1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 19 /* Just an arbitrary number so we can be sure this happened */ 20 #define BACKREF_FOUND_SHARED 6 21 22 struct extent_inode_elem { 23 u64 inum; 24 u64 offset; 25 struct extent_inode_elem *next; 26 }; 27 28 static int check_extent_in_eb(const struct btrfs_key *key, 29 const struct extent_buffer *eb, 30 const struct btrfs_file_extent_item *fi, 31 u64 extent_item_pos, 32 struct extent_inode_elem **eie, 33 bool ignore_offset) 34 { 35 u64 offset = 0; 36 struct extent_inode_elem *e; 37 38 if (!ignore_offset && 39 !btrfs_file_extent_compression(eb, fi) && 40 !btrfs_file_extent_encryption(eb, fi) && 41 !btrfs_file_extent_other_encoding(eb, fi)) { 42 u64 data_offset; 43 u64 data_len; 44 45 data_offset = btrfs_file_extent_offset(eb, fi); 46 data_len = btrfs_file_extent_num_bytes(eb, fi); 47 48 if (extent_item_pos < data_offset || 49 extent_item_pos >= data_offset + data_len) 50 return 1; 51 offset = extent_item_pos - data_offset; 52 } 53 54 e = kmalloc(sizeof(*e), GFP_NOFS); 55 if (!e) 56 return -ENOMEM; 57 58 e->next = *eie; 59 e->inum = key->objectid; 60 e->offset = key->offset + offset; 61 *eie = e; 62 63 return 0; 64 } 65 66 static void free_inode_elem_list(struct extent_inode_elem *eie) 67 { 68 struct extent_inode_elem *eie_next; 69 70 for (; eie; eie = eie_next) { 71 eie_next = eie->next; 72 kfree(eie); 73 } 74 } 75 76 static int find_extent_in_eb(const struct extent_buffer *eb, 77 u64 wanted_disk_byte, u64 extent_item_pos, 78 struct extent_inode_elem **eie, 79 bool ignore_offset) 80 { 81 u64 disk_byte; 82 struct btrfs_key key; 83 struct btrfs_file_extent_item *fi; 84 int slot; 85 int nritems; 86 int extent_type; 87 int ret; 88 89 /* 90 * from the shared data ref, we only have the leaf but we need 91 * the key. thus, we must look into all items and see that we 92 * find one (some) with a reference to our extent item. 93 */ 94 nritems = btrfs_header_nritems(eb); 95 for (slot = 0; slot < nritems; ++slot) { 96 btrfs_item_key_to_cpu(eb, &key, slot); 97 if (key.type != BTRFS_EXTENT_DATA_KEY) 98 continue; 99 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 100 extent_type = btrfs_file_extent_type(eb, fi); 101 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 102 continue; 103 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 104 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 105 if (disk_byte != wanted_disk_byte) 106 continue; 107 108 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 109 if (ret < 0) 110 return ret; 111 } 112 113 return 0; 114 } 115 116 struct preftree { 117 struct rb_root_cached root; 118 unsigned int count; 119 }; 120 121 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 122 123 struct preftrees { 124 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 125 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 126 struct preftree indirect_missing_keys; 127 }; 128 129 /* 130 * Checks for a shared extent during backref search. 131 * 132 * The share_count tracks prelim_refs (direct and indirect) having a 133 * ref->count >0: 134 * - incremented when a ref->count transitions to >0 135 * - decremented when a ref->count transitions to <1 136 */ 137 struct share_check { 138 u64 root_objectid; 139 u64 inum; 140 int share_count; 141 }; 142 143 static inline int extent_is_shared(struct share_check *sc) 144 { 145 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 146 } 147 148 static struct kmem_cache *btrfs_prelim_ref_cache; 149 150 int __init btrfs_prelim_ref_init(void) 151 { 152 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 153 sizeof(struct prelim_ref), 154 0, 155 SLAB_MEM_SPREAD, 156 NULL); 157 if (!btrfs_prelim_ref_cache) 158 return -ENOMEM; 159 return 0; 160 } 161 162 void __cold btrfs_prelim_ref_exit(void) 163 { 164 kmem_cache_destroy(btrfs_prelim_ref_cache); 165 } 166 167 static void free_pref(struct prelim_ref *ref) 168 { 169 kmem_cache_free(btrfs_prelim_ref_cache, ref); 170 } 171 172 /* 173 * Return 0 when both refs are for the same block (and can be merged). 174 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 175 * indicates a 'higher' block. 176 */ 177 static int prelim_ref_compare(struct prelim_ref *ref1, 178 struct prelim_ref *ref2) 179 { 180 if (ref1->level < ref2->level) 181 return -1; 182 if (ref1->level > ref2->level) 183 return 1; 184 if (ref1->root_id < ref2->root_id) 185 return -1; 186 if (ref1->root_id > ref2->root_id) 187 return 1; 188 if (ref1->key_for_search.type < ref2->key_for_search.type) 189 return -1; 190 if (ref1->key_for_search.type > ref2->key_for_search.type) 191 return 1; 192 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 193 return -1; 194 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 195 return 1; 196 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 197 return -1; 198 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 199 return 1; 200 if (ref1->parent < ref2->parent) 201 return -1; 202 if (ref1->parent > ref2->parent) 203 return 1; 204 205 return 0; 206 } 207 208 static void update_share_count(struct share_check *sc, int oldcount, 209 int newcount) 210 { 211 if ((!sc) || (oldcount == 0 && newcount < 1)) 212 return; 213 214 if (oldcount > 0 && newcount < 1) 215 sc->share_count--; 216 else if (oldcount < 1 && newcount > 0) 217 sc->share_count++; 218 } 219 220 /* 221 * Add @newref to the @root rbtree, merging identical refs. 222 * 223 * Callers should assume that newref has been freed after calling. 224 */ 225 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 226 struct preftree *preftree, 227 struct prelim_ref *newref, 228 struct share_check *sc) 229 { 230 struct rb_root_cached *root; 231 struct rb_node **p; 232 struct rb_node *parent = NULL; 233 struct prelim_ref *ref; 234 int result; 235 bool leftmost = true; 236 237 root = &preftree->root; 238 p = &root->rb_root.rb_node; 239 240 while (*p) { 241 parent = *p; 242 ref = rb_entry(parent, struct prelim_ref, rbnode); 243 result = prelim_ref_compare(ref, newref); 244 if (result < 0) { 245 p = &(*p)->rb_left; 246 } else if (result > 0) { 247 p = &(*p)->rb_right; 248 leftmost = false; 249 } else { 250 /* Identical refs, merge them and free @newref */ 251 struct extent_inode_elem *eie = ref->inode_list; 252 253 while (eie && eie->next) 254 eie = eie->next; 255 256 if (!eie) 257 ref->inode_list = newref->inode_list; 258 else 259 eie->next = newref->inode_list; 260 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 261 preftree->count); 262 /* 263 * A delayed ref can have newref->count < 0. 264 * The ref->count is updated to follow any 265 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 266 */ 267 update_share_count(sc, ref->count, 268 ref->count + newref->count); 269 ref->count += newref->count; 270 free_pref(newref); 271 return; 272 } 273 } 274 275 update_share_count(sc, 0, newref->count); 276 preftree->count++; 277 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 278 rb_link_node(&newref->rbnode, parent, p); 279 rb_insert_color_cached(&newref->rbnode, root, leftmost); 280 } 281 282 /* 283 * Release the entire tree. We don't care about internal consistency so 284 * just free everything and then reset the tree root. 285 */ 286 static void prelim_release(struct preftree *preftree) 287 { 288 struct prelim_ref *ref, *next_ref; 289 290 rbtree_postorder_for_each_entry_safe(ref, next_ref, 291 &preftree->root.rb_root, rbnode) 292 free_pref(ref); 293 294 preftree->root = RB_ROOT_CACHED; 295 preftree->count = 0; 296 } 297 298 /* 299 * the rules for all callers of this function are: 300 * - obtaining the parent is the goal 301 * - if you add a key, you must know that it is a correct key 302 * - if you cannot add the parent or a correct key, then we will look into the 303 * block later to set a correct key 304 * 305 * delayed refs 306 * ============ 307 * backref type | shared | indirect | shared | indirect 308 * information | tree | tree | data | data 309 * --------------------+--------+----------+--------+---------- 310 * parent logical | y | - | - | - 311 * key to resolve | - | y | y | y 312 * tree block logical | - | - | - | - 313 * root for resolving | y | y | y | y 314 * 315 * - column 1: we've the parent -> done 316 * - column 2, 3, 4: we use the key to find the parent 317 * 318 * on disk refs (inline or keyed) 319 * ============================== 320 * backref type | shared | indirect | shared | indirect 321 * information | tree | tree | data | data 322 * --------------------+--------+----------+--------+---------- 323 * parent logical | y | - | y | - 324 * key to resolve | - | - | - | y 325 * tree block logical | y | y | y | y 326 * root for resolving | - | y | y | y 327 * 328 * - column 1, 3: we've the parent -> done 329 * - column 2: we take the first key from the block to find the parent 330 * (see add_missing_keys) 331 * - column 4: we use the key to find the parent 332 * 333 * additional information that's available but not required to find the parent 334 * block might help in merging entries to gain some speed. 335 */ 336 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 337 struct preftree *preftree, u64 root_id, 338 const struct btrfs_key *key, int level, u64 parent, 339 u64 wanted_disk_byte, int count, 340 struct share_check *sc, gfp_t gfp_mask) 341 { 342 struct prelim_ref *ref; 343 344 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 345 return 0; 346 347 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 348 if (!ref) 349 return -ENOMEM; 350 351 ref->root_id = root_id; 352 if (key) 353 ref->key_for_search = *key; 354 else 355 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 356 357 ref->inode_list = NULL; 358 ref->level = level; 359 ref->count = count; 360 ref->parent = parent; 361 ref->wanted_disk_byte = wanted_disk_byte; 362 prelim_ref_insert(fs_info, preftree, ref, sc); 363 return extent_is_shared(sc); 364 } 365 366 /* direct refs use root == 0, key == NULL */ 367 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 368 struct preftrees *preftrees, int level, u64 parent, 369 u64 wanted_disk_byte, int count, 370 struct share_check *sc, gfp_t gfp_mask) 371 { 372 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 373 parent, wanted_disk_byte, count, sc, gfp_mask); 374 } 375 376 /* indirect refs use parent == 0 */ 377 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 378 struct preftrees *preftrees, u64 root_id, 379 const struct btrfs_key *key, int level, 380 u64 wanted_disk_byte, int count, 381 struct share_check *sc, gfp_t gfp_mask) 382 { 383 struct preftree *tree = &preftrees->indirect; 384 385 if (!key) 386 tree = &preftrees->indirect_missing_keys; 387 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 388 wanted_disk_byte, count, sc, gfp_mask); 389 } 390 391 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 392 { 393 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 394 struct rb_node *parent = NULL; 395 struct prelim_ref *ref = NULL; 396 struct prelim_ref target = {}; 397 int result; 398 399 target.parent = bytenr; 400 401 while (*p) { 402 parent = *p; 403 ref = rb_entry(parent, struct prelim_ref, rbnode); 404 result = prelim_ref_compare(ref, &target); 405 406 if (result < 0) 407 p = &(*p)->rb_left; 408 else if (result > 0) 409 p = &(*p)->rb_right; 410 else 411 return 1; 412 } 413 return 0; 414 } 415 416 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 417 struct ulist *parents, 418 struct preftrees *preftrees, struct prelim_ref *ref, 419 int level, u64 time_seq, const u64 *extent_item_pos, 420 bool ignore_offset) 421 { 422 int ret = 0; 423 int slot; 424 struct extent_buffer *eb; 425 struct btrfs_key key; 426 struct btrfs_key *key_for_search = &ref->key_for_search; 427 struct btrfs_file_extent_item *fi; 428 struct extent_inode_elem *eie = NULL, *old = NULL; 429 u64 disk_byte; 430 u64 wanted_disk_byte = ref->wanted_disk_byte; 431 u64 count = 0; 432 u64 data_offset; 433 434 if (level != 0) { 435 eb = path->nodes[level]; 436 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 437 if (ret < 0) 438 return ret; 439 return 0; 440 } 441 442 /* 443 * 1. We normally enter this function with the path already pointing to 444 * the first item to check. But sometimes, we may enter it with 445 * slot == nritems. 