1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "extent-tree.h" 21 #include "relocation.h" 22 #include "tree-checker.h" 23 24 /* Just arbitrary numbers so we can be sure one of these happened. */ 25 #define BACKREF_FOUND_SHARED 6 26 #define BACKREF_FOUND_NOT_SHARED 7 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 u64 num_bytes; 32 struct extent_inode_elem *next; 33 }; 34 35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 36 const struct btrfs_key *key, 37 const struct extent_buffer *eb, 38 const struct btrfs_file_extent_item *fi, 39 struct extent_inode_elem **eie) 40 { 41 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi); 42 u64 offset = key->offset; 43 struct extent_inode_elem *e; 44 const u64 *root_ids; 45 int root_count; 46 bool cached; 47 48 if (!ctx->ignore_extent_item_pos && 49 !btrfs_file_extent_compression(eb, fi) && 50 !btrfs_file_extent_encryption(eb, fi) && 51 !btrfs_file_extent_other_encoding(eb, fi)) { 52 u64 data_offset; 53 54 data_offset = btrfs_file_extent_offset(eb, fi); 55 56 if (ctx->extent_item_pos < data_offset || 57 ctx->extent_item_pos >= data_offset + data_len) 58 return 1; 59 offset += ctx->extent_item_pos - data_offset; 60 } 61 62 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup) 63 goto add_inode_elem; 64 65 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids, 66 &root_count); 67 if (!cached) 68 goto add_inode_elem; 69 70 for (int i = 0; i < root_count; i++) { 71 int ret; 72 73 ret = ctx->indirect_ref_iterator(key->objectid, offset, 74 data_len, root_ids[i], 75 ctx->user_ctx); 76 if (ret) 77 return ret; 78 } 79 80 add_inode_elem: 81 e = kmalloc(sizeof(*e), GFP_NOFS); 82 if (!e) 83 return -ENOMEM; 84 85 e->next = *eie; 86 e->inum = key->objectid; 87 e->offset = offset; 88 e->num_bytes = data_len; 89 *eie = e; 90 91 return 0; 92 } 93 94 static void free_inode_elem_list(struct extent_inode_elem *eie) 95 { 96 struct extent_inode_elem *eie_next; 97 98 for (; eie; eie = eie_next) { 99 eie_next = eie->next; 100 kfree(eie); 101 } 102 } 103 104 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 105 const struct extent_buffer *eb, 106 struct extent_inode_elem **eie) 107 { 108 u64 disk_byte; 109 struct btrfs_key key; 110 struct btrfs_file_extent_item *fi; 111 int slot; 112 int nritems; 113 int extent_type; 114 int ret; 115 116 /* 117 * from the shared data ref, we only have the leaf but we need 118 * the key. thus, we must look into all items and see that we 119 * find one (some) with a reference to our extent item. 120 */ 121 nritems = btrfs_header_nritems(eb); 122 for (slot = 0; slot < nritems; ++slot) { 123 btrfs_item_key_to_cpu(eb, &key, slot); 124 if (key.type != BTRFS_EXTENT_DATA_KEY) 125 continue; 126 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 127 extent_type = btrfs_file_extent_type(eb, fi); 128 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 129 continue; 130 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 131 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 132 if (disk_byte != ctx->bytenr) 133 continue; 134 135 ret = check_extent_in_eb(ctx, &key, eb, fi, eie); 136 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 137 return ret; 138 } 139 140 return 0; 141 } 142 143 struct preftree { 144 struct rb_root_cached root; 145 unsigned int count; 146 }; 147 148 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 149 150 struct preftrees { 151 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 152 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 153 struct preftree indirect_missing_keys; 154 }; 155 156 /* 157 * Checks for a shared extent during backref search. 158 * 159 * The share_count tracks prelim_refs (direct and indirect) having a 160 * ref->count >0: 161 * - incremented when a ref->count transitions to >0 162 * - decremented when a ref->count transitions to <1 163 */ 164 struct share_check { 165 struct btrfs_backref_share_check_ctx *ctx; 166 struct btrfs_root *root; 167 u64 inum; 168 u64 data_bytenr; 169 u64 data_extent_gen; 170 /* 171 * Counts number of inodes that refer to an extent (different inodes in 172 * the same root or different roots) that we could find. The sharedness 173 * check typically stops once this counter gets greater than 1, so it 174 * may not reflect the total number of inodes. 175 */ 176 int share_count; 177 /* 178 * The number of times we found our inode refers to the data extent we 179 * are determining the sharedness. In other words, how many file extent 180 * items we could find for our inode that point to our target data 181 * extent. The value we get here after finishing the extent sharedness 182 * check may be smaller than reality, but if it ends up being greater 183 * than 1, then we know for sure the inode has multiple file extent 184 * items that point to our inode, and we can safely assume it's useful 185 * to cache the sharedness check result. 186 */ 187 int self_ref_count; 188 bool have_delayed_delete_refs; 189 }; 190 191 static inline int extent_is_shared(struct share_check *sc) 192 { 193 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 194 } 195 196 static struct kmem_cache *btrfs_prelim_ref_cache; 197 198 int __init btrfs_prelim_ref_init(void) 199 { 200 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 201 sizeof(struct prelim_ref), 202 0, 203 SLAB_MEM_SPREAD, 204 NULL); 205 if (!btrfs_prelim_ref_cache) 206 return -ENOMEM; 207 return 0; 208 } 209 210 void __cold btrfs_prelim_ref_exit(void) 211 { 212 kmem_cache_destroy(btrfs_prelim_ref_cache); 213 } 214 215 static void free_pref(struct prelim_ref *ref) 216 { 217 kmem_cache_free(btrfs_prelim_ref_cache, ref); 218 } 219 220 /* 221 * Return 0 when both refs are for the same block (and can be merged). 222 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 223 * indicates a 'higher' block. 