xref: /linux/fs/btrfs/backref.c (revision bf80eef2212a1e8451df13b52533f4bc31bb4f8e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18 
19 /* Just an arbitrary number so we can be sure this happened */
20 #define BACKREF_FOUND_SHARED 6
21 
22 struct extent_inode_elem {
23 	u64 inum;
24 	u64 offset;
25 	struct extent_inode_elem *next;
26 };
27 
28 static int check_extent_in_eb(const struct btrfs_key *key,
29 			      const struct extent_buffer *eb,
30 			      const struct btrfs_file_extent_item *fi,
31 			      u64 extent_item_pos,
32 			      struct extent_inode_elem **eie,
33 			      bool ignore_offset)
34 {
35 	u64 offset = 0;
36 	struct extent_inode_elem *e;
37 
38 	if (!ignore_offset &&
39 	    !btrfs_file_extent_compression(eb, fi) &&
40 	    !btrfs_file_extent_encryption(eb, fi) &&
41 	    !btrfs_file_extent_other_encoding(eb, fi)) {
42 		u64 data_offset;
43 		u64 data_len;
44 
45 		data_offset = btrfs_file_extent_offset(eb, fi);
46 		data_len = btrfs_file_extent_num_bytes(eb, fi);
47 
48 		if (extent_item_pos < data_offset ||
49 		    extent_item_pos >= data_offset + data_len)
50 			return 1;
51 		offset = extent_item_pos - data_offset;
52 	}
53 
54 	e = kmalloc(sizeof(*e), GFP_NOFS);
55 	if (!e)
56 		return -ENOMEM;
57 
58 	e->next = *eie;
59 	e->inum = key->objectid;
60 	e->offset = key->offset + offset;
61 	*eie = e;
62 
63 	return 0;
64 }
65 
66 static void free_inode_elem_list(struct extent_inode_elem *eie)
67 {
68 	struct extent_inode_elem *eie_next;
69 
70 	for (; eie; eie = eie_next) {
71 		eie_next = eie->next;
72 		kfree(eie);
73 	}
74 }
75 
76 static int find_extent_in_eb(const struct extent_buffer *eb,
77 			     u64 wanted_disk_byte, u64 extent_item_pos,
78 			     struct extent_inode_elem **eie,
79 			     bool ignore_offset)
80 {
81 	u64 disk_byte;
82 	struct btrfs_key key;
83 	struct btrfs_file_extent_item *fi;
84 	int slot;
85 	int nritems;
86 	int extent_type;
87 	int ret;
88 
89 	/*
90 	 * from the shared data ref, we only have the leaf but we need
91 	 * the key. thus, we must look into all items and see that we
92 	 * find one (some) with a reference to our extent item.
93 	 */
94 	nritems = btrfs_header_nritems(eb);
95 	for (slot = 0; slot < nritems; ++slot) {
96 		btrfs_item_key_to_cpu(eb, &key, slot);
97 		if (key.type != BTRFS_EXTENT_DATA_KEY)
98 			continue;
99 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
100 		extent_type = btrfs_file_extent_type(eb, fi);
101 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
102 			continue;
103 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
104 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
105 		if (disk_byte != wanted_disk_byte)
106 			continue;
107 
108 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
109 		if (ret < 0)
110 			return ret;
111 	}
112 
113 	return 0;
114 }
115 
116 struct preftree {
117 	struct rb_root_cached root;
118 	unsigned int count;
119 };
120 
121 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
122 
123 struct preftrees {
124 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
125 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
126 	struct preftree indirect_missing_keys;
127 };
128 
129 /*
130  * Checks for a shared extent during backref search.
131  *
132  * The share_count tracks prelim_refs (direct and indirect) having a
133  * ref->count >0:
134  *  - incremented when a ref->count transitions to >0
135  *  - decremented when a ref->count transitions to <1
136  */
137 struct share_check {
138 	u64 root_objectid;
139 	u64 inum;
140 	int share_count;
141 };
142 
143 static inline int extent_is_shared(struct share_check *sc)
144 {
145 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
146 }
147 
148 static struct kmem_cache *btrfs_prelim_ref_cache;
149 
150 int __init btrfs_prelim_ref_init(void)
151 {
152 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
153 					sizeof(struct prelim_ref),
154 					0,
155 					SLAB_MEM_SPREAD,
156 					NULL);
157 	if (!btrfs_prelim_ref_cache)
158 		return -ENOMEM;
159 	return 0;
160 }
161 
162 void __cold btrfs_prelim_ref_exit(void)
163 {
164 	kmem_cache_destroy(btrfs_prelim_ref_cache);
165 }
166 
167 static void free_pref(struct prelim_ref *ref)
168 {
169 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
170 }
171 
172 /*
173  * Return 0 when both refs are for the same block (and can be merged).
174  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
175  * indicates a 'higher' block.
176  */
177 static int prelim_ref_compare(struct prelim_ref *ref1,
178 			      struct prelim_ref *ref2)
179 {
180 	if (ref1->level < ref2->level)
181 		return -1;
182 	if (ref1->level > ref2->level)
183 		return 1;
184 	if (ref1->root_id < ref2->root_id)
185 		return -1;
186 	if (ref1->root_id > ref2->root_id)
187 		return 1;
188 	if (ref1->key_for_search.type < ref2->key_for_search.type)
189 		return -1;
190 	if (ref1->key_for_search.type > ref2->key_for_search.type)
191 		return 1;
192 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
193 		return -1;
194 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
195 		return 1;
196 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
197 		return -1;
198 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
199 		return 1;
200 	if (ref1->parent < ref2->parent)
201 		return -1;
202 	if (ref1->parent > ref2->parent)
203 		return 1;
204 
205 	return 0;
206 }
207 
208 static void update_share_count(struct share_check *sc, int oldcount,
209 			       int newcount)
210 {
211 	if ((!sc) || (oldcount == 0 && newcount < 1))
212 		return;
213 
214 	if (oldcount > 0 && newcount < 1)
215 		sc->share_count--;
216 	else if (oldcount < 1 && newcount > 0)
217 		sc->share_count++;
218 }
219 
220 /*
221  * Add @newref to the @root rbtree, merging identical refs.
222  *
223  * Callers should assume that newref has been freed after calling.
224  */
225 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
226 			      struct preftree *preftree,
227 			      struct prelim_ref *newref,
228 			      struct share_check *sc)
229 {
230 	struct rb_root_cached *root;
231 	struct rb_node **p;
232 	struct rb_node *parent = NULL;
233 	struct prelim_ref *ref;
234 	int result;
235 	bool leftmost = true;
236 
237 	root = &preftree->root;
238 	p = &root->rb_root.rb_node;
239 
240 	while (*p) {
241 		parent = *p;
242 		ref = rb_entry(parent, struct prelim_ref, rbnode);
243 		result = prelim_ref_compare(ref, newref);
244 		if (result < 0) {
245 			p = &(*p)->rb_left;
246 		} else if (result > 0) {
247 			p = &(*p)->rb_right;
248 			leftmost = false;
249 		} else {
250 			/* Identical refs, merge them and free @newref */
251 			struct extent_inode_elem *eie = ref->inode_list;
252 
253 			while (eie && eie->next)
254 				eie = eie->next;
255 
256 			if (!eie)
257 				ref->inode_list = newref->inode_list;
258 			else
259 				eie->next = newref->inode_list;
260 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
261 						     preftree->count);
262 			/*
263 			 * A delayed ref can have newref->count < 0.
264 			 * The ref->count is updated to follow any
265 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
266 			 */
267 			update_share_count(sc, ref->count,
268 					   ref->count + newref->count);
269 			ref->count += newref->count;
270 			free_pref(newref);
271 			return;
272 		}
273 	}
274 
275 	update_share_count(sc, 0, newref->count);
276 	preftree->count++;
277 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
278 	rb_link_node(&newref->rbnode, parent, p);
279 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
280 }
281 
282 /*
283  * Release the entire tree.  We don't care about internal consistency so
284  * just free everything and then reset the tree root.
285  */
286 static void prelim_release(struct preftree *preftree)
287 {
288 	struct prelim_ref *ref, *next_ref;
289 
290 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
291 					     &preftree->root.rb_root, rbnode)
292 		free_pref(ref);
293 
294 	preftree->root = RB_ROOT_CACHED;
295 	preftree->count = 0;
296 }
297 
298 /*
299  * the rules for all callers of this function are:
300  * - obtaining the parent is the goal
301  * - if you add a key, you must know that it is a correct key
302  * - if you cannot add the parent or a correct key, then we will look into the
303  *   block later to set a correct key
304  *
305  * delayed refs
306  * ============
307  *        backref type | shared | indirect | shared | indirect
308  * information         |   tree |     tree |   data |     data
309  * --------------------+--------+----------+--------+----------
310  *      parent logical |    y   |     -    |    -   |     -
311  *      key to resolve |    -   |     y    |    y   |     y
312  *  tree block logical |    -   |     -    |    -   |     -
313  *  root for resolving |    y   |     y    |    y   |     y
314  *
315  * - column 1:       we've the parent -> done
316  * - column 2, 3, 4: we use the key to find the parent
317  *
318  * on disk refs (inline or keyed)
319  * ==============================
320  *        backref type | shared | indirect | shared | indirect
321  * information         |   tree |     tree |   data |     data
322  * --------------------+--------+----------+--------+----------
323  *      parent logical |    y   |     -    |    y   |     -
324  *      key to resolve |    -   |     -    |    -   |     y
325  *  tree block logical |    y   |     y    |    y   |     y
326  *  root for resolving |    -   |     y    |    y   |     y
327  *
328  * - column 1, 3: we've the parent -> done
329  * - column 2:    we take the first key from the block to find the parent
330  *                (see add_missing_keys)
331  * - column 4:    we use the key to find the parent
332  *
333  * additional information that's available but not required to find the parent
334  * block might help in merging entries to gain some speed.
335  */
336 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
337 			  struct preftree *preftree, u64 root_id,
338 			  const struct btrfs_key *key, int level, u64 parent,
339 			  u64 wanted_disk_byte, int count,
340 			  struct share_check *sc, gfp_t gfp_mask)
341 {
342 	struct prelim_ref *ref;
343 
344 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
345 		return 0;
346 
347 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
348 	if (!ref)
349 		return -ENOMEM;
350 
351 	ref->root_id = root_id;
352 	if (key)
353 		ref->key_for_search = *key;
354 	else
355 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
356 
357 	ref->inode_list = NULL;
358 	ref->level = level;
359 	ref->count = count;
360 	ref->parent = parent;
361 	ref->wanted_disk_byte = wanted_disk_byte;
362 	prelim_ref_insert(fs_info, preftree, ref, sc);
363 	return extent_is_shared(sc);
364 }
365 
366 /* direct refs use root == 0, key == NULL */
367 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
368 			  struct preftrees *preftrees, int level, u64 parent,
369 			  u64 wanted_disk_byte, int count,
370 			  struct share_check *sc, gfp_t gfp_mask)
371 {
372 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
373 			      parent, wanted_disk_byte, count, sc, gfp_mask);
374 }
375 
376 /* indirect refs use parent == 0 */
377 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
378 			    struct preftrees *preftrees, u64 root_id,
379 			    const struct btrfs_key *key, int level,
380 			    u64 wanted_disk_byte, int count,
381 			    struct share_check *sc, gfp_t gfp_mask)
382 {
383 	struct preftree *tree = &preftrees->indirect;
384 
385 	if (!key)
386 		tree = &preftrees->indirect_missing_keys;
387 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
388 			      wanted_disk_byte, count, sc, gfp_mask);
389 }
390 
391 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
392 {
393 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
394 	struct rb_node *parent = NULL;
395 	struct prelim_ref *ref = NULL;
396 	struct prelim_ref target = {};
397 	int result;
398 
399 	target.parent = bytenr;
400 
401 	while (*p) {
402 		parent = *p;
403 		ref = rb_entry(parent, struct prelim_ref, rbnode);
404 		result = prelim_ref_compare(ref, &target);
405 
406 		if (result < 0)
407 			p = &(*p)->rb_left;
408 		else if (result > 0)
409 			p = &(*p)->rb_right;
410 		else
411 			return 1;
412 	}
413 	return 0;
414 }
415 
416 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
417 			   struct ulist *parents,
418 			   struct preftrees *preftrees, struct prelim_ref *ref,
419 			   int level, u64 time_seq, const u64 *extent_item_pos,
420 			   bool ignore_offset)
421 {
422 	int ret = 0;
423 	int slot;
424 	struct extent_buffer *eb;
425 	struct btrfs_key key;
426 	struct btrfs_key *key_for_search = &ref->key_for_search;
427 	struct btrfs_file_extent_item *fi;
428 	struct extent_inode_elem *eie = NULL, *old = NULL;
429 	u64 disk_byte;
430 	u64 wanted_disk_byte = ref->wanted_disk_byte;
431 	u64 count = 0;
432 	u64 data_offset;
433 
434 	if (level != 0) {
435 		eb = path->nodes[level];
436 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
437 		if (ret < 0)
438 			return ret;
439 		return 0;
440 	}
441 
442 	/*
443 	 * 1. We normally enter this function with the path already pointing to
444 	 *    the first item to check. But sometimes, we may enter it with
445 	 *    slot == nritems.
