1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "backref.h" 23 #include "ulist.h" 24 #include "transaction.h" 25 #include "delayed-ref.h" 26 #include "locking.h" 27 28 /* Just an arbitrary number so we can be sure this happened */ 29 #define BACKREF_FOUND_SHARED 6 30 31 struct extent_inode_elem { 32 u64 inum; 33 u64 offset; 34 struct extent_inode_elem *next; 35 }; 36 37 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 38 struct btrfs_file_extent_item *fi, 39 u64 extent_item_pos, 40 struct extent_inode_elem **eie) 41 { 42 u64 offset = 0; 43 struct extent_inode_elem *e; 44 45 if (!btrfs_file_extent_compression(eb, fi) && 46 !btrfs_file_extent_encryption(eb, fi) && 47 !btrfs_file_extent_other_encoding(eb, fi)) { 48 u64 data_offset; 49 u64 data_len; 50 51 data_offset = btrfs_file_extent_offset(eb, fi); 52 data_len = btrfs_file_extent_num_bytes(eb, fi); 53 54 if (extent_item_pos < data_offset || 55 extent_item_pos >= data_offset + data_len) 56 return 1; 57 offset = extent_item_pos - data_offset; 58 } 59 60 e = kmalloc(sizeof(*e), GFP_NOFS); 61 if (!e) 62 return -ENOMEM; 63 64 e->next = *eie; 65 e->inum = key->objectid; 66 e->offset = key->offset + offset; 67 *eie = e; 68 69 return 0; 70 } 71 72 static void free_inode_elem_list(struct extent_inode_elem *eie) 73 { 74 struct extent_inode_elem *eie_next; 75 76 for (; eie; eie = eie_next) { 77 eie_next = eie->next; 78 kfree(eie); 79 } 80 } 81 82 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 83 u64 extent_item_pos, 84 struct extent_inode_elem **eie) 85 { 86 u64 disk_byte; 87 struct btrfs_key key; 88 struct btrfs_file_extent_item *fi; 89 int slot; 90 int nritems; 91 int extent_type; 92 int ret; 93 94 /* 95 * from the shared data ref, we only have the leaf but we need 96 * the key. thus, we must look into all items and see that we 97 * find one (some) with a reference to our extent item. 98 */ 99 nritems = btrfs_header_nritems(eb); 100 for (slot = 0; slot < nritems; ++slot) { 101 btrfs_item_key_to_cpu(eb, &key, slot); 102 if (key.type != BTRFS_EXTENT_DATA_KEY) 103 continue; 104 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 105 extent_type = btrfs_file_extent_type(eb, fi); 106 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 107 continue; 108 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 109 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 110 if (disk_byte != wanted_disk_byte) 111 continue; 112 113 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 114 if (ret < 0) 115 return ret; 116 } 117 118 return 0; 119 } 120 121 /* 122 * this structure records all encountered refs on the way up to the root 123 */ 124 struct __prelim_ref { 125 struct list_head list; 126 u64 root_id; 127 struct btrfs_key key_for_search; 128 int level; 129 int count; 130 struct extent_inode_elem *inode_list; 131 u64 parent; 132 u64 wanted_disk_byte; 133 }; 134 135 static struct kmem_cache *btrfs_prelim_ref_cache; 136 137 int __init btrfs_prelim_ref_init(void) 138 { 139 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 140 sizeof(struct __prelim_ref), 141 0, 142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 143 NULL); 144 if (!btrfs_prelim_ref_cache) 145 return -ENOMEM; 146 return 0; 147 } 148 149 void btrfs_prelim_ref_exit(void) 150 { 151 if (btrfs_prelim_ref_cache) 152 kmem_cache_destroy(btrfs_prelim_ref_cache); 153 } 154 155 /* 156 * the rules for all callers of this function are: 157 * - obtaining the parent is the goal 158 * - if you add a key, you must know that it is a correct key 159 * - if you cannot add the parent or a correct key, then we will look into the 160 * block later to set a correct key 161 * 162 * delayed refs 163 * ============ 164 * backref type | shared | indirect | shared | indirect 165 * information | tree | tree | data | data 166 * --------------------+--------+----------+--------+---------- 167 * parent logical | y | - | - | - 168 * key to resolve | - | y | y | y 169 * tree block logical | - | - | - | - 170 * root for resolving | y | y | y | y 171 * 172 * - column 1: we've the parent -> done 173 * - column 2, 3, 4: we use the key to find the parent 174 * 175 * on disk refs (inline or keyed) 176 * ============================== 177 * backref type | shared | indirect | shared | indirect 178 * information | tree | tree | data | data 179 * --------------------+--------+----------+--------+---------- 180 * parent logical | y | - | y | - 181 * key to resolve | - | - | - | y 182 * tree block logical | y | y | y | y 183 * root for resolving | - | y | y | y 184 * 185 * - column 1, 3: we've the parent -> done 186 * - column 2: we take the first key from the block to find the parent 187 * (see __add_missing_keys) 188 * - column 4: we use the key to find the parent 189 * 190 * additional information that's available but not required to find the parent 191 * block might help in merging entries to gain some speed. 192 */ 193 194 static int __add_prelim_ref(struct list_head *head, u64 root_id, 195 struct btrfs_key *key, int level, 196 u64 parent, u64 wanted_disk_byte, int count, 197 gfp_t gfp_mask) 198 { 199 struct __prelim_ref *ref; 200 201 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 202 return 0; 203 204 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 205 if (!ref) 206 return -ENOMEM; 207 208 ref->root_id = root_id; 209 if (key) { 210 ref->key_for_search = *key; 211 /* 212 * We can often find data backrefs with an offset that is too 213 * large (>= LLONG_MAX, maximum allowed file offset) due to 214 * underflows when subtracting a file's offset with the data 215 * offset of its corresponding extent data item. This can 216 * happen for example in the clone ioctl. 217 * So if we detect such case we set the search key's offset to 218 * zero to make sure we will find the matching file extent item 219 * at add_all_parents(), otherwise we will miss it because the 220 * offset taken form the backref is much larger then the offset 221 * of the file extent item. This can make us scan a very large 222 * number of file extent items, but at least it will not make 223 * us miss any. 224 * This is an ugly workaround for a behaviour that should have 225 * never existed, but it does and a fix for the clone ioctl 226 * would touch a lot of places, cause backwards incompatibility 227 * and would not fix the problem for extents cloned with older 228 * kernels. 229 */ 230 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY && 231 ref->key_for_search.offset >= LLONG_MAX) 232 ref->key_for_search.offset = 0; 233 } else { 234 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 235 } 236 237 ref->inode_list = NULL; 238 ref->level = level; 239 ref->count = count; 240 ref->parent = parent; 241 ref->wanted_disk_byte = wanted_disk_byte; 242 list_add_tail(&ref->list, head); 243 244 return 0; 245 } 246 247 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 248 struct ulist *parents, struct __prelim_ref *ref, 249 int level, u64 time_seq, const u64 *extent_item_pos, 250 u64 total_refs) 251 { 252 int ret = 0; 253 int slot; 254 struct extent_buffer *eb; 255 struct btrfs_key key; 256 struct btrfs_key *key_for_search = &ref->key_for_search; 257 struct btrfs_file_extent_item *fi; 258 struct extent_inode_elem *eie = NULL, *old = NULL; 259 u64 disk_byte; 260 u64 wanted_disk_byte = ref->wanted_disk_byte; 261 u64 count = 0; 262 263 if (level != 0) { 264 eb = path->nodes[level]; 265 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 266 if (ret < 0) 267 return ret; 268 return 0; 269 } 270 271 /* 272 * We normally enter this function with the path already pointing to 273 * the first item to check. But sometimes, we may enter it with 274 * slot==nritems. In that case, go to the next leaf before we continue. 