446 * 2. We are searching for normal backref but bytenr of this leaf 447 * matches shared data backref 448 * 3. The leaf owner is not equal to the root we are searching 449 * 450 * For these cases, go to the next leaf before we continue. 451 */ 452 eb = path->nodes[0]; 453 if (path->slots[0] >= btrfs_header_nritems(eb) || 454 is_shared_data_backref(preftrees, eb->start) || 455 ref->root_id != btrfs_header_owner(eb)) { 456 if (time_seq == BTRFS_SEQ_LAST) 457 ret = btrfs_next_leaf(root, path); 458 else 459 ret = btrfs_next_old_leaf(root, path, time_seq); 460 } 461 462 while (!ret && count < ref->count) { 463 eb = path->nodes[0]; 464 slot = path->slots[0]; 465 466 btrfs_item_key_to_cpu(eb, &key, slot); 467 468 if (key.objectid != key_for_search->objectid || 469 key.type != BTRFS_EXTENT_DATA_KEY) 470 break; 471 472 /* 473 * We are searching for normal backref but bytenr of this leaf 474 * matches shared data backref, OR 475 * the leaf owner is not equal to the root we are searching for 476 */ 477 if (slot == 0 && 478 (is_shared_data_backref(preftrees, eb->start) || 479 ref->root_id != btrfs_header_owner(eb))) { 480 if (time_seq == BTRFS_SEQ_LAST) 481 ret = btrfs_next_leaf(root, path); 482 else 483 ret = btrfs_next_old_leaf(root, path, time_seq); 484 continue; 485 } 486 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 487 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 488 data_offset = btrfs_file_extent_offset(eb, fi); 489 490 if (disk_byte == wanted_disk_byte) { 491 eie = NULL; 492 old = NULL; 493 if (ref->key_for_search.offset == key.offset - data_offset) 494 count++; 495 else 496 goto next; 497 if (extent_item_pos) { 498 ret = check_extent_in_eb(&key, eb, fi, 499 *extent_item_pos, 500 &eie, ignore_offset); 501 if (ret < 0) 502 break; 503 } 504 if (ret > 0) 505 goto next; 506 ret = ulist_add_merge_ptr(parents, eb->start, 507 eie, (void **)&old, GFP_NOFS); 508 if (ret < 0) 509 break; 510 if (!ret && extent_item_pos) { 511 while (old->next) 512 old = old->next; 513 old->next = eie; 514 } 515 eie = NULL; 516 } 517 next: 518 if (time_seq == BTRFS_SEQ_LAST) 519 ret = btrfs_next_item(root, path); 520 else 521 ret = btrfs_next_old_item(root, path, time_seq); 522 } 523 524 if (ret > 0) 525 ret = 0; 526 else if (ret < 0) 527 free_inode_elem_list(eie); 528 return ret; 529 } 530 531 /* 532 * resolve an indirect backref in the form (root_id, key, level) 533 * to a logical address 534 */ 535 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 536 struct btrfs_path *path, u64 time_seq, 537 struct preftrees *preftrees, 538 struct prelim_ref *ref, struct ulist *parents, 539 const u64 *extent_item_pos, bool ignore_offset) 540 { 541 struct btrfs_root *root; 542 struct extent_buffer *eb; 543 int ret = 0; 544 int root_level; 545 int level = ref->level; 546 struct btrfs_key search_key = ref->key_for_search; 547 548 /* 549 * If we're search_commit_root we could possibly be holding locks on 550 * other tree nodes. This happens when qgroups does backref walks when 551 * adding new delayed refs. To deal with this we need to look in cache 552 * for the root, and if we don't find it then we need to search the 553 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 554 * here. 555 */ 556 if (path->search_commit_root) 557 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id); 558 else 559 root = btrfs_get_fs_root(fs_info, ref->root_id, false); 560 if (IS_ERR(root)) { 561 ret = PTR_ERR(root); 562 goto out_free; 563 } 564 565 if (!path->search_commit_root && 566 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 567 ret = -ENOENT; 568 goto out; 569 } 570 571 if (btrfs_is_testing(fs_info)) { 572 ret = -ENOENT; 573 goto out; 574 } 575 576 if (path->search_commit_root) 577 root_level = btrfs_header_level(root->commit_root); 578 else if (time_seq == BTRFS_SEQ_LAST) 579 root_level = btrfs_header_level(root->node); 580 else 581 root_level = btrfs_old_root_level(root, time_seq); 582 583 if (root_level + 1 == level) 584 goto out; 585 586 /* 587 * We can often find data backrefs with an offset that is too large 588 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 589 * subtracting a file's offset with the data offset of its 590 * corresponding extent data item. This can happen for example in the 591 * clone ioctl. 592 * 593 * So if we detect such case we set the search key's offset to zero to 594 * make sure we will find the matching file extent item at 595 * add_all_parents(), otherwise we will miss it because the offset 596 * taken form the backref is much larger then the offset of the file 597 * extent item. This can make us scan a very large number of file 598 * extent items, but at least it will not make us miss any. 599 * 600 * This is an ugly workaround for a behaviour that should have never 601 * existed, but it does and a fix for the clone ioctl would touch a lot 602 * of places, cause backwards incompatibility and would not fix the 603 * problem for extents cloned with older kernels. 604 */ 605 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 606 search_key.offset >= LLONG_MAX) 607 search_key.offset = 0; 608 path->lowest_level = level; 609 if (time_seq == BTRFS_SEQ_LAST) 610 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 611 else 612 ret = btrfs_search_old_slot(root, &search_key, path, time_seq); 613 614 btrfs_debug(fs_info, 615 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 616 ref->root_id, level, ref->count, ret, 617 ref->key_for_search.objectid, ref->key_for_search.type, 618 ref->key_for_search.offset); 619 if (ret < 0) 620 goto out; 621 622 eb = path->nodes[level]; 623 while (!eb) { 624 if (WARN_ON(!level)) { 625 ret = 1; 626 goto out; 627 } 628 level--; 629 eb = path->nodes[level]; 630 } 631 632 ret = add_all_parents(root, path, parents, preftrees, ref, level, 633 time_seq, extent_item_pos, ignore_offset); 634 out: 635 btrfs_put_root(root); 636 out_free: 637 path->lowest_level = 0; 638 btrfs_release_path(path); 639 return ret; 640 } 641 642 static struct extent_inode_elem * 643 unode_aux_to_inode_list(struct ulist_node *node) 644 { 645 if (!node) 646 return NULL; 647 return (struct extent_inode_elem *)(uintptr_t)node->aux; 648 } 649 650 /* 651 * We maintain three separate rbtrees: one for direct refs, one for 652 * indirect refs which have a key, and one for indirect refs which do not 653 * have a key. Each tree does merge on insertion. 654 * 655 * Once all of the references are located, we iterate over the tree of 656 * indirect refs with missing keys. An appropriate key is located and 657 * the ref is moved onto the tree for indirect refs. After all missing 658 * keys are thus located, we iterate over the indirect ref tree, resolve 659 * each reference, and then insert the resolved reference onto the 660 * direct tree (merging there too). 661 * 662 * New backrefs (i.e., for parent nodes) are added to the appropriate 663 * rbtree as they are encountered. The new backrefs are subsequently 664 * resolved as above. 665 */ 666 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 667 struct btrfs_path *path, u64 time_seq, 668 struct preftrees *preftrees, 669 const u64 *extent_item_pos, 670 struct share_check *sc, bool ignore_offset) 671 { 672 int err; 673 int ret = 0; 674 struct ulist *parents; 675 struct ulist_node *node; 676 struct ulist_iterator uiter; 677 struct rb_node *rnode; 678 679 parents = ulist_alloc(GFP_NOFS); 680 if (!parents) 681 return -ENOMEM; 682 683 /* 684 * We could trade memory usage for performance here by iterating 685 * the tree, allocating new refs for each insertion, and then 686 * freeing the entire indirect tree when we're done. In some test 687 * cases, the tree can grow quite large (~200k objects). 688 */ 689 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 690 struct prelim_ref *ref; 691 692 ref = rb_entry(rnode, struct prelim_ref, rbnode); 693 if (WARN(ref->parent, 694 "BUG: direct ref found in indirect tree")) { 695 ret = -EINVAL; 696 goto out; 697 } 698 699 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 700 preftrees->indirect.count--; 701 702 if (ref->count == 0) { 703 free_pref(ref); 704 continue; 705 } 706 707 if (sc && sc->root_objectid && 708 ref->root_id != sc->root_objectid) { 709 free_pref(ref); 710 ret = BACKREF_FOUND_SHARED; 711 goto out; 712 } 713 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees, 714 ref, parents, extent_item_pos, 715 ignore_offset); 716 /* 717 * we can only tolerate ENOENT,otherwise,we should catch error 718 * and return directly. 719 */ 720 if (err == -ENOENT) { 721 prelim_ref_insert(fs_info, &preftrees->direct, ref, 722 NULL); 723 continue; 724 } else if (err) { 725 free_pref(ref); 726 ret = err; 727 goto out; 728 } 729 730 /* we put the first parent into the ref at hand */ 731 ULIST_ITER_INIT(&uiter); 732 node = ulist_next(parents, &uiter); 733 ref->parent = node ? node->val : 0; 734 ref->inode_list = unode_aux_to_inode_list(node); 735 736 /* Add a prelim_ref(s) for any other parent(s). */ 737 while ((node = ulist_next(parents, &uiter))) { 738 struct prelim_ref *new_ref; 739 740 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 741 GFP_NOFS); 742 if (!new_ref) { 743 free_pref(ref); 744 ret = -ENOMEM; 745 goto out; 746 } 747 memcpy(new_ref, ref, sizeof(*ref)); 748 new_ref->parent = node->val; 749 new_ref->inode_list = unode_aux_to_inode_list(node); 750 prelim_ref_insert(fs_info, &preftrees->direct, 751 new_ref, NULL); 752 } 753 754 /* 755 * Now it's a direct ref, put it in the direct tree. We must 756 * do this last because the ref could be merged/freed here. 757 */ 758 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 759 760 ulist_reinit(parents); 761 cond_resched(); 762 } 763 out: 764 ulist_free(parents); 765 return ret; 766 } 767 768 /* 769 * read tree blocks and add keys where required. 