446 	 * 2. We are searching for normal backref but bytenr of this leaf
447 	 *    matches shared data backref
448 	 * 3. The leaf owner is not equal to the root we are searching
449 	 *
450 	 * For these cases, go to the next leaf before we continue.
451 	 */
452 	eb = path->nodes[0];
453 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
454 	    is_shared_data_backref(preftrees, eb->start) ||
455 	    ref->root_id != btrfs_header_owner(eb)) {
456 		if (time_seq == BTRFS_SEQ_LAST)
457 			ret = btrfs_next_leaf(root, path);
458 		else
459 			ret = btrfs_next_old_leaf(root, path, time_seq);
460 	}
461 
462 	while (!ret && count < ref->count) {
463 		eb = path->nodes[0];
464 		slot = path->slots[0];
465 
466 		btrfs_item_key_to_cpu(eb, &key, slot);
467 
468 		if (key.objectid != key_for_search->objectid ||
469 		    key.type != BTRFS_EXTENT_DATA_KEY)
470 			break;
471 
472 		/*
473 		 * We are searching for normal backref but bytenr of this leaf
474 		 * matches shared data backref, OR
475 		 * the leaf owner is not equal to the root we are searching for
476 		 */
477 		if (slot == 0 &&
478 		    (is_shared_data_backref(preftrees, eb->start) ||
479 		     ref->root_id != btrfs_header_owner(eb))) {
480 			if (time_seq == BTRFS_SEQ_LAST)
481 				ret = btrfs_next_leaf(root, path);
482 			else
483 				ret = btrfs_next_old_leaf(root, path, time_seq);
484 			continue;
485 		}
486 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
487 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
488 		data_offset = btrfs_file_extent_offset(eb, fi);
489 
490 		if (disk_byte == wanted_disk_byte) {
491 			eie = NULL;
492 			old = NULL;
493 			if (ref->key_for_search.offset == key.offset - data_offset)
494 				count++;
495 			else
496 				goto next;
497 			if (extent_item_pos) {
498 				ret = check_extent_in_eb(&key, eb, fi,
499 						*extent_item_pos,
500 						&eie, ignore_offset);
501 				if (ret < 0)
502 					break;
503 			}
504 			if (ret > 0)
505 				goto next;
506 			ret = ulist_add_merge_ptr(parents, eb->start,
507 						  eie, (void **)&old, GFP_NOFS);
508 			if (ret < 0)
509 				break;
510 			if (!ret && extent_item_pos) {
511 				while (old->next)
512 					old = old->next;
513 				old->next = eie;
514 			}
515 			eie = NULL;
516 		}
517 next:
518 		if (time_seq == BTRFS_SEQ_LAST)
519 			ret = btrfs_next_item(root, path);
520 		else
521 			ret = btrfs_next_old_item(root, path, time_seq);
522 	}
523 
524 	if (ret > 0)
525 		ret = 0;
526 	else if (ret < 0)
527 		free_inode_elem_list(eie);
528 	return ret;
529 }
530 
531 /*
532  * resolve an indirect backref in the form (root_id, key, level)
533  * to a logical address
534  */
535 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
536 				struct btrfs_path *path, u64 time_seq,
537 				struct preftrees *preftrees,
538 				struct prelim_ref *ref, struct ulist *parents,
539 				const u64 *extent_item_pos, bool ignore_offset)
540 {
541 	struct btrfs_root *root;
542 	struct extent_buffer *eb;
543 	int ret = 0;
544 	int root_level;
545 	int level = ref->level;
546 	struct btrfs_key search_key = ref->key_for_search;
547 
548 	/*
549 	 * If we're search_commit_root we could possibly be holding locks on
550 	 * other tree nodes.  This happens when qgroups does backref walks when
551 	 * adding new delayed refs.  To deal with this we need to look in cache
552 	 * for the root, and if we don't find it then we need to search the
553 	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
554 	 * here.
555 	 */
556 	if (path->search_commit_root)
557 		root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
558 	else
559 		root = btrfs_get_fs_root(fs_info, ref->root_id, false);
560 	if (IS_ERR(root)) {
561 		ret = PTR_ERR(root);
562 		goto out_free;
563 	}
564 
565 	if (!path->search_commit_root &&
566 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
567 		ret = -ENOENT;
568 		goto out;
569 	}
570 
571 	if (btrfs_is_testing(fs_info)) {
572 		ret = -ENOENT;
573 		goto out;
574 	}
575 
576 	if (path->search_commit_root)
577 		root_level = btrfs_header_level(root->commit_root);
578 	else if (time_seq == BTRFS_SEQ_LAST)
579 		root_level = btrfs_header_level(root->node);
580 	else
581 		root_level = btrfs_old_root_level(root, time_seq);
582 
583 	if (root_level + 1 == level)
584 		goto out;
585 
586 	/*
587 	 * We can often find data backrefs with an offset that is too large
588 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
589 	 * subtracting a file's offset with the data offset of its
590 	 * corresponding extent data item. This can happen for example in the
591 	 * clone ioctl.
592 	 *
593 	 * So if we detect such case we set the search key's offset to zero to
594 	 * make sure we will find the matching file extent item at
595 	 * add_all_parents(), otherwise we will miss it because the offset
596 	 * taken form the backref is much larger then the offset of the file
597 	 * extent item. This can make us scan a very large number of file
598 	 * extent items, but at least it will not make us miss any.
599 	 *
600 	 * This is an ugly workaround for a behaviour that should have never
601 	 * existed, but it does and a fix for the clone ioctl would touch a lot
602 	 * of places, cause backwards incompatibility and would not fix the
603 	 * problem for extents cloned with older kernels.
604 	 */
605 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
606 	    search_key.offset >= LLONG_MAX)
607 		search_key.offset = 0;
608 	path->lowest_level = level;
609 	if (time_seq == BTRFS_SEQ_LAST)
610 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
611 	else
612 		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
613 
614 	btrfs_debug(fs_info,
615 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
616 		 ref->root_id, level, ref->count, ret,
617 		 ref->key_for_search.objectid, ref->key_for_search.type,
618 		 ref->key_for_search.offset);
619 	if (ret < 0)
620 		goto out;
621 
622 	eb = path->nodes[level];
623 	while (!eb) {
624 		if (WARN_ON(!level)) {
625 			ret = 1;
626 			goto out;
627 		}
628 		level--;
629 		eb = path->nodes[level];
630 	}
631 
632 	ret = add_all_parents(root, path, parents, preftrees, ref, level,
633 			      time_seq, extent_item_pos, ignore_offset);
634 out:
635 	btrfs_put_root(root);
636 out_free:
637 	path->lowest_level = 0;
638 	btrfs_release_path(path);
639 	return ret;
640 }
641 
642 static struct extent_inode_elem *
643 unode_aux_to_inode_list(struct ulist_node *node)
644 {
645 	if (!node)
646 		return NULL;
647 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
648 }
649 
650 /*
651  * We maintain three separate rbtrees: one for direct refs, one for
652  * indirect refs which have a key, and one for indirect refs which do not
653  * have a key. Each tree does merge on insertion.
654  *
655  * Once all of the references are located, we iterate over the tree of
656  * indirect refs with missing keys. An appropriate key is located and
657  * the ref is moved onto the tree for indirect refs. After all missing
658  * keys are thus located, we iterate over the indirect ref tree, resolve
659  * each reference, and then insert the resolved reference onto the
660  * direct tree (merging there too).
661  *
662  * New backrefs (i.e., for parent nodes) are added to the appropriate
663  * rbtree as they are encountered. The new backrefs are subsequently
664  * resolved as above.
665  */
666 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
667 				 struct btrfs_path *path, u64 time_seq,
668 				 struct preftrees *preftrees,
669 				 const u64 *extent_item_pos,
670 				 struct share_check *sc, bool ignore_offset)
671 {
672 	int err;
673 	int ret = 0;
674 	struct ulist *parents;
675 	struct ulist_node *node;
676 	struct ulist_iterator uiter;
677 	struct rb_node *rnode;
678 
679 	parents = ulist_alloc(GFP_NOFS);
680 	if (!parents)
681 		return -ENOMEM;
682 
683 	/*
684 	 * We could trade memory usage for performance here by iterating
685 	 * the tree, allocating new refs for each insertion, and then
686 	 * freeing the entire indirect tree when we're done.  In some test
687 	 * cases, the tree can grow quite large (~200k objects).
688 	 */
689 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
690 		struct prelim_ref *ref;
691 
692 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
693 		if (WARN(ref->parent,
694 			 "BUG: direct ref found in indirect tree")) {
695 			ret = -EINVAL;
696 			goto out;
697 		}
698 
699 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
700 		preftrees->indirect.count--;
701 
702 		if (ref->count == 0) {
703 			free_pref(ref);
704 			continue;
705 		}
706 
707 		if (sc && sc->root_objectid &&
708 		    ref->root_id != sc->root_objectid) {
709 			free_pref(ref);
710 			ret = BACKREF_FOUND_SHARED;
711 			goto out;
712 		}
713 		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
714 					   ref, parents, extent_item_pos,
715 					   ignore_offset);
716 		/*
717 		 * we can only tolerate ENOENT,otherwise,we should catch error
718 		 * and return directly.
719 		 */
720 		if (err == -ENOENT) {
721 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
722 					  NULL);
723 			continue;
724 		} else if (err) {
725 			free_pref(ref);
726 			ret = err;
727 			goto out;
728 		}
729 
730 		/* we put the first parent into the ref at hand */
731 		ULIST_ITER_INIT(&uiter);
732 		node = ulist_next(parents, &uiter);
733 		ref->parent = node ? node->val : 0;
734 		ref->inode_list = unode_aux_to_inode_list(node);
735 
736 		/* Add a prelim_ref(s) for any other parent(s). */
737 		while ((node = ulist_next(parents, &uiter))) {
738 			struct prelim_ref *new_ref;
739 
740 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
741 						   GFP_NOFS);
742 			if (!new_ref) {
743 				free_pref(ref);
744 				ret = -ENOMEM;
745 				goto out;
746 			}
747 			memcpy(new_ref, ref, sizeof(*ref));
748 			new_ref->parent = node->val;
749 			new_ref->inode_list = unode_aux_to_inode_list(node);
750 			prelim_ref_insert(fs_info, &preftrees->direct,
751 					  new_ref, NULL);
752 		}
753 
754 		/*
755 		 * Now it's a direct ref, put it in the direct tree. We must
756 		 * do this last because the ref could be merged/freed here.
757 		 */
758 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
759 
760 		ulist_reinit(parents);
761 		cond_resched();
762 	}
763 out:
764 	ulist_free(parents);
765 	return ret;
766 }
767 
768 /*
769  * read tree blocks and add keys where required.
770  */
771 static int add_missing_keys(struct btrfs_fs_info *fs_info,
772 			    struct preftrees *preftrees, bool lock)
773 {
774 	struct prelim_ref *ref;
775 	struct extent_buffer *eb;
776 	struct preftree *tree = &preftrees->indirect_missing_keys;
777 	struct rb_node *node;
778 
779 	while ((node = rb_first_cached(&tree->root))) {
780 		ref = rb_entry(node, struct prelim_ref, rbnode);
781 		rb_erase_cached(node, &tree->root);
782 
783 		BUG_ON(ref->parent);	/* should not be a direct ref */
784 		BUG_ON(ref->key_for_search.type);
785 		BUG_ON(!ref->wanted_disk_byte);
786 
787 		eb = read_tree_block(fs_info, ref->wanted_disk_byte,
788 				     ref->root_id, 0, ref->level - 1, NULL);
789 		if (IS_ERR(eb)) {
790 			free_pref(ref);
791 			return PTR_ERR(eb);
792 		}
793 		if (!extent_buffer_uptodate(eb)) {
794 			free_pref(ref);
795 			free_extent_buffer(eb);
796 			return -EIO;
797 		}
798 
799 		if (lock)
800 			btrfs_tree_read_lock(eb);
801 		if (btrfs_header_level(eb) == 0)
802 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
803 		else
804 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
805 		if (lock)
806 			btrfs_tree_read_unlock(eb);
807 		free_extent_buffer(eb);
808 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
809 		cond_resched();
810 	}
811 	return 0;
812 }
813 
814 /*
815  * add all currently queued delayed refs from this head whose seq nr is
816  * smaller or equal that seq to the list
817  */
818 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
819 			    struct btrfs_delayed_ref_head *head, u64 seq,
820 			    struct preftrees *preftrees, struct share_check *sc)
821 {
822 	struct btrfs_delayed_ref_node *node;
823 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
824 	struct btrfs_key key;
825 	struct btrfs_key tmp_op_key;
826 	struct rb_node *n;
827 	int count;
828 	int ret = 0;
829 
830 	if (extent_op && extent_op->update_key)
831 		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
832 
833 	spin_lock(&head->lock);
834 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
835 		node = rb_entry(n, struct btrfs_delayed_ref_node,
836 				ref_node);
837 		if (node->seq > seq)
838 			continue;
839 
840 		switch (node->action) {
841 		case BTRFS_ADD_DELAYED_EXTENT:
842 		case BTRFS_UPDATE_DELAYED_HEAD:
843 			WARN_ON(1);
844 			continue;
845 		case BTRFS_ADD_DELAYED_REF:
846 			count = node->ref_mod;
847 			break;
848 		case BTRFS_DROP_DELAYED_REF:
849 			count = node->ref_mod * -1;
850 			break;
851 		default:
852 			BUG();
853 		}
854 		switch (node->type) {
855 		case BTRFS_TREE_BLOCK_REF_KEY: {
856 			/* NORMAL INDIRECT METADATA backref */
857 			struct btrfs_delayed_tree_ref *ref;
858 
859 			ref = btrfs_delayed_node_to_tree_ref(node);
860 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
861 					       &tmp_op_key, ref->level + 1,
862 					       node->bytenr, count, sc,
863 					       GFP_ATOMIC);
864 			break;
865 		}
866 		case BTRFS_SHARED_BLOCK_REF_KEY: {
867 			/* SHARED DIRECT METADATA backref */
868 			struct btrfs_delayed_tree_ref *ref;
869 
870 			ref = btrfs_delayed_node_to_tree_ref(node);
871 
872 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
873 					     ref->parent, node->bytenr, count,
874 					     sc, GFP_ATOMIC);
875 			break;
876 		}
877 		case BTRFS_EXTENT_DATA_REF_KEY: {
878 			/* NORMAL INDIRECT DATA backref */
879 			struct btrfs_delayed_data_ref *ref;
880 			ref = btrfs_delayed_node_to_data_ref(node);
881 
882 			key.objectid = ref->objectid;
883 			key.type = BTRFS_EXTENT_DATA_KEY;
884 			key.offset = ref->offset;
885 
886 			/*
887 			 * Found a inum that doesn't match our known inum, we
888 			 * know it's shared.