275 */ 276 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 277 if (time_seq == (u64)-1) 278 ret = btrfs_next_leaf(root, path); 279 else 280 ret = btrfs_next_old_leaf(root, path, time_seq); 281 } 282 283 while (!ret && count < total_refs) { 284 eb = path->nodes[0]; 285 slot = path->slots[0]; 286 287 btrfs_item_key_to_cpu(eb, &key, slot); 288 289 if (key.objectid != key_for_search->objectid || 290 key.type != BTRFS_EXTENT_DATA_KEY) 291 break; 292 293 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 294 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 295 296 if (disk_byte == wanted_disk_byte) { 297 eie = NULL; 298 old = NULL; 299 count++; 300 if (extent_item_pos) { 301 ret = check_extent_in_eb(&key, eb, fi, 302 *extent_item_pos, 303 &eie); 304 if (ret < 0) 305 break; 306 } 307 if (ret > 0) 308 goto next; 309 ret = ulist_add_merge_ptr(parents, eb->start, 310 eie, (void **)&old, GFP_NOFS); 311 if (ret < 0) 312 break; 313 if (!ret && extent_item_pos) { 314 while (old->next) 315 old = old->next; 316 old->next = eie; 317 } 318 eie = NULL; 319 } 320 next: 321 if (time_seq == (u64)-1) 322 ret = btrfs_next_item(root, path); 323 else 324 ret = btrfs_next_old_item(root, path, time_seq); 325 } 326 327 if (ret > 0) 328 ret = 0; 329 else if (ret < 0) 330 free_inode_elem_list(eie); 331 return ret; 332 } 333 334 /* 335 * resolve an indirect backref in the form (root_id, key, level) 336 * to a logical address 337 */ 338 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 339 struct btrfs_path *path, u64 time_seq, 340 struct __prelim_ref *ref, 341 struct ulist *parents, 342 const u64 *extent_item_pos, u64 total_refs) 343 { 344 struct btrfs_root *root; 345 struct btrfs_key root_key; 346 struct extent_buffer *eb; 347 int ret = 0; 348 int root_level; 349 int level = ref->level; 350 int index; 351 352 root_key.objectid = ref->root_id; 353 root_key.type = BTRFS_ROOT_ITEM_KEY; 354 root_key.offset = (u64)-1; 355 356 index = srcu_read_lock(&fs_info->subvol_srcu); 357 358 root = btrfs_read_fs_root_no_name(fs_info, &root_key); 359 if (IS_ERR(root)) { 360 srcu_read_unlock(&fs_info->subvol_srcu, index); 361 ret = PTR_ERR(root); 362 goto out; 363 } 364 365 if (btrfs_test_is_dummy_root(root)) { 366 srcu_read_unlock(&fs_info->subvol_srcu, index); 367 ret = -ENOENT; 368 goto out; 369 } 370 371 if (path->search_commit_root) 372 root_level = btrfs_header_level(root->commit_root); 373 else if (time_seq == (u64)-1) 374 root_level = btrfs_header_level(root->node); 375 else 376 root_level = btrfs_old_root_level(root, time_seq); 377 378 if (root_level + 1 == level) { 379 srcu_read_unlock(&fs_info->subvol_srcu, index); 380 goto out; 381 } 382 383 path->lowest_level = level; 384 if (time_seq == (u64)-1) 385 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 386 0, 0); 387 else 388 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, 389 time_seq); 390 391 /* root node has been locked, we can release @subvol_srcu safely here */ 392 srcu_read_unlock(&fs_info->subvol_srcu, index); 393 394 pr_debug("search slot in root %llu (level %d, ref count %d) returned " 395 "%d for key (%llu %u %llu)\n", 396 ref->root_id, level, ref->count, ret, 397 ref->key_for_search.objectid, ref->key_for_search.type, 398 ref->key_for_search.offset); 399 if (ret < 0) 400 goto out; 401 402 eb = path->nodes[level]; 403 while (!eb) { 404 if (WARN_ON(!level)) { 405 ret = 1; 406 goto out; 407 } 408 level--; 409 eb = path->nodes[level]; 410 } 411 412 ret = add_all_parents(root, path, parents, ref, level, time_seq, 413 extent_item_pos, total_refs); 414 out: 415 path->lowest_level = 0; 416 btrfs_release_path(path); 417 return ret; 418 } 419 420 /* 421 * resolve all indirect backrefs from the list 422 */ 423 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 424 struct btrfs_path *path, u64 time_seq, 425 struct list_head *head, 426 const u64 *extent_item_pos, u64 total_refs, 427 u64 root_objectid) 428 { 429 int err; 430 int ret = 0; 431 struct __prelim_ref *ref; 432 struct __prelim_ref *ref_safe; 433 struct __prelim_ref *new_ref; 434 struct ulist *parents; 435 struct ulist_node *node; 436 struct ulist_iterator uiter; 437 438 parents = ulist_alloc(GFP_NOFS); 439 if (!parents) 440 return -ENOMEM; 441 442 /* 443 * _safe allows us to insert directly after the current item without 444 * iterating over the newly inserted items. 445 * we're also allowed to re-assign ref during iteration. 446 */ 447 list_for_each_entry_safe(ref, ref_safe, head, list) { 448 if (ref->parent) /* already direct */ 449 continue; 450 if (ref->count == 0) 451 continue; 452 if (root_objectid && ref->root_id != root_objectid) { 453 ret = BACKREF_FOUND_SHARED; 454 goto out; 455 } 456 err = __resolve_indirect_ref(fs_info, path, time_seq, ref, 457 parents, extent_item_pos, 458 total_refs); 459 /* 460 * we can only tolerate ENOENT,otherwise,we should catch error 461 * and return directly. 462 */ 463 if (err == -ENOENT) { 464 continue; 465 } else if (err) { 466 ret = err; 467 goto out; 468 } 469 470 /* we put the first parent into the ref at hand */ 471 ULIST_ITER_INIT(&uiter); 472 node = ulist_next(parents, &uiter); 473 ref->parent = node ? node->val : 0; 474 ref->inode_list = node ? 475 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL; 476 477 /* additional parents require new refs being added here */ 478 while ((node = ulist_next(parents, &uiter))) { 479 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 480 GFP_NOFS); 481 if (!new_ref) { 482 ret = -ENOMEM; 483 goto out; 484 } 485 memcpy(new_ref, ref, sizeof(*ref)); 486 new_ref->parent = node->val; 487 new_ref->inode_list = (struct extent_inode_elem *) 488 (uintptr_t)node->aux; 489 list_add(&new_ref->list, &ref->list); 490 } 491 ulist_reinit(parents); 492 } 493 out: 494 ulist_free(parents); 495 return ret; 496 } 497 498 static inline int ref_for_same_block(struct __prelim_ref *ref1, 499 struct __prelim_ref *ref2) 500 { 501 if (ref1->level != ref2->level) 502 return 0; 503 if (ref1->root_id != ref2->root_id) 504 return 0; 505 if (ref1->key_for_search.type != ref2->key_for_search.type) 506 return 0; 507 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 508 return 0; 509 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 510 return 0; 511 if (ref1->parent != ref2->parent) 512 return 0; 513 514 return 1; 515 } 516 517 /* 518 * read tree blocks and add keys where required. 