770 */ 771 static int add_missing_keys(struct btrfs_fs_info *fs_info, 772 struct preftrees *preftrees, bool lock) 773 { 774 struct prelim_ref *ref; 775 struct extent_buffer *eb; 776 struct preftree *tree = &preftrees->indirect_missing_keys; 777 struct rb_node *node; 778 779 while ((node = rb_first_cached(&tree->root))) { 780 ref = rb_entry(node, struct prelim_ref, rbnode); 781 rb_erase_cached(node, &tree->root); 782 783 BUG_ON(ref->parent); /* should not be a direct ref */ 784 BUG_ON(ref->key_for_search.type); 785 BUG_ON(!ref->wanted_disk_byte); 786 787 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 788 ref->root_id, 0, ref->level - 1, NULL); 789 if (IS_ERR(eb)) { 790 free_pref(ref); 791 return PTR_ERR(eb); 792 } else if (!extent_buffer_uptodate(eb)) { 793 free_pref(ref); 794 free_extent_buffer(eb); 795 return -EIO; 796 } 797 if (lock) 798 btrfs_tree_read_lock(eb); 799 if (btrfs_header_level(eb) == 0) 800 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 801 else 802 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 803 if (lock) 804 btrfs_tree_read_unlock(eb); 805 free_extent_buffer(eb); 806 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 807 cond_resched(); 808 } 809 return 0; 810 } 811 812 /* 813 * add all currently queued delayed refs from this head whose seq nr is 814 * smaller or equal that seq to the list 815 */ 816 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 817 struct btrfs_delayed_ref_head *head, u64 seq, 818 struct preftrees *preftrees, struct share_check *sc) 819 { 820 struct btrfs_delayed_ref_node *node; 821 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 822 struct btrfs_key key; 823 struct btrfs_key tmp_op_key; 824 struct rb_node *n; 825 int count; 826 int ret = 0; 827 828 if (extent_op && extent_op->update_key) 829 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 830 831 spin_lock(&head->lock); 832 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 833 node = rb_entry(n, struct btrfs_delayed_ref_node, 834 ref_node); 835 if (node->seq > seq) 836 continue; 837 838 switch (node->action) { 839 case BTRFS_ADD_DELAYED_EXTENT: 840 case BTRFS_UPDATE_DELAYED_HEAD: 841 WARN_ON(1); 842 continue; 843 case BTRFS_ADD_DELAYED_REF: 844 count = node->ref_mod; 845 break; 846 case BTRFS_DROP_DELAYED_REF: 847 count = node->ref_mod * -1; 848 break; 849 default: 850 BUG(); 851 } 852 switch (node->type) { 853 case BTRFS_TREE_BLOCK_REF_KEY: { 854 /* NORMAL INDIRECT METADATA backref */ 855 struct btrfs_delayed_tree_ref *ref; 856 857 ref = btrfs_delayed_node_to_tree_ref(node); 858 ret = add_indirect_ref(fs_info, preftrees, ref->root, 859 &tmp_op_key, ref->level + 1, 860 node->bytenr, count, sc, 861 GFP_ATOMIC); 862 break; 863 } 864 case BTRFS_SHARED_BLOCK_REF_KEY: { 865 /* SHARED DIRECT METADATA backref */ 866 struct btrfs_delayed_tree_ref *ref; 867 868 ref = btrfs_delayed_node_to_tree_ref(node); 869 870 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 871 ref->parent, node->bytenr, count, 872 sc, GFP_ATOMIC); 873 break; 874 } 875 case BTRFS_EXTENT_DATA_REF_KEY: { 876 /* NORMAL INDIRECT DATA backref */ 877 struct btrfs_delayed_data_ref *ref; 878 ref = btrfs_delayed_node_to_data_ref(node); 879 880 key.objectid = ref->objectid; 881 key.type = BTRFS_EXTENT_DATA_KEY; 882 key.offset = ref->offset; 883 884 /* 885 * Found a inum that doesn't match our known inum, we 886 * know it's shared. 887 */ 888 if (sc && sc->inum && ref->objectid != sc->inum) { 889 ret = BACKREF_FOUND_SHARED; 890 goto out; 891 } 892 893 ret = add_indirect_ref(fs_info, preftrees, ref->root, 894 &key, 0, node->bytenr, count, sc, 895 GFP_ATOMIC); 896 break; 897 } 898 case BTRFS_SHARED_DATA_REF_KEY: { 899 /* SHARED DIRECT FULL backref */ 900 struct btrfs_delayed_data_ref *ref; 901 902 ref = btrfs_delayed_node_to_data_ref(node); 903 904 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 905 node->bytenr, count, sc, 906 GFP_ATOMIC); 907 break; 908 } 909 default: 910 WARN_ON(1); 911 } 912 /* 913 * We must ignore BACKREF_FOUND_SHARED until all delayed 914 * refs have been checked. 915 */ 916 if (ret && (ret != BACKREF_FOUND_SHARED)) 917 break; 918 } 919 if (!ret) 920 ret = extent_is_shared(sc); 921 out: 922 spin_unlock(&head->lock); 923 return ret; 924 } 925 926 /* 927 * add all inline backrefs for bytenr to the list 928 * 929 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 930 */ 931 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 932 struct btrfs_path *path, u64 bytenr, 933 int *info_level, struct preftrees *preftrees, 934 struct share_check *sc) 935 { 936 int ret = 0; 937 int slot; 938 struct extent_buffer *leaf; 939 struct btrfs_key key; 940 struct btrfs_key found_key; 941 unsigned long ptr; 942 unsigned long end; 943 struct btrfs_extent_item *ei; 944 u64 flags; 945 u64 item_size; 946 947 /* 948 * enumerate all inline refs 949 */ 950 leaf = path->nodes[0]; 951 slot = path->slots[0]; 952 953 item_size = btrfs_item_size_nr(leaf, slot); 954 BUG_ON(item_size < sizeof(*ei)); 955 956 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 957 flags = btrfs_extent_flags(leaf, ei); 958 btrfs_item_key_to_cpu(leaf, &found_key, slot); 959 960 ptr = (unsigned long)(ei + 1); 961 end = (unsigned long)ei + item_size; 962 963 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 964 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 965 struct btrfs_tree_block_info *info; 966 967 info = (struct btrfs_tree_block_info *)ptr; 968 *info_level = btrfs_tree_block_level(leaf, info); 969 ptr += sizeof(struct btrfs_tree_block_info); 970 BUG_ON(ptr > end); 971 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 972 *info_level = found_key.offset; 973 } else { 974 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 975 } 976 977 while (ptr < end) { 978 struct btrfs_extent_inline_ref *iref; 979 u64 offset; 980 int type; 981 982 iref = (struct btrfs_extent_inline_ref *)ptr; 983 type = btrfs_get_extent_inline_ref_type(leaf, iref, 984 BTRFS_REF_TYPE_ANY); 985 if (type == BTRFS_REF_TYPE_INVALID) 986 return -EUCLEAN; 987 988 offset = btrfs_extent_inline_ref_offset(leaf, iref); 989 990 switch (type) { 991 case BTRFS_SHARED_BLOCK_REF_KEY: 992 ret = add_direct_ref(fs_info, preftrees, 993 *info_level + 1, offset, 994 bytenr, 1, NULL, GFP_NOFS); 995 break; 996 case BTRFS_SHARED_DATA_REF_KEY: { 997 struct btrfs_shared_data_ref *sdref; 998 int count; 999 1000 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1001 count = btrfs_shared_data_ref_count(leaf, sdref); 1002 1003 ret = add_direct_ref(fs_info, preftrees, 0, offset, 1004 bytenr, count, sc, GFP_NOFS); 1005 break; 1006 } 1007 case BTRFS_TREE_BLOCK_REF_KEY: 1008 ret = add_indirect_ref(fs_info, preftrees, offset, 1009 NULL, *info_level + 1, 1010 bytenr, 1, NULL, GFP_NOFS); 1011 break; 1012 case BTRFS_EXTENT_DATA_REF_KEY: { 1013 struct btrfs_extent_data_ref *dref; 1014 int count; 1015 u64 root; 1016 1017 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1018 count = btrfs_extent_data_ref_count(leaf, dref); 1019 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1020 dref); 1021 key.type = BTRFS_EXTENT_DATA_KEY; 1022 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1023 1024 if (sc && sc->inum && key.objectid != sc->inum) { 1025 ret = BACKREF_FOUND_SHARED; 1026 break; 1027 } 1028 1029 root = btrfs_extent_data_ref_root(leaf, dref); 1030 1031 ret = add_indirect_ref(fs_info, preftrees, root, 1032 &key, 0, bytenr, count, 1033 sc, GFP_NOFS); 1034 break; 1035 } 1036 default: 1037 WARN_ON(1); 1038 } 1039 if (ret) 1040 return ret; 1041 ptr += btrfs_extent_inline_ref_size(type); 1042 } 1043 1044 return 0; 1045 } 1046 1047 /* 1048 * add all non-inline backrefs for bytenr to the list 1049 * 1050 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1051 */ 1052 static int add_keyed_refs(struct btrfs_fs_info *fs_info, 1053 struct btrfs_path *path, u64 bytenr, 1054 int info_level, struct preftrees *preftrees, 1055 struct share_check *sc) 1056 { 1057 struct btrfs_root *extent_root = fs_info->extent_root; 1058 int ret; 1059 int slot; 1060 struct extent_buffer *leaf; 1061 struct btrfs_key key; 1062 1063 while (1) { 1064 ret = btrfs_next_item(extent_root, path); 1065 if (ret < 0) 1066 break; 1067 if (ret) { 1068 ret = 0; 1069 break; 1070 } 1071 1072 slot = path->slots[0]; 1073 leaf = path->nodes[0]; 1074 btrfs_item_key_to_cpu(leaf, &key, slot); 1075 1076 if (key.objectid != bytenr) 1077 break; 1078 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1079 continue; 1080 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1081 break; 1082 1083 switch (key.type) { 1084 case BTRFS_SHARED_BLOCK_REF_KEY: 1085 /* SHARED DIRECT METADATA backref */ 1086 ret = add_direct_ref(fs_info, preftrees, 1087 info_level + 1, key.offset, 1088 bytenr, 1, NULL, GFP_NOFS); 1089 break; 1090 case BTRFS_SHARED_DATA_REF_KEY: { 1091 /* SHARED DIRECT FULL backref */ 1092 struct btrfs_shared_data_ref *sdref; 1093 int count; 1094 1095 sdref = btrfs_item_ptr(leaf, slot, 1096 struct btrfs_shared_data_ref); 1097 count = btrfs_shared_data_ref_count(leaf, sdref); 1098 ret = add_direct_ref(fs_info, preftrees, 0, 1099 key.offset, bytenr, count, 1100 sc, GFP_NOFS); 1101 break; 1102 } 1103 case BTRFS_TREE_BLOCK_REF_KEY: 1104 /* NORMAL INDIRECT METADATA backref */ 1105 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1106 NULL, info_level + 1, bytenr, 1107 1, NULL, GFP_NOFS); 1108 break; 1109 case BTRFS_EXTENT_DATA_REF_KEY: { 1110 /* NORMAL INDIRECT DATA backref */ 1111 struct btrfs_extent_data_ref *dref; 1112 int count; 1113 u64 root; 1114 1115 dref = btrfs_item_ptr(leaf, slot, 1116 struct btrfs_extent_data_ref); 1117 count = btrfs_extent_data_ref_count(leaf, dref); 1118 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1119 dref); 1120 key.type = BTRFS_EXTENT_DATA_KEY; 1121 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1122 1123 if (sc && sc->inum && key.objectid != sc->inum) { 1124 ret = BACKREF_FOUND_SHARED; 1125 break; 1126 } 1127 1128 root = btrfs_extent_data_ref_root(leaf, dref); 1129 ret = add_indirect_ref(fs_info, preftrees, root, 1130 &key, 0, bytenr, count, 1131 sc, GFP_NOFS); 1132 break; 1133 } 1134 default: 1135 WARN_ON(1); 1136 } 1137 if (ret) 1138 return ret; 1139 1140 } 1141 1142 return ret; 1143 } 1144 1145 /* 1146 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1147 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1148 * indirect refs to their parent bytenr. 1149 * When roots are found, they're added to the roots list 1150 * 1151 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and 1152 * behave much like trans == NULL case, the difference only lies in it will not 1153 * commit root. 1154 * The special case is for qgroup to search roots in commit_transaction(). 1155 * 1156 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1157 * shared extent is detected. 1158 * 1159 * Otherwise this returns 0 for success and <0 for an error. 1160 * 1161 * If ignore_offset is set to false, only extent refs whose offsets match 1162 * extent_item_pos are returned. If true, every extent ref is returned 1163 * and extent_item_pos is ignored. 