889 			 */
890 			if (sc && sc->inum && ref->objectid != sc->inum) {
891 				ret = BACKREF_FOUND_SHARED;
892 				goto out;
893 			}
894 
895 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
896 					       &key, 0, node->bytenr, count, sc,
897 					       GFP_ATOMIC);
898 			break;
899 		}
900 		case BTRFS_SHARED_DATA_REF_KEY: {
901 			/* SHARED DIRECT FULL backref */
902 			struct btrfs_delayed_data_ref *ref;
903 
904 			ref = btrfs_delayed_node_to_data_ref(node);
905 
906 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
907 					     node->bytenr, count, sc,
908 					     GFP_ATOMIC);
909 			break;
910 		}
911 		default:
912 			WARN_ON(1);
913 		}
914 		/*
915 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
916 		 * refs have been checked.
917 		 */
918 		if (ret && (ret != BACKREF_FOUND_SHARED))
919 			break;
920 	}
921 	if (!ret)
922 		ret = extent_is_shared(sc);
923 out:
924 	spin_unlock(&head->lock);
925 	return ret;
926 }
927 
928 /*
929  * add all inline backrefs for bytenr to the list
930  *
931  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
932  */
933 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
934 			   struct btrfs_path *path, u64 bytenr,
935 			   int *info_level, struct preftrees *preftrees,
936 			   struct share_check *sc)
937 {
938 	int ret = 0;
939 	int slot;
940 	struct extent_buffer *leaf;
941 	struct btrfs_key key;
942 	struct btrfs_key found_key;
943 	unsigned long ptr;
944 	unsigned long end;
945 	struct btrfs_extent_item *ei;
946 	u64 flags;
947 	u64 item_size;
948 
949 	/*
950 	 * enumerate all inline refs
951 	 */
952 	leaf = path->nodes[0];
953 	slot = path->slots[0];
954 
955 	item_size = btrfs_item_size(leaf, slot);
956 	BUG_ON(item_size < sizeof(*ei));
957 
958 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
959 	flags = btrfs_extent_flags(leaf, ei);
960 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
961 
962 	ptr = (unsigned long)(ei + 1);
963 	end = (unsigned long)ei + item_size;
964 
965 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
966 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
967 		struct btrfs_tree_block_info *info;
968 
969 		info = (struct btrfs_tree_block_info *)ptr;
970 		*info_level = btrfs_tree_block_level(leaf, info);
971 		ptr += sizeof(struct btrfs_tree_block_info);
972 		BUG_ON(ptr > end);
973 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
974 		*info_level = found_key.offset;
975 	} else {
976 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
977 	}
978 
979 	while (ptr < end) {
980 		struct btrfs_extent_inline_ref *iref;
981 		u64 offset;
982 		int type;
983 
984 		iref = (struct btrfs_extent_inline_ref *)ptr;
985 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
986 							BTRFS_REF_TYPE_ANY);
987 		if (type == BTRFS_REF_TYPE_INVALID)
988 			return -EUCLEAN;
989 
990 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
991 
992 		switch (type) {
993 		case BTRFS_SHARED_BLOCK_REF_KEY:
994 			ret = add_direct_ref(fs_info, preftrees,
995 					     *info_level + 1, offset,
996 					     bytenr, 1, NULL, GFP_NOFS);
997 			break;
998 		case BTRFS_SHARED_DATA_REF_KEY: {
999 			struct btrfs_shared_data_ref *sdref;
1000 			int count;
1001 
1002 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1003 			count = btrfs_shared_data_ref_count(leaf, sdref);
1004 
1005 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
1006 					     bytenr, count, sc, GFP_NOFS);
1007 			break;
1008 		}
1009 		case BTRFS_TREE_BLOCK_REF_KEY:
1010 			ret = add_indirect_ref(fs_info, preftrees, offset,
1011 					       NULL, *info_level + 1,
1012 					       bytenr, 1, NULL, GFP_NOFS);
1013 			break;
1014 		case BTRFS_EXTENT_DATA_REF_KEY: {
1015 			struct btrfs_extent_data_ref *dref;
1016 			int count;
1017 			u64 root;
1018 
1019 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1020 			count = btrfs_extent_data_ref_count(leaf, dref);
1021 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1022 								      dref);
1023 			key.type = BTRFS_EXTENT_DATA_KEY;
1024 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1025 
1026 			if (sc && sc->inum && key.objectid != sc->inum) {
1027 				ret = BACKREF_FOUND_SHARED;
1028 				break;
1029 			}
1030 
1031 			root = btrfs_extent_data_ref_root(leaf, dref);
1032 
1033 			ret = add_indirect_ref(fs_info, preftrees, root,
1034 					       &key, 0, bytenr, count,
1035 					       sc, GFP_NOFS);
1036 			break;
1037 		}
1038 		default:
1039 			WARN_ON(1);
1040 		}
1041 		if (ret)
1042 			return ret;
1043 		ptr += btrfs_extent_inline_ref_size(type);
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 /*
1050  * add all non-inline backrefs for bytenr to the list
1051  *
1052  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1053  */
1054 static int add_keyed_refs(struct btrfs_root *extent_root,
1055 			  struct btrfs_path *path, u64 bytenr,
1056 			  int info_level, struct preftrees *preftrees,
1057 			  struct share_check *sc)
1058 {
1059 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1060 	int ret;
1061 	int slot;
1062 	struct extent_buffer *leaf;
1063 	struct btrfs_key key;
1064 
1065 	while (1) {
1066 		ret = btrfs_next_item(extent_root, path);
1067 		if (ret < 0)
1068 			break;
1069 		if (ret) {
1070 			ret = 0;
1071 			break;
1072 		}
1073 
1074 		slot = path->slots[0];
1075 		leaf = path->nodes[0];
1076 		btrfs_item_key_to_cpu(leaf, &key, slot);
1077 
1078 		if (key.objectid != bytenr)
1079 			break;
1080 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1081 			continue;
1082 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1083 			break;
1084 
1085 		switch (key.type) {
1086 		case BTRFS_SHARED_BLOCK_REF_KEY:
1087 			/* SHARED DIRECT METADATA backref */
1088 			ret = add_direct_ref(fs_info, preftrees,
1089 					     info_level + 1, key.offset,
1090 					     bytenr, 1, NULL, GFP_NOFS);
1091 			break;
1092 		case BTRFS_SHARED_DATA_REF_KEY: {
1093 			/* SHARED DIRECT FULL backref */
1094 			struct btrfs_shared_data_ref *sdref;
1095 			int count;
1096 
1097 			sdref = btrfs_item_ptr(leaf, slot,
1098 					      struct btrfs_shared_data_ref);
1099 			count = btrfs_shared_data_ref_count(leaf, sdref);
1100 			ret = add_direct_ref(fs_info, preftrees, 0,
1101 					     key.offset, bytenr, count,
1102 					     sc, GFP_NOFS);
1103 			break;
1104 		}
1105 		case BTRFS_TREE_BLOCK_REF_KEY:
1106 			/* NORMAL INDIRECT METADATA backref */
1107 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1108 					       NULL, info_level + 1, bytenr,
1109 					       1, NULL, GFP_NOFS);
1110 			break;
1111 		case BTRFS_EXTENT_DATA_REF_KEY: {
1112 			/* NORMAL INDIRECT DATA backref */
1113 			struct btrfs_extent_data_ref *dref;
1114 			int count;
1115 			u64 root;
1116 
1117 			dref = btrfs_item_ptr(leaf, slot,
1118 					      struct btrfs_extent_data_ref);
1119 			count = btrfs_extent_data_ref_count(leaf, dref);
1120 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1121 								      dref);
1122 			key.type = BTRFS_EXTENT_DATA_KEY;
1123 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1124 
1125 			if (sc && sc->inum && key.objectid != sc->inum) {
1126 				ret = BACKREF_FOUND_SHARED;
1127 				break;
1128 			}
1129 
1130 			root = btrfs_extent_data_ref_root(leaf, dref);
1131 			ret = add_indirect_ref(fs_info, preftrees, root,
1132 					       &key, 0, bytenr, count,
1133 					       sc, GFP_NOFS);
1134 			break;
1135 		}
1136 		default:
1137 			WARN_ON(1);
1138 		}
1139 		if (ret)
1140 			return ret;
1141 
1142 	}
1143 
1144 	return ret;
1145 }
1146 
1147 /*
1148  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1149  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1150  * indirect refs to their parent bytenr.
1151  * When roots are found, they're added to the roots list
1152  *
1153  * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
1154  * behave much like trans == NULL case, the difference only lies in it will not
1155  * commit root.
1156  * The special case is for qgroup to search roots in commit_transaction().
1157  *
1158  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1159  * shared extent is detected.
1160  *
1161  * Otherwise this returns 0 for success and <0 for an error.
1162  *
1163  * If ignore_offset is set to false, only extent refs whose offsets match
1164  * extent_item_pos are returned.  If true, every extent ref is returned
1165  * and extent_item_pos is ignored.
1166  *
1167  * FIXME some caching might speed things up
1168  */
1169 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1170 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1171 			     u64 time_seq, struct ulist *refs,
1172 			     struct ulist *roots, const u64 *extent_item_pos,
1173 			     struct share_check *sc, bool ignore_offset)
1174 {
1175 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
1176 	struct btrfs_key key;
1177 	struct btrfs_path *path;
1178 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1179 	struct btrfs_delayed_ref_head *head;
1180 	int info_level = 0;
1181 	int ret;
1182 	struct prelim_ref *ref;
1183 	struct rb_node *node;
1184 	struct extent_inode_elem *eie = NULL;
1185 	struct preftrees preftrees = {
1186 		.direct = PREFTREE_INIT,
1187 		.indirect = PREFTREE_INIT,
1188 		.indirect_missing_keys = PREFTREE_INIT
1189 	};
1190 
1191 	key.objectid = bytenr;
1192 	key.offset = (u64)-1;
1193 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1194 		key.type = BTRFS_METADATA_ITEM_KEY;
1195 	else
1196 		key.type = BTRFS_EXTENT_ITEM_KEY;
1197 
1198 	path = btrfs_alloc_path();
1199 	if (!path)
1200 		return -ENOMEM;
1201 	if (!trans) {
1202 		path->search_commit_root = 1;
1203 		path->skip_locking = 1;
1204 	}
1205 
1206 	if (time_seq == BTRFS_SEQ_LAST)
1207 		path->skip_locking = 1;
1208 
1209 again:
1210 	head = NULL;
1211 
1212 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1213 	if (ret < 0)
1214 		goto out;
1215 	if (ret == 0) {
1216 		/* This shouldn't happen, indicates a bug or fs corruption. */
1217 		ASSERT(ret != 0);
1218 		ret = -EUCLEAN;
1219 		goto out;
1220 	}
1221 
1222 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1223 	    time_seq != BTRFS_SEQ_LAST) {
1224 		/*
1225 		 * We have a specific time_seq we care about and trans which
1226 		 * means we have the path lock, we need to grab the ref head and
1227 		 * lock it so we have a consistent view of the refs at the given
1228 		 * time.
