xref: /linux/fs/btrfs/backref.c (revision b85d45947951d23cb22d90caecf4c1eb81342c96)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
28 /* Just an arbitrary number so we can be sure this happened */
29 #define BACKREF_FOUND_SHARED 6
30 
31 struct extent_inode_elem {
32 	u64 inum;
33 	u64 offset;
34 	struct extent_inode_elem *next;
35 };
36 
37 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
38 				struct btrfs_file_extent_item *fi,
39 				u64 extent_item_pos,
40 				struct extent_inode_elem **eie)
41 {
42 	u64 offset = 0;
43 	struct extent_inode_elem *e;
44 
45 	if (!btrfs_file_extent_compression(eb, fi) &&
46 	    !btrfs_file_extent_encryption(eb, fi) &&
47 	    !btrfs_file_extent_other_encoding(eb, fi)) {
48 		u64 data_offset;
49 		u64 data_len;
50 
51 		data_offset = btrfs_file_extent_offset(eb, fi);
52 		data_len = btrfs_file_extent_num_bytes(eb, fi);
53 
54 		if (extent_item_pos < data_offset ||
55 		    extent_item_pos >= data_offset + data_len)
56 			return 1;
57 		offset = extent_item_pos - data_offset;
58 	}
59 
60 	e = kmalloc(sizeof(*e), GFP_NOFS);
61 	if (!e)
62 		return -ENOMEM;
63 
64 	e->next = *eie;
65 	e->inum = key->objectid;
66 	e->offset = key->offset + offset;
67 	*eie = e;
68 
69 	return 0;
70 }
71 
72 static void free_inode_elem_list(struct extent_inode_elem *eie)
73 {
74 	struct extent_inode_elem *eie_next;
75 
76 	for (; eie; eie = eie_next) {
77 		eie_next = eie->next;
78 		kfree(eie);
79 	}
80 }
81 
82 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
83 				u64 extent_item_pos,
84 				struct extent_inode_elem **eie)
85 {
86 	u64 disk_byte;
87 	struct btrfs_key key;
88 	struct btrfs_file_extent_item *fi;
89 	int slot;
90 	int nritems;
91 	int extent_type;
92 	int ret;
93 
94 	/*
95 	 * from the shared data ref, we only have the leaf but we need
96 	 * the key. thus, we must look into all items and see that we
97 	 * find one (some) with a reference to our extent item.
98 	 */
99 	nritems = btrfs_header_nritems(eb);
100 	for (slot = 0; slot < nritems; ++slot) {
101 		btrfs_item_key_to_cpu(eb, &key, slot);
102 		if (key.type != BTRFS_EXTENT_DATA_KEY)
103 			continue;
104 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
105 		extent_type = btrfs_file_extent_type(eb, fi);
106 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
107 			continue;
108 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
109 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
110 		if (disk_byte != wanted_disk_byte)
111 			continue;
112 
113 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
114 		if (ret < 0)
115 			return ret;
116 	}
117 
118 	return 0;
119 }
120 
121 /*
122  * this structure records all encountered refs on the way up to the root
123  */
124 struct __prelim_ref {
125 	struct list_head list;
126 	u64 root_id;
127 	struct btrfs_key key_for_search;
128 	int level;
129 	int count;
130 	struct extent_inode_elem *inode_list;
131 	u64 parent;
132 	u64 wanted_disk_byte;
133 };
134 
135 static struct kmem_cache *btrfs_prelim_ref_cache;
136 
137 int __init btrfs_prelim_ref_init(void)
138 {
139 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
140 					sizeof(struct __prelim_ref),
141 					0,
142 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
143 					NULL);
144 	if (!btrfs_prelim_ref_cache)
145 		return -ENOMEM;
146 	return 0;
147 }
148 
149 void btrfs_prelim_ref_exit(void)
150 {
151 	if (btrfs_prelim_ref_cache)
152 		kmem_cache_destroy(btrfs_prelim_ref_cache);
153 }
154 
155 /*
156  * the rules for all callers of this function are:
157  * - obtaining the parent is the goal
158  * - if you add a key, you must know that it is a correct key
159  * - if you cannot add the parent or a correct key, then we will look into the
160  *   block later to set a correct key
161  *
162  * delayed refs
163  * ============
164  *        backref type | shared | indirect | shared | indirect
165  * information         |   tree |     tree |   data |     data
166  * --------------------+--------+----------+--------+----------
167  *      parent logical |    y   |     -    |    -   |     -
168  *      key to resolve |    -   |     y    |    y   |     y
169  *  tree block logical |    -   |     -    |    -   |     -
170  *  root for resolving |    y   |     y    |    y   |     y
171  *
172  * - column 1:       we've the parent -> done
173  * - column 2, 3, 4: we use the key to find the parent
174  *
175  * on disk refs (inline or keyed)
176  * ==============================
177  *        backref type | shared | indirect | shared | indirect
178  * information         |   tree |     tree |   data |     data
179  * --------------------+--------+----------+--------+----------
180  *      parent logical |    y   |     -    |    y   |     -
181  *      key to resolve |    -   |     -    |    -   |     y
182  *  tree block logical |    y   |     y    |    y   |     y
183  *  root for resolving |    -   |     y    |    y   |     y
184  *
185  * - column 1, 3: we've the parent -> done
186  * - column 2:    we take the first key from the block to find the parent
187  *                (see __add_missing_keys)
188  * - column 4:    we use the key to find the parent
189  *
190  * additional information that's available but not required to find the parent
191  * block might help in merging entries to gain some speed.
192  */
193 
194 static int __add_prelim_ref(struct list_head *head, u64 root_id,
195 			    struct btrfs_key *key, int level,
196 			    u64 parent, u64 wanted_disk_byte, int count,
197 			    gfp_t gfp_mask)
198 {
199 	struct __prelim_ref *ref;
200 
201 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
202 		return 0;
203 
204 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
205 	if (!ref)
206 		return -ENOMEM;
207 
208 	ref->root_id = root_id;
209 	if (key) {
210 		ref->key_for_search = *key;
211 		/*
212 		 * We can often find data backrefs with an offset that is too
213 		 * large (>= LLONG_MAX, maximum allowed file offset) due to
214 		 * underflows when subtracting a file's offset with the data
215 		 * offset of its corresponding extent data item. This can
216 		 * happen for example in the clone ioctl.
217 		 * So if we detect such case we set the search key's offset to
218 		 * zero to make sure we will find the matching file extent item
219 		 * at add_all_parents(), otherwise we will miss it because the
220 		 * offset taken form the backref is much larger then the offset
221 		 * of the file extent item. This can make us scan a very large
222 		 * number of file extent items, but at least it will not make
223 		 * us miss any.
224 		 * This is an ugly workaround for a behaviour that should have
225 		 * never existed, but it does and a fix for the clone ioctl
226 		 * would touch a lot of places, cause backwards incompatibility
227 		 * and would not fix the problem for extents cloned with older
228 		 * kernels.
229 		 */
230 		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
231 		    ref->key_for_search.offset >= LLONG_MAX)
232 			ref->key_for_search.offset = 0;
233 	} else {
234 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
235 	}
236 
237 	ref->inode_list = NULL;
238 	ref->level = level;
239 	ref->count = count;
240 	ref->parent = parent;
241 	ref->wanted_disk_byte = wanted_disk_byte;
242 	list_add_tail(&ref->list, head);
243 
244 	return 0;
245 }
246 
247 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
248 			   struct ulist *parents, struct __prelim_ref *ref,
249 			   int level, u64 time_seq, const u64 *extent_item_pos,
250 			   u64 total_refs)
251 {
252 	int ret = 0;
253 	int slot;
254 	struct extent_buffer *eb;
255 	struct btrfs_key key;
256 	struct btrfs_key *key_for_search = &ref->key_for_search;
257 	struct btrfs_file_extent_item *fi;
258 	struct extent_inode_elem *eie = NULL, *old = NULL;
259 	u64 disk_byte;
260 	u64 wanted_disk_byte = ref->wanted_disk_byte;
261 	u64 count = 0;
262 
263 	if (level != 0) {
264 		eb = path->nodes[level];
265 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
266 		if (ret < 0)
267 			return ret;
268 		return 0;
269 	}
270 
271 	/*
272 	 * We normally enter this function with the path already pointing to
273 	 * the first item to check. But sometimes, we may enter it with
274 	 * slot==nritems. In that case, go to the next leaf before we continue.