1164 * 1165 * FIXME some caching might speed things up 1166 */ 1167 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1168 struct btrfs_fs_info *fs_info, u64 bytenr, 1169 u64 time_seq, struct ulist *refs, 1170 struct ulist *roots, const u64 *extent_item_pos, 1171 struct share_check *sc, bool ignore_offset) 1172 { 1173 struct btrfs_key key; 1174 struct btrfs_path *path; 1175 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1176 struct btrfs_delayed_ref_head *head; 1177 int info_level = 0; 1178 int ret; 1179 struct prelim_ref *ref; 1180 struct rb_node *node; 1181 struct extent_inode_elem *eie = NULL; 1182 struct preftrees preftrees = { 1183 .direct = PREFTREE_INIT, 1184 .indirect = PREFTREE_INIT, 1185 .indirect_missing_keys = PREFTREE_INIT 1186 }; 1187 1188 key.objectid = bytenr; 1189 key.offset = (u64)-1; 1190 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1191 key.type = BTRFS_METADATA_ITEM_KEY; 1192 else 1193 key.type = BTRFS_EXTENT_ITEM_KEY; 1194 1195 path = btrfs_alloc_path(); 1196 if (!path) 1197 return -ENOMEM; 1198 if (!trans) { 1199 path->search_commit_root = 1; 1200 path->skip_locking = 1; 1201 } 1202 1203 if (time_seq == BTRFS_SEQ_LAST) 1204 path->skip_locking = 1; 1205 1206 /* 1207 * grab both a lock on the path and a lock on the delayed ref head. 1208 * We need both to get a consistent picture of how the refs look 1209 * at a specified point in time 1210 */ 1211 again: 1212 head = NULL; 1213 1214 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1215 if (ret < 0) 1216 goto out; 1217 BUG_ON(ret == 0); 1218 1219 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1220 if (trans && likely(trans->type != __TRANS_DUMMY) && 1221 time_seq != BTRFS_SEQ_LAST) { 1222 #else 1223 if (trans && time_seq != BTRFS_SEQ_LAST) { 1224 #endif 1225 /* 1226 * look if there are updates for this ref queued and lock the 1227 * head 1228 */ 1229 delayed_refs = &trans->transaction->delayed_refs; 1230 spin_lock(&delayed_refs->lock); 1231 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1232 if (head) { 1233 if (!mutex_trylock(&head->mutex)) { 1234 refcount_inc(&head->refs); 1235 spin_unlock(&delayed_refs->lock); 1236 1237 btrfs_release_path(path); 1238 1239 /* 1240 * Mutex was contended, block until it's 1241 * released and try again 1242 */ 1243 mutex_lock(&head->mutex); 1244 mutex_unlock(&head->mutex); 1245 btrfs_put_delayed_ref_head(head); 1246 goto again; 1247 } 1248 spin_unlock(&delayed_refs->lock); 1249 ret = add_delayed_refs(fs_info, head, time_seq, 1250 &preftrees, sc); 1251 mutex_unlock(&head->mutex); 1252 if (ret) 1253 goto out; 1254 } else { 1255 spin_unlock(&delayed_refs->lock); 1256 } 1257 } 1258 1259 if (path->slots[0]) { 1260 struct extent_buffer *leaf; 1261 int slot; 1262 1263 path->slots[0]--; 1264 leaf = path->nodes[0]; 1265 slot = path->slots[0]; 1266 btrfs_item_key_to_cpu(leaf, &key, slot); 1267 if (key.objectid == bytenr && 1268 (key.type == BTRFS_EXTENT_ITEM_KEY || 1269 key.type == BTRFS_METADATA_ITEM_KEY)) { 1270 ret = add_inline_refs(fs_info, path, bytenr, 1271 &info_level, &preftrees, sc); 1272 if (ret) 1273 goto out; 1274 ret = add_keyed_refs(fs_info, path, bytenr, info_level, 1275 &preftrees, sc); 1276 if (ret) 1277 goto out; 1278 } 1279 } 1280 1281 btrfs_release_path(path); 1282 1283 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0); 1284 if (ret) 1285 goto out; 1286 1287 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1288 1289 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1290 extent_item_pos, sc, ignore_offset); 1291 if (ret) 1292 goto out; 1293 1294 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1295 1296 /* 1297 * This walks the tree of merged and resolved refs. Tree blocks are 1298 * read in as needed. Unique entries are added to the ulist, and 1299 * the list of found roots is updated. 1300 * 1301 * We release the entire tree in one go before returning. 1302 */ 1303 node = rb_first_cached(&preftrees.direct.root); 1304 while (node) { 1305 ref = rb_entry(node, struct prelim_ref, rbnode); 1306 node = rb_next(&ref->rbnode); 1307 /* 1308 * ref->count < 0 can happen here if there are delayed 1309 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1310 * prelim_ref_insert() relies on this when merging 1311 * identical refs to keep the overall count correct. 1312 * prelim_ref_insert() will merge only those refs 1313 * which compare identically. Any refs having 1314 * e.g. different offsets would not be merged, 1315 * and would retain their original ref->count < 0. 1316 */ 1317 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1318 if (sc && sc->root_objectid && 1319 ref->root_id != sc->root_objectid) { 1320 ret = BACKREF_FOUND_SHARED; 1321 goto out; 1322 } 1323 1324 /* no parent == root of tree */ 1325 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1326 if (ret < 0) 1327 goto out; 1328 } 1329 if (ref->count && ref->parent) { 1330 if (extent_item_pos && !ref->inode_list && 1331 ref->level == 0) { 1332 struct extent_buffer *eb; 1333 1334 eb = read_tree_block(fs_info, ref->parent, 0, 1335 0, ref->level, NULL); 1336 if (IS_ERR(eb)) { 1337 ret = PTR_ERR(eb); 1338 goto out; 1339 } else if (!extent_buffer_uptodate(eb)) { 1340 free_extent_buffer(eb); 1341 ret = -EIO; 1342 goto out; 1343 } 1344 1345 if (!path->skip_locking) 1346 btrfs_tree_read_lock(eb); 1347 ret = find_extent_in_eb(eb, bytenr, 1348 *extent_item_pos, &eie, ignore_offset); 1349 if (!path->skip_locking) 1350 btrfs_tree_read_unlock(eb); 1351 free_extent_buffer(eb); 1352 if (ret < 0) 1353 goto out; 1354 ref->inode_list = eie; 1355 } 1356 ret = ulist_add_merge_ptr(refs, ref->parent, 1357 ref->inode_list, 1358 (void **)&eie, GFP_NOFS); 1359 if (ret < 0) 1360 goto out; 1361 if (!ret && extent_item_pos) { 1362 /* 1363 * we've recorded that parent, so we must extend 1364 * its inode list here 1365 */ 1366 BUG_ON(!eie); 1367 while (eie->next) 1368 eie = eie->next; 1369 eie->next = ref->inode_list; 1370 } 1371 eie = NULL; 1372 } 1373 cond_resched(); 1374 } 1375 1376 out: 1377 btrfs_free_path(path); 1378 1379 prelim_release(&preftrees.direct); 1380 prelim_release(&preftrees.indirect); 1381 prelim_release(&preftrees.indirect_missing_keys); 1382 1383 if (ret < 0) 1384 free_inode_elem_list(eie); 1385 return ret; 1386 } 1387 1388 static void free_leaf_list(struct ulist *blocks) 1389 { 1390 struct ulist_node *node = NULL; 1391 struct extent_inode_elem *eie; 1392 struct ulist_iterator uiter; 1393 1394 ULIST_ITER_INIT(&uiter); 1395 while ((node = ulist_next(blocks, &uiter))) { 1396 if (!node->aux) 1397 continue; 1398 eie = unode_aux_to_inode_list(node); 1399 free_inode_elem_list(eie); 1400 node->aux = 0; 1401 } 1402 1403 ulist_free(blocks); 1404 } 1405 1406 /* 1407 * Finds all leafs with a reference to the specified combination of bytenr and 1408 * offset. key_list_head will point to a list of corresponding keys (caller must 1409 * free each list element). The leafs will be stored in the leafs ulist, which 1410 * must be freed with ulist_free. 1411 * 1412 * returns 0 on success, <0 on error 1413 */ 1414 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1415 struct btrfs_fs_info *fs_info, u64 bytenr, 1416 u64 time_seq, struct ulist **leafs, 1417 const u64 *extent_item_pos, bool ignore_offset) 1418 { 1419 int ret; 1420 1421 *leafs = ulist_alloc(GFP_NOFS); 1422 if (!*leafs) 1423 return -ENOMEM; 1424 1425 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1426 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1427 if (ret < 0 && ret != -ENOENT) { 1428 free_leaf_list(*leafs); 1429 return ret; 1430 } 1431 1432 return 0; 1433 } 1434 1435 /* 1436 * walk all backrefs for a given extent to find all roots that reference this 1437 * extent. Walking a backref means finding all extents that reference this 1438 * extent and in turn walk the backrefs of those, too. Naturally this is a 1439 * recursive process, but here it is implemented in an iterative fashion: We 1440 * find all referencing extents for the extent in question and put them on a 1441 * list. In turn, we find all referencing extents for those, further appending 1442 * to the list. The way we iterate the list allows adding more elements after 1443 * the current while iterating. The process stops when we reach the end of the 1444 * list. Found roots are added to the roots list. 1445 * 1446 * returns 0 on success, < 0 on error. 1447 */ 1448 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1449 struct btrfs_fs_info *fs_info, u64 bytenr, 1450 u64 time_seq, struct ulist **roots, 1451 bool ignore_offset) 1452 { 1453 struct ulist *tmp; 1454 struct ulist_node *node = NULL; 1455 struct ulist_iterator uiter; 1456 int ret; 1457 1458 tmp = ulist_alloc(GFP_NOFS); 1459 if (!tmp) 1460 return -ENOMEM; 1461 *roots = ulist_alloc(GFP_NOFS); 1462 if (!*roots) { 1463 ulist_free(tmp); 1464 return -ENOMEM; 1465 } 1466 1467 ULIST_ITER_INIT(&uiter); 1468 while (1) { 1469 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1470 tmp, *roots, NULL, NULL, ignore_offset); 1471 if (ret < 0 && ret != -ENOENT) { 1472 ulist_free(tmp); 1473 ulist_free(*roots); 1474 *roots = NULL; 1475 return ret; 1476 } 1477 node = ulist_next(tmp, &uiter); 1478 if (!node) 1479 break; 1480 bytenr = node->val; 1481 cond_resched(); 1482 } 1483 1484 ulist_free(tmp); 1485 return 0; 1486 } 1487 1488 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1489 struct btrfs_fs_info *fs_info, u64 bytenr, 1490 u64 time_seq, struct ulist **roots, 1491 bool ignore_offset, bool skip_commit_root_sem) 1492 { 1493 int ret; 1494 1495 if (!trans && !skip_commit_root_sem) 1496 down_read(&fs_info->commit_root_sem); 1497 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1498 time_seq, roots, ignore_offset); 1499 if (!trans && !skip_commit_root_sem) 1500 up_read(&fs_info->commit_root_sem); 1501 return ret; 1502 } 1503 1504 /** 1505 * Check if an extent is shared or not 1506 * 1507 * @root: root inode belongs to 1508 * @inum: inode number of the inode whose extent we are checking 1509 * @bytenr: logical bytenr of the extent we are checking 1510 * @roots: list of roots this extent is shared among 1511 * @tmp: temporary list used for iteration 1512 * 1513 * btrfs_check_shared uses the backref walking code but will short 1514 * circuit as soon as it finds a root or inode that doesn't match the 1515 * one passed in. This provides a significant performance benefit for 1516 * callers (such as fiemap) which want to know whether the extent is 1517 * shared but do not need a ref count. 1518 * 1519 * This attempts to attach to the running transaction in order to account for 1520 * delayed refs, but continues on even when no running transaction exists. 