1229 		 */
1230 		delayed_refs = &trans->transaction->delayed_refs;
1231 		spin_lock(&delayed_refs->lock);
1232 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1233 		if (head) {
1234 			if (!mutex_trylock(&head->mutex)) {
1235 				refcount_inc(&head->refs);
1236 				spin_unlock(&delayed_refs->lock);
1237 
1238 				btrfs_release_path(path);
1239 
1240 				/*
1241 				 * Mutex was contended, block until it's
1242 				 * released and try again
1243 				 */
1244 				mutex_lock(&head->mutex);
1245 				mutex_unlock(&head->mutex);
1246 				btrfs_put_delayed_ref_head(head);
1247 				goto again;
1248 			}
1249 			spin_unlock(&delayed_refs->lock);
1250 			ret = add_delayed_refs(fs_info, head, time_seq,
1251 					       &preftrees, sc);
1252 			mutex_unlock(&head->mutex);
1253 			if (ret)
1254 				goto out;
1255 		} else {
1256 			spin_unlock(&delayed_refs->lock);
1257 		}
1258 	}
1259 
1260 	if (path->slots[0]) {
1261 		struct extent_buffer *leaf;
1262 		int slot;
1263 
1264 		path->slots[0]--;
1265 		leaf = path->nodes[0];
1266 		slot = path->slots[0];
1267 		btrfs_item_key_to_cpu(leaf, &key, slot);
1268 		if (key.objectid == bytenr &&
1269 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1270 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1271 			ret = add_inline_refs(fs_info, path, bytenr,
1272 					      &info_level, &preftrees, sc);
1273 			if (ret)
1274 				goto out;
1275 			ret = add_keyed_refs(root, path, bytenr, info_level,
1276 					     &preftrees, sc);
1277 			if (ret)
1278 				goto out;
1279 		}
1280 	}
1281 
1282 	btrfs_release_path(path);
1283 
1284 	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1285 	if (ret)
1286 		goto out;
1287 
1288 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1289 
1290 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1291 				    extent_item_pos, sc, ignore_offset);
1292 	if (ret)
1293 		goto out;
1294 
1295 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1296 
1297 	/*
1298 	 * This walks the tree of merged and resolved refs. Tree blocks are
1299 	 * read in as needed. Unique entries are added to the ulist, and
1300 	 * the list of found roots is updated.
1301 	 *
1302 	 * We release the entire tree in one go before returning.
1303 	 */
1304 	node = rb_first_cached(&preftrees.direct.root);
1305 	while (node) {
1306 		ref = rb_entry(node, struct prelim_ref, rbnode);
1307 		node = rb_next(&ref->rbnode);
1308 		/*
1309 		 * ref->count < 0 can happen here if there are delayed
1310 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1311 		 * prelim_ref_insert() relies on this when merging
1312 		 * identical refs to keep the overall count correct.
1313 		 * prelim_ref_insert() will merge only those refs
1314 		 * which compare identically.  Any refs having
1315 		 * e.g. different offsets would not be merged,
1316 		 * and would retain their original ref->count < 0.
1317 		 */
1318 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1319 			if (sc && sc->root_objectid &&
1320 			    ref->root_id != sc->root_objectid) {
1321 				ret = BACKREF_FOUND_SHARED;
1322 				goto out;
1323 			}
1324 
1325 			/* no parent == root of tree */
1326 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1327 			if (ret < 0)
1328 				goto out;
1329 		}
1330 		if (ref->count && ref->parent) {
1331 			if (extent_item_pos && !ref->inode_list &&
1332 			    ref->level == 0) {
1333 				struct extent_buffer *eb;
1334 
1335 				eb = read_tree_block(fs_info, ref->parent, 0,
1336 						     0, ref->level, NULL);
1337 				if (IS_ERR(eb)) {
1338 					ret = PTR_ERR(eb);
1339 					goto out;
1340 				}
1341 				if (!extent_buffer_uptodate(eb)) {
1342 					free_extent_buffer(eb);
1343 					ret = -EIO;
1344 					goto out;
1345 				}
1346 
1347 				if (!path->skip_locking)
1348 					btrfs_tree_read_lock(eb);
1349 				ret = find_extent_in_eb(eb, bytenr,
1350 							*extent_item_pos, &eie, ignore_offset);
1351 				if (!path->skip_locking)
1352 					btrfs_tree_read_unlock(eb);
1353 				free_extent_buffer(eb);
1354 				if (ret < 0)
1355 					goto out;
1356 				ref->inode_list = eie;
1357 			}
1358 			ret = ulist_add_merge_ptr(refs, ref->parent,
1359 						  ref->inode_list,
1360 						  (void **)&eie, GFP_NOFS);
1361 			if (ret < 0)
1362 				goto out;
1363 			if (!ret && extent_item_pos) {
1364 				/*
1365 				 * We've recorded that parent, so we must extend
1366 				 * its inode list here.
1367 				 *
1368 				 * However if there was corruption we may not
1369 				 * have found an eie, return an error in this
1370 				 * case.
1371 				 */
1372 				ASSERT(eie);
1373 				if (!eie) {
1374 					ret = -EUCLEAN;
1375 					goto out;
1376 				}
1377 				while (eie->next)
1378 					eie = eie->next;
1379 				eie->next = ref->inode_list;
1380 			}
1381 			eie = NULL;
1382 		}
1383 		cond_resched();
1384 	}
1385 
1386 out:
1387 	btrfs_free_path(path);
1388 
1389 	prelim_release(&preftrees.direct);
1390 	prelim_release(&preftrees.indirect);
1391 	prelim_release(&preftrees.indirect_missing_keys);
1392 
1393 	if (ret < 0)
1394 		free_inode_elem_list(eie);
1395 	return ret;
1396 }
1397 
1398 static void free_leaf_list(struct ulist *blocks)
1399 {
1400 	struct ulist_node *node = NULL;
1401 	struct extent_inode_elem *eie;
1402 	struct ulist_iterator uiter;
1403 
1404 	ULIST_ITER_INIT(&uiter);
1405 	while ((node = ulist_next(blocks, &uiter))) {
1406 		if (!node->aux)
1407 			continue;
1408 		eie = unode_aux_to_inode_list(node);
1409 		free_inode_elem_list(eie);
1410 		node->aux = 0;
1411 	}
1412 
1413 	ulist_free(blocks);
1414 }
1415 
1416 /*
1417  * Finds all leafs with a reference to the specified combination of bytenr and
1418  * offset. key_list_head will point to a list of corresponding keys (caller must
1419  * free each list element). The leafs will be stored in the leafs ulist, which
1420  * must be freed with ulist_free.
1421  *
1422  * returns 0 on success, <0 on error
1423  */
1424 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1425 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1426 			 u64 time_seq, struct ulist **leafs,
1427 			 const u64 *extent_item_pos, bool ignore_offset)
1428 {
1429 	int ret;
1430 
1431 	*leafs = ulist_alloc(GFP_NOFS);
1432 	if (!*leafs)
1433 		return -ENOMEM;
1434 
1435 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1436 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1437 	if (ret < 0 && ret != -ENOENT) {
1438 		free_leaf_list(*leafs);
1439 		return ret;
1440 	}
1441 
1442 	return 0;
1443 }
1444 
1445 /*
1446  * walk all backrefs for a given extent to find all roots that reference this
1447  * extent. Walking a backref means finding all extents that reference this
1448  * extent and in turn walk the backrefs of those, too. Naturally this is a
1449  * recursive process, but here it is implemented in an iterative fashion: We
1450  * find all referencing extents for the extent in question and put them on a
1451  * list. In turn, we find all referencing extents for those, further appending
1452  * to the list. The way we iterate the list allows adding more elements after
1453  * the current while iterating. The process stops when we reach the end of the
1454  * list. Found roots are added to the roots list.
1455  *
1456  * returns 0 on success, < 0 on error.
1457  */
1458 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1459 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1460 				     u64 time_seq, struct ulist **roots,
1461 				     bool ignore_offset)
1462 {
1463 	struct ulist *tmp;
1464 	struct ulist_node *node = NULL;
1465 	struct ulist_iterator uiter;
1466 	int ret;
1467 
1468 	tmp = ulist_alloc(GFP_NOFS);
1469 	if (!tmp)
1470 		return -ENOMEM;
1471 	*roots = ulist_alloc(GFP_NOFS);
1472 	if (!*roots) {
1473 		ulist_free(tmp);
1474 		return -ENOMEM;
1475 	}
1476 
1477 	ULIST_ITER_INIT(&uiter);
1478 	while (1) {
1479 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1480 					tmp, *roots, NULL, NULL, ignore_offset);
1481 		if (ret < 0 && ret != -ENOENT) {
1482 			ulist_free(tmp);
1483 			ulist_free(*roots);
1484 			*roots = NULL;
1485 			return ret;
1486 		}
1487 		node = ulist_next(tmp, &uiter);
1488 		if (!node)
1489 			break;
1490 		bytenr = node->val;
1491 		cond_resched();
1492 	}
1493 
1494 	ulist_free(tmp);
1495 	return 0;
1496 }
1497 
1498 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1499 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1500 			 u64 time_seq, struct ulist **roots,
1501 			 bool skip_commit_root_sem)
1502 {
1503 	int ret;
1504 
1505 	if (!trans && !skip_commit_root_sem)
1506 		down_read(&fs_info->commit_root_sem);
1507 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1508 					time_seq, roots, false);
1509 	if (!trans && !skip_commit_root_sem)
1510 		up_read(&fs_info->commit_root_sem);
1511 	return ret;
1512 }
1513 
1514 /*
1515  * The caller has joined a transaction or is holding a read lock on the
1516  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1517  * snapshot field changing while updating or checking the cache.
1518  */
1519 static bool lookup_backref_shared_cache(struct btrfs_backref_shared_cache *cache,
1520 					struct btrfs_root *root,
1521 					u64 bytenr, int level, bool *is_shared)
1522 {
1523 	struct btrfs_backref_shared_cache_entry *entry;
1524 
1525 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1526 		return false;
1527 
1528 	/*
1529 	 * Level -1 is used for the data extent, which is not reliable to cache
1530 	 * because its reference count can increase or decrease without us
1531 	 * realizing. We cache results only for extent buffers that lead from
1532 	 * the root node down to the leaf with the file extent item.
1533 	 */
1534 	ASSERT(level >= 0);
1535 
1536 	entry = &cache->entries[level];
1537 
1538 	/* Unused cache entry or being used for some other extent buffer. */
1539 	if (entry->bytenr != bytenr)
1540 		return false;
1541 
1542 	/*
1543 	 * We cached a false result, but the last snapshot generation of the
1544 	 * root changed, so we now have a snapshot. Don't trust the result.
1545 	 */
1546 	if (!entry->is_shared &&
1547 	    entry->gen != btrfs_root_last_snapshot(&root->root_item))
1548 		return false;
1549 
1550 	/*
1551 	 * If we cached a true result and the last generation used for dropping
1552 	 * a root changed, we can not trust the result, because the dropped root
1553 	 * could be a snapshot sharing this extent buffer.
1554 	 */
1555 	if (entry->is_shared &&
1556 	    entry->gen != btrfs_get_last_root_drop_gen(root->fs_info))
1557 		return false;
1558 
1559 	*is_shared = entry->is_shared;
1560 
1561 	return true;
1562 }
1563 
1564 /*
1565  * The caller has joined a transaction or is holding a read lock on the
1566  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1567  * snapshot field changing while updating or checking the cache.
1568  */
1569 static void store_backref_shared_cache(struct btrfs_backref_shared_cache *cache,
1570 				       struct btrfs_root *root,
1571 				       u64 bytenr, int level, bool is_shared)
1572 {
1573 	struct btrfs_backref_shared_cache_entry *entry;
1574 	u64 gen;
1575 
1576 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1577 		return;
1578 
1579 	/*
1580 	 * Level -1 is used for the data extent, which is not reliable to cache
1581 	 * because its reference count can increase or decrease without us
1582 	 * realizing. We cache results only for extent buffers that lead from
1583 	 * the root node down to the leaf with the file extent item.
1584 	 */
1585 	ASSERT(level >= 0);
1586 
1587 	if (is_shared)
1588 		gen = btrfs_get_last_root_drop_gen(root->fs_info);
1589 	else
1590 		gen = btrfs_root_last_snapshot(&root->root_item);
1591 
1592 	entry = &cache->entries[level];
1593 	entry->bytenr = bytenr;
1594 	entry->is_shared = is_shared;
1595 	entry->gen = gen;
1596 
1597 	/*
1598 	 * If we found an extent buffer is shared, set the cache result for all
1599 	 * extent buffers below it to true. As nodes in the path are COWed,
1600 	 * their sharedness is moved to their children, and if a leaf is COWed,
1601 	 * then the sharedness of a data extent becomes direct, the refcount of
1602 	 * data extent is increased in the extent item at the extent tree.
1603 	 */
1604 	if (is_shared) {
1605 		for (int i = 0; i < level; i++) {
1606 			entry = &cache->entries[i];
1607 			entry->is_shared = is_shared;
1608 			entry->gen = gen;
1609 		}
1610 	}
1611 }
1612 
1613 /*
1614  * Check if a data extent is shared or not.
1615  *
1616  * @root:        The root the inode belongs to.
1617  * @inum:        Number of the inode whose extent we are checking.
1618  * @bytenr:      Logical bytenr of the extent we are checking.
1619  * @extent_gen:  Generation of the extent (file extent item) or 0 if it is
1620  *               not known.
1621  * @roots:       List of roots this extent is shared among.
1622  * @tmp:         Temporary list used for iteration.
1623  * @cache:       A backref lookup result cache.
1624  *
1625  * btrfs_is_data_extent_shared uses the backref walking code but will short
1626  * circuit as soon as it finds a root or inode that doesn't match the
1627  * one passed in. This provides a significant performance benefit for
1628  * callers (such as fiemap) which want to know whether the extent is
1629  * shared but do not need a ref count.
1630  *
1631  * This attempts to attach to the running transaction in order to account for
1632  * delayed refs, but continues on even when no running transaction exists.