275 	 */
276 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
277 		if (time_seq == (u64)-1)
278 			ret = btrfs_next_leaf(root, path);
279 		else
280 			ret = btrfs_next_old_leaf(root, path, time_seq);
281 	}
282 
283 	while (!ret && count < total_refs) {
284 		eb = path->nodes[0];
285 		slot = path->slots[0];
286 
287 		btrfs_item_key_to_cpu(eb, &key, slot);
288 
289 		if (key.objectid != key_for_search->objectid ||
290 		    key.type != BTRFS_EXTENT_DATA_KEY)
291 			break;
292 
293 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
294 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
295 
296 		if (disk_byte == wanted_disk_byte) {
297 			eie = NULL;
298 			old = NULL;
299 			count++;
300 			if (extent_item_pos) {
301 				ret = check_extent_in_eb(&key, eb, fi,
302 						*extent_item_pos,
303 						&eie);
304 				if (ret < 0)
305 					break;
306 			}
307 			if (ret > 0)
308 				goto next;
309 			ret = ulist_add_merge_ptr(parents, eb->start,
310 						  eie, (void **)&old, GFP_NOFS);
311 			if (ret < 0)
312 				break;
313 			if (!ret && extent_item_pos) {
314 				while (old->next)
315 					old = old->next;
316 				old->next = eie;
317 			}
318 			eie = NULL;
319 		}
320 next:
321 		if (time_seq == (u64)-1)
322 			ret = btrfs_next_item(root, path);
323 		else
324 			ret = btrfs_next_old_item(root, path, time_seq);
325 	}
326 
327 	if (ret > 0)
328 		ret = 0;
329 	else if (ret < 0)
330 		free_inode_elem_list(eie);
331 	return ret;
332 }
333 
334 /*
335  * resolve an indirect backref in the form (root_id, key, level)
336  * to a logical address
337  */
338 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
339 				  struct btrfs_path *path, u64 time_seq,
340 				  struct __prelim_ref *ref,
341 				  struct ulist *parents,
342 				  const u64 *extent_item_pos, u64 total_refs)
343 {
344 	struct btrfs_root *root;
345 	struct btrfs_key root_key;
346 	struct extent_buffer *eb;
347 	int ret = 0;
348 	int root_level;
349 	int level = ref->level;
350 	int index;
351 
352 	root_key.objectid = ref->root_id;
353 	root_key.type = BTRFS_ROOT_ITEM_KEY;
354 	root_key.offset = (u64)-1;
355 
356 	index = srcu_read_lock(&fs_info->subvol_srcu);
357 
358 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
359 	if (IS_ERR(root)) {
360 		srcu_read_unlock(&fs_info->subvol_srcu, index);
361 		ret = PTR_ERR(root);
362 		goto out;
363 	}
364 
365 	if (path->search_commit_root)
366 		root_level = btrfs_header_level(root->commit_root);
367 	else if (time_seq == (u64)-1)
368 		root_level = btrfs_header_level(root->node);
369 	else
370 		root_level = btrfs_old_root_level(root, time_seq);
371 
372 	if (root_level + 1 == level) {
373 		srcu_read_unlock(&fs_info->subvol_srcu, index);
374 		goto out;
375 	}
376 
377 	path->lowest_level = level;
378 	if (time_seq == (u64)-1)
379 		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
380 					0, 0);
381 	else
382 		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
383 					    time_seq);
384 
385 	/* root node has been locked, we can release @subvol_srcu safely here */
386 	srcu_read_unlock(&fs_info->subvol_srcu, index);
387 
388 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
389 		 "%d for key (%llu %u %llu)\n",
390 		 ref->root_id, level, ref->count, ret,
391 		 ref->key_for_search.objectid, ref->key_for_search.type,
392 		 ref->key_for_search.offset);
393 	if (ret < 0)
394 		goto out;
395 
396 	eb = path->nodes[level];
397 	while (!eb) {
398 		if (WARN_ON(!level)) {
399 			ret = 1;
400 			goto out;
401 		}
402 		level--;
403 		eb = path->nodes[level];
404 	}
405 
406 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
407 			      extent_item_pos, total_refs);
408 out:
409 	path->lowest_level = 0;
410 	btrfs_release_path(path);
411 	return ret;
412 }
413 
414 /*
415  * resolve all indirect backrefs from the list
416  */
417 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
418 				   struct btrfs_path *path, u64 time_seq,
419 				   struct list_head *head,
420 				   const u64 *extent_item_pos, u64 total_refs,
421 				   u64 root_objectid)
422 {
423 	int err;
424 	int ret = 0;
425 	struct __prelim_ref *ref;
426 	struct __prelim_ref *ref_safe;
427 	struct __prelim_ref *new_ref;
428 	struct ulist *parents;
429 	struct ulist_node *node;
430 	struct ulist_iterator uiter;
431 
432 	parents = ulist_alloc(GFP_NOFS);
433 	if (!parents)
434 		return -ENOMEM;
435 
436 	/*
437 	 * _safe allows us to insert directly after the current item without
438 	 * iterating over the newly inserted items.
439 	 * we're also allowed to re-assign ref during iteration.
440 	 */
441 	list_for_each_entry_safe(ref, ref_safe, head, list) {
442 		if (ref->parent)	/* already direct */
443 			continue;
444 		if (ref->count == 0)
445 			continue;
446 		if (root_objectid && ref->root_id != root_objectid) {
447 			ret = BACKREF_FOUND_SHARED;
448 			goto out;
449 		}
450 		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
451 					     parents, extent_item_pos,
452 					     total_refs);
453 		/*
454 		 * we can only tolerate ENOENT,otherwise,we should catch error
455 		 * and return directly.
456 		 */
457 		if (err == -ENOENT) {
458 			continue;
459 		} else if (err) {
460 			ret = err;
461 			goto out;
462 		}
463 
464 		/* we put the first parent into the ref at hand */
465 		ULIST_ITER_INIT(&uiter);
466 		node = ulist_next(parents, &uiter);
467 		ref->parent = node ? node->val : 0;
468 		ref->inode_list = node ?
469 			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
470 
471 		/* additional parents require new refs being added here */
472 		while ((node = ulist_next(parents, &uiter))) {
473 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
474 						   GFP_NOFS);
475 			if (!new_ref) {
476 				ret = -ENOMEM;
477 				goto out;
478 			}
479 			memcpy(new_ref, ref, sizeof(*ref));
480 			new_ref->parent = node->val;
481 			new_ref->inode_list = (struct extent_inode_elem *)
482 							(uintptr_t)node->aux;
483 			list_add(&new_ref->list, &ref->list);
484 		}
485 		ulist_reinit(parents);
486 	}
487 out:
488 	ulist_free(parents);
489 	return ret;
490 }
491 
492 static inline int ref_for_same_block(struct __prelim_ref *ref1,
493 				     struct __prelim_ref *ref2)
494 {
495 	if (ref1->level != ref2->level)
496 		return 0;
497 	if (ref1->root_id != ref2->root_id)
498 		return 0;
499 	if (ref1->key_for_search.type != ref2->key_for_search.type)
500 		return 0;
501 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
502 		return 0;
503 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
504 		return 0;
505 	if (ref1->parent != ref2->parent)
506 		return 0;
507 
508 	return 1;
509 }
510 
511 /*
512  * read tree blocks and add keys where required.