1521 * 1522 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1523 */ 1524 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr, 1525 struct ulist *roots, struct ulist *tmp) 1526 { 1527 struct btrfs_fs_info *fs_info = root->fs_info; 1528 struct btrfs_trans_handle *trans; 1529 struct ulist_iterator uiter; 1530 struct ulist_node *node; 1531 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1532 int ret = 0; 1533 struct share_check shared = { 1534 .root_objectid = root->root_key.objectid, 1535 .inum = inum, 1536 .share_count = 0, 1537 }; 1538 1539 ulist_init(roots); 1540 ulist_init(tmp); 1541 1542 trans = btrfs_join_transaction_nostart(root); 1543 if (IS_ERR(trans)) { 1544 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1545 ret = PTR_ERR(trans); 1546 goto out; 1547 } 1548 trans = NULL; 1549 down_read(&fs_info->commit_root_sem); 1550 } else { 1551 btrfs_get_tree_mod_seq(fs_info, &elem); 1552 } 1553 1554 ULIST_ITER_INIT(&uiter); 1555 while (1) { 1556 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1557 roots, NULL, &shared, false); 1558 if (ret == BACKREF_FOUND_SHARED) { 1559 /* this is the only condition under which we return 1 */ 1560 ret = 1; 1561 break; 1562 } 1563 if (ret < 0 && ret != -ENOENT) 1564 break; 1565 ret = 0; 1566 node = ulist_next(tmp, &uiter); 1567 if (!node) 1568 break; 1569 bytenr = node->val; 1570 shared.share_count = 0; 1571 cond_resched(); 1572 } 1573 1574 if (trans) { 1575 btrfs_put_tree_mod_seq(fs_info, &elem); 1576 btrfs_end_transaction(trans); 1577 } else { 1578 up_read(&fs_info->commit_root_sem); 1579 } 1580 out: 1581 ulist_release(roots); 1582 ulist_release(tmp); 1583 return ret; 1584 } 1585 1586 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1587 u64 start_off, struct btrfs_path *path, 1588 struct btrfs_inode_extref **ret_extref, 1589 u64 *found_off) 1590 { 1591 int ret, slot; 1592 struct btrfs_key key; 1593 struct btrfs_key found_key; 1594 struct btrfs_inode_extref *extref; 1595 const struct extent_buffer *leaf; 1596 unsigned long ptr; 1597 1598 key.objectid = inode_objectid; 1599 key.type = BTRFS_INODE_EXTREF_KEY; 1600 key.offset = start_off; 1601 1602 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1603 if (ret < 0) 1604 return ret; 1605 1606 while (1) { 1607 leaf = path->nodes[0]; 1608 slot = path->slots[0]; 1609 if (slot >= btrfs_header_nritems(leaf)) { 1610 /* 1611 * If the item at offset is not found, 1612 * btrfs_search_slot will point us to the slot 1613 * where it should be inserted. In our case 1614 * that will be the slot directly before the 1615 * next INODE_REF_KEY_V2 item. In the case 1616 * that we're pointing to the last slot in a 1617 * leaf, we must move one leaf over. 1618 */ 1619 ret = btrfs_next_leaf(root, path); 1620 if (ret) { 1621 if (ret >= 1) 1622 ret = -ENOENT; 1623 break; 1624 } 1625 continue; 1626 } 1627 1628 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1629 1630 /* 1631 * Check that we're still looking at an extended ref key for 1632 * this particular objectid. If we have different 1633 * objectid or type then there are no more to be found 1634 * in the tree and we can exit. 1635 */ 1636 ret = -ENOENT; 1637 if (found_key.objectid != inode_objectid) 1638 break; 1639 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1640 break; 1641 1642 ret = 0; 1643 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1644 extref = (struct btrfs_inode_extref *)ptr; 1645 *ret_extref = extref; 1646 if (found_off) 1647 *found_off = found_key.offset; 1648 break; 1649 } 1650 1651 return ret; 1652 } 1653 1654 /* 1655 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1656 * Elements of the path are separated by '/' and the path is guaranteed to be 1657 * 0-terminated. the path is only given within the current file system. 1658 * Therefore, it never starts with a '/'. the caller is responsible to provide 1659 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1660 * the start point of the resulting string is returned. this pointer is within 1661 * dest, normally. 1662 * in case the path buffer would overflow, the pointer is decremented further 1663 * as if output was written to the buffer, though no more output is actually 1664 * generated. that way, the caller can determine how much space would be 1665 * required for the path to fit into the buffer. in that case, the returned 1666 * value will be smaller than dest. callers must check this! 1667 */ 1668 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1669 u32 name_len, unsigned long name_off, 1670 struct extent_buffer *eb_in, u64 parent, 1671 char *dest, u32 size) 1672 { 1673 int slot; 1674 u64 next_inum; 1675 int ret; 1676 s64 bytes_left = ((s64)size) - 1; 1677 struct extent_buffer *eb = eb_in; 1678 struct btrfs_key found_key; 1679 struct btrfs_inode_ref *iref; 1680 1681 if (bytes_left >= 0) 1682 dest[bytes_left] = '\0'; 1683 1684 while (1) { 1685 bytes_left -= name_len; 1686 if (bytes_left >= 0) 1687 read_extent_buffer(eb, dest + bytes_left, 1688 name_off, name_len); 1689 if (eb != eb_in) { 1690 if (!path->skip_locking) 1691 btrfs_tree_read_unlock(eb); 1692 free_extent_buffer(eb); 1693 } 1694 ret = btrfs_find_item(fs_root, path, parent, 0, 1695 BTRFS_INODE_REF_KEY, &found_key); 1696 if (ret > 0) 1697 ret = -ENOENT; 1698 if (ret) 1699 break; 1700 1701 next_inum = found_key.offset; 1702 1703 /* regular exit ahead */ 1704 if (parent == next_inum) 1705 break; 1706 1707 slot = path->slots[0]; 1708 eb = path->nodes[0]; 1709 /* make sure we can use eb after releasing the path */ 1710 if (eb != eb_in) { 1711 path->nodes[0] = NULL; 1712 path->locks[0] = 0; 1713 } 1714 btrfs_release_path(path); 1715 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1716 1717 name_len = btrfs_inode_ref_name_len(eb, iref); 1718 name_off = (unsigned long)(iref + 1); 1719 1720 parent = next_inum; 1721 --bytes_left; 1722 if (bytes_left >= 0) 1723 dest[bytes_left] = '/'; 1724 } 1725 1726 btrfs_release_path(path); 1727 1728 if (ret) 1729 return ERR_PTR(ret); 1730 1731 return dest + bytes_left; 1732 } 1733 1734 /* 1735 * this makes the path point to (logical EXTENT_ITEM *) 1736 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1737 * tree blocks and <0 on error. 1738 */ 1739 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1740 struct btrfs_path *path, struct btrfs_key *found_key, 1741 u64 *flags_ret) 1742 { 1743 int ret; 1744 u64 flags; 1745 u64 size = 0; 1746 u32 item_size; 1747 const struct extent_buffer *eb; 1748 struct btrfs_extent_item *ei; 1749 struct btrfs_key key; 1750 1751 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1752 key.type = BTRFS_METADATA_ITEM_KEY; 1753 else 1754 key.type = BTRFS_EXTENT_ITEM_KEY; 1755 key.objectid = logical; 1756 key.offset = (u64)-1; 1757 1758 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1759 if (ret < 0) 1760 return ret; 1761 1762 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1763 if (ret) { 1764 if (ret > 0) 1765 ret = -ENOENT; 1766 return ret; 1767 } 1768 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1769 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1770 size = fs_info->nodesize; 1771 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1772 size = found_key->offset; 1773 1774 if (found_key->objectid > logical || 1775 found_key->objectid + size <= logical) { 1776 btrfs_debug(fs_info, 1777 "logical %llu is not within any extent", logical); 1778 return -ENOENT; 1779 } 1780 1781 eb = path->nodes[0]; 1782 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1783 BUG_ON(item_size < sizeof(*ei)); 1784 1785 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1786 flags = btrfs_extent_flags(eb, ei); 1787 1788 btrfs_debug(fs_info, 1789 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1790 logical, logical - found_key->objectid, found_key->objectid, 1791 found_key->offset, flags, item_size); 1792 1793 WARN_ON(!flags_ret); 1794 if (flags_ret) { 1795 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1796 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1797 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1798 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1799 else 1800 BUG(); 1801 return 0; 1802 } 1803 1804 return -EIO; 1805 } 1806 1807 /* 1808 * helper function to iterate extent inline refs. ptr must point to a 0 value 1809 * for the first call and may be modified. it is used to track state. 1810 * if more refs exist, 0 is returned and the next call to 1811 * get_extent_inline_ref must pass the modified ptr parameter to get the 1812 * next ref. after the last ref was processed, 1 is returned. 1813 * returns <0 on error 1814 */ 1815 static int get_extent_inline_ref(unsigned long *ptr, 1816 const struct extent_buffer *eb, 1817 const struct btrfs_key *key, 1818 const struct btrfs_extent_item *ei, 1819 u32 item_size, 1820 struct btrfs_extent_inline_ref **out_eiref, 1821 int *out_type) 1822 { 1823 unsigned long end; 1824 u64 flags; 1825 struct btrfs_tree_block_info *info; 1826 1827 if (!*ptr) { 1828 /* first call */ 1829 flags = btrfs_extent_flags(eb, ei); 1830 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1831 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1832 /* a skinny metadata extent */ 1833 *out_eiref = 1834 (struct btrfs_extent_inline_ref *)(ei + 1); 1835 } else { 1836 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1837 info = (struct btrfs_tree_block_info *)(ei + 1); 1838 *out_eiref = 1839 (struct btrfs_extent_inline_ref *)(info + 1); 1840 } 1841 } else { 1842 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1843 } 1844 *ptr = (unsigned long)*out_eiref; 1845 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1846 return -ENOENT; 1847 } 1848 1849 end = (unsigned long)ei + item_size; 1850 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1851 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1852 BTRFS_REF_TYPE_ANY); 1853 if (*out_type == BTRFS_REF_TYPE_INVALID) 1854 return -EUCLEAN; 1855 1856 *ptr += btrfs_extent_inline_ref_size(*out_type); 1857 WARN_ON(*ptr > end); 1858 if (*ptr == end) 1859 return 1; /* last */ 1860 1861 return 0; 1862 } 1863 1864 /* 1865 * reads the tree block backref for an extent. tree level and root are returned 1866 * through out_level and out_root. ptr must point to a 0 value for the first 1867 * call and may be modified (see get_extent_inline_ref comment). 1868 * returns 0 if data was provided, 1 if there was no more data to provide or 1869 * <0 on error. 1870 */ 1871 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1872 struct btrfs_key *key, struct btrfs_extent_item *ei, 1873 u32 item_size, u64 *out_root, u8 *out_level) 1874 { 1875 int ret; 1876 int type; 1877 struct btrfs_extent_inline_ref *eiref; 1878 1879 if (*ptr == (unsigned long)-1) 1880 return 1; 1881 1882 while (1) { 1883 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1884 &eiref, &type); 1885 if (ret < 0) 1886 return ret; 1887 1888 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1889 type == BTRFS_SHARED_BLOCK_REF_KEY) 1890 break; 1891 1892 if (ret == 1) 1893 return 1; 1894 } 1895 1896 /* we can treat both ref types equally here */ 1897 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1898 1899 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1900 struct btrfs_tree_block_info *info; 1901 1902 info = (struct btrfs_tree_block_info *)(ei + 1); 1903 *out_level = btrfs_tree_block_level(eb, info); 1904 } else { 1905 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1906 *out_level = (u8)key->offset; 1907 } 1908 1909 if (ret == 1) 1910 *ptr = (unsigned long)-1; 1911 1912 return 0; 1913 } 1914 1915 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1916 struct extent_inode_elem *inode_list, 1917 u64 root, u64 extent_item_objectid, 1918 iterate_extent_inodes_t *iterate, void *ctx) 1919 { 1920 struct extent_inode_elem *eie; 1921 int ret = 0; 1922 1923 for (eie = inode_list; eie; eie = eie->next) { 1924 btrfs_debug(fs_info, 1925 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1926 extent_item_objectid, eie->inum, 1927 eie->offset, root); 1928 ret = iterate(eie->inum, eie->offset, root, ctx); 1929 if (ret) { 1930 btrfs_debug(fs_info, 1931 "stopping iteration for %llu due to ret=%d", 1932 extent_item_objectid, ret); 1933 break; 1934 } 1935 } 1936 1937 return ret; 1938 } 1939 1940 /* 1941 * calls iterate() for every inode that references the extent identified by 1942 * the given parameters. 1943 * when the iterator function returns a non-zero value, iteration stops. 