1633  *
1634  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1635  */
1636 int btrfs_is_data_extent_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1637 				u64 extent_gen,
1638 				struct ulist *roots, struct ulist *tmp,
1639 				struct btrfs_backref_shared_cache *cache)
1640 {
1641 	struct btrfs_fs_info *fs_info = root->fs_info;
1642 	struct btrfs_trans_handle *trans;
1643 	struct ulist_iterator uiter;
1644 	struct ulist_node *node;
1645 	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1646 	int ret = 0;
1647 	struct share_check shared = {
1648 		.root_objectid = root->root_key.objectid,
1649 		.inum = inum,
1650 		.share_count = 0,
1651 	};
1652 	int level;
1653 
1654 	ulist_init(roots);
1655 	ulist_init(tmp);
1656 
1657 	trans = btrfs_join_transaction_nostart(root);
1658 	if (IS_ERR(trans)) {
1659 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1660 			ret = PTR_ERR(trans);
1661 			goto out;
1662 		}
1663 		trans = NULL;
1664 		down_read(&fs_info->commit_root_sem);
1665 	} else {
1666 		btrfs_get_tree_mod_seq(fs_info, &elem);
1667 	}
1668 
1669 	/* -1 means we are in the bytenr of the data extent. */
1670 	level = -1;
1671 	ULIST_ITER_INIT(&uiter);
1672 	while (1) {
1673 		bool is_shared;
1674 		bool cached;
1675 
1676 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1677 					roots, NULL, &shared, false);
1678 		if (ret == BACKREF_FOUND_SHARED) {
1679 			/* this is the only condition under which we return 1 */
1680 			ret = 1;
1681 			if (level >= 0)
1682 				store_backref_shared_cache(cache, root, bytenr,
1683 							   level, true);
1684 			break;
1685 		}
1686 		if (ret < 0 && ret != -ENOENT)
1687 			break;
1688 		ret = 0;
1689 		/*
1690 		 * If our data extent is not shared through reflinks and it was
1691 		 * created in a generation after the last one used to create a
1692 		 * snapshot of the inode's root, then it can not be shared
1693 		 * indirectly through subtrees, as that can only happen with
1694 		 * snapshots. In this case bail out, no need to check for the
1695 		 * sharedness of extent buffers.
1696 		 */
1697 		if (level == -1 &&
1698 		    extent_gen > btrfs_root_last_snapshot(&root->root_item))
1699 			break;
1700 
1701 		if (level >= 0)
1702 			store_backref_shared_cache(cache, root, bytenr,
1703 						   level, false);
1704 		node = ulist_next(tmp, &uiter);
1705 		if (!node)
1706 			break;
1707 		bytenr = node->val;
1708 		level++;
1709 		cached = lookup_backref_shared_cache(cache, root, bytenr, level,
1710 						     &is_shared);
1711 		if (cached) {
1712 			ret = (is_shared ? 1 : 0);
1713 			break;
1714 		}
1715 		shared.share_count = 0;
1716 		cond_resched();
1717 	}
1718 
1719 	if (trans) {
1720 		btrfs_put_tree_mod_seq(fs_info, &elem);
1721 		btrfs_end_transaction(trans);
1722 	} else {
1723 		up_read(&fs_info->commit_root_sem);
1724 	}
1725 out:
1726 	ulist_release(roots);
1727 	ulist_release(tmp);
1728 	return ret;
1729 }
1730 
1731 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1732 			  u64 start_off, struct btrfs_path *path,
1733 			  struct btrfs_inode_extref **ret_extref,
1734 			  u64 *found_off)
1735 {
1736 	int ret, slot;
1737 	struct btrfs_key key;
1738 	struct btrfs_key found_key;
1739 	struct btrfs_inode_extref *extref;
1740 	const struct extent_buffer *leaf;
1741 	unsigned long ptr;
1742 
1743 	key.objectid = inode_objectid;
1744 	key.type = BTRFS_INODE_EXTREF_KEY;
1745 	key.offset = start_off;
1746 
1747 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1748 	if (ret < 0)
1749 		return ret;
1750 
1751 	while (1) {
1752 		leaf = path->nodes[0];
1753 		slot = path->slots[0];
1754 		if (slot >= btrfs_header_nritems(leaf)) {
1755 			/*
1756 			 * If the item at offset is not found,
1757 			 * btrfs_search_slot will point us to the slot
1758 			 * where it should be inserted. In our case
1759 			 * that will be the slot directly before the
1760 			 * next INODE_REF_KEY_V2 item. In the case
1761 			 * that we're pointing to the last slot in a
1762 			 * leaf, we must move one leaf over.
1763 			 */
1764 			ret = btrfs_next_leaf(root, path);
1765 			if (ret) {
1766 				if (ret >= 1)
1767 					ret = -ENOENT;
1768 				break;
1769 			}
1770 			continue;
1771 		}
1772 
1773 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1774 
1775 		/*
1776 		 * Check that we're still looking at an extended ref key for
1777 		 * this particular objectid. If we have different
1778 		 * objectid or type then there are no more to be found
1779 		 * in the tree and we can exit.
1780 		 */
1781 		ret = -ENOENT;
1782 		if (found_key.objectid != inode_objectid)
1783 			break;
1784 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1785 			break;
1786 
1787 		ret = 0;
1788 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1789 		extref = (struct btrfs_inode_extref *)ptr;
1790 		*ret_extref = extref;
1791 		if (found_off)
1792 			*found_off = found_key.offset;
1793 		break;
1794 	}
1795 
1796 	return ret;
1797 }
1798 
1799 /*
1800  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1801  * Elements of the path are separated by '/' and the path is guaranteed to be
1802  * 0-terminated. the path is only given within the current file system.
1803  * Therefore, it never starts with a '/'. the caller is responsible to provide
1804  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1805  * the start point of the resulting string is returned. this pointer is within
1806  * dest, normally.
1807  * in case the path buffer would overflow, the pointer is decremented further
1808  * as if output was written to the buffer, though no more output is actually
1809  * generated. that way, the caller can determine how much space would be
1810  * required for the path to fit into the buffer. in that case, the returned
1811  * value will be smaller than dest. callers must check this!
1812  */
1813 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1814 			u32 name_len, unsigned long name_off,
1815 			struct extent_buffer *eb_in, u64 parent,
1816 			char *dest, u32 size)
1817 {
1818 	int slot;
1819 	u64 next_inum;
1820 	int ret;
1821 	s64 bytes_left = ((s64)size) - 1;
1822 	struct extent_buffer *eb = eb_in;
1823 	struct btrfs_key found_key;
1824 	struct btrfs_inode_ref *iref;
1825 
1826 	if (bytes_left >= 0)
1827 		dest[bytes_left] = '\0';
1828 
1829 	while (1) {
1830 		bytes_left -= name_len;
1831 		if (bytes_left >= 0)
1832 			read_extent_buffer(eb, dest + bytes_left,
1833 					   name_off, name_len);
1834 		if (eb != eb_in) {
1835 			if (!path->skip_locking)
1836 				btrfs_tree_read_unlock(eb);
1837 			free_extent_buffer(eb);
1838 		}
1839 		ret = btrfs_find_item(fs_root, path, parent, 0,
1840 				BTRFS_INODE_REF_KEY, &found_key);
1841 		if (ret > 0)
1842 			ret = -ENOENT;
1843 		if (ret)
1844 			break;
1845 
1846 		next_inum = found_key.offset;
1847 
1848 		/* regular exit ahead */
1849 		if (parent == next_inum)
1850 			break;
1851 
1852 		slot = path->slots[0];
1853 		eb = path->nodes[0];
1854 		/* make sure we can use eb after releasing the path */
1855 		if (eb != eb_in) {
1856 			path->nodes[0] = NULL;
1857 			path->locks[0] = 0;
1858 		}
1859 		btrfs_release_path(path);
1860 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1861 
1862 		name_len = btrfs_inode_ref_name_len(eb, iref);
1863 		name_off = (unsigned long)(iref + 1);
1864 
1865 		parent = next_inum;
1866 		--bytes_left;
1867 		if (bytes_left >= 0)
1868 			dest[bytes_left] = '/';
1869 	}
1870 
1871 	btrfs_release_path(path);
1872 
1873 	if (ret)
1874 		return ERR_PTR(ret);
1875 
1876 	return dest + bytes_left;
1877 }
1878 
1879 /*
1880  * this makes the path point to (logical EXTENT_ITEM *)
1881  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1882  * tree blocks and <0 on error.
1883  */
1884 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1885 			struct btrfs_path *path, struct btrfs_key *found_key,
1886 			u64 *flags_ret)
1887 {
1888 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
1889 	int ret;
1890 	u64 flags;
1891 	u64 size = 0;
1892 	u32 item_size;
1893 	const struct extent_buffer *eb;
1894 	struct btrfs_extent_item *ei;
1895 	struct btrfs_key key;
1896 
1897 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1898 		key.type = BTRFS_METADATA_ITEM_KEY;
1899 	else
1900 		key.type = BTRFS_EXTENT_ITEM_KEY;
1901 	key.objectid = logical;
1902 	key.offset = (u64)-1;
1903 
1904 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1905 	if (ret < 0)
1906 		return ret;
1907 
1908 	ret = btrfs_previous_extent_item(extent_root, path, 0);
1909 	if (ret) {
1910 		if (ret > 0)
1911 			ret = -ENOENT;
1912 		return ret;
1913 	}
1914 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1915 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1916 		size = fs_info->nodesize;
1917 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1918 		size = found_key->offset;
1919 
1920 	if (found_key->objectid > logical ||
1921 	    found_key->objectid + size <= logical) {
1922 		btrfs_debug(fs_info,
1923 			"logical %llu is not within any extent", logical);
1924 		return -ENOENT;
1925 	}
1926 
1927 	eb = path->nodes[0];
1928 	item_size = btrfs_item_size(eb, path->slots[0]);
1929 	BUG_ON(item_size < sizeof(*ei));
1930 
1931 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1932 	flags = btrfs_extent_flags(eb, ei);
1933 
1934 	btrfs_debug(fs_info,
1935 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1936 		 logical, logical - found_key->objectid, found_key->objectid,
1937 		 found_key->offset, flags, item_size);
1938 
1939 	WARN_ON(!flags_ret);
1940 	if (flags_ret) {
1941 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1942 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1943 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1944 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1945 		else
1946 			BUG();
1947 		return 0;
1948 	}
1949 
1950 	return -EIO;
1951 }
1952 
1953 /*
1954  * helper function to iterate extent inline refs. ptr must point to a 0 value
1955  * for the first call and may be modified. it is used to track state.
1956  * if more refs exist, 0 is returned and the next call to
1957  * get_extent_inline_ref must pass the modified ptr parameter to get the
1958  * next ref. after the last ref was processed, 1 is returned.
1959  * returns <0 on error
1960  */
1961 static int get_extent_inline_ref(unsigned long *ptr,
1962 				 const struct extent_buffer *eb,
1963 				 const struct btrfs_key *key,
1964 				 const struct btrfs_extent_item *ei,
1965 				 u32 item_size,
1966 				 struct btrfs_extent_inline_ref **out_eiref,
1967 				 int *out_type)
1968 {
1969 	unsigned long end;
1970 	u64 flags;
1971 	struct btrfs_tree_block_info *info;
1972 
1973 	if (!*ptr) {
1974 		/* first call */
1975 		flags = btrfs_extent_flags(eb, ei);
1976 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1977 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1978 				/* a skinny metadata extent */
1979 				*out_eiref =
1980 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1981 			} else {
1982 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1983 				info = (struct btrfs_tree_block_info *)(ei + 1);
1984 				*out_eiref =
1985 				   (struct btrfs_extent_inline_ref *)(info + 1);
1986 			}
1987 		} else {
1988 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1989 		}
1990 		*ptr = (unsigned long)*out_eiref;
1991 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1992 			return -ENOENT;
1993 	}
1994 
1995 	end = (unsigned long)ei + item_size;
1996 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1997 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1998 						     BTRFS_REF_TYPE_ANY);
1999 	if (*out_type == BTRFS_REF_TYPE_INVALID)
2000 		return -EUCLEAN;
2001 
2002 	*ptr += btrfs_extent_inline_ref_size(*out_type);
2003 	WARN_ON(*ptr > end);
2004 	if (*ptr == end)
2005 		return 1; /* last */
2006 
2007 	return 0;
2008 }
2009 
2010 /*
2011  * reads the tree block backref for an extent. tree level and root are returned
2012  * through out_level and out_root. ptr must point to a 0 value for the first
2013  * call and may be modified (see get_extent_inline_ref comment).
2014  * returns 0 if data was provided, 1 if there was no more data to provide or
2015  * <0 on error.