224 */ 225 static int prelim_ref_compare(struct prelim_ref *ref1, 226 struct prelim_ref *ref2) 227 { 228 if (ref1->level < ref2->level) 229 return -1; 230 if (ref1->level > ref2->level) 231 return 1; 232 if (ref1->root_id < ref2->root_id) 233 return -1; 234 if (ref1->root_id > ref2->root_id) 235 return 1; 236 if (ref1->key_for_search.type < ref2->key_for_search.type) 237 return -1; 238 if (ref1->key_for_search.type > ref2->key_for_search.type) 239 return 1; 240 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 241 return -1; 242 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 243 return 1; 244 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 245 return -1; 246 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 247 return 1; 248 if (ref1->parent < ref2->parent) 249 return -1; 250 if (ref1->parent > ref2->parent) 251 return 1; 252 253 return 0; 254 } 255 256 static void update_share_count(struct share_check *sc, int oldcount, 257 int newcount, struct prelim_ref *newref) 258 { 259 if ((!sc) || (oldcount == 0 && newcount < 1)) 260 return; 261 262 if (oldcount > 0 && newcount < 1) 263 sc->share_count--; 264 else if (oldcount < 1 && newcount > 0) 265 sc->share_count++; 266 267 if (newref->root_id == sc->root->root_key.objectid && 268 newref->wanted_disk_byte == sc->data_bytenr && 269 newref->key_for_search.objectid == sc->inum) 270 sc->self_ref_count += newref->count; 271 } 272 273 /* 274 * Add @newref to the @root rbtree, merging identical refs. 275 * 276 * Callers should assume that newref has been freed after calling. 277 */ 278 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 279 struct preftree *preftree, 280 struct prelim_ref *newref, 281 struct share_check *sc) 282 { 283 struct rb_root_cached *root; 284 struct rb_node **p; 285 struct rb_node *parent = NULL; 286 struct prelim_ref *ref; 287 int result; 288 bool leftmost = true; 289 290 root = &preftree->root; 291 p = &root->rb_root.rb_node; 292 293 while (*p) { 294 parent = *p; 295 ref = rb_entry(parent, struct prelim_ref, rbnode); 296 result = prelim_ref_compare(ref, newref); 297 if (result < 0) { 298 p = &(*p)->rb_left; 299 } else if (result > 0) { 300 p = &(*p)->rb_right; 301 leftmost = false; 302 } else { 303 /* Identical refs, merge them and free @newref */ 304 struct extent_inode_elem *eie = ref->inode_list; 305 306 while (eie && eie->next) 307 eie = eie->next; 308 309 if (!eie) 310 ref->inode_list = newref->inode_list; 311 else 312 eie->next = newref->inode_list; 313 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 314 preftree->count); 315 /* 316 * A delayed ref can have newref->count < 0. 317 * The ref->count is updated to follow any 318 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 319 */ 320 update_share_count(sc, ref->count, 321 ref->count + newref->count, newref); 322 ref->count += newref->count; 323 free_pref(newref); 324 return; 325 } 326 } 327 328 update_share_count(sc, 0, newref->count, newref); 329 preftree->count++; 330 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 331 rb_link_node(&newref->rbnode, parent, p); 332 rb_insert_color_cached(&newref->rbnode, root, leftmost); 333 } 334 335 /* 336 * Release the entire tree. We don't care about internal consistency so 337 * just free everything and then reset the tree root. 338 */ 339 static void prelim_release(struct preftree *preftree) 340 { 341 struct prelim_ref *ref, *next_ref; 342 343 rbtree_postorder_for_each_entry_safe(ref, next_ref, 344 &preftree->root.rb_root, rbnode) { 345 free_inode_elem_list(ref->inode_list); 346 free_pref(ref); 347 } 348 349 preftree->root = RB_ROOT_CACHED; 350 preftree->count = 0; 351 } 352 353 /* 354 * the rules for all callers of this function are: 355 * - obtaining the parent is the goal 356 * - if you add a key, you must know that it is a correct key 357 * - if you cannot add the parent or a correct key, then we will look into the 358 * block later to set a correct key 359 * 360 * delayed refs 361 * ============ 362 * backref type | shared | indirect | shared | indirect 363 * information | tree | tree | data | data 364 * --------------------+--------+----------+--------+---------- 365 * parent logical | y | - | - | - 366 * key to resolve | - | y | y | y 367 * tree block logical | - | - | - | - 368 * root for resolving | y | y | y | y 369 * 370 * - column 1: we've the parent -> done 371 * - column 2, 3, 4: we use the key to find the parent 372 * 373 * on disk refs (inline or keyed) 374 * ============================== 375 * backref type | shared | indirect | shared | indirect 376 * information | tree | tree | data | data 377 * --------------------+--------+----------+--------+---------- 378 * parent logical | y | - | y | - 379 * key to resolve | - | - | - | y 380 * tree block logical | y | y | y | y 381 * root for resolving | - | y | y | y 382 * 383 * - column 1, 3: we've the parent -> done 384 * - column 2: we take the first key from the block to find the parent 385 * (see add_missing_keys) 386 * - column 4: we use the key to find the parent 387 * 388 * additional information that's available but not required to find the parent 389 * block might help in merging entries to gain some speed. 390 */ 391 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 392 struct preftree *preftree, u64 root_id, 393 const struct btrfs_key *key, int level, u64 parent, 394 u64 wanted_disk_byte, int count, 395 struct share_check *sc, gfp_t gfp_mask) 396 { 397 struct prelim_ref *ref; 398 399 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 400 return 0; 401 402 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 403 if (!ref) 404 return -ENOMEM; 405 406 ref->root_id = root_id; 407 if (key) 408 ref->key_for_search = *key; 409 else 410 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 411 412 ref->inode_list = NULL; 413 ref->level = level; 414 ref->count = count; 415 ref->parent = parent; 416 ref->wanted_disk_byte = wanted_disk_byte; 417 prelim_ref_insert(fs_info, preftree, ref, sc); 418 return extent_is_shared(sc); 419 } 420 421 /* direct refs use root == 0, key == NULL */ 422 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 423 struct preftrees *preftrees, int level, u64 parent, 424 u64 wanted_disk_byte, int count, 425 struct share_check *sc, gfp_t gfp_mask) 426 { 427 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 428 parent, wanted_disk_byte, count, sc, gfp_mask); 429 } 430 431 /* indirect refs use parent == 0 */ 432 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 433 