513  */
514 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
515 			      struct list_head *head)
516 {
517 	struct list_head *pos;
518 	struct extent_buffer *eb;
519 
520 	list_for_each(pos, head) {
521 		struct __prelim_ref *ref;
522 		ref = list_entry(pos, struct __prelim_ref, list);
523 
524 		if (ref->parent)
525 			continue;
526 		if (ref->key_for_search.type)
527 			continue;
528 		BUG_ON(!ref->wanted_disk_byte);
529 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
530 				     0);
531 		if (IS_ERR(eb)) {
532 			return PTR_ERR(eb);
533 		} else if (!extent_buffer_uptodate(eb)) {
534 			free_extent_buffer(eb);
535 			return -EIO;
536 		}
537 		btrfs_tree_read_lock(eb);
538 		if (btrfs_header_level(eb) == 0)
539 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
540 		else
541 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
542 		btrfs_tree_read_unlock(eb);
543 		free_extent_buffer(eb);
544 	}
545 	return 0;
546 }
547 
548 /*
549  * merge backrefs and adjust counts accordingly
550  *
551  * mode = 1: merge identical keys, if key is set
552  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
553  *           additionally, we could even add a key range for the blocks we
554  *           looked into to merge even more (-> replace unresolved refs by those
555  *           having a parent).
556  * mode = 2: merge identical parents
557  */
558 static void __merge_refs(struct list_head *head, int mode)
559 {
560 	struct list_head *pos1;
561 
562 	list_for_each(pos1, head) {
563 		struct list_head *n2;
564 		struct list_head *pos2;
565 		struct __prelim_ref *ref1;
566 
567 		ref1 = list_entry(pos1, struct __prelim_ref, list);
568 
569 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
570 		     pos2 = n2, n2 = pos2->next) {
571 			struct __prelim_ref *ref2;
572 			struct __prelim_ref *xchg;
573 			struct extent_inode_elem *eie;
574 
575 			ref2 = list_entry(pos2, struct __prelim_ref, list);
576 
577 			if (!ref_for_same_block(ref1, ref2))
578 				continue;
579 			if (mode == 1) {
580 				if (!ref1->parent && ref2->parent) {
581 					xchg = ref1;
582 					ref1 = ref2;
583 					ref2 = xchg;
584 				}
585 			} else {
586 				if (ref1->parent != ref2->parent)
587 					continue;
588 			}
589 
590 			eie = ref1->inode_list;
591 			while (eie && eie->next)
592 				eie = eie->next;
593 			if (eie)
594 				eie->next = ref2->inode_list;
595 			else
596 				ref1->inode_list = ref2->inode_list;
597 			ref1->count += ref2->count;
598 
599 			list_del(&ref2->list);
600 			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
601 		}
602 
603 	}
604 }
605 
606 /*
607  * add all currently queued delayed refs from this head whose seq nr is
608  * smaller or equal that seq to the list
609  */
610 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
611 			      struct list_head *prefs, u64 *total_refs,
612 			      u64 inum)
613 {
614 	struct btrfs_delayed_ref_node *node;
615 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
616 	struct btrfs_key key;
617 	struct btrfs_key op_key = {0};
618 	int sgn;
619 	int ret = 0;
620 
621 	if (extent_op && extent_op->update_key)
622 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
623 
624 	spin_lock(&head->lock);
625 	list_for_each_entry(node, &head->ref_list, list) {
626 		if (node->seq > seq)
627 			continue;
628 
629 		switch (node->action) {
630 		case BTRFS_ADD_DELAYED_EXTENT:
631 		case BTRFS_UPDATE_DELAYED_HEAD:
632 			WARN_ON(1);
633 			continue;
634 		case BTRFS_ADD_DELAYED_REF:
635 			sgn = 1;
636 			break;
637 		case BTRFS_DROP_DELAYED_REF:
638 			sgn = -1;
639 			break;
640 		default:
641 			BUG_ON(1);
642 		}
643 		*total_refs += (node->ref_mod * sgn);
644 		switch (node->type) {
645 		case BTRFS_TREE_BLOCK_REF_KEY: {
646 			struct btrfs_delayed_tree_ref *ref;
647 
648 			ref = btrfs_delayed_node_to_tree_ref(node);
649 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
650 					       ref->level + 1, 0, node->bytenr,
651 					       node->ref_mod * sgn, GFP_ATOMIC);
652 			break;
653 		}
654 		case BTRFS_SHARED_BLOCK_REF_KEY: {
655 			struct btrfs_delayed_tree_ref *ref;
656 
657 			ref = btrfs_delayed_node_to_tree_ref(node);
658 			ret = __add_prelim_ref(prefs, 0, NULL,
659 					       ref->level + 1, ref->parent,
660 					       node->bytenr,
661 					       node->ref_mod * sgn, GFP_ATOMIC);
662 			break;
663 		}
664 		case BTRFS_EXTENT_DATA_REF_KEY: {
665 			struct btrfs_delayed_data_ref *ref;
666 			ref = btrfs_delayed_node_to_data_ref(node);
667 
668 			key.objectid = ref->objectid;
669 			key.type = BTRFS_EXTENT_DATA_KEY;
670 			key.offset = ref->offset;
671 
672 			/*
673 			 * Found a inum that doesn't match our known inum, we
674 			 * know it's shared.
675 			 */
676 			if (inum && ref->objectid != inum) {
677 				ret = BACKREF_FOUND_SHARED;
678 				break;
679 			}
680 
681 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
682 					       node->bytenr,
683 					       node->ref_mod * sgn, GFP_ATOMIC);
684 			break;
685 		}
686 		case BTRFS_SHARED_DATA_REF_KEY: {
687 			struct btrfs_delayed_data_ref *ref;
688 
689 			ref = btrfs_delayed_node_to_data_ref(node);
690 			ret = __add_prelim_ref(prefs, 0, NULL, 0,
691 					       ref->parent, node->bytenr,
692 					       node->ref_mod * sgn, GFP_ATOMIC);
693 			break;
694 		}
695 		default:
696 			WARN_ON(1);
697 		}
698 		if (ret)
699 			break;
700 	}
701 	spin_unlock(&head->lock);
702 	return ret;
703 }
704 
705 /*
706  * add all inline backrefs for bytenr to the list
707  */
708 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
709 			     struct btrfs_path *path, u64 bytenr,
710 			     int *info_level, struct list_head *prefs,
711 			     u64 *total_refs, u64 inum)
712 {
713 	int ret = 0;
714 	int slot;
715 	struct extent_buffer *leaf;
716 	struct btrfs_key key;
717 	struct btrfs_key found_key;
718 	unsigned long ptr;
719 	unsigned long end;
720 	struct btrfs_extent_item *ei;
721 	u64 flags;
722 	u64 item_size;
723 
724 	/*
725 	 * enumerate all inline refs
726 	 */
727 	leaf = path->nodes[0];
728 	slot = path->slots[0];
729 
730 	item_size = btrfs_item_size_nr(leaf, slot);
731 	BUG_ON(item_size < sizeof(*ei));
732 
733 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
734 	flags = btrfs_extent_flags(leaf, ei);
735 	*total_refs += btrfs_extent_refs(leaf, ei);
736 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
737 
738 	ptr = (unsigned long)(ei + 1);
739 	end = (unsigned long)ei + item_size;
740 
741 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
742 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