2016  */
2017 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2018 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
2019 			    u32 item_size, u64 *out_root, u8 *out_level)
2020 {
2021 	int ret;
2022 	int type;
2023 	struct btrfs_extent_inline_ref *eiref;
2024 
2025 	if (*ptr == (unsigned long)-1)
2026 		return 1;
2027 
2028 	while (1) {
2029 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2030 					      &eiref, &type);
2031 		if (ret < 0)
2032 			return ret;
2033 
2034 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2035 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
2036 			break;
2037 
2038 		if (ret == 1)
2039 			return 1;
2040 	}
2041 
2042 	/* we can treat both ref types equally here */
2043 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2044 
2045 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2046 		struct btrfs_tree_block_info *info;
2047 
2048 		info = (struct btrfs_tree_block_info *)(ei + 1);
2049 		*out_level = btrfs_tree_block_level(eb, info);
2050 	} else {
2051 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2052 		*out_level = (u8)key->offset;
2053 	}
2054 
2055 	if (ret == 1)
2056 		*ptr = (unsigned long)-1;
2057 
2058 	return 0;
2059 }
2060 
2061 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2062 			     struct extent_inode_elem *inode_list,
2063 			     u64 root, u64 extent_item_objectid,
2064 			     iterate_extent_inodes_t *iterate, void *ctx)
2065 {
2066 	struct extent_inode_elem *eie;
2067 	int ret = 0;
2068 
2069 	for (eie = inode_list; eie; eie = eie->next) {
2070 		btrfs_debug(fs_info,
2071 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2072 			    extent_item_objectid, eie->inum,
2073 			    eie->offset, root);
2074 		ret = iterate(eie->inum, eie->offset, root, ctx);
2075 		if (ret) {
2076 			btrfs_debug(fs_info,
2077 				    "stopping iteration for %llu due to ret=%d",
2078 				    extent_item_objectid, ret);
2079 			break;
2080 		}
2081 	}
2082 
2083 	return ret;
2084 }
2085 
2086 /*
2087  * calls iterate() for every inode that references the extent identified by
2088  * the given parameters.
2089  * when the iterator function returns a non-zero value, iteration stops.
2090  */
2091 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
2092 				u64 extent_item_objectid, u64 extent_item_pos,
2093 				int search_commit_root,
2094 				iterate_extent_inodes_t *iterate, void *ctx,
2095 				bool ignore_offset)
2096 {
2097 	int ret;
2098 	struct btrfs_trans_handle *trans = NULL;
2099 	struct ulist *refs = NULL;
2100 	struct ulist *roots = NULL;
2101 	struct ulist_node *ref_node = NULL;
2102 	struct ulist_node *root_node = NULL;
2103 	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2104 	struct ulist_iterator ref_uiter;
2105 	struct ulist_iterator root_uiter;
2106 
2107 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
2108 			extent_item_objectid);
2109 
2110 	if (!search_commit_root) {
2111 		trans = btrfs_attach_transaction(fs_info->tree_root);
2112 		if (IS_ERR(trans)) {
2113 			if (PTR_ERR(trans) != -ENOENT &&
2114 			    PTR_ERR(trans) != -EROFS)
2115 				return PTR_ERR(trans);
2116 			trans = NULL;
2117 		}
2118 	}
2119 
2120 	if (trans)
2121 		btrfs_get_tree_mod_seq(fs_info, &seq_elem);
2122 	else
2123 		down_read(&fs_info->commit_root_sem);
2124 
2125 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2126 				   seq_elem.seq, &refs,
2127 				   &extent_item_pos, ignore_offset);
2128 	if (ret)
2129 		goto out;
2130 
2131 	ULIST_ITER_INIT(&ref_uiter);
2132 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2133 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
2134 						seq_elem.seq, &roots,
2135 						ignore_offset);
2136 		if (ret)
2137 			break;
2138 		ULIST_ITER_INIT(&root_uiter);
2139 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2140 			btrfs_debug(fs_info,
2141 				    "root %llu references leaf %llu, data list %#llx",
2142 				    root_node->val, ref_node->val,
2143 				    ref_node->aux);
2144 			ret = iterate_leaf_refs(fs_info,
2145 						(struct extent_inode_elem *)
2146 						(uintptr_t)ref_node->aux,
2147 						root_node->val,
2148 						extent_item_objectid,
2149 						iterate, ctx);
2150 		}
2151 		ulist_free(roots);
2152 	}
2153 
2154 	free_leaf_list(refs);
2155 out:
2156 	if (trans) {
2157 		btrfs_put_tree_mod_seq(fs_info, &seq_elem);
2158 		btrfs_end_transaction(trans);
2159 	} else {
2160 		up_read(&fs_info->commit_root_sem);
2161 	}
2162 
2163 	return ret;
2164 }
2165 
2166 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
2167 {
2168 	struct btrfs_data_container *inodes = ctx;
2169 	const size_t c = 3 * sizeof(u64);
2170 
2171 	if (inodes->bytes_left >= c) {
2172 		inodes->bytes_left -= c;
2173 		inodes->val[inodes->elem_cnt] = inum;
2174 		inodes->val[inodes->elem_cnt + 1] = offset;
2175 		inodes->val[inodes->elem_cnt + 2] = root;
2176 		inodes->elem_cnt += 3;
2177 	} else {
2178 		inodes->bytes_missing += c - inodes->bytes_left;
2179 		inodes->bytes_left = 0;
2180 		inodes->elem_missed += 3;
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2187 				struct btrfs_path *path,
2188 				void *ctx, bool ignore_offset)
2189 {
2190 	int ret;
2191 	u64 extent_item_pos;
2192 	u64 flags = 0;
2193 	struct btrfs_key found_key;
2194 	int search_commit_root = path->search_commit_root;
2195 
2196 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2197 	btrfs_release_path(path);
2198 	if (ret < 0)
2199 		return ret;
2200 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2201 		return -EINVAL;
2202 
2203 	extent_item_pos = logical - found_key.objectid;
2204 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2205 					extent_item_pos, search_commit_root,
2206 					build_ino_list, ctx, ignore_offset);
2207 
2208 	return ret;
2209 }
2210 
2211 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2212 			 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2213 
2214 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2215 {
2216 	int ret = 0;
2217 	int slot;
2218 	u32 cur;
2219 	u32 len;
2220 	u32 name_len;
2221 	u64 parent = 0;
2222 	int found = 0;
2223 	struct btrfs_root *fs_root = ipath->fs_root;
2224 	struct btrfs_path *path = ipath->btrfs_path;
2225 	struct extent_buffer *eb;
2226 	struct btrfs_inode_ref *iref;
2227 	struct btrfs_key found_key;
2228 
2229 	while (!ret) {
2230 		ret = btrfs_find_item(fs_root, path, inum,
2231 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2232 				&found_key);
2233 
2234 		if (ret < 0)
2235 			break;
2236 		if (ret) {
2237 			ret = found ? 0 : -ENOENT;
2238 			break;
2239 		}
2240 		++found;
2241 
2242 		parent = found_key.offset;
2243 		slot = path->slots[0];
2244 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2245 		if (!eb) {
2246 			ret = -ENOMEM;
2247 			break;
2248 		}
2249 		btrfs_release_path(path);
2250 
2251 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2252 
2253 		for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2254 			name_len = btrfs_inode_ref_name_len(eb, iref);
2255 			/* path must be released before calling iterate()! */
2256 			btrfs_debug(fs_root->fs_info,
2257 				"following ref at offset %u for inode %llu in tree %llu",
2258 				cur, found_key.objectid,
2259 				fs_root->root_key.objectid);
2260 			ret = inode_to_path(parent, name_len,
2261 				      (unsigned long)(iref + 1), eb, ipath);
2262 			if (ret)
2263 				break;
2264 			len = sizeof(*iref) + name_len;
2265 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2266 		}
2267 		free_extent_buffer(eb);
2268 	}
2269 
2270 	btrfs_release_path(path);
2271 
2272 	return ret;
2273 }
2274 
2275 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2276 {
2277 	int ret;
2278 	int slot;
2279 	u64 offset = 0;
2280 	u64 parent;
2281 	int found = 0;
2282 	struct btrfs_root *fs_root = ipath->fs_root;
2283 	struct btrfs_path *path = ipath->btrfs_path;
2284 	struct extent_buffer *eb;
2285 	struct btrfs_inode_extref *extref;
2286 	u32 item_size;
2287 	u32 cur_offset;
2288 	unsigned long ptr;
2289 
2290 	while (1) {
2291 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2292 					    &offset);
2293 		if (ret < 0)
2294 			break;
2295 		if (ret) {
2296 			ret = found ? 0 : -ENOENT;
2297 			break;
2298 		}
2299 		++found;
2300 
2301 		slot = path->slots[0];
2302 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2303 		if (!eb) {
2304 			ret = -ENOMEM;
2305 			break;
2306 		}
2307 		btrfs_release_path(path);
2308 
2309 		item_size = btrfs_item_size(eb, slot);
2310 		ptr = btrfs_item_ptr_offset(eb, slot);
2311 		cur_offset = 0;
2312 
2313 		while (cur_offset < item_size) {
2314 			u32 name_len;
2315 
2316 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2317 			parent = btrfs_inode_extref_parent(eb, extref);
2318 			name_len = btrfs_inode_extref_name_len(eb, extref);
2319 			ret = inode_to_path(parent, name_len,
2320 				      (unsigned long)&extref->name, eb, ipath);
2321 			if (ret)
2322 				break;
2323 
2324 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2325 			cur_offset += sizeof(*extref);
2326 		}
2327 		free_extent_buffer(eb);
2328 
2329 		offset++;
2330 	}
2331 
2332 	btrfs_release_path(path);
2333 
2334 	return ret;
2335 }
2336 
2337 /*
2338  * returns 0 if the path could be dumped (probably truncated)
2339  * returns <0 in case of an error
2340  */
2341 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2342 			 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2343 {
2344 	char *fspath;
2345 	char *fspath_min;
2346 	int i = ipath->fspath->elem_cnt;
2347 	const int s_ptr = sizeof(char *);
2348 	u32 bytes_left;
2349 
2350 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2351 					ipath->fspath->bytes_left - s_ptr : 0;
2352 
2353 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2354 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2355 				   name_off, eb, inum, fspath_min, bytes_left);
2356 	if (IS_ERR(fspath))
2357 		return PTR_ERR(fspath);
2358 
2359 	if (fspath > fspath_min) {
2360 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2361 		++ipath->fspath->elem_cnt;
2362 		ipath->fspath->bytes_left = fspath - fspath_min;
2363 	} else {
2364 		++ipath->fspath->elem_missed;
2365 		ipath->fspath->bytes_missing += fspath_min - fspath;
2366 		ipath->fspath->bytes_left = 0;
2367 	}
2368 
2369 	return 0;
2370 }
2371 
2372 /*
2373  * this dumps all file system paths to the inode into the ipath struct, provided
2374  * is has been created large enough. each path is zero-terminated and accessed
2375  * from ipath->fspath->val[i].
2376  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2377  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2378  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2379  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2380  * have been needed to return all paths.
2381  */
2382 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2383 {
2384 	int ret;
2385 	int found_refs = 0;
2386 
2387 	ret = iterate_inode_refs(inum, ipath);
2388 	if (!ret)
2389 		++found_refs;
2390 	else if (ret != -ENOENT)
2391 		return ret;
2392 
2393 	ret = iterate_inode_extrefs(inum, ipath);
2394 	if (ret == -ENOENT && found_refs)
2395 		return 0;
2396 
2397 	return ret;
2398 }
2399 
2400 struct btrfs_data_container *init_data_container(u32 total_bytes)
2401 {
2402 	struct btrfs_data_container *data;
2403 	size_t alloc_bytes;
2404 
2405 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2406 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2407 	if (!data)
2408 		return ERR_PTR(-ENOMEM);
2409 
2410 	if (total_bytes >= sizeof(*data)) {
2411 		data->bytes_left = total_bytes - sizeof(*data);
2412 		data->bytes_missing = 0;
2413 	} else {
2414 		data->bytes_missing = sizeof(*data) - total_bytes;
2415 		data->bytes_left = 0;
2416 	}
2417 
2418 	data->elem_cnt = 0;
2419 	data->elem_missed = 0;
2420 
2421 	return data;
2422 }
2423 
2424 /*
2425  * allocates space to return multiple file system paths for an inode.
2426  * total_bytes to allocate are passed, note that space usable for actual path
2427  * information will be total_bytes - sizeof(struct inode_fs_paths).
2428  * the returned pointer must be freed with free_ipath() in the end.
2429  */
2430 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2431 					struct btrfs_path *path)
2432 {
2433 	struct inode_fs_paths *ifp;
2434 	struct btrfs_data_container *fspath;
2435 
2436 	fspath = init_data_container(total_bytes);
2437 	if (IS_ERR(fspath))
2438 		return ERR_CAST(fspath);
2439 
2440 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2441 	if (!ifp) {
2442 		kvfree(fspath);
2443 		return ERR_PTR(-ENOMEM);
2444 	}
2445 
2446 	ifp->btrfs_path = path;
2447 	ifp->fspath = fspath;
2448 	ifp->fs_root = fs_root;
2449 
2450 	return ifp;
2451 }
2452 
2453 void free_ipath(struct inode_fs_paths *ipath)
2454 {
2455 	if (!ipath)
2456 		return;
2457 	kvfree(ipath->fspath);
2458 	kfree(ipath);
2459 }
2460 
2461 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2462 		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2463 {
2464 	struct btrfs_backref_iter *ret;
2465 
2466 	ret = kzalloc(sizeof(*ret), gfp_flag);
2467 	if (!ret)
2468 		return NULL;
2469 
2470 	ret->path = btrfs_alloc_path();
2471 	if (!ret->path) {
2472 		kfree(ret);
2473 		return NULL;
2474 	}
2475 
2476 	/* Current backref iterator only supports iteration in commit root */
2477 	ret->path->search_commit_root = 1;
2478 	ret->path->skip_locking = 1;
2479 	ret->fs_info = fs_info;
2480 
2481 	return ret;
2482 }
2483 
2484 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2485 {
2486 	struct btrfs_fs_info *fs_info = iter->fs_info;
2487 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2488 	struct btrfs_path *path = iter->path;
2489 	struct btrfs_extent_item *ei;
2490 	struct btrfs_key key;
2491 	int ret;
2492 
2493 	key.objectid = bytenr;
2494 	key.type = BTRFS_METADATA_ITEM_KEY;
2495 	key.offset = (u64)-1;
2496 	iter->bytenr = bytenr;
2497 
2498 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2499 	if (ret < 0)
2500 		return ret;
2501 	if (ret == 0) {
2502 		ret = -EUCLEAN;
2503 		goto release;
2504 	}
2505 	if (path->slots[0] == 0) {
2506 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2507 		ret = -EUCLEAN;
2508 		goto release;
2509 	}
2510 	path->slots[0]--;
2511 
2512 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2513 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2514 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2515 		ret = -ENOENT;
2516 		goto release;
2517 	}
2518 	memcpy(&iter->cur_key, &key, sizeof(key));
2519 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2520 						    path->slots[0]);
2521 	iter->end_ptr = (u32)(iter->item_ptr +
2522 			btrfs_item_size(path->nodes[0], path->slots[0]));
2523 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2524 			    struct btrfs_extent_item);
2525 
2526 	/*
2527 	 * Only support iteration on tree backref yet.