struct preftrees *preftrees, u64 root_id, 434 const struct btrfs_key *key, int level, 435 u64 wanted_disk_byte, int count, 436 struct share_check *sc, gfp_t gfp_mask) 437 { 438 struct preftree *tree = &preftrees->indirect; 439 440 if (!key) 441 tree = &preftrees->indirect_missing_keys; 442 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 443 wanted_disk_byte, count, sc, gfp_mask); 444 } 445 446 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 447 { 448 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 449 struct rb_node *parent = NULL; 450 struct prelim_ref *ref = NULL; 451 struct prelim_ref target = {}; 452 int result; 453 454 target.parent = bytenr; 455 456 while (*p) { 457 parent = *p; 458 ref = rb_entry(parent, struct prelim_ref, rbnode); 459 result = prelim_ref_compare(ref, &target); 460 461 if (result < 0) 462 p = &(*p)->rb_left; 463 else if (result > 0) 464 p = &(*p)->rb_right; 465 else 466 return 1; 467 } 468 return 0; 469 } 470 471 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx, 472 struct btrfs_root *root, struct btrfs_path *path, 473 struct ulist *parents, 474 struct preftrees *preftrees, struct prelim_ref *ref, 475 int level) 476 { 477 int ret = 0; 478 int slot; 479 struct extent_buffer *eb; 480 struct btrfs_key key; 481 struct btrfs_key *key_for_search = &ref->key_for_search; 482 struct btrfs_file_extent_item *fi; 483 struct extent_inode_elem *eie = NULL, *old = NULL; 484 u64 disk_byte; 485 u64 wanted_disk_byte = ref->wanted_disk_byte; 486 u64 count = 0; 487 u64 data_offset; 488 u8 type; 489 490 if (level != 0) { 491 eb = path->nodes[level]; 492 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 493 if (ret < 0) 494 return ret; 495 return 0; 496 } 497 498 /* 499 * 1. We normally enter this function with the path already pointing to 500 * the first item to check. But sometimes, we may enter it with 501 * slot == nritems. 502 * 2. We are searching for normal backref but bytenr of this leaf 503 * matches shared data backref 504 * 3. The leaf owner is not equal to the root we are searching 505 * 506 * For these cases, go to the next leaf before we continue. 507 */ 508 eb = path->nodes[0]; 509 if (path->slots[0] >= btrfs_header_nritems(eb) || 510 is_shared_data_backref(preftrees, eb->start) || 511 ref->root_id != btrfs_header_owner(eb)) { 512 if (ctx->time_seq == BTRFS_SEQ_LAST) 513 ret = btrfs_next_leaf(root, path); 514 else 515 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 516 } 517 518 while (!ret && count < ref->count) { 519 eb = path->nodes[0]; 520 slot = path->slots[0]; 521 522 btrfs_item_key_to_cpu(eb, &key, slot); 523 524 if (key.objectid != key_for_search->objectid || 525 key.type != BTRFS_EXTENT_DATA_KEY) 526 break; 527 528 /* 529 * We are searching for normal backref but bytenr of this leaf 530 * matches shared data backref, OR 531 * the leaf owner is not equal to the root we are searching for 532 */ 533 if (slot == 0 && 534 (is_shared_data_backref(preftrees, eb->start) || 535 ref->root_id != btrfs_header_owner(eb))) { 536 if (ctx->time_seq == BTRFS_SEQ_LAST) 537 ret = btrfs_next_leaf(root, path); 538 else 539 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 540 continue; 541 } 542 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 543 type = btrfs_file_extent_type(eb, fi); 544 if (type == BTRFS_FILE_EXTENT_INLINE) 545 goto next; 546 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 547 data_offset = btrfs_file_extent_offset(eb, fi); 548 549 if (disk_byte == wanted_disk_byte) { 550 eie = NULL; 551 old = NULL; 552 if (ref->key_for_search.offset == key.offset - data_offset) 553 count++; 554 else 555 goto next; 556 if (!ctx->skip_inode_ref_list) { 557 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie); 558 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 559 ret < 0) 560 break; 561 } 562 if (ret > 0) 563 goto next; 564 ret = ulist_add_merge_ptr(parents, eb->start, 565 eie, (void **)&old, GFP_NOFS); 566 if (ret < 0) 567 break; 568 if (!ret && !ctx->skip_inode_ref_list) { 569 while (old->next) 570 old = old->next; 571 old->next = eie; 572 } 573 eie = NULL; 574 } 575 next: 576 if (ctx->time_seq == BTRFS_SEQ_LAST) 577 ret = btrfs_next_item(root, path); 578 else 579 ret = btrfs_next_old_item(root, path, ctx->time_seq); 580 } 581 582 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 583 free_inode_elem_list(eie); 584 else if (ret > 0) 585 ret = 0; 586 587 return ret; 588 } 589 590 /* 591 * resolve an indirect backref in the form (root_id, key, level) 592 * to a logical address 593 */ 594 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx, 595 struct btrfs_path *path, 596 struct preftrees *preftrees, 597 struct prelim_ref *ref, struct ulist *parents) 598 { 599 struct btrfs_root *root; 600 struct extent_buffer *eb; 601 int ret = 0; 602 int root_level; 603 int level = ref->level; 604 struct btrfs_key search_key = ref->key_for_search; 605 606 /* 607 * If we're search_commit_root we could possibly be holding locks on 608 * other tree nodes. This happens when qgroups does backref walks when 609 * adding new delayed refs. To deal with this we need to look in cache 610 * for the root, and if we don't find it then we need to search the 611 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 612 * here. 613 */ 614 if (path->search_commit_root) 615 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id); 616 else 617 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false); 618 if (IS_ERR(root)) { 619 ret = PTR_ERR(root); 620 goto out_free; 621 } 622 623 if (!path->search_commit_root && 624 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 625 ret = -ENOENT; 626 goto out; 627 } 628 629 if (btrfs_is_testing(ctx->fs_info)) { 630 ret = -ENOENT; 631 goto out; 632 } 633 634 if (path->search_commit_root) 635 root_level = btrfs_header_level(root->commit_root); 636 else if (ctx->time_seq == BTRFS_SEQ_LAST) 637 root_level = btrfs_header_level(root->node); 638 else 639 root_level = btrfs_old_root_level(root, ctx->time_seq); 640 641 if (root_level + 1 == level) 642 goto out; 643 644 /* 645 * We can often find data backrefs with an offset that is too large 646 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 647 * subtracting a file's offset with the data offset of its 648 * corresponding extent data item. This can happen for example in the 649 * clone ioctl. 