743 		struct btrfs_tree_block_info *info;
744 
745 		info = (struct btrfs_tree_block_info *)ptr;
746 		*info_level = btrfs_tree_block_level(leaf, info);
747 		ptr += sizeof(struct btrfs_tree_block_info);
748 		BUG_ON(ptr > end);
749 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
750 		*info_level = found_key.offset;
751 	} else {
752 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
753 	}
754 
755 	while (ptr < end) {
756 		struct btrfs_extent_inline_ref *iref;
757 		u64 offset;
758 		int type;
759 
760 		iref = (struct btrfs_extent_inline_ref *)ptr;
761 		type = btrfs_extent_inline_ref_type(leaf, iref);
762 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
763 
764 		switch (type) {
765 		case BTRFS_SHARED_BLOCK_REF_KEY:
766 			ret = __add_prelim_ref(prefs, 0, NULL,
767 						*info_level + 1, offset,
768 						bytenr, 1, GFP_NOFS);
769 			break;
770 		case BTRFS_SHARED_DATA_REF_KEY: {
771 			struct btrfs_shared_data_ref *sdref;
772 			int count;
773 
774 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
775 			count = btrfs_shared_data_ref_count(leaf, sdref);
776 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
777 					       bytenr, count, GFP_NOFS);
778 			break;
779 		}
780 		case BTRFS_TREE_BLOCK_REF_KEY:
781 			ret = __add_prelim_ref(prefs, offset, NULL,
782 					       *info_level + 1, 0,
783 					       bytenr, 1, GFP_NOFS);
784 			break;
785 		case BTRFS_EXTENT_DATA_REF_KEY: {
786 			struct btrfs_extent_data_ref *dref;
787 			int count;
788 			u64 root;
789 
790 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
791 			count = btrfs_extent_data_ref_count(leaf, dref);
792 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
793 								      dref);
794 			key.type = BTRFS_EXTENT_DATA_KEY;
795 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
796 
797 			if (inum && key.objectid != inum) {
798 				ret = BACKREF_FOUND_SHARED;
799 				break;
800 			}
801 
802 			root = btrfs_extent_data_ref_root(leaf, dref);
803 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
804 					       bytenr, count, GFP_NOFS);
805 			break;
806 		}
807 		default:
808 			WARN_ON(1);
809 		}
810 		if (ret)
811 			return ret;
812 		ptr += btrfs_extent_inline_ref_size(type);
813 	}
814 
815 	return 0;
816 }
817 
818 /*
819  * add all non-inline backrefs for bytenr to the list
820  */
821 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
822 			    struct btrfs_path *path, u64 bytenr,
823 			    int info_level, struct list_head *prefs, u64 inum)
824 {
825 	struct btrfs_root *extent_root = fs_info->extent_root;
826 	int ret;
827 	int slot;
828 	struct extent_buffer *leaf;
829 	struct btrfs_key key;
830 
831 	while (1) {
832 		ret = btrfs_next_item(extent_root, path);
833 		if (ret < 0)
834 			break;
835 		if (ret) {
836 			ret = 0;
837 			break;
838 		}
839 
840 		slot = path->slots[0];
841 		leaf = path->nodes[0];
842 		btrfs_item_key_to_cpu(leaf, &key, slot);
843 
844 		if (key.objectid != bytenr)
845 			break;
846 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
847 			continue;
848 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
849 			break;
850 
851 		switch (key.type) {
852 		case BTRFS_SHARED_BLOCK_REF_KEY:
853 			ret = __add_prelim_ref(prefs, 0, NULL,
854 						info_level + 1, key.offset,
855 						bytenr, 1, GFP_NOFS);
856 			break;
857 		case BTRFS_SHARED_DATA_REF_KEY: {
858 			struct btrfs_shared_data_ref *sdref;
859 			int count;
860 
861 			sdref = btrfs_item_ptr(leaf, slot,
862 					      struct btrfs_shared_data_ref);
863 			count = btrfs_shared_data_ref_count(leaf, sdref);
864 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
865 						bytenr, count, GFP_NOFS);
866 			break;
867 		}
868 		case BTRFS_TREE_BLOCK_REF_KEY:
869 			ret = __add_prelim_ref(prefs, key.offset, NULL,
870 					       info_level + 1, 0,
871 					       bytenr, 1, GFP_NOFS);
872 			break;
873 		case BTRFS_EXTENT_DATA_REF_KEY: {
874 			struct btrfs_extent_data_ref *dref;
875 			int count;
876 			u64 root;
877 
878 			dref = btrfs_item_ptr(leaf, slot,
879 					      struct btrfs_extent_data_ref);
880 			count = btrfs_extent_data_ref_count(leaf, dref);
881 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
882 								      dref);
883 			key.type = BTRFS_EXTENT_DATA_KEY;
884 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
885 
886 			if (inum && key.objectid != inum) {
887 				ret = BACKREF_FOUND_SHARED;
888 				break;
889 			}
890 
891 			root = btrfs_extent_data_ref_root(leaf, dref);
892 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
893 					       bytenr, count, GFP_NOFS);
894 			break;
895 		}
896 		default:
897 			WARN_ON(1);
898 		}
899 		if (ret)
900 			return ret;
901 
902 	}
903 
904 	return ret;
905 }
906 
907 /*
908  * this adds all existing backrefs (inline backrefs, backrefs and delayed
909  * refs) for the given bytenr to the refs list, merges duplicates and resolves
910  * indirect refs to their parent bytenr.
911  * When roots are found, they're added to the roots list
912  *
913  * NOTE: This can return values > 0
914  *
915  * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
916  * much like trans == NULL case, the difference only lies in it will not
917  * commit root.
918  * The special case is for qgroup to search roots in commit_transaction().
919  *
920  * FIXME some caching might speed things up
921  */
922 static int find_parent_nodes(struct btrfs_trans_handle *trans,
923 			     struct btrfs_fs_info *fs_info, u64 bytenr,
924 			     u64 time_seq, struct ulist *refs,
925 			     struct ulist *roots, const u64 *extent_item_pos,
926 			     u64 root_objectid, u64 inum)
927 {
928 	struct btrfs_key key;
929 	struct btrfs_path *path;
930 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
931 	struct btrfs_delayed_ref_head *head;
932 	int info_level = 0;
933 	int ret;
934 	struct list_head prefs_delayed;
935 	struct list_head prefs;
936 	struct __prelim_ref *ref;
937 	struct extent_inode_elem *eie = NULL;
938 	u64 total_refs = 0;
939 
940 	INIT_LIST_HEAD(&prefs);
941 	INIT_LIST_HEAD(&prefs_delayed);
942 
943 	key.objectid = bytenr;
944 	key.offset = (u64)-1;
945 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
946 		key.type = BTRFS_METADATA_ITEM_KEY;
947 	else
948 		key.type = BTRFS_EXTENT_ITEM_KEY;
949 
950 	path = btrfs_alloc_path();
951 	if (!path)
952 		return -ENOMEM;
953 	if (!trans) {
954 		path->search_commit_root = 1;
955 		path->skip_locking = 1;
956 	}
957 
958 	if (time_seq == (u64)-1)
959 		path->skip_locking = 1;
960 
961 	/*
962 	 * grab both a lock on the path and a lock on the delayed ref head.