2528 	 *
2529 	 * This is an extra precaution for non skinny-metadata, where
2530 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2531 	 * extent flags to determine if it's a tree block.
2532 	 */
2533 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2534 		ret = -ENOTSUPP;
2535 		goto release;
2536 	}
2537 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2538 
2539 	/* If there is no inline backref, go search for keyed backref */
2540 	if (iter->cur_ptr >= iter->end_ptr) {
2541 		ret = btrfs_next_item(extent_root, path);
2542 
2543 		/* No inline nor keyed ref */
2544 		if (ret > 0) {
2545 			ret = -ENOENT;
2546 			goto release;
2547 		}
2548 		if (ret < 0)
2549 			goto release;
2550 
2551 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2552 				path->slots[0]);
2553 		if (iter->cur_key.objectid != bytenr ||
2554 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2555 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2556 			ret = -ENOENT;
2557 			goto release;
2558 		}
2559 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2560 							   path->slots[0]);
2561 		iter->item_ptr = iter->cur_ptr;
2562 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2563 				      path->nodes[0], path->slots[0]));
2564 	}
2565 
2566 	return 0;
2567 release:
2568 	btrfs_backref_iter_release(iter);
2569 	return ret;
2570 }
2571 
2572 /*
2573  * Go to the next backref item of current bytenr, can be either inlined or
2574  * keyed.
2575  *
2576  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2577  *
2578  * Return 0 if we get next backref without problem.
2579  * Return >0 if there is no extra backref for this bytenr.
2580  * Return <0 if there is something wrong happened.
2581  */
2582 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2583 {
2584 	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2585 	struct btrfs_root *extent_root;
2586 	struct btrfs_path *path = iter->path;
2587 	struct btrfs_extent_inline_ref *iref;
2588 	int ret;
2589 	u32 size;
2590 
2591 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2592 		/* We're still inside the inline refs */
2593 		ASSERT(iter->cur_ptr < iter->end_ptr);
2594 
2595 		if (btrfs_backref_has_tree_block_info(iter)) {
2596 			/* First tree block info */
2597 			size = sizeof(struct btrfs_tree_block_info);
2598 		} else {
2599 			/* Use inline ref type to determine the size */
2600 			int type;
2601 
2602 			iref = (struct btrfs_extent_inline_ref *)
2603 				((unsigned long)iter->cur_ptr);
2604 			type = btrfs_extent_inline_ref_type(eb, iref);
2605 
2606 			size = btrfs_extent_inline_ref_size(type);
2607 		}
2608 		iter->cur_ptr += size;
2609 		if (iter->cur_ptr < iter->end_ptr)
2610 			return 0;
2611 
2612 		/* All inline items iterated, fall through */
2613 	}
2614 
2615 	/* We're at keyed items, there is no inline item, go to the next one */
2616 	extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2617 	ret = btrfs_next_item(extent_root, iter->path);
2618 	if (ret)
2619 		return ret;
2620 
2621 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2622 	if (iter->cur_key.objectid != iter->bytenr ||
2623 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2624 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2625 		return 1;
2626 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2627 					path->slots[0]);
2628 	iter->cur_ptr = iter->item_ptr;
2629 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
2630 						path->slots[0]);
2631 	return 0;
2632 }
2633 
2634 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2635 			      struct btrfs_backref_cache *cache, int is_reloc)
2636 {
2637 	int i;
2638 
2639 	cache->rb_root = RB_ROOT;
2640 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2641 		INIT_LIST_HEAD(&cache->pending[i]);
2642 	INIT_LIST_HEAD(&cache->changed);
2643 	INIT_LIST_HEAD(&cache->detached);
2644 	INIT_LIST_HEAD(&cache->leaves);
2645 	INIT_LIST_HEAD(&cache->pending_edge);
2646 	INIT_LIST_HEAD(&cache->useless_node);
2647 	cache->fs_info = fs_info;
2648 	cache->is_reloc = is_reloc;
2649 }
2650 
2651 struct btrfs_backref_node *btrfs_backref_alloc_node(
2652 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2653 {
2654 	struct btrfs_backref_node *node;
2655 
2656 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2657 	node = kzalloc(sizeof(*node), GFP_NOFS);
2658 	if (!node)
2659 		return node;
2660 
2661 	INIT_LIST_HEAD(&node->list);
2662 	INIT_LIST_HEAD(&node->upper);
2663 	INIT_LIST_HEAD(&node->lower);
2664 	RB_CLEAR_NODE(&node->rb_node);
2665 	cache->nr_nodes++;
2666 	node->level = level;
2667 	node->bytenr = bytenr;
2668 
2669 	return node;
2670 }
2671 
2672 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2673 		struct btrfs_backref_cache *cache)
2674 {
2675 	struct btrfs_backref_edge *edge;
2676 
2677 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2678 	if (edge)
2679 		cache->nr_edges++;
2680 	return edge;
2681 }
2682 
2683 /*
2684  * Drop the backref node from cache, also cleaning up all its
2685  * upper edges and any uncached nodes in the path.
2686  *
2687  * This cleanup happens bottom up, thus the node should either
2688  * be the lowest node in the cache or a detached node.
2689  */
2690 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2691 				struct btrfs_backref_node *node)
2692 {
2693 	struct btrfs_backref_node *upper;
2694 	struct btrfs_backref_edge *edge;
2695 
2696 	if (!node)
2697 		return;
2698 
2699 	BUG_ON(!node->lowest && !node->detached);
2700 	while (!list_empty(&node->upper)) {
2701 		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2702 				  list[LOWER]);
2703 		upper = edge->node[UPPER];
2704 		list_del(&edge->list[LOWER]);
2705 		list_del(&edge->list[UPPER]);
2706 		btrfs_backref_free_edge(cache, edge);
2707 
2708 		/*
2709 		 * Add the node to leaf node list if no other child block
2710 		 * cached.
2711 		 */
2712 		if (list_empty(&upper->lower)) {
2713 			list_add_tail(&upper->lower, &cache->leaves);
2714 			upper->lowest = 1;
2715 		}
2716 	}
2717 
2718 	btrfs_backref_drop_node(cache, node);
2719 }
2720 
2721 /*
2722  * Release all nodes/edges from current cache
2723  */
2724 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2725 {
2726 	struct btrfs_backref_node *node;
2727 	int i;
2728 
2729 	while (!list_empty(&cache->detached)) {
2730 		node = list_entry(cache->detached.next,
2731 				  struct btrfs_backref_node, list);
2732 		btrfs_backref_cleanup_node(cache, node);
2733 	}
2734 
2735 	while (!list_empty(&cache->leaves)) {
2736 		node = list_entry(cache->leaves.next,
2737 				  struct btrfs_backref_node, lower);
2738 		btrfs_backref_cleanup_node(cache, node);
2739 	}
2740 
2741 	cache->last_trans = 0;
2742 
2743 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2744 		ASSERT(list_empty(&cache->pending[i]));
2745 	ASSERT(list_empty(&cache->pending_edge));
2746 	ASSERT(list_empty(&cache->useless_node));
2747 	ASSERT(list_empty(&cache->changed));
2748 	ASSERT(list_empty(&cache->detached));
2749 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2750 	ASSERT(!cache->nr_nodes);
2751 	ASSERT(!cache->nr_edges);
2752 }
2753 
2754 /*
2755  * Handle direct tree backref
2756  *
2757  * Direct tree backref means, the backref item shows its parent bytenr
2758  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2759  *
2760  * @ref_key:	The converted backref key.
2761  *		For keyed backref, it's the item key.
2762  *		For inlined backref, objectid is the bytenr,
2763  *		type is btrfs_inline_ref_type, offset is
2764  *		btrfs_inline_ref_offset.
2765  */
2766 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2767 				      struct btrfs_key *ref_key,
2768 				      struct btrfs_backref_node *cur)
2769 {
2770 	struct btrfs_backref_edge *edge;
2771 	struct btrfs_backref_node *upper;
2772 	struct rb_node *rb_node;
2773 
2774 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2775 
2776 	/* Only reloc root uses backref pointing to itself */
2777 	if (ref_key->objectid == ref_key->offset) {
2778 		struct btrfs_root *root;
2779 
2780 		cur->is_reloc_root = 1;
2781 		/* Only reloc backref cache cares about a specific root */
2782 		if (cache->is_reloc) {
2783 			root = find_reloc_root(cache->fs_info, cur->bytenr);
2784 			if (!root)
2785 				return -ENOENT;
2786 			cur->root = root;
2787 		} else {
2788 			/*
2789 			 * For generic purpose backref cache, reloc root node
2790 			 * is useless.
2791 			 */
2792 			list_add(&cur->list, &cache->useless_node);
2793 		}
2794 		return 0;
2795 	}
2796 
2797 	edge = btrfs_backref_alloc_edge(cache);
2798 	if (!edge)
2799 		return -ENOMEM;
2800 
2801 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2802 	if (!rb_node) {
2803 		/* Parent node not yet cached */
2804 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2805 					   cur->level + 1);
2806 		if (!upper) {
2807 			btrfs_backref_free_edge(cache, edge);
2808 			return -ENOMEM;
2809 		}
2810 
2811 		/*
2812 		 *  Backrefs for the upper level block isn't cached, add the
2813 		 *  block to pending list
2814 		 */
2815 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2816 	} else {
2817 		/* Parent node already cached */
2818 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2819 		ASSERT(upper->checked);
2820 		INIT_LIST_HEAD(&edge->list[UPPER]);
2821 	}
2822 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2823 	return 0;
2824 }
2825 
2826 /*
2827  * Handle indirect tree backref
2828  *
2829  * Indirect tree backref means, we only know which tree the node belongs to.
2830  * We still need to do a tree search to find out the parents. This is for
2831  * TREE_BLOCK_REF backref (keyed or inlined).
2832  *
2833  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
2834  * @tree_key:	The first key of this tree block.
2835  * @path:	A clean (released) path, to avoid allocating path every time
2836  *		the function get called.
2837  */
2838 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2839 					struct btrfs_path *path,
2840 					struct btrfs_key *ref_key,
2841 					struct btrfs_key *tree_key,
2842 					struct btrfs_backref_node *cur)
2843 {
2844 	struct btrfs_fs_info *fs_info = cache->fs_info;
2845 	struct btrfs_backref_node *upper;
2846 	struct btrfs_backref_node *lower;
2847 	struct btrfs_backref_edge *edge;
2848 	struct extent_buffer *eb;
2849 	struct btrfs_root *root;
2850 	struct rb_node *rb_node;
2851 	int level;
2852 	bool need_check = true;
2853 	int ret;
2854 
2855 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2856 	if (IS_ERR(root))
2857 		return PTR_ERR(root);
2858 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2859 		cur->cowonly = 1;
2860 
2861 	if (btrfs_root_level(&root->root_item) == cur->level) {
2862 		/* Tree root */
2863 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2864 		/*
2865 		 * For reloc backref cache, we may ignore reloc root.  But for
2866 		 * general purpose backref cache, we can't rely on
2867 		 * btrfs_should_ignore_reloc_root() as it may conflict with
2868 		 * current running relocation and lead to missing root.
2869 		 *
2870 		 * For general purpose backref cache, reloc root detection is
2871 		 * completely relying on direct backref (key->offset is parent
2872 		 * bytenr), thus only do such check for reloc cache.