650 * 651 * So if we detect such case we set the search key's offset to zero to 652 * make sure we will find the matching file extent item at 653 * add_all_parents(), otherwise we will miss it because the offset 654 * taken form the backref is much larger then the offset of the file 655 * extent item. This can make us scan a very large number of file 656 * extent items, but at least it will not make us miss any. 657 * 658 * This is an ugly workaround for a behaviour that should have never 659 * existed, but it does and a fix for the clone ioctl would touch a lot 660 * of places, cause backwards incompatibility and would not fix the 661 * problem for extents cloned with older kernels. 662 */ 663 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 664 search_key.offset >= LLONG_MAX) 665 search_key.offset = 0; 666 path->lowest_level = level; 667 if (ctx->time_seq == BTRFS_SEQ_LAST) 668 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 669 else 670 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq); 671 672 btrfs_debug(ctx->fs_info, 673 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 674 ref->root_id, level, ref->count, ret, 675 ref->key_for_search.objectid, ref->key_for_search.type, 676 ref->key_for_search.offset); 677 if (ret < 0) 678 goto out; 679 680 eb = path->nodes[level]; 681 while (!eb) { 682 if (WARN_ON(!level)) { 683 ret = 1; 684 goto out; 685 } 686 level--; 687 eb = path->nodes[level]; 688 } 689 690 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level); 691 out: 692 btrfs_put_root(root); 693 out_free: 694 path->lowest_level = 0; 695 btrfs_release_path(path); 696 return ret; 697 } 698 699 static struct extent_inode_elem * 700 unode_aux_to_inode_list(struct ulist_node *node) 701 { 702 if (!node) 703 return NULL; 704 return (struct extent_inode_elem *)(uintptr_t)node->aux; 705 } 706 707 static void free_leaf_list(struct ulist *ulist) 708 { 709 struct ulist_node *node; 710 struct ulist_iterator uiter; 711 712 ULIST_ITER_INIT(&uiter); 713 while ((node = ulist_next(ulist, &uiter))) 714 free_inode_elem_list(unode_aux_to_inode_list(node)); 715 716 ulist_free(ulist); 717 } 718 719 /* 720 * We maintain three separate rbtrees: one for direct refs, one for 721 * indirect refs which have a key, and one for indirect refs which do not 722 * have a key. Each tree does merge on insertion. 723 * 724 * Once all of the references are located, we iterate over the tree of 725 * indirect refs with missing keys. An appropriate key is located and 726 * the ref is moved onto the tree for indirect refs. After all missing 727 * keys are thus located, we iterate over the indirect ref tree, resolve 728 * each reference, and then insert the resolved reference onto the 729 * direct tree (merging there too). 730 * 731 * New backrefs (i.e., for parent nodes) are added to the appropriate 732 * rbtree as they are encountered. The new backrefs are subsequently 733 * resolved as above. 734 */ 735 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx, 736 struct btrfs_path *path, 737 struct preftrees *preftrees, 738 struct share_check *sc) 739 { 740 int err; 741 int ret = 0; 742 struct ulist *parents; 743 struct ulist_node *node; 744 struct ulist_iterator uiter; 745 struct rb_node *rnode; 746 747 parents = ulist_alloc(GFP_NOFS); 748 if (!parents) 749 return -ENOMEM; 750 751 /* 752 * We could trade memory usage for performance here by iterating 753 * the tree, allocating new refs for each insertion, and then 754 * freeing the entire indirect tree when we're done. In some test 755 * cases, the tree can grow quite large (~200k objects). 756 */ 757 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 758 struct prelim_ref *ref; 759 760 ref = rb_entry(rnode, struct prelim_ref, rbnode); 761 if (WARN(ref->parent, 762 "BUG: direct ref found in indirect tree")) { 763 ret = -EINVAL; 764 goto out; 765 } 766 767 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 768 preftrees->indirect.count--; 769 770 if (ref->count == 0) { 771 free_pref(ref); 772 continue; 773 } 774 775 if (sc && ref->root_id != sc->root->root_key.objectid) { 776 free_pref(ref); 777 ret = BACKREF_FOUND_SHARED; 778 goto out; 779 } 780 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents); 781 /* 782 * we can only tolerate ENOENT,otherwise,we should catch error 783 * and return directly. 784 */ 785 if (err == -ENOENT) { 786 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, 787 NULL); 788 continue; 789 } else if (err) { 790 free_pref(ref); 791 ret = err; 792 goto out; 793 } 794 795 /* we put the first parent into the ref at hand */ 796 ULIST_ITER_INIT(&uiter); 797 node = ulist_next(parents, &uiter); 798 ref->parent = node ? node->val : 0; 799 ref->inode_list = unode_aux_to_inode_list(node); 800 801 /* Add a prelim_ref(s) for any other parent(s). */ 802 while ((node = ulist_next(parents, &uiter))) { 803 struct prelim_ref *new_ref; 804 805 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 806 GFP_NOFS); 807 if (!new_ref) { 808 free_pref(ref); 809 ret = -ENOMEM; 810 goto out; 811 } 812 memcpy(new_ref, ref, sizeof(*ref)); 813 new_ref->parent = node->val; 814 new_ref->inode_list = unode_aux_to_inode_list(node); 815 prelim_ref_insert(ctx->fs_info, &preftrees->direct, 816 new_ref, NULL); 817 } 818 819 /* 820 * Now it's a direct ref, put it in the direct tree. We must 821 * do this last because the ref could be merged/freed here. 822 */ 823 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL); 824 825 ulist_reinit(parents); 826 cond_resched(); 827 } 828 out: 829 /* 830 * We may have inode lists attached to refs in the parents ulist, so we 831 * must free them before freeing the ulist and its refs. 832 */ 833 free_leaf_list(parents); 834 return ret; 835 } 836 837 /* 838 * read tree blocks and add keys where required. 