iter *iter,
3477 				struct btrfs_key *node_key,
3478 				struct btrfs_backref_node *cur)
3479 {
3480 	struct btrfs_backref_edge *edge;
3481 	struct btrfs_backref_node *exist;
3482 	int ret;
3483 
3484 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
3485 	if (ret < 0)
3486 		return ret;
3487 	/*
3488 	 * We skip the first btrfs_tree_block_info, as we don't use the key
3489 	 * stored in it, but fetch it from the tree block
3490 	 */
3491 	if (btrfs_backref_has_tree_block_info(iter)) {
3492 		ret = btrfs_backref_iter_next(iter);
3493 		if (ret < 0)
3494 			goto out;
3495 		/* No extra backref? This means the tree block is corrupted */
3496 		if (ret > 0) {
3497 			ret = -EUCLEAN;
3498 			goto out;
3499 		}
3500 	}
3501 	WARN_ON(cur->checked);
3502 	if (!list_empty(&cur->upper)) {
3503 		/*
3504 		 * The backref was added previously when processing backref of
3505 		 * type BTRFS_TREE_BLOCK_REF_KEY
3506 		 */
3507 		ASSERT(list_is_singular(&cur->upper));
3508 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3509 				  list[LOWER]);
3510 		ASSERT(list_empty(&edge->list[UPPER]));
3511 		exist = edge->node[UPPER];
3512 		/*
3513 		 * Add the upper level block to pending list if we need check
3514 		 * its backrefs
3515 		 */
3516 		if (!exist->checked)
3517 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3518 	} else {
3519 		exist = NULL;
3520 	}
3521 
3522 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3523 		struct extent_buffer *eb;
3524 		struct btrfs_key key;
3525 		int type;
3526 
3527 		cond_resched();
3528 		eb = iter->path->nodes[0];
3529 
3530 		key.objectid = iter->bytenr;
3531 		if (btrfs_backref_iter_is_inline_ref(iter)) {
3532 			struct btrfs_extent_inline_ref *iref;
3533 
3534 			/* Update key for inline backref */
3535 			iref = (struct btrfs_extent_inline_ref *)
3536 				((unsigned long)iter->cur_ptr);
3537 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3538 							BTRFS_REF_TYPE_BLOCK);
3539 			if (type == BTRFS_REF_TYPE_INVALID) {
3540 				ret = -EUCLEAN;
3541 				goto out;
3542 			}
3543 			key.type = type;
3544 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3545 		} else {
3546 			key.type = iter->cur_key.type;
3547 			key.offset = iter->cur_key.offset;
3548 		}
3549 
3550 		/*
3551 		 * Parent node found and matches current inline ref, no need to
3552 		 * rebuild this node for this inline ref
3553 		 */
3554 		if (exist &&
3555 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3556 		      exist->owner == key.offset) ||
3557 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3558 		      exist->bytenr == key.offset))) {
3559 			exist = NULL;
3560 			continue;
3561 		}
3562 
3563 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3564 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3565 			ret = handle_direct_tree_backref(cache, &key, cur);
3566 			if (ret < 0)
3567 				goto out;
3568 		} else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) {
3569 			/*
3570 			 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref
3571 			 * offset means the root objectid. We need to search
3572 			 * the tree to get its parent bytenr.
3573 			 */
3574 			ret = handle_indirect_tree_backref(trans, cache, path,
3575 							   &key, node_key, cur);
3576 			if (ret < 0)
3577 				goto out;
3578 		}
3579 		/*
3580 		 * Unrecognized tree backref items (if it can pass tree-checker)
3581 		 * would be ignored.
3582 		 */
3583 	}
3584 	ret = 0;
3585 	cur->checked = 1;
3586 	WARN_ON(exist);
3587 out:
3588 	btrfs_backref_iter_release(iter);
3589 	return ret;
3590 }
3591 
3592 /*
3593  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3594  */
3595 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3596 				     struct btrfs_backref_node *start)
3597 {
3598 	struct list_head *useless_node = &cache->useless_node;
3599 	struct btrfs_backref_edge *edge;
3600 	struct rb_node *rb_node;
3601 	LIST_HEAD(pending_edge);
3602 
3603 	ASSERT(start->checked);
3604 
3605 	/* Insert this node to cache if it's not COW-only */
3606 	if (!start->cowonly) {
3607 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3608 					   &start->rb_node);
3609 		if (rb_node)
3610 			btrfs_backref_panic(cache->fs_info, start->bytenr,
3611 					    -EEXIST);
3612 		list_add_tail(&start->lower, &cache->leaves);
3613 	}
3614 
3615 	/*
3616 	 * Use breadth first search to iterate all related edges.