963 	 * We need both to get a consistent picture of how the refs look
964 	 * at a specified point in time
965 	 */
966 again:
967 	head = NULL;
968 
969 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
970 	if (ret < 0)
971 		goto out;
972 	BUG_ON(ret == 0);
973 
974 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
975 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
976 	    time_seq != (u64)-1) {
977 #else
978 	if (trans && time_seq != (u64)-1) {
979 #endif
980 		/*
981 		 * look if there are updates for this ref queued and lock the
982 		 * head
983 		 */
984 		delayed_refs = &trans->transaction->delayed_refs;
985 		spin_lock(&delayed_refs->lock);
986 		head = btrfs_find_delayed_ref_head(trans, bytenr);
987 		if (head) {
988 			if (!mutex_trylock(&head->mutex)) {
989 				atomic_inc(&head->node.refs);
990 				spin_unlock(&delayed_refs->lock);
991 
992 				btrfs_release_path(path);
993 
994 				/*
995 				 * Mutex was contended, block until it's
996 				 * released and try again
997 				 */
998 				mutex_lock(&head->mutex);
999 				mutex_unlock(&head->mutex);
1000 				btrfs_put_delayed_ref(&head->node);
1001 				goto again;
1002 			}
1003 			spin_unlock(&delayed_refs->lock);
1004 			ret = __add_delayed_refs(head, time_seq,
1005 						 &prefs_delayed, &total_refs,
1006 						 inum);
1007 			mutex_unlock(&head->mutex);
1008 			if (ret)
1009 				goto out;
1010 		} else {
1011 			spin_unlock(&delayed_refs->lock);
1012 		}
1013 	}
1014 
1015 	if (path->slots[0]) {
1016 		struct extent_buffer *leaf;
1017 		int slot;
1018 
1019 		path->slots[0]--;
1020 		leaf = path->nodes[0];
1021 		slot = path->slots[0];
1022 		btrfs_item_key_to_cpu(leaf, &key, slot);
1023 		if (key.objectid == bytenr &&
1024 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1025 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1026 			ret = __add_inline_refs(fs_info, path, bytenr,
1027 						&info_level, &prefs,
1028 						&total_refs, inum);
1029 			if (ret)
1030 				goto out;
1031 			ret = __add_keyed_refs(fs_info, path, bytenr,
1032 					       info_level, &prefs, inum);
1033 			if (ret)
1034 				goto out;
1035 		}
1036 	}
1037 	btrfs_release_path(path);
1038 
1039 	list_splice_init(&prefs_delayed, &prefs);
1040 
1041 	ret = __add_missing_keys(fs_info, &prefs);
1042 	if (ret)
1043 		goto out;
1044 
1045 	__merge_refs(&prefs, 1);
1046 
1047 	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1048 				      extent_item_pos, total_refs,
1049 				      root_objectid);
1050 	if (ret)
1051 		goto out;
1052 
1053 	__merge_refs(&prefs, 2);
1054 
1055 	while (!list_empty(&prefs)) {
1056 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1057 		WARN_ON(ref->count < 0);
1058 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1059 			if (root_objectid && ref->root_id != root_objectid) {
1060 				ret = BACKREF_FOUND_SHARED;
1061 				goto out;
1062 			}
1063 
1064 			/* no parent == root of tree */
1065 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1066 			if (ret < 0)
1067 				goto out;
1068 		}
1069 		if (ref->count && ref->parent) {
1070 			if (extent_item_pos && !ref->inode_list &&
1071 			    ref->level == 0) {
1072 				struct extent_buffer *eb;
1073 
1074 				eb = read_tree_block(fs_info->extent_root,
1075 							   ref->parent, 0);
1076 				if (IS_ERR(eb)) {
1077 					ret = PTR_ERR(eb);
1078 					goto out;
1079 				} else if (!extent_buffer_uptodate(eb)) {
1080 					free_extent_buffer(eb);
1081 					ret = -EIO;
1082 					goto out;
1083 				}
1084 				btrfs_tree_read_lock(eb);
1085 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1086 				ret = find_extent_in_eb(eb, bytenr,
1087 							*extent_item_pos, &eie);
1088 				btrfs_tree_read_unlock_blocking(eb);
1089 				free_extent_buffer(eb);
1090 				if (ret < 0)
1091 					goto out;
1092 				ref->inode_list = eie;
1093 			}
1094 			ret = ulist_add_merge_ptr(refs, ref->parent,
1095 						  ref->inode_list,
1096 						  (void **)&eie, GFP_NOFS);
1097 			if (ret < 0)
1098 				goto out;
1099 			if (!ret && extent_item_pos) {
1100 				/*
1101 				 * we've recorded that parent, so we must extend
1102 				 * its inode list here
1103 				 */
1104 				BUG_ON(!eie);
1105 				while (eie->next)
1106 					eie = eie->next;
1107 				eie->next = ref->inode_list;
1108 			}
1109 			eie = NULL;
1110 		}
1111 		list_del(&ref->list);
1112 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1113 	}
1114 
1115 out:
1116 	btrfs_free_path(path);
1117 	while (!list_empty(&prefs)) {
1118 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1119 		list_del(&ref->list);
1120 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1121 	}
1122 	while (!list_empty(&prefs_delayed)) {
1123 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1124 				       list);
1125 		list_del(&ref->list);
1126 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1127 	}
1128 	if (ret < 0)
1129 		free_inode_elem_list(eie);
1130 	return ret;
1131 }
1132 
1133 static void free_leaf_list(struct ulist *blocks)
1134 {
1135 	struct ulist_node *node = NULL;
1136 	struct extent_inode_elem *eie;
1137 	struct ulist_iterator uiter;
1138 
1139 	ULIST_ITER_INIT(&uiter);
1140 	while ((node = ulist_next(blocks, &uiter))) {
1141 		if (!node->aux)
1142 			continue;
1143 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1144 		free_inode_elem_list(eie);
1145 		node->aux = 0;
1146 	}
1147 
1148 	ulist_free(blocks);
1149 }
1150 
1151 /*
1152  * Finds all leafs with a reference to the specified combination of bytenr and
1153  * offset. key_list_head will point to a list of corresponding keys (caller must
1154  * free each list element). The leafs will be stored in the leafs ulist, which
1155  * must be freed with ulist_free.
1156  *
1157  * returns 0 on success, <0 on error
1158  */
1159 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1160 				struct btrfs_fs_info *fs_info, u64 bytenr,
1161 				u64 time_seq, struct ulist **leafs,
1162 				const u64 *extent_item_pos)
1163 {
1164 	int ret;
1165 
1166 	*leafs = ulist_alloc(GFP_NOFS);
1167 	if (!*leafs)
1168 		return -ENOMEM;
1169 
1170 	ret = find_parent_nodes(trans, fs_info, bytenr,
1171 				time_seq, *leafs, NULL, extent_item_pos, 0, 0);
1172 	if (ret < 0 && ret != -ENOENT) {
1173 		free_leaf_list(*leafs);
1174 		return ret;
1175 	}
1176 
1177 	return 0;
1178 }
1179 
1180 /*
1181  * walk all backrefs for a given extent to find all roots that reference this
1182  * extent. Walking a backref means finding all extents that reference this
1183  * extent and in turn walk the backrefs of those, too. Naturally this is a
1184  * recursive process, but here it is implemented in an iterative fashion: We
1185  * find all referencing extents for the extent in question and put them on a
1186  * list. In turn, we find all referencing extents for those, further appending
1187  * to the list. The way we iterate the list allows adding more elements after
1188  * the current while iterating. The process stops when we reach the end of the
1189  * list. Found roots are added to the roots list.
1190  *
1191  * returns 0 on success, < 0 on error.
1192  */
1193 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1194 				  struct btrfs_fs_info *fs_info, u64 bytenr,
1195 				  u64 time_seq, struct ulist **roots)
1196 {
1197 	struct ulist *tmp;
1198 	struct ulist_node *node = NULL;
1199 	struct ulist_iterator uiter;
1200 	int ret;
1201 
1202 	tmp = ulist_alloc(GFP_NOFS);
1203 	if (!tmp)
1204 		return -ENOMEM;
1205 	*roots = ulist_alloc(GFP_NOFS);
1206 	if (!*roots) {
1207 		ulist_free(tmp);
1208 		return -ENOMEM;
1209 	}
1210 
1211 	ULIST_ITER_INIT(&uiter);
1212 	while (1) {
1213 		ret = find_parent_nodes(trans, fs_info, bytenr,
1214 					time_seq, tmp, *roots, NULL, 0, 0);
1215 		if (ret < 0 && ret != -ENOENT) {
1216 			ulist_free(tmp);
1217 			ulist_free(*roots);
1218 			return ret;
1219 		}
1220 		node = ulist_next(tmp, &uiter);
1221 		if (!node)
1222 			break;
1223 		bytenr = node->val;
1224 		cond_resched();
1225 	}
1226 
1227 	ulist_free(tmp);
1228 	return 0;
1229 }
1230 
1231 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1232 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1233 			 u64 time_seq, struct ulist **roots)
1234 {
1235 	int ret;
1236 
1237 	if (!trans)
1238 		down_read(&fs_info->commit_root_sem);
1239 	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1240 	if (!trans)
1241 		up_read(&fs_info->commit_root_sem);
1242 	return ret;
1243 }
1244 
1245 /**
1246  * btrfs_check_shared - tell us whether an extent is shared
1247  *
1248  * @trans: optional trans handle
1249  *
1250  * btrfs_check_shared uses the backref walking code but will short
1251  * circuit as soon as it finds a root or inode that doesn't match the
1252  * one passed in. This provides a significant performance benefit for
1253  * callers (such as fiemap) which want to know whether the extent is
1254  * shared but do not need a ref count.