839 */ 840 static int add_missing_keys(struct btrfs_fs_info *fs_info, 841 struct preftrees *preftrees, bool lock) 842 { 843 struct prelim_ref *ref; 844 struct extent_buffer *eb; 845 struct preftree *tree = &preftrees->indirect_missing_keys; 846 struct rb_node *node; 847 848 while ((node = rb_first_cached(&tree->root))) { 849 struct btrfs_tree_parent_check check = { 0 }; 850 851 ref = rb_entry(node, struct prelim_ref, rbnode); 852 rb_erase_cached(node, &tree->root); 853 854 BUG_ON(ref->parent); /* should not be a direct ref */ 855 BUG_ON(ref->key_for_search.type); 856 BUG_ON(!ref->wanted_disk_byte); 857 858 check.level = ref->level - 1; 859 check.owner_root = ref->root_id; 860 861 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check); 862 if (IS_ERR(eb)) { 863 free_pref(ref); 864 return PTR_ERR(eb); 865 } 866 if (!extent_buffer_uptodate(eb)) { 867 free_pref(ref); 868 free_extent_buffer(eb); 869 return -EIO; 870 } 871 872 if (lock) 873 btrfs_tree_read_lock(eb); 874 if (btrfs_header_level(eb) == 0) 875 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 876 else 877 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 878 if (lock) 879 btrfs_tree_read_unlock(eb); 880 free_extent_buffer(eb); 881 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 882 cond_resched(); 883 } 884 return 0; 885 } 886 887 /* 888 * add all currently queued delayed refs from this head whose seq nr is 889 * smaller or equal that seq to the list 890 */ 891 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 892 struct btrfs_delayed_ref_head *head, u64 seq, 893 struct preftrees *preftrees, struct share_check *sc) 894 { 895 struct btrfs_delayed_ref_node *node; 896 struct btrfs_key key; 897 struct rb_node *n; 898 int count; 899 int ret = 0; 900 901 spin_lock(&head->lock); 902 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 903 node = rb_entry(n, struct btrfs_delayed_ref_node, 904 ref_node); 905 if (node->seq > seq) 906 continue; 907 908 switch (node->action) { 909 case BTRFS_ADD_DELAYED_EXTENT: 910 case BTRFS_UPDATE_DELAYED_HEAD: 911 WARN_ON(1); 912 continue; 913 case BTRFS_ADD_DELAYED_REF: 914 count = node->ref_mod; 915 break; 916 case BTRFS_DROP_DELAYED_REF: 917 count = node->ref_mod * -1; 918 break; 919 default: 920 BUG(); 921 } 922 switch (node->type) { 923 case BTRFS_TREE_BLOCK_REF_KEY: { 924 /* NORMAL INDIRECT METADATA backref */ 925 struct btrfs_delayed_tree_ref *ref; 926 struct btrfs_key *key_ptr = NULL; 927 928 if (head->extent_op && head->extent_op->update_key) { 929 btrfs_disk_key_to_cpu(&key, &head->extent_op->key); 930 key_ptr = &key; 931 } 932 933 ref = btrfs_delayed_node_to_tree_ref(node); 934 ret = add_indirect_ref(fs_info, preftrees, ref->root, 935 key_ptr, ref->level + 1, 936 node->bytenr, count, sc, 937 GFP_ATOMIC); 938 break; 939 } 940 case BTRFS_SHARED_BLOCK_REF_KEY: { 941 /* SHARED DIRECT METADATA backref */ 942 struct btrfs_delayed_tree_ref *ref; 943 944 ref = btrfs_delayed_node_to_tree_ref(node); 945 946 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 947 ref->parent, node->bytenr, count, 948 sc, GFP_ATOMIC); 949 break; 950 } 951 case BTRFS_EXTENT_DATA_REF_KEY: { 952 /* NORMAL INDIRECT DATA backref */ 953 struct btrfs_delayed_data_ref *ref; 954 ref = btrfs_delayed_node_to_data_ref(node); 955 956 key.objectid = ref->objectid; 957 key.type = BTRFS_EXTENT_DATA_KEY; 958 key.offset = ref->offset; 959 960 /* 961 * If we have a share check context and a reference for 962 * another inode, we can't exit immediately. This is 963 * because even if this is a BTRFS_ADD_DELAYED_REF 964 * reference we may find next a BTRFS_DROP_DELAYED_REF 965 * which cancels out this ADD reference. 966 * 967 * If this is a DROP reference and there was no previous 968 * ADD reference, then we need to signal that when we 969 * process references from the extent tree (through 970 * add_inline_refs() and add_keyed_refs()), we should 971 * not exit early if we find a reference for another 972 * inode, because one of the delayed DROP references 973 * may cancel that reference in the extent tree. 974 */ 975 if (sc && count < 0) 976 sc->have_delayed_delete_refs = true; 977 978 ret = add_indirect_ref(fs_info, preftrees, ref->root, 979 &key, 0, node->bytenr, count, sc, 980 GFP_ATOMIC); 981 break; 982 } 983 case BTRFS_SHARED_DATA_REF_KEY: { 984 /* SHARED DIRECT FULL backref */ 985 struct btrfs_delayed_data_ref *ref; 986 987 ref = btrfs_delayed_node_to_data_ref(node); 988 989 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 990 node->bytenr, count, sc, 991 GFP_ATOMIC); 992 break; 993 } 994 default: 995 WARN_ON(1); 996 } 997 /* 998 * We must ignore BACKREF_FOUND_SHARED until all delayed 999 * refs have been checked. 1000 */ 1001 if (ret && (ret != BACKREF_FOUND_SHARED)) 1002 break; 1003 } 1004 if (!ret) 1005 ret = extent_is_shared(sc); 1006 1007 spin_unlock(&head->lock); 1008 return ret; 1009 } 1010 1011 /* 1012 * add all inline backrefs for bytenr to the list 1013 * 1014 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1015 */ 1016 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx, 1017 struct btrfs_path *path, 1018 int *info_level, struct preftrees *preftrees, 1019 struct share_check *sc) 1020 { 1021 int ret = 0; 1022 int slot; 1023 struct extent_buffer *leaf; 1024 struct btrfs_key key; 1025 struct btrfs_key found_key; 1026 unsigned long ptr; 1027 unsigned long end; 1028 struct btrfs_extent_item *ei; 1029 u64 flags; 1030 u64 item_size; 1031 1032 /* 1033 * enumerate all inline refs 1034 */ 1035 leaf = path->nodes[0]; 1036 slot = path->slots[0]; 1037 1038 item_size = btrfs_item_size(leaf, slot); 1039 BUG_ON(item_size < sizeof(*ei)); 1040 1041 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1042 1043 if (ctx->check_extent_item) { 1044 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx); 1045 if (ret) 1046 return ret; 1047 } 1048 1049 flags = btrfs_extent_flags(leaf, ei); 1050 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1051 1052 ptr = (unsigned long)(ei + 1); 1053 end = (unsigned long)ei + item_size; 1054 1055 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 1056 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1057 struct btrfs_tree_block_info *info; 1058 1059 info = (struct btrfs_tree_block_info *)ptr; 1060 *info_level = btrfs_tree_block_level(leaf, info); 1061 ptr += sizeof(struct btrfs_tree_block_info); 1062 BUG_ON(ptr > end); 1063 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1064 *info_level = found_key.offset; 1065 } else { 1066 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1067 } 1068 1069 while (ptr < end) { 1070 struct btrfs_extent_inline_ref *iref; 1071 u64 offset; 1072 int type; 1073 1074 iref = (struct btrfs_extent_inline_ref *)ptr; 1075 type = btrfs_get_extent_inline_ref_type(leaf, iref, 1076 BTRFS_REF_TYPE_ANY); 1077 if (type == BTRFS_REF_TYPE_INVALID) 1078 return -EUCLEAN; 1079 1080 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1081 1082 switch (type) { 1083 case BTRFS_SHARED_BLOCK_REF_KEY: 1084 ret = add_direct_ref(ctx->fs_info, preftrees, 1085 *info_level + 1, offset, 1086 ctx->bytenr, 1, NULL, GFP_NOFS); 1087 break; 1088 case BTRFS_SHARED_DATA_REF_KEY: { 1089 struct btrfs_shared_data_ref *sdref; 1090 int count; 1091 1092 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1093 count = btrfs_shared_data_ref_count(leaf, sdref); 1094 1095 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset, 1096 ctx->bytenr, count, sc, GFP_NOFS); 1097 break; 1098 } 1099 case BTRFS_TREE_BLOCK_REF_KEY: 1100 ret = add_indirect_ref(ctx->fs_info, preftrees, offset, 1101 NULL, *info_level + 1, 1102 ctx->bytenr, 1, NULL, GFP_NOFS); 1103 break; 1104 case BTRFS_EXTENT_DATA_REF_KEY: { 1105 struct btrfs_extent_data_ref *dref; 1106 int count; 1107 u64 root; 1108 1109 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1110 count = btrfs_extent_data_ref_count(leaf, dref); 1111 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1112 dref); 1113 key.type = BTRFS_EXTENT_DATA_KEY; 1114 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1115 1116 if (sc && key.objectid != sc->inum && 1117 !sc->have_delayed_delete_refs) { 1118 ret = BACKREF_FOUND_SHARED; 1119 break; 1120 } 1121 1122 root = btrfs_extent_data_ref_root(leaf, dref); 1123 1124 if (!ctx->skip_data_ref || 1125 !ctx->skip_data_ref(root, key.objectid, key.offset, 1126 ctx->user_ctx)) 1127 ret = add_indirect_ref(ctx->fs_info, preftrees, 1128 root, &key, 0, ctx->bytenr, 1129 count, sc, GFP_NOFS); 1130 break; 1131 } 1132 case BTRFS_EXTENT_OWNER_REF_KEY: 1133 ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA)); 1134 break; 1135 default: 1136 WARN_ON(1); 1137 } 1138 if (ret) 1139 return ret; 1140 ptr += btrfs_extent_inline_ref_size(type); 1141 } 1142 1143 return 0; 1144 } 1145 1146 /* 1147 * add all non-inline backrefs for bytenr to the list 1148 * 1149 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1150 */ 1151 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx, 1152 struct btrfs_root *extent_root, 1153 struct btrfs_path *path, 1154 int info_level, struct preftrees *preftrees, 1155 struct share_check *sc) 1156 { 1157 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1158 int ret; 1159 int slot; 1160 struct extent_buffer *leaf; 1161 struct btrfs_key key; 1162 1163 while (1) { 1164 ret = btrfs_next_item(extent_root, path); 1165 if (ret < 0) 1166 break; 1167 if (ret) { 1168 ret = 0; 1169 break; 1170 } 1171 1172 slot = path->slots[0]; 1173 leaf = path->nodes[0]; 1174 btrfs_item_key_to_cpu(leaf, &key, slot); 1175 1176 if (key.objectid != ctx->bytenr) 1177 break; 1178 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1179 continue; 1180 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1181 break; 1182 1183 switch (key.type) { 1184 case BTRFS_SHARED_BLOCK_REF_KEY: 1185 /* SHARED DIRECT METADATA backref */ 1186 ret = add_direct_ref(fs_info, preftrees, 1187 info_level + 1, key.offset, 1188 ctx->bytenr, 1, NULL, GFP_NOFS); 1189 break; 1190 case BTRFS_SHARED_DATA_REF_KEY: { 1191 /* SHARED DIRECT FULL backref */ 1192 struct btrfs_shared_data_ref *sdref; 1193 int count; 1194 1195 sdref = btrfs_item_ptr(leaf, slot, 1196 struct btrfs_shared_data_ref); 1197 count = btrfs_shared_data_ref_count(leaf, sdref); 1198 ret = add_direct_ref(fs_info, preftrees, 0, 1199 key.offset, ctx->bytenr, count, 1200 sc, GFP_NOFS); 1201 break; 1202 } 1203 case BTRFS_TREE_BLOCK_REF_KEY: 1204 /* NORMAL INDIRECT METADATA backref */ 1205 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1206 NULL, info_level + 1, ctx->bytenr, 1207 1, NULL, GFP_NOFS); 1208 break; 1209 case BTRFS_EXTENT_DATA_REF_KEY: { 1210 /* NORMAL INDIRECT DATA backref */ 1211 struct btrfs_extent_data_ref *dref; 1212 int count; 1213 u64 root; 1214 1215 dref = btrfs_item_ptr(leaf, slot, 1216 struct btrfs_extent_data_ref); 1217 count = btrfs_extent_data_ref_count(leaf, dref); 1218 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1219 dref); 1220 key.type = BTRFS_EXTENT_DATA_KEY; 1221 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1222 1223 if (sc && key.objectid != sc->inum && 1224 !sc->have_delayed_delete_refs) { 1225 ret = BACKREF_FOUND_SHARED; 1226 break; 1227 } 1228 1229 root = btrfs_extent_data_ref_root(leaf, dref); 1230 1231 if (!ctx->skip_data_ref || 1232 !ctx->skip_data_ref(root, key.objectid, key.offset, 1233 ctx->user_ctx)) 1234 ret = add_indirect_ref(fs_info, preftrees, root, 1235 &key, 0, ctx->bytenr, 1236 count, sc, GFP_NOFS); 1237 break; 1238 } 1239 default: 1240 WARN_ON(1); 1241 } 1242 if (ret) 1243 return ret; 1244 1245 } 1246 1247 return ret; 1248 } 1249 1250 /* 1251 * The caller has joined a transaction or is holding a read lock on the 1252 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1253 * snapshot field changing while updating or checking the cache. 1254 */ 1255 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1256 struct btrfs_root *root, 1257 u64 bytenr, int level, bool *is_shared) 1258 { 1259 const struct btrfs_fs_info *fs_info = root->fs_info; 1260 struct btrfs_backref_shared_cache_entry *entry; 1261 1262 if (!current->journal_info) 1263 lockdep_assert_held(&fs_info->commit_root_sem); 1264 1265 if (!ctx->use_path_cache) 1266 return false; 1267 1268 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1269 return false; 1270 1271 /* 1272 * Level -1 is used for the data extent, which is not reliable to cache 1273 * because its reference count can increase or decrease without us 1274 * realizing. We cache results only for extent buffers that lead from 1275 * the root node down to the leaf with the file extent item. 1276 */ 1277 ASSERT(level >= 0); 1278 1279 entry = &ctx->path_cache_entries[level]; 1280 1281 /* Unused cache entry or being used for some other extent buffer. */ 1282 if (entry->bytenr != bytenr) 1283 return false; 1284 1285 /* 1286 * We cached a false result, but the last snapshot generation of the 1287 * root changed, so we now have a snapshot. Don't trust the result. 