519 */ 520 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 521 struct list_head *head) 522 { 523 struct list_head *pos; 524 struct extent_buffer *eb; 525 526 list_for_each(pos, head) { 527 struct __prelim_ref *ref; 528 ref = list_entry(pos, struct __prelim_ref, list); 529 530 if (ref->parent) 531 continue; 532 if (ref->key_for_search.type) 533 continue; 534 BUG_ON(!ref->wanted_disk_byte); 535 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 536 0); 537 if (IS_ERR(eb)) { 538 return PTR_ERR(eb); 539 } else if (!extent_buffer_uptodate(eb)) { 540 free_extent_buffer(eb); 541 return -EIO; 542 } 543 btrfs_tree_read_lock(eb); 544 if (btrfs_header_level(eb) == 0) 545 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 546 else 547 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 548 btrfs_tree_read_unlock(eb); 549 free_extent_buffer(eb); 550 } 551 return 0; 552 } 553 554 /* 555 * merge backrefs and adjust counts accordingly 556 * 557 * mode = 1: merge identical keys, if key is set 558 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 559 * additionally, we could even add a key range for the blocks we 560 * looked into to merge even more (-> replace unresolved refs by those 561 * having a parent). 562 * mode = 2: merge identical parents 563 */ 564 static void __merge_refs(struct list_head *head, int mode) 565 { 566 struct list_head *pos1; 567 568 list_for_each(pos1, head) { 569 struct list_head *n2; 570 struct list_head *pos2; 571 struct __prelim_ref *ref1; 572 573 ref1 = list_entry(pos1, struct __prelim_ref, list); 574 575 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head; 576 pos2 = n2, n2 = pos2->next) { 577 struct __prelim_ref *ref2; 578 struct __prelim_ref *xchg; 579 struct extent_inode_elem *eie; 580 581 ref2 = list_entry(pos2, struct __prelim_ref, list); 582 583 if (!ref_for_same_block(ref1, ref2)) 584 continue; 585 if (mode == 1) { 586 if (!ref1->parent && ref2->parent) { 587 xchg = ref1; 588 ref1 = ref2; 589 ref2 = xchg; 590 } 591 } else { 592 if (ref1->parent != ref2->parent) 593 continue; 594 } 595 596 eie = ref1->inode_list; 597 while (eie && eie->next) 598 eie = eie->next; 599 if (eie) 600 eie->next = ref2->inode_list; 601 else 602 ref1->inode_list = ref2->inode_list; 603 ref1->count += ref2->count; 604 605 list_del(&ref2->list); 606 kmem_cache_free(btrfs_prelim_ref_cache, ref2); 607 } 608 609 } 610 } 611 612 /* 613 * add all currently queued delayed refs from this head whose seq nr is 614 * smaller or equal that seq to the list 615 */ 616 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 617 struct list_head *prefs, u64 *total_refs, 618 u64 inum) 619 { 620 struct btrfs_delayed_ref_node *node; 621 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 622 struct btrfs_key key; 623 struct btrfs_key op_key = {0}; 624 int sgn; 625 int ret = 0; 626 627 if (extent_op && extent_op->update_key) 628 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 629 630 spin_lock(&head->lock); 631 list_for_each_entry(node, &head->ref_list, list) { 632 if (node->seq > seq) 633 continue; 634 635 switch (node->action) { 636 case BTRFS_ADD_DELAYED_EXTENT: 637 case BTRFS_UPDATE_DELAYED_HEAD: 638 WARN_ON(1); 639 continue; 640 case BTRFS_ADD_DELAYED_REF: 641 sgn = 1; 642 break; 643 case BTRFS_DROP_DELAYED_REF: 644 sgn = -1; 645 break; 646 default: 647 BUG_ON(1); 648 } 649 *total_refs += (node->ref_mod * sgn); 650 switch (node->type) { 651 case BTRFS_TREE_BLOCK_REF_KEY: { 652 struct btrfs_delayed_tree_ref *ref; 653 654 ref = btrfs_delayed_node_to_tree_ref(node); 655 ret = __add_prelim_ref(prefs, ref->root, &op_key, 656 ref->level + 1, 0, node->bytenr, 657 node->ref_mod * sgn, GFP_ATOMIC); 658 break; 659 } 660 case BTRFS_SHARED_BLOCK_REF_KEY: { 661 struct btrfs_delayed_tree_ref *ref; 662 663 ref = btrfs_delayed_node_to_tree_ref(node); 664 ret = __add_prelim_ref(prefs, 0, NULL, 665 ref->level + 1, ref->parent, 666 node->bytenr, 667 node->ref_mod * sgn, GFP_ATOMIC); 668 break; 669 } 670 case BTRFS_EXTENT_DATA_REF_KEY: { 671 struct btrfs_delayed_data_ref *ref; 672 ref = btrfs_delayed_node_to_data_ref(node); 673 674 key.objectid = ref->objectid; 675 key.type = BTRFS_EXTENT_DATA_KEY; 676 key.offset = ref->offset; 677 678 /* 679 * Found a inum that doesn't match our known inum, we 680 * know it's shared. 681 */ 682 if (inum && ref->objectid != inum) { 683 ret = BACKREF_FOUND_SHARED; 684 break; 685 } 686 687 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 688 node->bytenr, 689 node->ref_mod * sgn, GFP_ATOMIC); 690 break; 691 } 692 case BTRFS_SHARED_DATA_REF_KEY: { 693 struct btrfs_delayed_data_ref *ref; 694 695 ref = btrfs_delayed_node_to_data_ref(node); 696 ret = __add_prelim_ref(prefs, 0, NULL, 0, 697 ref->parent, node->bytenr, 698 node->ref_mod * sgn, GFP_ATOMIC); 699 break; 700 } 701 default: 702 WARN_ON(1); 703 } 704 if (ret) 705 break; 706 } 707 spin_unlock(&head->lock); 708 return ret; 709 } 710 711 /* 712 * add all inline backrefs for bytenr to the list 713 */ 714 static int __add_inline_refs(struct btrfs_fs_info *fs_info, 715 struct btrfs_path *path, u64 bytenr, 716 int *info_level, struct list_head *prefs, 717 u64 *total_refs, u64 inum) 718 { 719 int ret = 0; 720 int slot; 721 struct extent_buffer *leaf; 722 struct btrfs_key key; 723 struct btrfs_key found_key; 724 unsigned long ptr; 725 unsigned long end; 726 struct btrfs_extent_item *ei; 727 u64 flags; 728 u64 item_size; 729 730 /* 731 * enumerate all inline refs 732 */ 733 leaf = path->nodes[0]; 734 slot = path->slots[0]; 735 736 item_size = btrfs_item_size_nr(leaf, slot); 737 BUG_ON(item_size < sizeof(*ei)); 738 739 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 740 flags = btrfs_extent_flags(leaf, ei); 741 *total_refs += btrfs_extent_refs(leaf, ei); 742 btrfs_item_key_to_cpu(leaf, &found_key, slot); 743 744 ptr = (unsigned long)(ei + 1); 745 end = (unsigned long)ei + item_size; 746 747 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 748 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 749 struct btrfs_tree_block_info *info; 750 751 info = (struct btrfs_tree_block_info *)ptr; 752 *info_level = btrfs_tree_block_level(leaf, info); 753 ptr += sizeof(struct btrfs_tree_block_info); 754 BUG_ON(ptr > end); 755 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 756 *info_level = found_key.offset; 757 } else { 758 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 759 } 760 761 while (ptr < end) { 762 struct btrfs_extent_inline_ref *iref; 763 u64 offset; 764 int type; 765 766 iref = (struct btrfs_extent_inline_ref *)ptr; 767 type = btrfs_extent_inline_ref_type(leaf, iref); 768 offset = btrfs_extent_inline_ref_offset(leaf, iref); 769 770 switch (type) { 771 case BTRFS_SHARED_BLOCK_REF_KEY: 772 ret = __add_prelim_ref(prefs, 0, NULL, 773 *info_level + 1, offset, 774 bytenr, 1, GFP_NOFS); 775 break; 776 case BTRFS_SHARED_DATA_REF_KEY: { 777 struct btrfs_shared_data_ref *sdref; 778 int count; 779 780 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 781 count = btrfs_shared_data_ref_count(leaf, sdref); 782 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 783 bytenr, count, GFP_NOFS); 784 