3617 	 *
3618 	 * The starting points are all the edges of this node
3619 	 */
3620 	list_for_each_entry(edge, &start->upper, list[LOWER])
3621 		list_add_tail(&edge->list[UPPER], &pending_edge);
3622 
3623 	while (!list_empty(&pending_edge)) {
3624 		struct btrfs_backref_node *upper;
3625 		struct btrfs_backref_node *lower;
3626 
3627 		edge = list_first_entry(&pending_edge,
3628 				struct btrfs_backref_edge, list[UPPER]);
3629 		list_del_init(&edge->list[UPPER]);
3630 		upper = edge->node[UPPER];
3631 		lower = edge->node[LOWER];
3632 
3633 		/* Parent is detached, no need to keep any edges */
3634 		if (upper->detached) {
3635 			list_del(&edge->list[LOWER]);
3636 			btrfs_backref_free_edge(cache, edge);
3637 
3638 			/* Lower node is orphan, queue for cleanup */
3639 			if (list_empty(&lower->upper))
3640 				list_add(&lower->list, useless_node);
3641 			continue;
3642 		}
3643 
3644 		/*
3645 		 * All new nodes added in current build_backref_tree() haven't
3646 		 * been linked to the cache rb tree.
3647 		 * So if we have upper->rb_node populated, this means a cache
3648 		 * hit. We only need to link the edge, as @upper and all its
3649 		 * parents have already been linked.
3650 		 */
3651 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3652 			if (upper->lowest) {
3653 				list_del_init(&upper->lower);
3654 				upper->lowest = 0;
3655 			}
3656 
3657 			list_add_tail(&edge->list[UPPER], &upper->lower);
3658 			continue;
3659 		}
3660 
3661 		/* Sanity check, we shouldn't have any unchecked nodes */
3662 		if (!upper->checked) {
3663 			ASSERT(0);
3664 			return -EUCLEAN;
3665 		}
3666 
3667 		/* Sanity check, COW-only node has non-COW-only parent */
3668 		if (start->cowonly != upper->cowonly) {
3669 			ASSERT(0);
3670 			return -EUCLEAN;
3671 		}
3672 
3673 		/* Only cache non-COW-only (subvolume trees) tree blocks */
3674 		if (!upper->cowonly) {
3675 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3676 						   &upper->rb_node);
3677 			if (rb_node) {
3678 				btrfs_backref_panic(cache->fs_info,
3679 						upper->bytenr, -EEXIST);
3680 				return -EUCLEAN;
3681 			}
3682 		}
3683 
3684 		list_add_tail(&edge->list[UPPER], &upper->lower);
3685 
3686 		/*
3687 		 * Also queue all the parent edges of this uncached node
3688 		 * to finish the upper linkage
3689 		 */
3690 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3691 			list_add_tail(&edge->list[UPPER], &pending_edge);
3692 	}
3693 	return 0;
3694 }
3695 
3696 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3697 				 struct btrfs_backref_node *node)
3698 {
3699 	struct btrfs_backref_node *lower;
3700 	struct btrfs_backref_node *upper;
3701 	struct btrfs_backref_edge *edge;
3702 
3703 	while (!list_empty(&cache->useless_node)) {
3704 		lower = list_first_entry(&cache->useless_node,
3705 				   struct btrfs_backref_node, list);
3706 		list_del_init(&lower->list);
3707 	}
3708 	while (!list_empty(&cache->pending_edge)) {
3709 		edge = list_first_entry(&cache->pending_edge,
3710 				struct btrfs_backref_edge, list[UPPER]);
3711 		list_del(&edge->list[UPPER]);
3712 		list_del(&edge->list[LOWER]);
3713 		lower = edge->node[LOWER];
3714 		upper = edge->node[UPPER];
3715 		btrfs_backref_free_edge(cache, edge);
3716 
3717 		/*
3718 		 * Lower is no longer linked to any upper backref nodes and
3719 		 * isn't in the cache, we can free it ourselves.
3720 		 */
3721 		if (list_empty(&lower->upper) &&
3722 		    RB_EMPTY_NODE(&lower->rb_node))
3723 			list_add(&lower->list, &cache->useless_node);
3724 
3725 		if (!RB_EMPTY_NODE(&upper->rb_node))
3726 			continue;
3727 
3728 		/* Add this guy's upper edges to the list to process */
3729 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3730 			list_add_tail(&edge->list[UPPER],
3731 				      &cache->pending_edge);
3732 		if (list_empty(&upper->upper))
3733 			list_add(&upper->list, &cache->useless_node);
3734 	}
3735 
3736 	while (!list_empty(&cache->useless_node)) {
3737 		lower = list_first_entry(&cache->useless_node,
3738 				   struct btrfs_backref_node, list);
3739 		list_del_init(&lower->list);
3740 		if (lower == node)
3741 			node = NULL;
3742 		btrfs_backref_drop_node(cache, lower);
3743 	}
3744 
3745 	btrfs_backref_cleanup_node(cache, node);
3746 	ASSERT(list_empty(&cache->useless_node) &&
3747 	       list_empty(&cache->pending_edge));
3748 }
3749