1944 */ 1945 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1946 u64 extent_item_objectid, u64 extent_item_pos, 1947 int search_commit_root, 1948 iterate_extent_inodes_t *iterate, void *ctx, 1949 bool ignore_offset) 1950 { 1951 int ret; 1952 struct btrfs_trans_handle *trans = NULL; 1953 struct ulist *refs = NULL; 1954 struct ulist *roots = NULL; 1955 struct ulist_node *ref_node = NULL; 1956 struct ulist_node *root_node = NULL; 1957 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 1958 struct ulist_iterator ref_uiter; 1959 struct ulist_iterator root_uiter; 1960 1961 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1962 extent_item_objectid); 1963 1964 if (!search_commit_root) { 1965 trans = btrfs_attach_transaction(fs_info->extent_root); 1966 if (IS_ERR(trans)) { 1967 if (PTR_ERR(trans) != -ENOENT && 1968 PTR_ERR(trans) != -EROFS) 1969 return PTR_ERR(trans); 1970 trans = NULL; 1971 } 1972 } 1973 1974 if (trans) 1975 btrfs_get_tree_mod_seq(fs_info, &seq_elem); 1976 else 1977 down_read(&fs_info->commit_root_sem); 1978 1979 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1980 seq_elem.seq, &refs, 1981 &extent_item_pos, ignore_offset); 1982 if (ret) 1983 goto out; 1984 1985 ULIST_ITER_INIT(&ref_uiter); 1986 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1987 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 1988 seq_elem.seq, &roots, 1989 ignore_offset); 1990 if (ret) 1991 break; 1992 ULIST_ITER_INIT(&root_uiter); 1993 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1994 btrfs_debug(fs_info, 1995 "root %llu references leaf %llu, data list %#llx", 1996 root_node->val, ref_node->val, 1997 ref_node->aux); 1998 ret = iterate_leaf_refs(fs_info, 1999 (struct extent_inode_elem *) 2000 (uintptr_t)ref_node->aux, 2001 root_node->val, 2002 extent_item_objectid, 2003 iterate, ctx); 2004 } 2005 ulist_free(roots); 2006 } 2007 2008 free_leaf_list(refs); 2009 out: 2010 if (trans) { 2011 btrfs_put_tree_mod_seq(fs_info, &seq_elem); 2012 btrfs_end_transaction(trans); 2013 } else { 2014 up_read(&fs_info->commit_root_sem); 2015 } 2016 2017 return ret; 2018 } 2019 2020 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2021 struct btrfs_path *path, 2022 iterate_extent_inodes_t *iterate, void *ctx, 2023 bool ignore_offset) 2024 { 2025 int ret; 2026 u64 extent_item_pos; 2027 u64 flags = 0; 2028 struct btrfs_key found_key; 2029 int search_commit_root = path->search_commit_root; 2030 2031 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2032 btrfs_release_path(path); 2033 if (ret < 0) 2034 return ret; 2035 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2036 return -EINVAL; 2037 2038 extent_item_pos = logical - found_key.objectid; 2039 ret = iterate_extent_inodes(fs_info, found_key.objectid, 2040 extent_item_pos, search_commit_root, 2041 iterate, ctx, ignore_offset); 2042 2043 return ret; 2044 } 2045 2046 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 2047 struct extent_buffer *eb, void *ctx); 2048 2049 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 2050 struct btrfs_path *path, 2051 iterate_irefs_t *iterate, void *ctx) 2052 { 2053 int ret = 0; 2054 int slot; 2055 u32 cur; 2056 u32 len; 2057 u32 name_len; 2058 u64 parent = 0; 2059 int found = 0; 2060 struct extent_buffer *eb; 2061 struct btrfs_item *item; 2062 struct btrfs_inode_ref *iref; 2063 struct btrfs_key found_key; 2064 2065 while (!ret) { 2066 ret = btrfs_find_item(fs_root, path, inum, 2067 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2068 &found_key); 2069 2070 if (ret < 0) 2071 break; 2072 if (ret) { 2073 ret = found ? 0 : -ENOENT; 2074 break; 2075 } 2076 ++found; 2077 2078 parent = found_key.offset; 2079 slot = path->slots[0]; 2080 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2081 if (!eb) { 2082 ret = -ENOMEM; 2083 break; 2084 } 2085 btrfs_release_path(path); 2086 2087 item = btrfs_item_nr(slot); 2088 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2089 2090 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2091 name_len = btrfs_inode_ref_name_len(eb, iref); 2092 /* path must be released before calling iterate()! */ 2093 btrfs_debug(fs_root->fs_info, 2094 "following ref at offset %u for inode %llu in tree %llu", 2095 cur, found_key.objectid, 2096 fs_root->root_key.objectid); 2097 ret = iterate(parent, name_len, 2098 (unsigned long)(iref + 1), eb, ctx); 2099 if (ret) 2100 break; 2101 len = sizeof(*iref) + name_len; 2102 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2103 } 2104 free_extent_buffer(eb); 2105 } 2106 2107 btrfs_release_path(path); 2108 2109 return ret; 2110 } 2111 2112 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2113 struct btrfs_path *path, 2114 iterate_irefs_t *iterate, void *ctx) 2115 { 2116 int ret; 2117 int slot; 2118 u64 offset = 0; 2119 u64 parent; 2120 int found = 0; 2121 struct extent_buffer *eb; 2122 struct btrfs_inode_extref *extref; 2123 u32 item_size; 2124 u32 cur_offset; 2125 unsigned long ptr; 2126 2127 while (1) { 2128 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2129 &offset); 2130 if (ret < 0) 2131 break; 2132 if (ret) { 2133 ret = found ? 0 : -ENOENT; 2134 break; 2135 } 2136 ++found; 2137 2138 slot = path->slots[0]; 2139 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2140 if (!eb) { 2141 ret = -ENOMEM; 2142 break; 2143 } 2144 btrfs_release_path(path); 2145 2146 item_size = btrfs_item_size_nr(eb, slot); 2147 ptr = btrfs_item_ptr_offset(eb, slot); 2148 cur_offset = 0; 2149 2150 while (cur_offset < item_size) { 2151 u32 name_len; 2152 2153 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2154 parent = btrfs_inode_extref_parent(eb, extref); 2155 name_len = btrfs_inode_extref_name_len(eb, extref); 2156 ret = iterate(parent, name_len, 2157 (unsigned long)&extref->name, eb, ctx); 2158 if (ret) 2159 break; 2160 2161 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2162 cur_offset += sizeof(*extref); 2163 } 2164 free_extent_buffer(eb); 2165 2166 offset++; 2167 } 2168 2169 btrfs_release_path(path); 2170 2171 return ret; 2172 } 2173 2174 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2175 struct btrfs_path *path, iterate_irefs_t *iterate, 2176 void *ctx) 2177 { 2178 int ret; 2179 int found_refs = 0; 2180 2181 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2182 if (!ret) 2183 ++found_refs; 2184 else if (ret != -ENOENT) 2185 return ret; 2186 2187 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2188 if (ret == -ENOENT && found_refs) 2189 return 0; 2190 2191 return ret; 2192 } 2193 2194 /* 2195 * returns 0 if the path could be dumped (probably truncated) 2196 * returns <0 in case of an error 2197 */ 2198 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2199 struct extent_buffer *eb, void *ctx) 2200 { 2201 struct inode_fs_paths *ipath = ctx; 2202 char *fspath; 2203 char *fspath_min; 2204 int i = ipath->fspath->elem_cnt; 2205 const int s_ptr = sizeof(char *); 2206 u32 bytes_left; 2207 2208 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2209 ipath->fspath->bytes_left - s_ptr : 0; 2210 2211 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2212 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2213 name_off, eb, inum, fspath_min, bytes_left); 2214 if (IS_ERR(fspath)) 2215 return PTR_ERR(fspath); 2216 2217 if (fspath > fspath_min) { 2218 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2219 ++ipath->fspath->elem_cnt; 2220 ipath->fspath->bytes_left = fspath - fspath_min; 2221 } else { 2222 ++ipath->fspath->elem_missed; 2223 ipath->fspath->bytes_missing += fspath_min - fspath; 2224 ipath->fspath->bytes_left = 0; 2225 } 2226 2227 return 0; 2228 } 2229 2230 /* 2231 * this dumps all file system paths to the inode into the ipath struct, provided 2232 * is has been created large enough. each path is zero-terminated and accessed 2233 * from ipath->fspath->val[i]. 2234 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2235 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2236 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2237 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2238 * have been needed to return all paths. 2239 */ 2240 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2241 { 2242 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2243 inode_to_path, ipath); 2244 } 2245 2246 struct btrfs_data_container *init_data_container(u32 total_bytes) 2247 { 2248 struct btrfs_data_container *data; 2249 size_t alloc_bytes; 2250 2251 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2252 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2253 if (!data) 2254 return ERR_PTR(-ENOMEM); 2255 2256 if (total_bytes >= sizeof(*data)) { 2257 data->bytes_left = total_bytes - sizeof(*data); 2258 data->bytes_missing = 0; 2259 } else { 2260 data->bytes_missing = sizeof(*data) - total_bytes; 2261 data->bytes_left = 0; 2262 } 2263 2264 data->elem_cnt = 0; 2265 data->elem_missed = 0; 2266 2267 return data; 2268 } 2269 2270 /* 2271 * allocates space to return multiple file system paths for an inode. 2272 * total_bytes to allocate are passed, note that space usable for actual path 2273 * information will be total_bytes - sizeof(struct inode_fs_paths). 2274 * the returned pointer must be freed with free_ipath() in the end. 2275 */ 2276 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2277 struct btrfs_path *path) 2278 { 2279 struct inode_fs_paths *ifp; 2280 struct btrfs_data_container *fspath; 2281 2282 fspath = init_data_container(total_bytes); 2283 if (IS_ERR(fspath)) 2284 return ERR_CAST(fspath); 2285 2286 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2287 if (!ifp) { 2288 kvfree(fspath); 2289 return ERR_PTR(-ENOMEM); 2290 } 2291 2292 ifp->btrfs_path = path; 2293 ifp->fspath = fspath; 2294 ifp->fs_root = fs_root; 2295 2296 return ifp; 2297 } 2298 2299 void free_ipath(struct inode_fs_paths *ipath) 2300 { 2301 if (!ipath) 2302 return; 2303 kvfree(ipath->fspath); 2304 kfree(ipath); 2305 } 2306 2307 struct btrfs_backref_iter *btrfs_backref_iter_alloc( 2308 struct btrfs_fs_info *fs_info, gfp_t gfp_flag) 2309 { 2310 struct btrfs_backref_iter *ret; 2311 2312 ret = kzalloc(sizeof(*ret), gfp_flag); 2313 if (!ret) 2314 return NULL; 2315 2316 ret->path = btrfs_alloc_path(); 2317 if (!ret->path) { 2318 kfree(ret); 2319 return NULL; 2320 } 2321 2322 /* Current backref iterator only supports iteration in commit root */ 2323 ret->path->search_commit_root = 1; 2324 ret->path->skip_locking = 1; 2325 ret->fs_info = fs_info; 2326 2327 return ret; 2328 } 2329 2330 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2331 { 2332 struct btrfs_fs_info *fs_info = iter->fs_info; 2333 struct btrfs_path *path = iter->path; 2334 struct btrfs_extent_item *ei; 2335 struct btrfs_key key; 2336 int ret; 2337 2338 key.objectid = bytenr; 2339 key.type = BTRFS_METADATA_ITEM_KEY; 2340 key.offset = (u64)-1; 2341 iter->bytenr = bytenr; 2342 2343 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 2344 if (ret < 0) 2345 return ret; 2346 if (ret == 0) { 2347 ret = -EUCLEAN; 2348 goto release; 2349 } 2350 if (path->slots[0] == 0) { 2351 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2352 ret = -EUCLEAN; 2353 goto release; 2354 } 2355 path->slots[0]--; 2356 2357 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2358 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2359 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2360 ret = -ENOENT; 2361 goto release; 2362 } 2363 memcpy(&iter->cur_key, &key, sizeof(key)); 2364 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2365 path->slots[0]); 2366 iter->end_ptr = (u32)(iter->item_ptr + 2367 btrfs_item_size_nr(path->nodes[0], path->slots[0])); 2368 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2369 struct btrfs_extent_item); 2370 2371 /* 2372 * Only support iteration on tree backref yet. 2373 * 2374 * This is an extra precaution for non skinny-metadata, where 2375 * EXTENT_ITEM is also used for tree blocks, that we can only use 2376 * extent flags to determine if it's a tree block. 