break; 785 } 786 case BTRFS_TREE_BLOCK_REF_KEY: 787 ret = __add_prelim_ref(prefs, offset, NULL, 788 *info_level + 1, 0, 789 bytenr, 1, GFP_NOFS); 790 break; 791 case BTRFS_EXTENT_DATA_REF_KEY: { 792 struct btrfs_extent_data_ref *dref; 793 int count; 794 u64 root; 795 796 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 797 count = btrfs_extent_data_ref_count(leaf, dref); 798 key.objectid = btrfs_extent_data_ref_objectid(leaf, 799 dref); 800 key.type = BTRFS_EXTENT_DATA_KEY; 801 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 802 803 if (inum && key.objectid != inum) { 804 ret = BACKREF_FOUND_SHARED; 805 break; 806 } 807 808 root = btrfs_extent_data_ref_root(leaf, dref); 809 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 810 bytenr, count, GFP_NOFS); 811 break; 812 } 813 default: 814 WARN_ON(1); 815 } 816 if (ret) 817 return ret; 818 ptr += btrfs_extent_inline_ref_size(type); 819 } 820 821 return 0; 822 } 823 824 /* 825 * add all non-inline backrefs for bytenr to the list 826 */ 827 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 828 struct btrfs_path *path, u64 bytenr, 829 int info_level, struct list_head *prefs, u64 inum) 830 { 831 struct btrfs_root *extent_root = fs_info->extent_root; 832 int ret; 833 int slot; 834 struct extent_buffer *leaf; 835 struct btrfs_key key; 836 837 while (1) { 838 ret = btrfs_next_item(extent_root, path); 839 if (ret < 0) 840 break; 841 if (ret) { 842 ret = 0; 843 break; 844 } 845 846 slot = path->slots[0]; 847 leaf = path->nodes[0]; 848 btrfs_item_key_to_cpu(leaf, &key, slot); 849 850 if (key.objectid != bytenr) 851 break; 852 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 853 continue; 854 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 855 break; 856 857 switch (key.type) { 858 case BTRFS_SHARED_BLOCK_REF_KEY: 859 ret = __add_prelim_ref(prefs, 0, NULL, 860 info_level + 1, key.offset, 861 bytenr, 1, GFP_NOFS); 862 break; 863 case BTRFS_SHARED_DATA_REF_KEY: { 864 struct btrfs_shared_data_ref *sdref; 865 int count; 866 867 sdref = btrfs_item_ptr(leaf, slot, 868 struct btrfs_shared_data_ref); 869 count = btrfs_shared_data_ref_count(leaf, sdref); 870 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 871 bytenr, count, GFP_NOFS); 872 break; 873 } 874 case BTRFS_TREE_BLOCK_REF_KEY: 875 ret = __add_prelim_ref(prefs, key.offset, NULL, 876 info_level + 1, 0, 877 bytenr, 1, GFP_NOFS); 878 break; 879 case BTRFS_EXTENT_DATA_REF_KEY: { 880 struct btrfs_extent_data_ref *dref; 881 int count; 882 u64 root; 883 884 dref = btrfs_item_ptr(leaf, slot, 885 struct btrfs_extent_data_ref); 886 count = btrfs_extent_data_ref_count(leaf, dref); 887 key.objectid = btrfs_extent_data_ref_objectid(leaf, 888 dref); 889 key.type = BTRFS_EXTENT_DATA_KEY; 890 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 891 892 if (inum && key.objectid != inum) { 893 ret = BACKREF_FOUND_SHARED; 894 break; 895 } 896 897 root = btrfs_extent_data_ref_root(leaf, dref); 898 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 899 bytenr, count, GFP_NOFS); 900 break; 901 } 902 default: 903 WARN_ON(1); 904 } 905 if (ret) 906 return ret; 907 908 } 909 910 return ret; 911 } 912 913 /* 914 * this adds all existing backrefs (inline backrefs, backrefs and delayed 915 * refs) for the given bytenr to the refs list, merges duplicates and resolves 916 * indirect refs to their parent bytenr. 917 * When roots are found, they're added to the roots list 918 * 919 * NOTE: This can return values > 0 920 * 921 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave 922 * much like trans == NULL case, the difference only lies in it will not 923 * commit root. 924 * The special case is for qgroup to search roots in commit_transaction(). 925 * 926 * FIXME some caching might speed things up 927 */ 928 static int find_parent_nodes(struct btrfs_trans_handle *trans, 929 struct btrfs_fs_info *fs_info, u64 bytenr, 930 u64 time_seq, struct ulist *refs, 931 struct ulist *roots, const u64 *extent_item_pos, 932 u64 root_objectid, u64 inum) 933 { 934 struct btrfs_key key; 935 struct btrfs_path *path; 936 struct btrfs_delayed_ref_root *delayed_refs = NULL; 937 struct btrfs_delayed_ref_head *head; 938 int info_level = 0; 939 int ret; 940 struct list_head prefs_delayed; 941 struct list_head prefs; 942 struct __prelim_ref *ref; 943 struct extent_inode_elem *eie = NULL; 944 u64 total_refs = 0; 945 946 INIT_LIST_HEAD(&prefs); 947 INIT_LIST_HEAD(&prefs_delayed); 948 949 key.objectid = bytenr; 950 key.offset = (u64)-1; 951 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 952 key.type = BTRFS_METADATA_ITEM_KEY; 953 else 954 key.type = BTRFS_EXTENT_ITEM_KEY; 955 956 path = btrfs_alloc_path(); 957 if (!path) 958 return -ENOMEM; 959 if (!trans) { 960 path->search_commit_root = 1; 961 path->skip_locking = 1; 962 } 963 964 if (time_seq == (u64)-1) 965 path->skip_locking = 1; 966 967 /* 968 * grab both a lock on the path and a lock on the delayed ref head. 969 * We need both to get a consistent picture of how the refs look 970 * at a specified point in time 971 */ 972 again: 973 head = NULL; 974 975 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 976 if (ret < 0) 977 goto out; 978 BUG_ON(ret == 0); 979 980 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 981 if (trans && likely(trans->type != __TRANS_DUMMY) && 982 time_seq != (u64)-1) { 983 #else 984 if (trans && time_seq != (u64)-1) { 985 #endif 986 /* 987 * look if there are updates for this ref queued and lock the 988 * head 989 */ 990 delayed_refs = &trans->transaction->delayed_refs; 991 spin_lock(&delayed_refs->lock); 992 head = btrfs_find_delayed_ref_head(trans, bytenr); 993 if (head) { 994 if (!mutex_trylock(&head->mutex)) { 995 atomic_inc(&head->node.refs); 996 spin_unlock(&delayed_refs->lock); 997 998 btrfs_release_path(path); 999 1000 /* 1001 * Mutex was contended, block until it's 1002 * released and try again 1003 */ 1004 mutex_lock(&head->mutex); 1005 mutex_unlock(&head->mutex); 1006 btrfs_put_delayed_ref(&head->node); 1007 goto again; 1008 } 1009 spin_unlock(&delayed_refs->lock); 1010 ret = __add_delayed_refs(head, time_seq, 1011 &prefs_delayed, &total_refs, 1012 inum); 1013 mutex_unlock(&head->mutex); 1014 if (ret) 1015 goto out; 1016 } else { 1017 spin_unlock(&delayed_refs->lock); 1018 } 1019 } 1020 1021 if (path->slots[0]) { 1022 struct extent_buffer *leaf; 1023 int slot; 1024 1025 path->slots[0]--; 1026 leaf = path->nodes[0]; 1027 slot = path->slots[0]; 1028 btrfs_item_key_to_cpu(leaf, &key, slot); 1029 if (key.objectid == bytenr && 1030 (key.type == BTRFS_EXTENT_ITEM_KEY || 1031 key.type == BTRFS_METADATA_ITEM_KEY)) { 1032 ret = __add_inline_refs(fs_info, path, bytenr, 1033 &info_level, &prefs, 1034 &total_refs, inum); 1035 if (ret) 1036 goto out; 1037 ret = __add_keyed_refs(fs_info, path, bytenr, 1038 info_level, &prefs, inum); 1039 if (ret) 1040 goto out; 1041 } 1042 } 1043 btrfs_release_path(path); 1044 1045 list_splice_init(&prefs_delayed, &prefs); 1046 1047 ret = __add_missing_keys(fs_info, &prefs); 1048 if (ret) 1049 goto out; 1050 1051 __merge_refs(&prefs, 1); 