1255  *
1256  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1257  */
1258 int btrfs_check_shared(struct btrfs_trans_handle *trans,
1259 		       struct btrfs_fs_info *fs_info, u64 root_objectid,
1260 		       u64 inum, u64 bytenr)
1261 {
1262 	struct ulist *tmp = NULL;
1263 	struct ulist *roots = NULL;
1264 	struct ulist_iterator uiter;
1265 	struct ulist_node *node;
1266 	struct seq_list elem = SEQ_LIST_INIT(elem);
1267 	int ret = 0;
1268 
1269 	tmp = ulist_alloc(GFP_NOFS);
1270 	roots = ulist_alloc(GFP_NOFS);
1271 	if (!tmp || !roots) {
1272 		ulist_free(tmp);
1273 		ulist_free(roots);
1274 		return -ENOMEM;
1275 	}
1276 
1277 	if (trans)
1278 		btrfs_get_tree_mod_seq(fs_info, &elem);
1279 	else
1280 		down_read(&fs_info->commit_root_sem);
1281 	ULIST_ITER_INIT(&uiter);
1282 	while (1) {
1283 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1284 					roots, NULL, root_objectid, inum);
1285 		if (ret == BACKREF_FOUND_SHARED) {
1286 			/* this is the only condition under which we return 1 */
1287 			ret = 1;
1288 			break;
1289 		}
1290 		if (ret < 0 && ret != -ENOENT)
1291 			break;
1292 		ret = 0;
1293 		node = ulist_next(tmp, &uiter);
1294 		if (!node)
1295 			break;
1296 		bytenr = node->val;
1297 		cond_resched();
1298 	}
1299 	if (trans)
1300 		btrfs_put_tree_mod_seq(fs_info, &elem);
1301 	else
1302 		up_read(&fs_info->commit_root_sem);
1303 	ulist_free(tmp);
1304 	ulist_free(roots);
1305 	return ret;
1306 }
1307 
1308 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1309 			  u64 start_off, struct btrfs_path *path,
1310 			  struct btrfs_inode_extref **ret_extref,
1311 			  u64 *found_off)
1312 {
1313 	int ret, slot;
1314 	struct btrfs_key key;
1315 	struct btrfs_key found_key;
1316 	struct btrfs_inode_extref *extref;
1317 	struct extent_buffer *leaf;
1318 	unsigned long ptr;
1319 
1320 	key.objectid = inode_objectid;
1321 	key.type = BTRFS_INODE_EXTREF_KEY;
1322 	key.offset = start_off;
1323 
1324 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1325 	if (ret < 0)
1326 		return ret;
1327 
1328 	while (1) {
1329 		leaf = path->nodes[0];
1330 		slot = path->slots[0];
1331 		if (slot >= btrfs_header_nritems(leaf)) {
1332 			/*
1333 			 * If the item at offset is not found,
1334 			 * btrfs_search_slot will point us to the slot
1335 			 * where it should be inserted. In our case
1336 			 * that will be the slot directly before the
1337 			 * next INODE_REF_KEY_V2 item. In the case
1338 			 * that we're pointing to the last slot in a
1339 			 * leaf, we must move one leaf over.
1340 			 */
1341 			ret = btrfs_next_leaf(root, path);
1342 			if (ret) {
1343 				if (ret >= 1)
1344 					ret = -ENOENT;
1345 				break;
1346 			}
1347 			continue;
1348 		}
1349 
1350 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1351 
1352 		/*
1353 		 * Check that we're still looking at an extended ref key for
1354 		 * this particular objectid. If we have different
1355 		 * objectid or type then there are no more to be found
1356 		 * in the tree and we can exit.
1357 		 */
1358 		ret = -ENOENT;
1359 		if (found_key.objectid != inode_objectid)
1360 			break;
1361 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1362 			break;
1363 
1364 		ret = 0;
1365 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1366 		extref = (struct btrfs_inode_extref *)ptr;
1367 		*ret_extref = extref;
1368 		if (found_off)
1369 			*found_off = found_key.offset;
1370 		break;
1371 	}
1372 
1373 	return ret;
1374 }
1375 
1376 /*
1377  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1378  * Elements of the path are separated by '/' and the path is guaranteed to be
1379  * 0-terminated. the path is only given within the current file system.
1380  * Therefore, it never starts with a '/'. the caller is responsible to provide
1381  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1382  * the start point of the resulting string is returned. this pointer is within
1383  * dest, normally.
1384  * in case the path buffer would overflow, the pointer is decremented further
1385  * as if output was written to the buffer, though no more output is actually
1386  * generated. that way, the caller can determine how much space would be
1387  * required for the path to fit into the buffer. in that case, the returned
1388  * value will be smaller than dest. callers must check this!
1389  */
1390 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1391 			u32 name_len, unsigned long name_off,
1392 			struct extent_buffer *eb_in, u64 parent,
1393 			char *dest, u32 size)
1394 {
1395 	int slot;
1396 	u64 next_inum;
1397 	int ret;
1398 	s64 bytes_left = ((s64)size) - 1;
1399 	struct extent_buffer *eb = eb_in;
1400 	struct btrfs_key found_key;
1401 	int leave_spinning = path->leave_spinning;
1402 	struct btrfs_inode_ref *iref;
1403 
1404 	if (bytes_left >= 0)
1405 		dest[bytes_left] = '\0';
1406 
1407 	path->leave_spinning = 1;
1408 	while (1) {
1409 		bytes_left -= name_len;
1410 		if (bytes_left >= 0)
1411 			read_extent_buffer(eb, dest + bytes_left,
1412 					   name_off, name_len);
1413 		if (eb != eb_in) {
1414 			btrfs_tree_read_unlock_blocking(eb);
1415 			free_extent_buffer(eb);
1416 		}
1417 		ret = btrfs_find_item(fs_root, path, parent, 0,
1418 				BTRFS_INODE_REF_KEY, &found_key);
1419 		if (ret > 0)
1420 			ret = -ENOENT;
1421 		if (ret)
1422 			break;
1423 
1424 		next_inum = found_key.offset;
1425 
1426 		/* regular exit ahead */
1427 		if (parent == next_inum)
1428 			break;
1429 
1430 		slot = path->slots[0];
1431 		eb = path->nodes[0];
1432 		/* make sure we can use eb after releasing the path */
1433 		if (eb != eb_in) {
1434 			atomic_inc(&eb->refs);
1435 			btrfs_tree_read_lock(eb);
1436 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1437 		}
1438 		btrfs_release_path(path);
1439 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1440 
1441 		name_len = btrfs_inode_ref_name_len(eb, iref);
1442 		name_off = (unsigned long)(iref + 1);
1443 
1444 		parent = next_inum;
1445 		--bytes_left;
1446 		if (bytes_left >= 0)
1447 			dest[bytes_left] = '/';
1448 	}
1449 
1450 	btrfs_release_path(path);
1451 	path->leave_spinning = leave_spinning;
1452 
1453 	if (ret)
1454 		return ERR_PTR(ret);
1455 
1456 	return dest + bytes_left;
1457 }
1458 
1459 /*
1460  * this makes the path point to (logical EXTENT_ITEM *)
1461  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1462  * tree blocks and <0 on error.