2377 */ 2378 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2379 ret = -ENOTSUPP; 2380 goto release; 2381 } 2382 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2383 2384 /* If there is no inline backref, go search for keyed backref */ 2385 if (iter->cur_ptr >= iter->end_ptr) { 2386 ret = btrfs_next_item(fs_info->extent_root, path); 2387 2388 /* No inline nor keyed ref */ 2389 if (ret > 0) { 2390 ret = -ENOENT; 2391 goto release; 2392 } 2393 if (ret < 0) 2394 goto release; 2395 2396 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2397 path->slots[0]); 2398 if (iter->cur_key.objectid != bytenr || 2399 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2400 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2401 ret = -ENOENT; 2402 goto release; 2403 } 2404 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2405 path->slots[0]); 2406 iter->item_ptr = iter->cur_ptr; 2407 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr( 2408 path->nodes[0], path->slots[0])); 2409 } 2410 2411 return 0; 2412 release: 2413 btrfs_backref_iter_release(iter); 2414 return ret; 2415 } 2416 2417 /* 2418 * Go to the next backref item of current bytenr, can be either inlined or 2419 * keyed. 2420 * 2421 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2422 * 2423 * Return 0 if we get next backref without problem. 2424 * Return >0 if there is no extra backref for this bytenr. 2425 * Return <0 if there is something wrong happened. 2426 */ 2427 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2428 { 2429 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2430 struct btrfs_path *path = iter->path; 2431 struct btrfs_extent_inline_ref *iref; 2432 int ret; 2433 u32 size; 2434 2435 if (btrfs_backref_iter_is_inline_ref(iter)) { 2436 /* We're still inside the inline refs */ 2437 ASSERT(iter->cur_ptr < iter->end_ptr); 2438 2439 if (btrfs_backref_has_tree_block_info(iter)) { 2440 /* First tree block info */ 2441 size = sizeof(struct btrfs_tree_block_info); 2442 } else { 2443 /* Use inline ref type to determine the size */ 2444 int type; 2445 2446 iref = (struct btrfs_extent_inline_ref *) 2447 ((unsigned long)iter->cur_ptr); 2448 type = btrfs_extent_inline_ref_type(eb, iref); 2449 2450 size = btrfs_extent_inline_ref_size(type); 2451 } 2452 iter->cur_ptr += size; 2453 if (iter->cur_ptr < iter->end_ptr) 2454 return 0; 2455 2456 /* All inline items iterated, fall through */ 2457 } 2458 2459 /* We're at keyed items, there is no inline item, go to the next one */ 2460 ret = btrfs_next_item(iter->fs_info->extent_root, iter->path); 2461 if (ret) 2462 return ret; 2463 2464 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2465 if (iter->cur_key.objectid != iter->bytenr || 2466 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2467 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2468 return 1; 2469 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2470 path->slots[0]); 2471 iter->cur_ptr = iter->item_ptr; 2472 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0], 2473 path->slots[0]); 2474 return 0; 2475 } 2476 2477 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 2478 struct btrfs_backref_cache *cache, int is_reloc) 2479 { 2480 int i; 2481 2482 cache->rb_root = RB_ROOT; 2483 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2484 INIT_LIST_HEAD(&cache->pending[i]); 2485 INIT_LIST_HEAD(&cache->changed); 2486 INIT_LIST_HEAD(&cache->detached); 2487 INIT_LIST_HEAD(&cache->leaves); 2488 INIT_LIST_HEAD(&cache->pending_edge); 2489 INIT_LIST_HEAD(&cache->useless_node); 2490 cache->fs_info = fs_info; 2491 cache->is_reloc = is_reloc; 2492 } 2493 2494 struct btrfs_backref_node *btrfs_backref_alloc_node( 2495 struct btrfs_backref_cache *cache, u64 bytenr, int level) 2496 { 2497 struct btrfs_backref_node *node; 2498 2499 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 2500 node = kzalloc(sizeof(*node), GFP_NOFS); 2501 if (!node) 2502 return node; 2503 2504 INIT_LIST_HEAD(&node->list); 2505 INIT_LIST_HEAD(&node->upper); 2506 INIT_LIST_HEAD(&node->lower); 2507 RB_CLEAR_NODE(&node->rb_node); 2508 cache->nr_nodes++; 2509 node->level = level; 2510 node->bytenr = bytenr; 2511 2512 return node; 2513 } 2514 2515 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 2516 struct btrfs_backref_cache *cache) 2517 { 2518 struct btrfs_backref_edge *edge; 2519 2520 edge = kzalloc(sizeof(*edge), GFP_NOFS); 2521 if (edge) 2522 cache->nr_edges++; 2523 return edge; 2524 } 2525 2526 /* 2527 * Drop the backref node from cache, also cleaning up all its 2528 * upper edges and any uncached nodes in the path. 2529 * 2530 * This cleanup happens bottom up, thus the node should either 2531 * be the lowest node in the cache or a detached node. 2532 */ 2533 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 2534 struct btrfs_backref_node *node) 2535 { 2536 struct btrfs_backref_node *upper; 2537 struct btrfs_backref_edge *edge; 2538 2539 if (!node) 2540 return; 2541 2542 BUG_ON(!node->lowest && !node->detached); 2543 while (!list_empty(&node->upper)) { 2544 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 2545 list[LOWER]); 2546 upper = edge->node[UPPER]; 2547 list_del(&edge->list[LOWER]); 2548 list_del(&edge->list[UPPER]); 2549 btrfs_backref_free_edge(cache, edge); 2550 2551 /* 2552 * Add the node to leaf node list if no other child block 2553 * cached. 2554 */ 2555 if (list_empty(&upper->lower)) { 2556 list_add_tail(&upper->lower, &cache->leaves); 2557 upper->lowest = 1; 2558 } 2559 } 2560 2561 btrfs_backref_drop_node(cache, node); 2562 } 2563 2564 /* 2565 * Release all nodes/edges from current cache 2566 */ 2567 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 2568 { 2569 struct btrfs_backref_node *node; 2570 int i; 2571 2572 while (!list_empty(&cache->detached)) { 2573 node = list_entry(cache->detached.next, 2574 struct btrfs_backref_node, list); 2575 btrfs_backref_cleanup_node(cache, node); 2576 } 2577 2578 while (!list_empty(&cache->leaves)) { 2579 node = list_entry(cache->leaves.next, 2580 struct btrfs_backref_node, lower); 2581 btrfs_backref_cleanup_node(cache, node); 2582 } 2583 2584 cache->last_trans = 0; 2585 2586 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2587 ASSERT(list_empty(&cache->pending[i])); 2588 ASSERT(list_empty(&cache->pending_edge)); 2589 ASSERT(list_empty(&cache->useless_node)); 2590 ASSERT(list_empty(&cache->changed)); 2591 ASSERT(list_empty(&cache->detached)); 2592 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 2593 ASSERT(!cache->nr_nodes); 2594 ASSERT(!cache->nr_edges); 2595 } 2596 2597 /* 2598 * Handle direct tree backref 2599 * 2600 * Direct tree backref means, the backref item shows its parent bytenr 2601 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 2602 * 2603 * @ref_key: The converted backref key. 2604 * For keyed backref, it's the item key. 2605 * For inlined backref, objectid is the bytenr, 2606 * type is btrfs_inline_ref_type, offset is 2607 * btrfs_inline_ref_offset. 2608 */ 2609 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 2610 struct btrfs_key *ref_key, 2611 struct btrfs_backref_node *cur) 2612 { 2613 struct btrfs_backref_edge *edge; 2614 struct btrfs_backref_node *upper; 2615 struct rb_node *rb_node; 2616 2617 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 2618 2619 /* Only reloc root uses backref pointing to itself */ 2620 if (ref_key->objectid == ref_key->offset) { 2621 struct btrfs_root *root; 2622 2623 cur->is_reloc_root = 1; 2624 /* Only reloc backref cache cares about a specific root */ 2625 if (cache->is_reloc) { 2626 root = find_reloc_root(cache->fs_info, cur->bytenr); 2627 if (!root) 2628 return -ENOENT; 2629 cur->root = root; 2630 } else { 2631 /* 2632 * For generic purpose backref cache, reloc root node 2633 * is useless. 2634 */ 2635 list_add(&cur->list, &cache->useless_node); 2636 } 2637 return 0; 2638 } 2639 2640 edge = btrfs_backref_alloc_edge(cache); 2641 if (!edge) 2642 return -ENOMEM; 2643 2644 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 2645 if (!rb_node) { 2646 /* Parent node not yet cached */ 2647 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 2648 cur->level + 1); 2649 if (!upper) { 2650 btrfs_backref_free_edge(cache, edge); 2651 return -ENOMEM; 2652 } 2653 2654 /* 2655 * Backrefs for the upper level block isn't cached, add the 2656 * block to pending list 2657 */ 2658 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2659 } else { 2660 /* Parent node already cached */ 2661 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 2662 ASSERT(upper->checked); 2663 INIT_LIST_HEAD(&edge->list[UPPER]); 2664 } 2665 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 2666 return 0; 2667 } 2668 2669 /* 2670 * Handle indirect tree backref 2671 * 2672 * Indirect tree backref means, we only know which tree the node belongs to. 2673 * We still need to do a tree search to find out the parents. This is for 2674 * TREE_BLOCK_REF backref (keyed or inlined). 2675 * 2676 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 2677 * @tree_key: The first key of this tree block. 2678 * @path: A clean (released) path, to avoid allocating path every time 2679 * the function get called. 2680 */ 2681 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 2682 struct btrfs_path *path, 2683 struct btrfs_key *ref_key, 2684 struct btrfs_key *tree_key, 2685 struct btrfs_backref_node *cur) 2686 { 2687 struct btrfs_fs_info *fs_info = cache->fs_info; 2688 struct btrfs_backref_node *upper; 2689 struct btrfs_backref_node *lower; 2690 struct btrfs_backref_edge *edge; 2691 struct extent_buffer *eb; 2692 struct btrfs_root *root; 2693 struct rb_node *rb_node; 2694 int level; 2695 bool need_check = true; 2696 int ret; 2697 2698 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 2699 if (IS_ERR(root)) 2700 return PTR_ERR(root); 2701 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2702 cur->cowonly = 1; 2703 2704 if (btrfs_root_level(&root->root_item) == cur->level) { 2705 /* Tree root */ 2706 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 2707 /* 2708 * For reloc backref cache, we may ignore reloc root. But for 2709 * general purpose backref cache, we can't rely on 2710 * btrfs_should_ignore_reloc_root() as it may conflict with 2711 * current running relocation and lead to missing root. 2712 * 2713 * For general purpose backref cache, reloc root detection is 2714 * completely relying on direct backref (key->offset is parent 2715 * bytenr), thus only do such check for reloc cache. 