1052 1053 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs, 1054 extent_item_pos, total_refs, 1055 root_objectid); 1056 if (ret) 1057 goto out; 1058 1059 __merge_refs(&prefs, 2); 1060 1061 while (!list_empty(&prefs)) { 1062 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1063 WARN_ON(ref->count < 0); 1064 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1065 if (root_objectid && ref->root_id != root_objectid) { 1066 ret = BACKREF_FOUND_SHARED; 1067 goto out; 1068 } 1069 1070 /* no parent == root of tree */ 1071 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1072 if (ret < 0) 1073 goto out; 1074 } 1075 if (ref->count && ref->parent) { 1076 if (extent_item_pos && !ref->inode_list && 1077 ref->level == 0) { 1078 struct extent_buffer *eb; 1079 1080 eb = read_tree_block(fs_info->extent_root, 1081 ref->parent, 0); 1082 if (IS_ERR(eb)) { 1083 ret = PTR_ERR(eb); 1084 goto out; 1085 } else if (!extent_buffer_uptodate(eb)) { 1086 free_extent_buffer(eb); 1087 ret = -EIO; 1088 goto out; 1089 } 1090 btrfs_tree_read_lock(eb); 1091 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1092 ret = find_extent_in_eb(eb, bytenr, 1093 *extent_item_pos, &eie); 1094 btrfs_tree_read_unlock_blocking(eb); 1095 free_extent_buffer(eb); 1096 if (ret < 0) 1097 goto out; 1098 ref->inode_list = eie; 1099 } 1100 ret = ulist_add_merge_ptr(refs, ref->parent, 1101 ref->inode_list, 1102 (void **)&eie, GFP_NOFS); 1103 if (ret < 0) 1104 goto out; 1105 if (!ret && extent_item_pos) { 1106 /* 1107 * we've recorded that parent, so we must extend 1108 * its inode list here 1109 */ 1110 BUG_ON(!eie); 1111 while (eie->next) 1112 eie = eie->next; 1113 eie->next = ref->inode_list; 1114 } 1115 eie = NULL; 1116 } 1117 list_del(&ref->list); 1118 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1119 } 1120 1121 out: 1122 btrfs_free_path(path); 1123 while (!list_empty(&prefs)) { 1124 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1125 list_del(&ref->list); 1126 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1127 } 1128 while (!list_empty(&prefs_delayed)) { 1129 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 1130 list); 1131 list_del(&ref->list); 1132 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1133 } 1134 if (ret < 0) 1135 free_inode_elem_list(eie); 1136 return ret; 1137 } 1138 1139 static void free_leaf_list(struct ulist *blocks) 1140 { 1141 struct ulist_node *node = NULL; 1142 struct extent_inode_elem *eie; 1143 struct ulist_iterator uiter; 1144 1145 ULIST_ITER_INIT(&uiter); 1146 while ((node = ulist_next(blocks, &uiter))) { 1147 if (!node->aux) 1148 continue; 1149 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 1150 free_inode_elem_list(eie); 1151 node->aux = 0; 1152 } 1153 1154 ulist_free(blocks); 1155 } 1156 1157 /* 1158 * Finds all leafs with a reference to the specified combination of bytenr and 1159 * offset. key_list_head will point to a list of corresponding keys (caller must 1160 * free each list element). The leafs will be stored in the leafs ulist, which 1161 * must be freed with ulist_free. 1162 * 1163 * returns 0 on success, <0 on error 1164 */ 1165 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1166 struct btrfs_fs_info *fs_info, u64 bytenr, 1167 u64 time_seq, struct ulist **leafs, 1168 const u64 *extent_item_pos) 1169 { 1170 int ret; 1171 1172 *leafs = ulist_alloc(GFP_NOFS); 1173 if (!*leafs) 1174 return -ENOMEM; 1175 1176 ret = find_parent_nodes(trans, fs_info, bytenr, 1177 time_seq, *leafs, NULL, extent_item_pos, 0, 0); 1178 if (ret < 0 && ret != -ENOENT) { 1179 free_leaf_list(*leafs); 1180 return ret; 1181 } 1182 1183 return 0; 1184 } 1185 1186 /* 1187 * walk all backrefs for a given extent to find all roots that reference this 1188 * extent. Walking a backref means finding all extents that reference this 1189 * extent and in turn walk the backrefs of those, too. Naturally this is a 1190 * recursive process, but here it is implemented in an iterative fashion: We 1191 * find all referencing extents for the extent in question and put them on a 1192 * list. In turn, we find all referencing extents for those, further appending 1193 * to the list. The way we iterate the list allows adding more elements after 1194 * the current while iterating. The process stops when we reach the end of the 1195 * list. Found roots are added to the roots list. 1196 * 1197 * returns 0 on success, < 0 on error. 1198 */ 1199 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1200 struct btrfs_fs_info *fs_info, u64 bytenr, 1201 u64 time_seq, struct ulist **roots) 1202 { 1203 struct ulist *tmp; 1204 struct ulist_node *node = NULL; 1205 struct ulist_iterator uiter; 1206 int ret; 1207 1208 tmp = ulist_alloc(GFP_NOFS); 1209 if (!tmp) 1210 return -ENOMEM; 1211 *roots = ulist_alloc(GFP_NOFS); 1212 if (!*roots) { 1213 ulist_free(tmp); 1214 return -ENOMEM; 1215 } 1216 1217 ULIST_ITER_INIT(&uiter); 1218 while (1) { 1219 ret = find_parent_nodes(trans, fs_info, bytenr, 1220 time_seq, tmp, *roots, NULL, 0, 0); 1221 if (ret < 0 && ret != -ENOENT) { 1222 ulist_free(tmp); 1223 ulist_free(*roots); 1224 return ret; 1225 } 1226 node = ulist_next(tmp, &uiter); 1227 if (!node) 1228 break; 1229 bytenr = node->val; 1230 cond_resched(); 1231 } 1232 1233 ulist_free(tmp); 1234 return 0; 1235 } 1236 1237 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1238 struct btrfs_fs_info *fs_info, u64 bytenr, 1239 u64 time_seq, struct ulist **roots) 1240 { 1241 int ret; 1242 1243 if (!trans) 1244 down_read(&fs_info->commit_root_sem); 1245 ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots); 1246 if (!trans) 1247 up_read(&fs_info->commit_root_sem); 1248 return ret; 1249 } 1250 1251 /** 1252 * btrfs_check_shared - tell us whether an extent is shared 1253 * 1254 * @trans: optional trans handle 1255 * 1256 * btrfs_check_shared uses the backref walking code but will short 1257 * circuit as soon as it finds a root or inode that doesn't match the 1258 * one passed in. This provides a significant performance benefit for 1259 * callers (such as fiemap) which want to know whether the extent is 1260 * shared but do not need a ref count. 