1463  */
1464 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1465 			struct btrfs_path *path, struct btrfs_key *found_key,
1466 			u64 *flags_ret)
1467 {
1468 	int ret;
1469 	u64 flags;
1470 	u64 size = 0;
1471 	u32 item_size;
1472 	struct extent_buffer *eb;
1473 	struct btrfs_extent_item *ei;
1474 	struct btrfs_key key;
1475 
1476 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1477 		key.type = BTRFS_METADATA_ITEM_KEY;
1478 	else
1479 		key.type = BTRFS_EXTENT_ITEM_KEY;
1480 	key.objectid = logical;
1481 	key.offset = (u64)-1;
1482 
1483 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1484 	if (ret < 0)
1485 		return ret;
1486 
1487 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1488 	if (ret) {
1489 		if (ret > 0)
1490 			ret = -ENOENT;
1491 		return ret;
1492 	}
1493 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1494 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1495 		size = fs_info->extent_root->nodesize;
1496 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1497 		size = found_key->offset;
1498 
1499 	if (found_key->objectid > logical ||
1500 	    found_key->objectid + size <= logical) {
1501 		pr_debug("logical %llu is not within any extent\n", logical);
1502 		return -ENOENT;
1503 	}
1504 
1505 	eb = path->nodes[0];
1506 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1507 	BUG_ON(item_size < sizeof(*ei));
1508 
1509 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1510 	flags = btrfs_extent_flags(eb, ei);
1511 
1512 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1513 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1514 		 logical, logical - found_key->objectid, found_key->objectid,
1515 		 found_key->offset, flags, item_size);
1516 
1517 	WARN_ON(!flags_ret);
1518 	if (flags_ret) {
1519 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1520 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1521 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1522 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1523 		else
1524 			BUG_ON(1);
1525 		return 0;
1526 	}
1527 
1528 	return -EIO;
1529 }
1530 
1531 /*
1532  * helper function to iterate extent inline refs. ptr must point to a 0 value
1533  * for the first call and may be modified. it is used to track state.
1534  * if more refs exist, 0 is returned and the next call to
1535  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1536  * next ref. after the last ref was processed, 1 is returned.
1537  * returns <0 on error
1538  */
1539 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1540 				   struct btrfs_key *key,
1541 				   struct btrfs_extent_item *ei, u32 item_size,
1542 				   struct btrfs_extent_inline_ref **out_eiref,
1543 				   int *out_type)
1544 {
1545 	unsigned long end;
1546 	u64 flags;
1547 	struct btrfs_tree_block_info *info;
1548 
1549 	if (!*ptr) {
1550 		/* first call */
1551 		flags = btrfs_extent_flags(eb, ei);
1552 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1553 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1554 				/* a skinny metadata extent */
1555 				*out_eiref =
1556 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1557 			} else {
1558 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1559 				info = (struct btrfs_tree_block_info *)(ei + 1);
1560 				*out_eiref =
1561 				   (struct btrfs_extent_inline_ref *)(info + 1);
1562 			}
1563 		} else {
1564 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1565 		}
1566 		*ptr = (unsigned long)*out_eiref;
1567 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1568 			return -ENOENT;
1569 	}
1570 
1571 	end = (unsigned long)ei + item_size;
1572 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1573 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1574 
1575 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1576 	WARN_ON(*ptr > end);
1577 	if (*ptr == end)
1578 		return 1; /* last */
1579 
1580 	return 0;
1581 }
1582 
1583 /*
1584  * reads the tree block backref for an extent. tree level and root are returned
1585  * through out_level and out_root. ptr must point to a 0 value for the first
1586  * call and may be modified (see __get_extent_inline_ref comment).
1587  * returns 0 if data was provided, 1 if there was no more data to provide or
1588  * <0 on error.
1589  */
1590 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1591 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1592 			    u32 item_size, u64 *out_root, u8 *out_level)
1593 {
1594 	int ret;
1595 	int type;
1596 	struct btrfs_extent_inline_ref *eiref;
1597 
1598 	if (*ptr == (unsigned long)-1)
1599 		return 1;
1600 
1601 	while (1) {
1602 		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1603 					      &eiref, &type);
1604 		if (ret < 0)
1605 			return ret;
1606 
1607 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1608 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1609 			break;
1610 
1611 		if (ret == 1)
1612 			return 1;
1613 	}
1614 
1615 	/* we can treat both ref types equally here */
1616 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1617 
1618 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1619 		struct btrfs_tree_block_info *info;
1620 
1621 		info = (struct btrfs_tree_block_info *)(ei + 1);
1622 		*out_level = btrfs_tree_block_level(eb, info);
1623 	} else {
1624 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1625 		*out_level = (u8)key->offset;
1626 	}
1627 
1628 	if (ret == 1)
1629 		*ptr = (unsigned long)-1;
1630 
1631 	return 0;
1632 }
1633 
1634 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1635 				u64 root, u64 extent_item_objectid,
1636 				iterate_extent_inodes_t *iterate, void *ctx)
1637 {
1638 	struct extent_inode_elem *eie;
1639 	int ret = 0;
1640 
1641 	for (eie = inode_list; eie; eie = eie->next) {
1642 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1643 			 "root %llu\n", extent_item_objectid,
1644 			 eie->inum, eie->offset, root);
1645 		ret = iterate(eie->inum, eie->offset, root, ctx);
1646 		if (ret) {
1647 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1648 				 extent_item_objectid, ret);
1649 			break;
1650 		}
1651 	}
1652 
1653 	return ret;
1654 }
1655 
1656 /*
1657  * calls iterate() for every inode that references the extent identified by
1658  * the given parameters.
1659  * when the iterator function returns a non-zero value, iteration stops.
1660  */
1661 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1662 				u64 extent_item_objectid, u64 extent_item_pos,
1663 				int search_commit_root,
1664 				iterate_extent_inodes_t *iterate, void *ctx)
1665 {
1666 	int ret;
1667 	struct btrfs_trans_handle *trans = NULL;
1668 	struct ulist *refs = NULL;
1669 	struct ulist *roots = NULL;
1670 	struct ulist_node *ref_node = NULL;
1671 	struct ulist_node *root_node = NULL;
1672 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1673 	struct ulist_iterator ref_uiter;
1674 	struct ulist_iterator root_uiter;
1675 
1676 	pr_debug("resolving all inodes for extent %llu\n",
1677 			extent_item_objectid);
1678 
1679 	if (!search_commit_root) {
1680 		trans = btrfs_join_transaction(fs_info->extent_root);
1681 		if (IS_ERR(trans))
1682 			return PTR_ERR(trans);
1683 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1684 	} else {
1685 		down_read(&fs_info->commit_root_sem);
1686 	}
1687 
1688 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1689 				   tree_mod_seq_elem.seq, &refs,
1690 				   &extent_item_pos);
1691 	if (ret)
1692 		goto out;
1693 
1694 	ULIST_ITER_INIT(&ref_uiter);
1695 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1696 		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1697 					     tree_mod_seq_elem.seq, &roots);
1698 		if (ret)
1699 			break;
1700 		ULIST_ITER_INIT(&root_uiter);
1701 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1702 			pr_debug("root %llu references leaf %llu, data list "
1703 				 "%#llx\n", root_node->val, ref_node->val,
1704 				 ref_node->aux);
1705 			ret = iterate_leaf_refs((struct extent_inode_elem *)
1706 						(uintptr_t)ref_node->aux,
1707 						root_node->val,
1708 						extent_item_objectid,
1709 						iterate, ctx);
1710 		}
1711 		ulist_free(roots);
1712 	}
1713 
1714 	free_leaf_list(refs);
1715 out:
1716 	if (!search_commit_root) {
1717 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1718 		btrfs_end_transaction(trans, fs_info->extent_root);
1719 	} else {
1720 		up_read(&fs_info->commit_root_sem);
1721 	}
1722 
1723 	return ret;
1724 }