2873 		 */
2874 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2875 			btrfs_put_root(root);
2876 			list_add(&cur->list, &cache->useless_node);
2877 		} else {
2878 			cur->root = root;
2879 		}
2880 		return 0;
2881 	}
2882 
2883 	level = cur->level + 1;
2884 
2885 	/* Search the tree to find parent blocks referring to the block */
2886 	path->search_commit_root = 1;
2887 	path->skip_locking = 1;
2888 	path->lowest_level = level;
2889 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2890 	path->lowest_level = 0;
2891 	if (ret < 0) {
2892 		btrfs_put_root(root);
2893 		return ret;
2894 	}
2895 	if (ret > 0 && path->slots[level] > 0)
2896 		path->slots[level]--;
2897 
2898 	eb = path->nodes[level];
2899 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2900 		btrfs_err(fs_info,
2901 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2902 			  cur->bytenr, level - 1, root->root_key.objectid,
2903 			  tree_key->objectid, tree_key->type, tree_key->offset);
2904 		btrfs_put_root(root);
2905 		ret = -ENOENT;
2906 		goto out;
2907 	}
2908 	lower = cur;
2909 
2910 	/* Add all nodes and edges in the path */
2911 	for (; level < BTRFS_MAX_LEVEL; level++) {
2912 		if (!path->nodes[level]) {
2913 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
2914 			       lower->bytenr);
2915 			/* Same as previous should_ignore_reloc_root() call */
2916 			if (btrfs_should_ignore_reloc_root(root) &&
2917 			    cache->is_reloc) {
2918 				btrfs_put_root(root);
2919 				list_add(&lower->list, &cache->useless_node);
2920 			} else {
2921 				lower->root = root;
2922 			}
2923 			break;
2924 		}
2925 
2926 		edge = btrfs_backref_alloc_edge(cache);
2927 		if (!edge) {
2928 			btrfs_put_root(root);
2929 			ret = -ENOMEM;
2930 			goto out;
2931 		}
2932 
2933 		eb = path->nodes[level];
2934 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
2935 		if (!rb_node) {
2936 			upper = btrfs_backref_alloc_node(cache, eb->start,
2937 							 lower->level + 1);
2938 			if (!upper) {
2939 				btrfs_put_root(root);
2940 				btrfs_backref_free_edge(cache, edge);
2941 				ret = -ENOMEM;
2942 				goto out;
2943 			}
2944 			upper->owner = btrfs_header_owner(eb);
2945 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2946 				upper->cowonly = 1;
2947 
2948 			/*
2949 			 * If we know the block isn't shared we can avoid
2950 			 * checking its backrefs.
2951 			 */
2952 			if (btrfs_block_can_be_shared(root, eb))
2953 				upper->checked = 0;
2954 			else
2955 				upper->checked = 1;
2956 
2957 			/*
2958 			 * Add the block to pending list if we need to check its
2959 			 * backrefs, we only do this once while walking up a
2960 			 * tree as we will catch anything else later on.
2961 			 */
2962 			if (!upper->checked && need_check) {
2963 				need_check = false;
2964 				list_add_tail(&edge->list[UPPER],
2965 					      &cache->pending_edge);
2966 			} else {
2967 				if (upper->checked)
2968 					need_check = true;
2969 				INIT_LIST_HEAD(&edge->list[UPPER]);
2970 			}
2971 		} else {
2972 			upper = rb_entry(rb_node, struct btrfs_backref_node,
2973 					 rb_node);
2974 			ASSERT(upper->checked);
2975 			INIT_LIST_HEAD(&edge->list[UPPER]);
2976 			if (!upper->owner)
2977 				upper->owner = btrfs_header_owner(eb);
2978 		}
2979 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2980 
2981 		if (rb_node) {
2982 			btrfs_put_root(root);
2983 			break;
2984 		}
2985 		lower = upper;
2986 		upper = NULL;
2987 	}
2988 out:
2989 	btrfs_release_path(path);
2990 	return ret;
2991 }
2992 
2993 /*
2994  * Add backref node @cur into @cache.
2995  *
2996  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2997  *	 links aren't yet bi-directional. Needs to finish such links.
2998  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
2999  *
3000  * @path:	Released path for indirect tree backref lookup
3001  * @iter:	Released backref iter for extent tree search
3002  * @node_key:	The first key of the tree block
3003  */
3004 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
3005 				struct btrfs_path *path,
3006 				struct btrfs_backref_iter *iter,
3007 				struct btrfs_key *node_key,
3008 				struct btrfs_backref_node *cur)
3009 {
3010 	struct btrfs_fs_info *fs_info = cache->fs_info;
3011 	struct btrfs_backref_edge *edge;
3012 	struct btrfs_backref_node *exist;
3013 	int ret;
3014 
3015 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
3016 	if (ret < 0)
3017 		return ret;
3018 	/*
3019 	 * We skip the first btrfs_tree_block_info, as we don't use the key
3020 	 * stored in it, but fetch it from the tree block
3021 	 */
3022 	if (btrfs_backref_has_tree_block_info(iter)) {
3023 		ret = btrfs_backref_iter_next(iter);
3024 		if (ret < 0)
3025 			goto out;
3026 		/* No extra backref? This means the tree block is corrupted */
3027 		if (ret > 0) {
3028 			ret = -EUCLEAN;
3029 			goto out;
3030 		}
3031 	}
3032 	WARN_ON(cur->checked);
3033 	if (!list_empty(&cur->upper)) {
3034 		/*
3035 		 * The backref was added previously when processing backref of
3036 		 * type BTRFS_TREE_BLOCK_REF_KEY
3037 		 */
3038 		ASSERT(list_is_singular(&cur->upper));
3039 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3040 				  list[LOWER]);
3041 		ASSERT(list_empty(&edge->list[UPPER]));
3042 		exist = edge->node[UPPER];
3043 		/*
3044 		 * Add the upper level block to pending list if we need check
3045 		 * its backrefs
3046 		 */
3047 		if (!exist->checked)
3048 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3049 	} else {
3050 		exist = NULL;
3051 	}
3052 
3053 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3054 		struct extent_buffer *eb;
3055 		struct btrfs_key key;
3056 		int type;
3057 
3058 		cond_resched();
3059 		eb = btrfs_backref_get_eb(iter);
3060 
3061 		key.objectid = iter->bytenr;
3062 		if (btrfs_backref_iter_is_inline_ref(iter)) {
3063 			struct btrfs_extent_inline_ref *iref;
3064 
3065 			/* Update key for inline backref */
3066 			iref = (struct btrfs_extent_inline_ref *)
3067 				((unsigned long)iter->cur_ptr);
3068 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3069 							BTRFS_REF_TYPE_BLOCK);
3070 			if (type == BTRFS_REF_TYPE_INVALID) {
3071 				ret = -EUCLEAN;
3072 				goto out;
3073 			}
3074 			key.type = type;
3075 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3076 		} else {
3077 			key.type = iter->cur_key.type;
3078 			key.offset = iter->cur_key.offset;
3079 		}
3080 
3081 		/*
3082 		 * Parent node found and matches current inline ref, no need to
3083 		 * rebuild this node for this inline ref
3084 		 */
3085 		if (exist &&
3086 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3087 		      exist->owner == key.offset) ||
3088 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3089 		      exist->bytenr == key.offset))) {
3090 			exist = NULL;
3091 			continue;
3092 		}
3093 
3094 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3095 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3096 			ret = handle_direct_tree_backref(cache, &key, cur);
3097 			if (ret < 0)
3098 				goto out;
3099 			continue;
3100 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3101 			ret = -EINVAL;
3102 			btrfs_print_v0_err(fs_info);
3103 			btrfs_handle_fs_error(fs_info, ret, NULL);
3104 			goto out;
3105 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
3106 			continue;
3107 		}
3108 
3109 		/*
3110 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
3111 		 * means the root objectid. We need to search the tree to get
3112 		 * its parent bytenr.
3113 		 */
3114 		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
3115 						   cur);
3116 		if (ret < 0)
3117 			goto out;
3118 	}
3119 	ret = 0;
3120 	cur->checked = 1;
3121 	WARN_ON(exist);
3122 out:
3123 	btrfs_backref_iter_release(iter);
3124 	return ret;
3125 }
3126 
3127 /*
3128  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3129  */
3130 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3131 				     struct btrfs_backref_node *start)
3132 {
3133 	struct list_head *useless_node = &cache->useless_node;
3134 	struct btrfs_backref_edge *edge;
3135 	struct rb_node *rb_node;
3136 	LIST_HEAD(pending_edge);
3137 
3138 	ASSERT(start->checked);
3139 
3140 	/* Insert this node to cache if it's not COW-only */
3141 	if (!start->cowonly) {
3142 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3143 					   &start->rb_node);
3144 		if (rb_node)
3145 			btrfs_backref_panic(cache->fs_info, start->bytenr,
3146 					    -EEXIST);
3147 		list_add_tail(&start->lower, &cache->leaves);
3148 	}
3149 
3150 	/*
3151 	 * Use breadth first search to iterate all related edges.
3152 	 *
3153 	 * The starting points are all the edges of this node
3154 	 */
3155 	list_for_each_entry(edge, &start->upper, list[LOWER])
3156 		list_add_tail(&edge->list[UPPER], &pending_edge);
3157 
3158 	while (!list_empty(&pending_edge)) {
3159 		struct btrfs_backref_node *upper;
3160 		struct btrfs_backref_node *lower;
3161 
3162 		edge = list_first_entry(&pending_edge,
3163 				struct btrfs_backref_edge, list[UPPER]);
3164 		list_del_init(&edge->list[UPPER]);
3165 		upper = edge->node[UPPER];
3166 		lower = edge->node[LOWER];
3167 
3168 		/* Parent is detached, no need to keep any edges */
3169 		if (upper->detached) {
3170 			list_del(&edge->list[LOWER]);
3171 			btrfs_backref_free_edge(cache, edge);
3172 
3173 			/* Lower node is orphan, queue for cleanup */
3174 			if (list_empty(&lower->upper))
3175 				list_add(&lower->list, useless_node);
3176 			continue;
3177 		}
3178 
3179 		/*
3180 		 * All new nodes added in current build_backref_tree() haven't
3181 		 * been linked to the cache rb tree.
3182 		 * So if we have upper->rb_node populated, this means a cache
3183 		 * hit. We only need to link the edge, as @upper and all its
3184 		 * parents have already been linked.
3185 		 */
3186 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3187 			if (upper->lowest) {
3188 				list_del_init(&upper->lower);
3189 				upper->lowest = 0;
3190 			}
3191 
3192 			list_add_tail(&edge->list[UPPER], &upper->lower);
3193 			continue;
3194 		}
3195 
3196 		/* Sanity check, we shouldn't have any unchecked nodes */
3197 		if (!upper->checked) {
3198 			ASSERT(0);
3199 			return -EUCLEAN;
3200 		}
3201 
3202 		/* Sanity check, COW-only node has non-COW-only parent */
3203 		if (start->cowonly != upper->cowonly) {
3204 			ASSERT(0);
3205 			return -EUCLEAN;
3206 		}
3207 
3208 		/* Only cache non-COW-only (subvolume trees) tree blocks */
3209 		if (!upper->cowonly) {
3210 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3211 						   &upper->rb_node);
3212 			if (rb_node) {
3213 				btrfs_backref_panic(cache->fs_info,
3214 						upper->bytenr, -EEXIST);
3215 				return -EUCLEAN;
3216 			}
3217 		}
3218 
3219 		list_add_tail(&edge->list[UPPER], &upper->lower);
3220 
3221 		/*
3222 		 * Also queue all the parent edges of this uncached node
3223 		 * to finish the upper linkage
3224 		 */
3225 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3226 			list_add_tail(&edge->list[UPPER], &pending_edge);
3227 	}
3228 	return 0;
3229 }
3230 
3231 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3232 				 struct btrfs_backref_node *node)
3233 {
3234 	struct btrfs_backref_node *lower;
3235 	struct btrfs_backref_node *upper;
3236 	struct btrfs_backref_edge *edge;
3237 
3238 	while (!list_empty(&cache->useless_node)) {
3239 		lower = list_first_entry(&cache->useless_node,
3240 				   struct btrfs_backref_node, list);
3241 		list_del_init(&lower->list);
3242 	}
3243 	while (!list_empty(&cache->pending_edge)) {
3244 		edge = list_first_entry(&cache->pending_edge,
3245 				struct btrfs_backref_edge, list[UPPER]);
3246 		list_del(&edge->list[UPPER]);
3247 		list_del(&edge->list[LOWER]);
3248 		lower = edge->node[LOWER];
3249 		upper = edge->node[UPPER];
3250 		btrfs_backref_free_edge(cache, edge);
3251 
3252 		/*
3253 		 * Lower is no longer linked to any upper backref nodes and
3254 		 * isn't in the cache, we can free it ourselves.
3255 		 */
3256 		if (list_empty(&lower->upper) &&
3257 		    RB_EMPTY_NODE(&lower->rb_node))
3258 			list_add(&lower->list, &cache->useless_node);
3259 
3260 		if (!RB_EMPTY_NODE(&upper->rb_node))
3261 			continue;
3262 
3263 		/* Add this guy's upper edges to the list to process */
3264 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3265 			list_add_tail(&edge->list[UPPER],
3266 				      &cache->pending_edge);
3267 		if (list_empty(&upper->upper))
3268 			list_add(&upper->list, &cache->useless_node);
3269 	}
3270 
3271 	while (!list_empty(&cache->useless_node)) {
3272 		lower = list_first_entry(&cache->useless_node,
3273 				   struct btrfs_backref_node, list);
3274 		list_del_init(&lower->list);
3275 		if (lower == node)
3276 			node = NULL;
3277 		btrfs_backref_drop_node(cache, lower);
3278 	}
3279 
3280 	btrfs_backref_cleanup_node(cache, node);
3281 	ASSERT(list_empty(&cache->useless_node) &&
3282 	       list_empty(&cache->pending_edge));
3283 }
3284