1261 * 1262 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1263 */ 1264 int btrfs_check_shared(struct btrfs_trans_handle *trans, 1265 struct btrfs_fs_info *fs_info, u64 root_objectid, 1266 u64 inum, u64 bytenr) 1267 { 1268 struct ulist *tmp = NULL; 1269 struct ulist *roots = NULL; 1270 struct ulist_iterator uiter; 1271 struct ulist_node *node; 1272 struct seq_list elem = SEQ_LIST_INIT(elem); 1273 int ret = 0; 1274 1275 tmp = ulist_alloc(GFP_NOFS); 1276 roots = ulist_alloc(GFP_NOFS); 1277 if (!tmp || !roots) { 1278 ulist_free(tmp); 1279 ulist_free(roots); 1280 return -ENOMEM; 1281 } 1282 1283 if (trans) 1284 btrfs_get_tree_mod_seq(fs_info, &elem); 1285 else 1286 down_read(&fs_info->commit_root_sem); 1287 ULIST_ITER_INIT(&uiter); 1288 while (1) { 1289 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1290 roots, NULL, root_objectid, inum); 1291 if (ret == BACKREF_FOUND_SHARED) { 1292 /* this is the only condition under which we return 1 */ 1293 ret = 1; 1294 break; 1295 } 1296 if (ret < 0 && ret != -ENOENT) 1297 break; 1298 ret = 0; 1299 node = ulist_next(tmp, &uiter); 1300 if (!node) 1301 break; 1302 bytenr = node->val; 1303 cond_resched(); 1304 } 1305 if (trans) 1306 btrfs_put_tree_mod_seq(fs_info, &elem); 1307 else 1308 up_read(&fs_info->commit_root_sem); 1309 ulist_free(tmp); 1310 ulist_free(roots); 1311 return ret; 1312 } 1313 1314 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1315 u64 start_off, struct btrfs_path *path, 1316 struct btrfs_inode_extref **ret_extref, 1317 u64 *found_off) 1318 { 1319 int ret, slot; 1320 struct btrfs_key key; 1321 struct btrfs_key found_key; 1322 struct btrfs_inode_extref *extref; 1323 struct extent_buffer *leaf; 1324 unsigned long ptr; 1325 1326 key.objectid = inode_objectid; 1327 key.type = BTRFS_INODE_EXTREF_KEY; 1328 key.offset = start_off; 1329 1330 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1331 if (ret < 0) 1332 return ret; 1333 1334 while (1) { 1335 leaf = path->nodes[0]; 1336 slot = path->slots[0]; 1337 if (slot >= btrfs_header_nritems(leaf)) { 1338 /* 1339 * If the item at offset is not found, 1340 * btrfs_search_slot will point us to the slot 1341 * where it should be inserted. In our case 1342 * that will be the slot directly before the 1343 * next INODE_REF_KEY_V2 item. In the case 1344 * that we're pointing to the last slot in a 1345 * leaf, we must move one leaf over. 1346 */ 1347 ret = btrfs_next_leaf(root, path); 1348 if (ret) { 1349 if (ret >= 1) 1350 ret = -ENOENT; 1351 break; 1352 } 1353 continue; 1354 } 1355 1356 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1357 1358 /* 1359 * Check that we're still looking at an extended ref key for 1360 * this particular objectid. If we have different 1361 * objectid or type then there are no more to be found 1362 * in the tree and we can exit. 1363 */ 1364 ret = -ENOENT; 1365 if (found_key.objectid != inode_objectid) 1366 break; 1367 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1368 break; 1369 1370 ret = 0; 1371 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1372 extref = (struct btrfs_inode_extref *)ptr; 1373 *ret_extref = extref; 1374 if (found_off) 1375 *found_off = found_key.offset; 1376 break; 1377 } 1378 1379 return ret; 1380 } 1381 1382 /* 1383 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1384 * Elements of the path are separated by '/' and the path is guaranteed to be 1385 * 0-terminated. the path is only given within the current file system. 1386 * Therefore, it never starts with a '/'. the caller is responsible to provide 1387 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1388 * the start point of the resulting string is returned. this pointer is within 1389 * dest, normally. 1390 * in case the path buffer would overflow, the pointer is decremented further 1391 * as if output was written to the buffer, though no more output is actually 1392 * generated. that way, the caller can determine how much space would be 1393 * required for the path to fit into the buffer. in that case, the returned 1394 * value will be smaller than dest. callers must check this! 1395 */ 1396 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1397 u32 name_len, unsigned long name_off, 1398 struct extent_buffer *eb_in, u64 parent, 1399 char *dest, u32 size) 1400 { 1401 int slot; 1402 u64 next_inum; 1403 int ret; 1404 s64 bytes_left = ((s64)size) - 1; 1405 struct extent_buffer *eb = eb_in; 1406 struct btrfs_key found_key; 1407 int leave_spinning = path->leave_spinning; 1408 struct btrfs_inode_ref *iref; 1409 1410 if (bytes_left >= 0) 1411 dest[bytes_left] = '\0'; 1412 1413 path->leave_spinning = 1; 1414 while (1) { 1415 bytes_left -= name_len; 1416 if (bytes_left >= 0) 1417 read_extent_buffer(eb, dest + bytes_left, 1418 name_off, name_len); 1419 if (eb != eb_in) { 1420 btrfs_tree_read_unlock_blocking(eb); 1421 free_extent_buffer(eb); 1422 } 1423 ret = btrfs_find_item(fs_root, path, parent, 0, 1424 BTRFS_INODE_REF_KEY, &found_key); 1425 if (ret > 0) 1426 ret = -ENOENT; 1427 if (ret) 1428 break; 1429 1430 next_inum = found_key.offset; 1431 1432 /* regular exit ahead */ 1433 if (parent == next_inum) 1434 break; 1435 1436 slot = path->slots[0]; 1437 eb = path->nodes[0]; 1438 /* make sure we can use eb after releasing the path */ 1439 if (eb != eb_in) { 1440 atomic_inc(&eb->refs); 1441 btrfs_tree_read_lock(eb); 1442 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1443 } 1444 btrfs_release_path(path); 1445 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1446 1447 name_len = btrfs_inode_ref_name_len(eb, iref); 1448 name_off = (unsigned long)(iref + 1); 1449 1450 parent = next_inum; 1451 --bytes_left; 1452 if (bytes_left >= 0) 1453 dest[bytes_left] = '/'; 1454 } 1455 1456 btrfs_release_path(path); 1457 path->leave_spinning = leave_spinning; 1458 1459 if (ret) 1460 return ERR_PTR(ret); 1461 1462 return dest + bytes_left; 1463 } 1464 1465 /* 1466 * this makes the path point to (logical EXTENT_ITEM *) 1467 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1468 * tree blocks and <0 on error. 1469 */ 1470 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1471 struct btrfs_path *path, struct btrfs_key *found_key, 1472 u64 *flags_ret) 1473 { 1474 int ret; 1475 u64 flags; 1476 u64 size = 0; 1477 u32 item_size; 1478 struct extent_buffer *eb; 1479 struct btrfs_extent_item *ei; 1480 struct btrfs_key key; 1481 1482 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1483 key.type = BTRFS_METADATA_ITEM_KEY; 1484 else 1485 key.type = BTRFS_EXTENT_ITEM_KEY; 1486 key.objectid = logical; 1487 key.offset = (u64)-1; 1488 1489 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1490 if (ret < 0) 1491 return ret; 1492 1493 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1494 if (ret) { 1495 if (ret > 0) 1496 ret = -ENOENT; 1497 return ret; 1498 } 1499 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1500 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1501 size = fs_info->extent_root->nodesize; 1502 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1503 size = found_key->offset; 1504 1505 if (found_key->objectid > logical || 1506 found_key->objectid + size <= logical) { 1507 pr_debug("logical %llu is not within any extent\n", logical); 1508 return -ENOENT; 1509 } 1510 1511 eb = path->nodes[0]; 1512 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1513 BUG_ON(item_size < sizeof(*ei)); 1514 1515 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1516 flags = btrfs_extent_flags(eb, ei); 1517 1518 pr_debug("logical %llu is at position %llu within the extent (%llu " 1519 "EXTENT_ITEM %llu) flags %#llx size %u\n", 1520 logical, logical - found_key->objectid, found_key->objectid, 1521 found_key->offset, flags, item_size); 1522 1523 WARN_ON(!flags_ret); 1524 if (flags_ret) { 1525 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1526 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1527 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1528 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1529 else 1530 BUG_ON(1); 1531 return 0; 1532 } 1533 1534 return -EIO; 1535 } 1536 1537 /* 1538 * helper function to iterate extent inline refs. ptr must point to a 0 value 1539 * for the first call and may be modified. it is used to track state. 