2716 */ 2717 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 2718 btrfs_put_root(root); 2719 list_add(&cur->list, &cache->useless_node); 2720 } else { 2721 cur->root = root; 2722 } 2723 return 0; 2724 } 2725 2726 level = cur->level + 1; 2727 2728 /* Search the tree to find parent blocks referring to the block */ 2729 path->search_commit_root = 1; 2730 path->skip_locking = 1; 2731 path->lowest_level = level; 2732 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 2733 path->lowest_level = 0; 2734 if (ret < 0) { 2735 btrfs_put_root(root); 2736 return ret; 2737 } 2738 if (ret > 0 && path->slots[level] > 0) 2739 path->slots[level]--; 2740 2741 eb = path->nodes[level]; 2742 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 2743 btrfs_err(fs_info, 2744 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 2745 cur->bytenr, level - 1, root->root_key.objectid, 2746 tree_key->objectid, tree_key->type, tree_key->offset); 2747 btrfs_put_root(root); 2748 ret = -ENOENT; 2749 goto out; 2750 } 2751 lower = cur; 2752 2753 /* Add all nodes and edges in the path */ 2754 for (; level < BTRFS_MAX_LEVEL; level++) { 2755 if (!path->nodes[level]) { 2756 ASSERT(btrfs_root_bytenr(&root->root_item) == 2757 lower->bytenr); 2758 /* Same as previous should_ignore_reloc_root() call */ 2759 if (btrfs_should_ignore_reloc_root(root) && 2760 cache->is_reloc) { 2761 btrfs_put_root(root); 2762 list_add(&lower->list, &cache->useless_node); 2763 } else { 2764 lower->root = root; 2765 } 2766 break; 2767 } 2768 2769 edge = btrfs_backref_alloc_edge(cache); 2770 if (!edge) { 2771 btrfs_put_root(root); 2772 ret = -ENOMEM; 2773 goto out; 2774 } 2775 2776 eb = path->nodes[level]; 2777 rb_node = rb_simple_search(&cache->rb_root, eb->start); 2778 if (!rb_node) { 2779 upper = btrfs_backref_alloc_node(cache, eb->start, 2780 lower->level + 1); 2781 if (!upper) { 2782 btrfs_put_root(root); 2783 btrfs_backref_free_edge(cache, edge); 2784 ret = -ENOMEM; 2785 goto out; 2786 } 2787 upper->owner = btrfs_header_owner(eb); 2788 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2789 upper->cowonly = 1; 2790 2791 /* 2792 * If we know the block isn't shared we can avoid 2793 * checking its backrefs. 2794 */ 2795 if (btrfs_block_can_be_shared(root, eb)) 2796 upper->checked = 0; 2797 else 2798 upper->checked = 1; 2799 2800 /* 2801 * Add the block to pending list if we need to check its 2802 * backrefs, we only do this once while walking up a 2803 * tree as we will catch anything else later on. 2804 */ 2805 if (!upper->checked && need_check) { 2806 need_check = false; 2807 list_add_tail(&edge->list[UPPER], 2808 &cache->pending_edge); 2809 } else { 2810 if (upper->checked) 2811 need_check = true; 2812 INIT_LIST_HEAD(&edge->list[UPPER]); 2813 } 2814 } else { 2815 upper = rb_entry(rb_node, struct btrfs_backref_node, 2816 rb_node); 2817 ASSERT(upper->checked); 2818 INIT_LIST_HEAD(&edge->list[UPPER]); 2819 if (!upper->owner) 2820 upper->owner = btrfs_header_owner(eb); 2821 } 2822 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 2823 2824 if (rb_node) { 2825 btrfs_put_root(root); 2826 break; 2827 } 2828 lower = upper; 2829 upper = NULL; 2830 } 2831 out: 2832 btrfs_release_path(path); 2833 return ret; 2834 } 2835 2836 /* 2837 * Add backref node @cur into @cache. 2838 * 2839 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 2840 * links aren't yet bi-directional. Needs to finish such links. 2841 * Use btrfs_backref_finish_upper_links() to finish such linkage. 2842 * 2843 * @path: Released path for indirect tree backref lookup 2844 * @iter: Released backref iter for extent tree search 2845 * @node_key: The first key of the tree block 2846 */ 2847 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 2848 struct btrfs_path *path, 2849 struct btrfs_backref_iter *iter, 2850 struct btrfs_key *node_key, 2851 struct btrfs_backref_node *cur) 2852 { 2853 struct btrfs_fs_info *fs_info = cache->fs_info; 2854 struct btrfs_backref_edge *edge; 2855 struct btrfs_backref_node *exist; 2856 int ret; 2857 2858 ret = btrfs_backref_iter_start(iter, cur->bytenr); 2859 if (ret < 0) 2860 return ret; 2861 /* 2862 * We skip the first btrfs_tree_block_info, as we don't use the key 2863 * stored in it, but fetch it from the tree block 2864 */ 2865 if (btrfs_backref_has_tree_block_info(iter)) { 2866 ret = btrfs_backref_iter_next(iter); 2867 if (ret < 0) 2868 goto out; 2869 /* No extra backref? This means the tree block is corrupted */ 2870 if (ret > 0) { 2871 ret = -EUCLEAN; 2872 goto out; 2873 } 2874 } 2875 WARN_ON(cur->checked); 2876 if (!list_empty(&cur->upper)) { 2877 /* 2878 * The backref was added previously when processing backref of 2879 * type BTRFS_TREE_BLOCK_REF_KEY 2880 */ 2881 ASSERT(list_is_singular(&cur->upper)); 2882 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 2883 list[LOWER]); 2884 ASSERT(list_empty(&edge->list[UPPER])); 2885 exist = edge->node[UPPER]; 2886 /* 2887 * Add the upper level block to pending list if we need check 2888 * its backrefs 2889 */ 2890 if (!exist->checked) 2891 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2892 } else { 2893 exist = NULL; 2894 } 2895 2896 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 2897 struct extent_buffer *eb; 2898 struct btrfs_key key; 2899 int type; 2900 2901 cond_resched(); 2902 eb = btrfs_backref_get_eb(iter); 2903 2904 key.objectid = iter->bytenr; 2905 if (btrfs_backref_iter_is_inline_ref(iter)) { 2906 struct btrfs_extent_inline_ref *iref; 2907 2908 /* Update key for inline backref */ 2909 iref = (struct btrfs_extent_inline_ref *) 2910 ((unsigned long)iter->cur_ptr); 2911 type = btrfs_get_extent_inline_ref_type(eb, iref, 2912 BTRFS_REF_TYPE_BLOCK); 2913 if (type == BTRFS_REF_TYPE_INVALID) { 2914 ret = -EUCLEAN; 2915 goto out; 2916 } 2917 key.type = type; 2918 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 2919 } else { 2920 key.type = iter->cur_key.type; 2921 key.offset = iter->cur_key.offset; 2922 } 2923 2924 /* 2925 * Parent node found and matches current inline ref, no need to 2926 * rebuild this node for this inline ref 2927 */ 2928 if (exist && 2929 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 2930 exist->owner == key.offset) || 2931 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 2932 exist->bytenr == key.offset))) { 2933 exist = NULL; 2934 continue; 2935 } 2936 2937 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 2938 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 2939 ret = handle_direct_tree_backref(cache, &key, cur); 2940 if (ret < 0) 2941 goto out; 2942 continue; 2943 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 2944 ret = -EINVAL; 2945 btrfs_print_v0_err(fs_info); 2946 btrfs_handle_fs_error(fs_info, ret, NULL); 2947 goto out; 2948 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 2949 continue; 2950 } 2951 2952 /* 2953 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 2954 * means the root objectid. We need to search the tree to get 2955 * its parent bytenr. 2956 */ 2957 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 2958 cur); 2959 if (ret < 0) 2960 goto out; 2961 } 2962 ret = 0; 2963 cur->checked = 1; 2964 WARN_ON(exist); 2965 out: 2966 btrfs_backref_iter_release(iter); 2967 return ret; 2968 } 2969 2970 /* 2971 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 2972 */ 2973 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 2974 struct btrfs_backref_node *start) 2975 { 2976 struct list_head *useless_node = &cache->useless_node; 2977 struct btrfs_backref_edge *edge; 2978 struct rb_node *rb_node; 2979 LIST_HEAD(pending_edge); 2980 2981 ASSERT(start->checked); 2982 2983 /* Insert this node to cache if it's not COW-only */ 2984 if (!start->cowonly) { 2985 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 2986 &start->rb_node); 2987 if (rb_node) 2988 btrfs_backref_panic(cache->fs_info, start->bytenr, 2989 -EEXIST); 2990 list_add_tail(&start->lower, &cache->leaves); 2991 } 2992 2993 /* 2994 * Use breadth first search to iterate all related edges. 2995 * 2996 * The starting points are all the edges of this node 2997 */ 2998 list_for_each_entry(edge, &start->upper, list[LOWER]) 2999 list_add_tail(&edge->list[UPPER], &pending_edge); 3000 3001 while (!list_empty(&pending_edge)) { 3002 struct btrfs_backref_node *upper; 3003 struct btrfs_backref_node *lower; 3004 3005 edge = list_first_entry(&pending_edge, 3006 struct btrfs_backref_edge, list[UPPER]); 3007 list_del_init(&edge->list[UPPER]); 3008 upper = edge->node[UPPER]; 3009 lower = edge->node[LOWER]; 3010 3011 /* Parent is detached, no need to keep any edges */ 3012 if (upper->detached) { 3013 list_del(&edge->list[LOWER]); 3014 btrfs_backref_free_edge(cache, edge); 3015 3016 /* Lower node is orphan, queue for cleanup */ 3017 if (list_empty(&lower->upper)) 3018 list_add(&lower->list, useless_node); 3019 continue; 3020 } 3021 3022 /* 3023 * All new nodes added in current build_backref_tree() haven't 3024 * been linked to the cache rb tree. 3025 * So if we have upper->rb_node populated, this means a cache 3026 * hit. We only need to link the edge, as @upper and all its 3027 * parents have already been linked. 3028 */ 3029 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3030 if (upper->lowest) { 3031 list_del_init(&upper->lower); 3032 upper->lowest = 0; 3033 } 3034 3035 list_add_tail(&edge->list[UPPER], &upper->lower); 3036 continue; 3037 } 3038 3039 /* Sanity check, we shouldn't have any unchecked nodes */ 3040 if (!upper->checked) { 3041 ASSERT(0); 3042 return -EUCLEAN; 3043 } 3044 3045 /* Sanity check, COW-only node has non-COW-only parent */ 3046 if (start->cowonly != upper->cowonly) { 3047 ASSERT(0); 3048 return -EUCLEAN; 3049 } 3050 3051 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3052 if (!upper->cowonly) { 3053 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3054 &upper->rb_node); 3055 if (rb_node) { 3056 btrfs_backref_panic(cache->fs_info, 3057 upper->bytenr, -EEXIST); 3058 return -EUCLEAN; 3059 } 3060 } 3061 3062 list_add_tail(&edge->list[UPPER], &upper->lower); 3063 3064 /* 3065 * Also queue all the parent edges of this uncached node 3066 * to finish the upper linkage 3067 */ 3068 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3069 list_add_tail(&edge->list[UPPER], &pending_edge); 3070 } 3071 return 0; 3072 } 3073 3074 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3075 struct btrfs_backref_node *node) 3076 { 3077 struct btrfs_backref_node *lower; 3078 struct btrfs_backref_node *upper; 3079 struct btrfs_backref_edge *edge; 3080 3081 while (!list_empty(&cache->useless_node)) { 3082 lower = list_first_entry(&cache->useless_node, 3083 struct btrfs_backref_node, list); 3084 list_del_init(&lower->list); 3085 } 3086 while (!list_empty(&cache->pending_edge)) { 3087 edge = list_first_entry(&cache->pending_edge, 3088 struct btrfs_backref_edge, list[UPPER]); 3089 list_del(&edge->list[UPPER]); 3090 list_del(&edge->list[LOWER]); 3091 lower = edge->node[LOWER]; 3092 upper = edge->node[UPPER]; 3093 btrfs_backref_free_edge(cache, edge); 3094 3095 /* 3096 * Lower is no longer linked to any upper backref nodes and 3097 * isn't in the cache, we can free it ourselves. 3098 */ 3099 if (list_empty(&lower->upper) && 3100 RB_EMPTY_NODE(&lower->rb_node)) 3101 list_add(&lower->list, &cache->useless_node); 3102 3103 if (!RB_EMPTY_NODE(&upper->rb_node)) 3104 continue; 3105 3106 /* Add this guy's upper edges to the list to process */ 3107 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3108 list_add_tail(&edge->list[UPPER], 3109 &cache->pending_edge); 3110 if (list_empty(&upper->upper)) 3111 list_add(&upper->list, &cache->useless_node); 3112 } 3113 3114 while (!list_empty(&cache->useless_node)) { 3115 lower = list_first_entry(&cache->useless_node, 3116 struct btrfs_backref_node, list); 3117 list_del_init(&lower->list); 3118 if (lower == node) 3119 node = NULL; 3120 btrfs_backref_drop_node(cache, lower); 3121 } 3122 3123 btrfs_backref_cleanup_node(cache, node); 3124 ASSERT(list_empty(&cache->useless_node) && 3125 list_empty(&cache->pending_edge)); 3126 } 3127