1725 
1726 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1727 				struct btrfs_path *path,
1728 				iterate_extent_inodes_t *iterate, void *ctx)
1729 {
1730 	int ret;
1731 	u64 extent_item_pos;
1732 	u64 flags = 0;
1733 	struct btrfs_key found_key;
1734 	int search_commit_root = path->search_commit_root;
1735 
1736 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1737 	btrfs_release_path(path);
1738 	if (ret < 0)
1739 		return ret;
1740 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1741 		return -EINVAL;
1742 
1743 	extent_item_pos = logical - found_key.objectid;
1744 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1745 					extent_item_pos, search_commit_root,
1746 					iterate, ctx);
1747 
1748 	return ret;
1749 }
1750 
1751 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1752 			      struct extent_buffer *eb, void *ctx);
1753 
1754 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1755 			      struct btrfs_path *path,
1756 			      iterate_irefs_t *iterate, void *ctx)
1757 {
1758 	int ret = 0;
1759 	int slot;
1760 	u32 cur;
1761 	u32 len;
1762 	u32 name_len;
1763 	u64 parent = 0;
1764 	int found = 0;
1765 	struct extent_buffer *eb;
1766 	struct btrfs_item *item;
1767 	struct btrfs_inode_ref *iref;
1768 	struct btrfs_key found_key;
1769 
1770 	while (!ret) {
1771 		ret = btrfs_find_item(fs_root, path, inum,
1772 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
1773 				&found_key);
1774 
1775 		if (ret < 0)
1776 			break;
1777 		if (ret) {
1778 			ret = found ? 0 : -ENOENT;
1779 			break;
1780 		}
1781 		++found;
1782 
1783 		parent = found_key.offset;
1784 		slot = path->slots[0];
1785 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1786 		if (!eb) {
1787 			ret = -ENOMEM;
1788 			break;
1789 		}
1790 		extent_buffer_get(eb);
1791 		btrfs_tree_read_lock(eb);
1792 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1793 		btrfs_release_path(path);
1794 
1795 		item = btrfs_item_nr(slot);
1796 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1797 
1798 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1799 			name_len = btrfs_inode_ref_name_len(eb, iref);
1800 			/* path must be released before calling iterate()! */
1801 			pr_debug("following ref at offset %u for inode %llu in "
1802 				 "tree %llu\n", cur, found_key.objectid,
1803 				 fs_root->objectid);
1804 			ret = iterate(parent, name_len,
1805 				      (unsigned long)(iref + 1), eb, ctx);
1806 			if (ret)
1807 				break;
1808 			len = sizeof(*iref) + name_len;
1809 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1810 		}
1811 		btrfs_tree_read_unlock_blocking(eb);
1812 		free_extent_buffer(eb);
1813 	}
1814 
1815 	btrfs_release_path(path);
1816 
1817 	return ret;
1818 }
1819 
1820 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1821 				 struct btrfs_path *path,
1822 				 iterate_irefs_t *iterate, void *ctx)
1823 {
1824 	int ret;
1825 	int slot;
1826 	u64 offset = 0;
1827 	u64 parent;
1828 	int found = 0;
1829 	struct extent_buffer *eb;
1830 	struct btrfs_inode_extref *extref;
1831 	u32 item_size;
1832 	u32 cur_offset;
1833 	unsigned long ptr;
1834 
1835 	while (1) {
1836 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1837 					    &offset);
1838 		if (ret < 0)
1839 			break;
1840 		if (ret) {
1841 			ret = found ? 0 : -ENOENT;
1842 			break;
1843 		}
1844 		++found;
1845 
1846 		slot = path->slots[0];
1847 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1848 		if (!eb) {
1849 			ret = -ENOMEM;
1850 			break;
1851 		}
1852 		extent_buffer_get(eb);
1853 
1854 		btrfs_tree_read_lock(eb);
1855 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1856 		btrfs_release_path(path);
1857 
1858 		item_size = btrfs_item_size_nr(eb, slot);
1859 		ptr = btrfs_item_ptr_offset(eb, slot);
1860 		cur_offset = 0;
1861 
1862 		while (cur_offset < item_size) {
1863 			u32 name_len;
1864 
1865 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1866 			parent = btrfs_inode_extref_parent(eb, extref);
1867 			name_len = btrfs_inode_extref_name_len(eb, extref);
1868 			ret = iterate(parent, name_len,
1869 				      (unsigned long)&extref->name, eb, ctx);
1870 			if (ret)
1871 				break;
1872 
1873 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
1874 			cur_offset += sizeof(*extref);
1875 		}
1876 		btrfs_tree_read_unlock_blocking(eb);
1877 		free_extent_buffer(eb);
1878 
1879 		offset++;
1880 	}
1881 
1882 	btrfs_release_path(path);
1883 
1884 	return ret;
1885 }
1886 
1887 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1888 			 struct btrfs_path *path, iterate_irefs_t *iterate,
1889 			 void *ctx)
1890 {
1891 	int ret;
1892 	int found_refs = 0;
1893 
1894 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1895 	if (!ret)
1896 		++found_refs;
1897 	else if (ret != -ENOENT)
1898 		return ret;
1899 
1900 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1901 	if (ret == -ENOENT && found_refs)
1902 		return 0;
1903 
1904 	return ret;
1905 }
1906 
1907 /*
1908  * returns 0 if the path could be dumped (probably truncated)
1909  * returns <0 in case of an error
1910  */
1911 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1912 			 struct extent_buffer *eb, void *ctx)
1913 {
1914 	struct inode_fs_paths *ipath = ctx;
1915 	char *fspath;
1916 	char *fspath_min;
1917 	int i = ipath->fspath->elem_cnt;
1918 	const int s_ptr = sizeof(char *);
1919 	u32 bytes_left;
1920 
1921 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1922 					ipath->fspath->bytes_left - s_ptr : 0;
1923 
1924 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1925 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1926 				   name_off, eb, inum, fspath_min, bytes_left);
1927 	if (IS_ERR(fspath))
1928 		return PTR_ERR(fspath);
1929 
1930 	if (fspath > fspath_min) {
1931 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1932 		++ipath->fspath->elem_cnt;
1933 		ipath->fspath->bytes_left = fspath - fspath_min;
1934 	} else {
1935 		++ipath->fspath->elem_missed;
1936 		ipath->fspath->bytes_missing += fspath_min - fspath;
1937 		ipath->fspath->bytes_left = 0;
1938 	}
1939 
1940 	return 0;
1941 }
1942 
1943 /*
1944  * this dumps all file system paths to the inode into the ipath struct, provided
1945  * is has been created large enough. each path is zero-terminated and accessed
1946  * from ipath->fspath->val[i].
1947  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1948  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1949  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1950  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1951  * have been needed to return all paths.
1952  */
1953 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1954 {
1955 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1956 			     inode_to_path, ipath);
1957 }
1958 
1959 struct btrfs_data_container *init_data_container(u32 total_bytes)
1960 {
1961 	struct btrfs_data_container *data;
1962 	size_t alloc_bytes;
1963 
1964 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1965 	data = vmalloc(alloc_bytes);
1966 	if (!data)
1967 		return ERR_PTR(-ENOMEM);
1968 
1969 	if (total_bytes >= sizeof(*data)) {
1970 		data->bytes_left = total_bytes - sizeof(*data);
1971 		data->bytes_missing = 0;
1972 	} else {
1973 		data->bytes_missing = sizeof(*data) - total_bytes;
1974 		data->bytes_left = 0;
1975 	}
1976 
1977 	data->elem_cnt = 0;
1978 	data->elem_missed = 0;
1979 
1980 	return data;
1981 }
1982 
1983 /*
1984  * allocates space to return multiple file system paths for an inode.
1985  * total_bytes to allocate are passed, note that space usable for actual path
1986  * information will be total_bytes - sizeof(struct inode_fs_paths).
1987  * the returned pointer must be freed with free_ipath() in the end.
1988  */
1989 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1990 					struct btrfs_path *path)
1991 {
1992 	struct inode_fs_paths *ifp;
1993 	struct btrfs_data_container *fspath;
1994 
1995 	fspath = init_data_container(total_bytes);
1996 	if (IS_ERR(fspath))
1997 		return (void *)fspath;
1998 
1999 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
2000 	if (!ifp) {
2001 		kfree(fspath);
2002 		return ERR_PTR(-ENOMEM);
2003 	}
2004 
2005 	ifp->btrfs_path = path;
2006 	ifp->fspath = fspath;
2007 	ifp->fs_root = fs_root;
2008 
2009 	return ifp;
2010 }
2011 
2012 void free_ipath(struct inode_fs_paths *ipath)
2013 {
2014 	if (!ipath)
2015 		return;
2016 	vfree(ipath->fspath);
2017 	kfree(ipath);
2018 }
2019