1540 * if more refs exist, 0 is returned and the next call to 1541 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1542 * next ref. after the last ref was processed, 1 is returned. 1543 * returns <0 on error 1544 */ 1545 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1546 struct btrfs_key *key, 1547 struct btrfs_extent_item *ei, u32 item_size, 1548 struct btrfs_extent_inline_ref **out_eiref, 1549 int *out_type) 1550 { 1551 unsigned long end; 1552 u64 flags; 1553 struct btrfs_tree_block_info *info; 1554 1555 if (!*ptr) { 1556 /* first call */ 1557 flags = btrfs_extent_flags(eb, ei); 1558 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1559 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1560 /* a skinny metadata extent */ 1561 *out_eiref = 1562 (struct btrfs_extent_inline_ref *)(ei + 1); 1563 } else { 1564 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1565 info = (struct btrfs_tree_block_info *)(ei + 1); 1566 *out_eiref = 1567 (struct btrfs_extent_inline_ref *)(info + 1); 1568 } 1569 } else { 1570 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1571 } 1572 *ptr = (unsigned long)*out_eiref; 1573 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1574 return -ENOENT; 1575 } 1576 1577 end = (unsigned long)ei + item_size; 1578 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1579 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1580 1581 *ptr += btrfs_extent_inline_ref_size(*out_type); 1582 WARN_ON(*ptr > end); 1583 if (*ptr == end) 1584 return 1; /* last */ 1585 1586 return 0; 1587 } 1588 1589 /* 1590 * reads the tree block backref for an extent. tree level and root are returned 1591 * through out_level and out_root. ptr must point to a 0 value for the first 1592 * call and may be modified (see __get_extent_inline_ref comment). 1593 * returns 0 if data was provided, 1 if there was no more data to provide or 1594 * <0 on error. 1595 */ 1596 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1597 struct btrfs_key *key, struct btrfs_extent_item *ei, 1598 u32 item_size, u64 *out_root, u8 *out_level) 1599 { 1600 int ret; 1601 int type; 1602 struct btrfs_extent_inline_ref *eiref; 1603 1604 if (*ptr == (unsigned long)-1) 1605 return 1; 1606 1607 while (1) { 1608 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size, 1609 &eiref, &type); 1610 if (ret < 0) 1611 return ret; 1612 1613 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1614 type == BTRFS_SHARED_BLOCK_REF_KEY) 1615 break; 1616 1617 if (ret == 1) 1618 return 1; 1619 } 1620 1621 /* we can treat both ref types equally here */ 1622 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1623 1624 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1625 struct btrfs_tree_block_info *info; 1626 1627 info = (struct btrfs_tree_block_info *)(ei + 1); 1628 *out_level = btrfs_tree_block_level(eb, info); 1629 } else { 1630 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1631 *out_level = (u8)key->offset; 1632 } 1633 1634 if (ret == 1) 1635 *ptr = (unsigned long)-1; 1636 1637 return 0; 1638 } 1639 1640 static int iterate_leaf_refs(struct extent_inode_elem *inode_list, 1641 u64 root, u64 extent_item_objectid, 1642 iterate_extent_inodes_t *iterate, void *ctx) 1643 { 1644 struct extent_inode_elem *eie; 1645 int ret = 0; 1646 1647 for (eie = inode_list; eie; eie = eie->next) { 1648 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " 1649 "root %llu\n", extent_item_objectid, 1650 eie->inum, eie->offset, root); 1651 ret = iterate(eie->inum, eie->offset, root, ctx); 1652 if (ret) { 1653 pr_debug("stopping iteration for %llu due to ret=%d\n", 1654 extent_item_objectid, ret); 1655 break; 1656 } 1657 } 1658 1659 return ret; 1660 } 1661 1662 /* 1663 * calls iterate() for every inode that references the extent identified by 1664 * the given parameters. 1665 * when the iterator function returns a non-zero value, iteration stops. 1666 */ 1667 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1668 u64 extent_item_objectid, u64 extent_item_pos, 1669 int search_commit_root, 1670 iterate_extent_inodes_t *iterate, void *ctx) 1671 { 1672 int ret; 1673 struct btrfs_trans_handle *trans = NULL; 1674 struct ulist *refs = NULL; 1675 struct ulist *roots = NULL; 1676 struct ulist_node *ref_node = NULL; 1677 struct ulist_node *root_node = NULL; 1678 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 1679 struct ulist_iterator ref_uiter; 1680 struct ulist_iterator root_uiter; 1681 1682 pr_debug("resolving all inodes for extent %llu\n", 1683 extent_item_objectid); 1684 1685 if (!search_commit_root) { 1686 trans = btrfs_join_transaction(fs_info->extent_root); 1687 if (IS_ERR(trans)) 1688 return PTR_ERR(trans); 1689 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1690 } else { 1691 down_read(&fs_info->commit_root_sem); 1692 } 1693 1694 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1695 tree_mod_seq_elem.seq, &refs, 1696 &extent_item_pos); 1697 if (ret) 1698 goto out; 1699 1700 ULIST_ITER_INIT(&ref_uiter); 1701 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1702 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val, 1703 tree_mod_seq_elem.seq, &roots); 1704 if (ret) 1705 break; 1706 ULIST_ITER_INIT(&root_uiter); 1707 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1708 pr_debug("root %llu references leaf %llu, data list " 1709 "%#llx\n", root_node->val, ref_node->val, 1710 ref_node->aux); 1711 ret = iterate_leaf_refs((struct extent_inode_elem *) 1712 (uintptr_t)ref_node->aux, 1713 root_node->val, 1714 extent_item_objectid, 1715 iterate, ctx); 1716 } 1717 ulist_free(roots); 1718 } 1719 1720 free_leaf_list(refs); 1721 out: 1722 if (!search_commit_root) { 1723 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1724 btrfs_end_transaction(trans, fs_info->extent_root); 1725 } else { 1726 up_read(&fs_info->commit_root_sem); 1727 } 1728 1729 return ret; 1730 } 1731 1732 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1733 struct btrfs_path *path, 1734 iterate_extent_inodes_t *iterate, void *ctx) 1735 { 1736 int ret; 1737 u64 extent_item_pos; 1738 u64 flags = 0; 1739 struct btrfs_key found_key; 1740 int search_commit_root = path->search_commit_root; 1741 1742 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1743 btrfs_release_path(path); 1744 if (ret < 0) 1745 return ret; 1746 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1747 return -EINVAL; 1748 1749 extent_item_pos = logical - found_key.objectid; 1750 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1751 extent_item_pos, search_commit_root, 1752 iterate, ctx); 1753 1754 return ret; 1755 } 1756 1757 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1758 struct extent_buffer *eb, void *ctx); 1759 1760 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1761 struct btrfs_path *path, 1762 iterate_irefs_t *iterate, void *ctx) 1763 { 1764 int ret = 0; 1765 int slot; 1766 u32 cur; 1767 u32 len; 1768 u32 name_len; 1769 u64 parent = 0; 1770 int found = 0; 1771 struct extent_buffer *eb; 1772 struct btrfs_item *item; 1773 struct btrfs_inode_ref *iref; 1774 struct btrfs_key found_key; 1775 1776 while (!ret) { 1777 ret = btrfs_find_item(fs_root, path, inum, 1778 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 1779 &found_key); 1780 1781 if (ret < 0) 1782 break; 1783 if (ret) { 1784 ret = found ? 0 : -ENOENT; 1785 break; 1786 } 1787 ++found; 1788 1789 parent = found_key.offset; 1790 slot = path->slots[0]; 1791 eb = btrfs_clone_extent_buffer(path->nodes[0]); 1792 if (!eb) { 1793 ret = -ENOMEM; 1794 break; 1795 } 1796 extent_buffer_get(eb); 1797 btrfs_tree_read_lock(eb); 1798 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1799 btrfs_release_path(path); 1800 1801 item = btrfs_item_nr(slot); 1802 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1803 1804 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 1805 name_len = btrfs_inode_ref_name_len(eb, iref); 1806 /* path must be released before calling iterate()! */ 1807 pr_debug("following ref at offset %u for inode %llu in " 1808 "tree %llu\n", cur, found_key.objectid, 1809 fs_root->objectid); 1810 ret = iterate(parent, name_len, 1811 (unsigned long)(iref + 1), eb, ctx); 1812 if (ret) 1813 break; 1814 len = sizeof(*iref) + name_len; 1815 iref = (struct btrfs_inode_ref *)((char *)iref + len); 1816 } 1817 btrfs_tree_read_unlock_blocking(eb); 1818 free_extent_buffer(eb); 1819 } 1820 1821 btrfs_release_path(path); 1822 1823 return ret; 1824 } 1825 1826 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 1827 struct btrfs_path *path, 1828 iterate_irefs_t *iterate, void *ctx) 1829 { 1830 int ret; 1831 int slot; 1832 u64 offset = 0; 1833 u64 parent; 1834 int found = 0; 1835 struct extent_buffer *eb; 1836 struct btrfs_inode_extref *extref; 1837 u32 item_size; 1838 u32 cur_offset; 1839 unsigned long ptr; 1840 1841 while (1) { 1842 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 1843 &offset); 1844 if (ret < 0) 1845 break; 1846 if (ret) { 1847 ret = found ? 0 : -ENOENT; 1848 break; 1849 } 1850 ++found; 1851 1852 slot = path->slots[0]; 1853 eb = btrfs_clone_extent_buffer(path->nodes[0]); 1854 if (!eb) { 1855 ret = -ENOMEM; 1856 break; 1857 } 1858 extent_buffer_get(eb); 1859 1860 btrfs_tree_read_lock(eb); 1861 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1862 btrfs_release_path(path); 1863 1864 item_size = btrfs_item_size_nr(eb, slot); 1865 ptr = btrfs_item_ptr_offset(eb, slot); 1866 cur_offset = 0; 1867 1868 while (cur_offset < item_size) { 1869 u32 name_len; 1870 1871 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 1872 parent = btrfs_inode_extref_parent(eb, extref); 1873 name_len = btrfs_inode_extref_name_len(eb, extref); 1874 ret = iterate(parent, name_len, 1875 (unsigned long)&extref->name, eb, ctx); 1876 if (ret) 1877 break; 1878 1879 cur_offset += btrfs_inode_extref_name_len(eb, extref); 1880 cur_offset += sizeof(*extref); 1881 } 1882 btrfs_tree_read_unlock_blocking(eb); 1883 free_extent_buffer(eb); 1884 1885 offset++; 1886 } 1887 1888 btrfs_release_path(path); 1889 1890 return ret; 1891 } 1892 1893 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 1894 struct btrfs_path *path, iterate_irefs_t *iterate, 1895 void *ctx) 1896 { 1897 int ret; 1898 int found_refs = 0; 1899 1900 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 1901 if (!ret) 1902 ++found_refs; 1903 else if (ret != -ENOENT) 1904 return ret; 1905 1906 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 1907 if (ret == -ENOENT && found_refs) 1908 return 0; 1909 1910 return ret; 1911 } 1912 1913 /* 1914 * returns 0 if the path could be dumped (probably truncated) 1915 * returns <0 in case of an error 1916 */ 1917 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 1918 struct extent_buffer *eb, void *ctx) 1919 { 1920 struct inode_fs_paths *ipath = ctx; 1921 char *fspath; 1922 char *fspath_min; 1923 int i = ipath->fspath->elem_cnt; 1924 const int s_ptr = sizeof(char *); 1925 u32 bytes_left; 1926 1927 bytes_left = ipath->fspath->bytes_left > s_ptr ? 1928 ipath->fspath->bytes_left - s_ptr : 0; 1929 1930 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 1931 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 1932 name_off, eb, inum, fspath_min, bytes_left); 1933 if (IS_ERR(fspath)) 1934 return PTR_ERR(fspath); 1935 1936 if (fspath > fspath_min) { 1937 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 1938 ++ipath->fspath->elem_cnt; 1939 ipath->fspath->bytes_left = fspath - fspath_min; 1940 } else { 1941 ++ipath->fspath->elem_missed; 1942 ipath->fspath->bytes_missing += fspath_min - fspath; 1943 ipath->fspath->bytes_left = 0; 1944 } 1945 1946 return 0; 1947 } 1948 1949 /* 1950 * this dumps all file system paths to the inode into the ipath struct, provided 1951 * is has been created large enough. each path is zero-terminated and accessed 1952 * from ipath->fspath->val[i]. 1953 * when it returns, there are ipath->fspath->elem_cnt number of paths available 1954 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 1955 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, 1956 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 1957 * have been needed to return all paths. 1958 */ 1959 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 1960 { 1961 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 1962 inode_to_path, ipath); 1963 } 1964 1965 struct btrfs_data_container *init_data_container(u32 total_bytes) 1966 { 1967 struct btrfs_data_container *data; 1968 size_t alloc_bytes; 1969 1970 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 1971 data = vmalloc(alloc_bytes); 1972 if (!data) 1973 return ERR_PTR(-ENOMEM); 1974 1975 if (total_bytes >= sizeof(*data)) { 1976 data->bytes_left = total_bytes - sizeof(*data); 1977 data->bytes_missing = 0; 1978 } else { 1979 data->bytes_missing = sizeof(*data) - total_bytes; 1980 data->bytes_left = 0; 1981 } 1982 1983 data->elem_cnt = 0; 1984 data->elem_missed = 0; 1985 1986 return data; 1987 } 1988 1989 /* 1990 * allocates space to return multiple file system paths for an inode. 1991 * total_bytes to allocate are passed, note that space usable for actual path 1992 * information will be total_bytes - sizeof(struct inode_fs_paths). 1993 * the returned pointer must be freed with free_ipath() in the end. 1994 */ 1995 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 1996 struct btrfs_path *path) 1997 { 1998 struct inode_fs_paths *ifp; 1999 struct btrfs_data_container *fspath; 2000 2001 fspath = init_data_container(total_bytes); 2002 if (IS_ERR(fspath)) 2003 return (void *)fspath; 2004 2005 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 2006 if (!ifp) { 2007 kfree(fspath); 2008 return ERR_PTR(-ENOMEM); 2009 } 2010 2011 ifp->btrfs_path = path; 2012 ifp->fspath = fspath; 2013 ifp->fs_root = fs_root; 2014 2015 return ifp; 2016 } 2017 2018 void free_ipath(struct inode_fs_paths *ipath) 2019 { 2020 if (!ipath) 2021 return; 2022 vfree(ipath->fspath); 2023 kfree(ipath); 2024 } 2025