1288 */ 1289 if (!entry->is_shared && 1290 entry->gen != btrfs_root_last_snapshot(&root->root_item)) 1291 return false; 1292 1293 /* 1294 * If we cached a true result and the last generation used for dropping 1295 * a root changed, we can not trust the result, because the dropped root 1296 * could be a snapshot sharing this extent buffer. 1297 */ 1298 if (entry->is_shared && 1299 entry->gen != btrfs_get_last_root_drop_gen(fs_info)) 1300 return false; 1301 1302 *is_shared = entry->is_shared; 1303 /* 1304 * If the node at this level is shared, than all nodes below are also 1305 * shared. Currently some of the nodes below may be marked as not shared 1306 * because we have just switched from one leaf to another, and switched 1307 * also other nodes above the leaf and below the current level, so mark 1308 * them as shared. 1309 */ 1310 if (*is_shared) { 1311 for (int i = 0; i < level; i++) { 1312 ctx->path_cache_entries[i].is_shared = true; 1313 ctx->path_cache_entries[i].gen = entry->gen; 1314 } 1315 } 1316 1317 return true; 1318 } 1319 1320 /* 1321 * The caller has joined a transaction or is holding a read lock on the 1322 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1323 * snapshot field changing while updating or checking the cache. 1324 */ 1325 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1326 struct btrfs_root *root, 1327 u64 bytenr, int level, bool is_shared) 1328 { 1329 const struct btrfs_fs_info *fs_info = root->fs_info; 1330 struct btrfs_backref_shared_cache_entry *entry; 1331 u64 gen; 1332 1333 if (!current->journal_info) 1334 lockdep_assert_held(&fs_info->commit_root_sem); 1335 1336 if (!ctx->use_path_cache) 1337 return; 1338 1339 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1340 return; 1341 1342 /* 1343 * Level -1 is used for the data extent, which is not reliable to cache 1344 * because its reference count can increase or decrease without us 1345 * realizing. We cache results only for extent buffers that lead from 1346 * the root node down to the leaf with the file extent item. 1347 */ 1348 ASSERT(level >= 0); 1349 1350 if (is_shared) 1351 gen = btrfs_get_last_root_drop_gen(fs_info); 1352 else 1353 gen = btrfs_root_last_snapshot(&root->root_item); 1354 1355 entry = &ctx->path_cache_entries[level]; 1356 entry->bytenr = bytenr; 1357 entry->is_shared = is_shared; 1358 entry->gen = gen; 1359 1360 /* 1361 * If we found an extent buffer is shared, set the cache result for all 1362 * extent buffers below it to true. As nodes in the path are COWed, 1363 * their sharedness is moved to their children, and if a leaf is COWed, 1364 * then the sharedness of a data extent becomes direct, the refcount of 1365 * data extent is increased in the extent item at the extent tree. 1366 */ 1367 if (is_shared) { 1368 for (int i = 0; i < level; i++) { 1369 entry = &ctx->path_cache_entries[i]; 1370 entry->is_shared = is_shared; 1371 entry->gen = gen; 1372 } 1373 } 1374 } 1375 1376 /* 1377 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1378 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1379 * indirect refs to their parent bytenr. 1380 * When roots are found, they're added to the roots list 1381 * 1382 * @ctx: Backref walking context object, must be not NULL. 1383 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a 1384 * shared extent is detected. 1385 * 1386 * Otherwise this returns 0 for success and <0 for an error. 1387 * 1388 * FIXME some caching might speed things up 1389 */ 1390 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx, 1391 struct share_check *sc) 1392 { 1393 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr); 1394 struct btrfs_key key; 1395 struct btrfs_path *path; 1396 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1397 struct btrfs_delayed_ref_head *head; 1398 int info_level = 0; 1399 int ret; 1400 struct prelim_ref *ref; 1401 struct rb_node *node; 1402 struct extent_inode_elem *eie = NULL; 1403 struct preftrees preftrees = { 1404 .direct = PREFTREE_INIT, 1405 .indirect = PREFTREE_INIT, 1406 .indirect_missing_keys = PREFTREE_INIT 1407 }; 1408 1409 /* Roots ulist is not needed when using a sharedness check context. */ 1410 if (sc) 1411 ASSERT(ctx->roots == NULL); 1412 1413 key.objectid = ctx->bytenr; 1414 key.offset = (u64)-1; 1415 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA)) 1416 key.type = BTRFS_METADATA_ITEM_KEY; 1417 else 1418 key.type = BTRFS_EXTENT_ITEM_KEY; 1419 1420 path = btrfs_alloc_path(); 1421 if (!path) 1422 return -ENOMEM; 1423 if (!ctx->trans) { 1424 path->search_commit_root = 1; 1425 path->skip_locking = 1; 1426 } 1427 1428 if (ctx->time_seq == BTRFS_SEQ_LAST) 1429 path->skip_locking = 1; 1430 1431 again: 1432 head = NULL; 1433 1434 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1435 if (ret < 0) 1436 goto out; 1437 if (ret == 0) { 1438 /* This shouldn't happen, indicates a bug or fs corruption. */ 1439 ASSERT(ret != 0); 1440 ret = -EUCLEAN; 1441 goto out; 1442 } 1443 1444 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) && 1445 ctx->time_seq != BTRFS_SEQ_LAST) { 1446 /* 1447 * We have a specific time_seq we care about and trans which 1448 * means we have the path lock, we need to grab the ref head and 1449 * lock it so we have a consistent view of the refs at the given 1450 * time. 1451 */ 1452 delayed_refs = &ctx->trans->transaction->delayed_refs; 1453 spin_lock(&delayed_refs->lock); 1454 head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr); 1455 if (head) { 1456 if (!mutex_trylock(&head->mutex)) { 1457 refcount_inc(&head->refs); 1458 spin_unlock(&delayed_refs->lock); 1459 1460 btrfs_release_path(path); 1461 1462 /* 1463 * Mutex was contended, block until it's 1464 * released and try again 1465 */ 1466 mutex_lock(&head->mutex); 1467 mutex_unlock(&head->mutex); 1468 btrfs_put_delayed_ref_head(head); 1469 goto again; 1470 } 1471 spin_unlock(&delayed_refs->lock); 1472 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq, 1473 &preftrees, sc); 1474 mutex_unlock(&head->mutex); 1475 if (ret) 1476 goto out; 1477 } else { 1478 spin_unlock(&delayed_refs->lock); 1479 } 1480 } 1481 1482 if (path->slots[0]) { 1483 struct extent_buffer *leaf; 1484 int slot; 1485 1486 path->slots[0]--; 1487 leaf = path->nodes[0]; 1488 slot = path->slots[0]; 1489 btrfs_item_key_to_cpu(leaf, &key, slot); 1490 if (key.objectid == ctx->bytenr && 1491 (key.type == BTRFS_EXTENT_ITEM_KEY || 1492 key.type == BTRFS_METADATA_ITEM_KEY)) { 1493 ret = add_inline_refs(ctx, path, &info_level, 1494 &preftrees, sc); 1495 if (ret) 1496 goto out; 1497 ret = add_keyed_refs(ctx, root, path, info_level, 1498 &preftrees, sc); 1499 if (ret) 1500 goto out; 1501 } 1502 } 1503 1504 /* 1505 * If we have a share context and we reached here, it means the extent 1506 * is not directly shared (no multiple reference items for it), 1507 * otherwise we would have exited earlier with a return value of 1508 * BACKREF_FOUND_SHARED after processing delayed references or while 1509 * processing inline or keyed references from the extent tree. 1510 * The extent may however be indirectly shared through shared subtrees 1511 * as a result from creating snapshots, so we determine below what is 1512 * its parent node, in case we are dealing with a metadata extent, or 1513 * what's the leaf (or leaves), from a fs tree, that has a file extent 1514 * item pointing to it in case we are dealing with a data extent. 1515 */ 1516 ASSERT(extent_is_shared(sc) == 0); 1517 1518 /* 1519 * If we are here for a data extent and we have a share_check structure 1520 * it means the data extent is not directly shared (does not have 1521 * multiple reference items), so we have to check if a path in the fs 1522 * tree (going from the root node down to the leaf that has the file 1523 * extent item pointing to the data extent) is shared, that is, if any 1524 * of the extent buffers in the path is referenced by other trees. 1525 */ 1526 if (sc && ctx->bytenr == sc->data_bytenr) { 1527 /* 1528 * If our data extent is from a generation more recent than the 1529 * last generation used to snapshot the root, then we know that 1530 * it can not be shared through subtrees, so we can skip 1531 * resolving indirect references, there's no point in 1532 * determining the extent buffers for the path from the fs tree 1533 * root node down to the leaf that has the file extent item that 1534 * points to the data extent. 1535 */ 1536 if (sc->data_extent_gen > 1537 btrfs_root_last_snapshot(&sc->root->root_item)) { 1538 ret = BACKREF_FOUND_NOT_SHARED; 1539 goto out; 1540 } 1541 1542 /* 1543 * If we are only determining if a data extent is shared or not 1544 * and the corresponding file extent item is located in the same 1545 * leaf as the previous file extent item, we can skip resolving 1546 * indirect references for a data extent, since the fs tree path 1547 * is the same (same leaf, so same path). We skip as long as the 1548 * cached result for the leaf is valid and only if there's only 1549 * one file extent item pointing to the data extent, because in 1550 * the case of multiple file extent items, they may be located 1551 * in different leaves and therefore we have multiple paths. 1552 */ 1553 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr && 1554 sc->self_ref_count == 1) { 1555 bool cached; 1556 bool is_shared; 1557 1558 cached = lookup_backref_shared_cache(sc->ctx, sc->root, 1559 sc->ctx->curr_leaf_bytenr, 1560 0, &is_shared); 1561 if (cached) { 1562 if (is_shared) 1563 ret = BACKREF_FOUND_SHARED; 1564 else 1565 ret = BACKREF_FOUND_NOT_SHARED; 1566 goto out; 1567 } 1568 } 1569 } 1570 1571 btrfs_release_path(path); 1572 1573 ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0); 1574 if (ret) 1575 goto out; 1576 1577 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1578 1579 ret = resolve_indirect_refs(ctx, path, &preftrees, sc); 1580 if (ret) 1581 goto out; 1582 1583 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1584 1585 /* 1586 * This walks the tree of merged and resolved refs. Tree blocks are 1587 * read in as needed. Unique entries are added to the ulist, and 1588 * the list of found roots is updated. 1589 * 1590 * We release the entire tree in one go before returning. 1591 */ 1592 node = rb_first_cached(&preftrees.direct.root); 1593 while (node) { 1594 ref = rb_entry(node, struct prelim_ref, rbnode); 1595 node = rb_next(&ref->rbnode); 1596 /* 1597 * ref->count < 0 can happen here if there are delayed 1598 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1599 * prelim_ref_insert() relies on this when merging 1600 * identical refs to keep the overall count correct. 1601 * prelim_ref_insert() will merge only those refs 1602 * which compare identically. Any refs having 1603 * e.g. different offsets would not be merged, 1604 * and would retain their original ref->count < 0. 1605 */ 1606 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) { 1607 /* no parent == root of tree */ 1608 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS); 1609 if (ret < 0) 1610 goto out; 1611 } 1612 if (ref->count && ref->parent) { 1613 if (!ctx->skip_inode_ref_list && !ref->inode_list && 1614 ref->level == 0) { 1615 struct btrfs_tree_parent_check check = { 0 }; 1616 struct extent_buffer *eb; 1617 1618 check.level = ref->level; 1619 1620 eb = read_tree_block(ctx->fs_info, ref->parent, 1621 &check); 1622 if (IS_ERR(eb)) { 1623 ret = PTR_ERR(eb); 1624 goto out; 1625 } 1626 if (!extent_buffer_uptodate(eb)) { 1627 free_extent_buffer(eb); 1628 ret = -EIO; 1629 goto out; 1630 } 1631 1632 if (!path->skip_locking) 1633 btrfs_tree_read_lock(eb); 1634 ret = find_extent_in_eb(ctx, eb, &eie); 1635 if (!path->skip_locking) 1636 btrfs_tree_read_unlock(eb); 1637 free_extent_buffer(eb); 1638 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1639 ret < 0) 1640 goto out; 1641 ref->inode_list = eie; 1642 /* 1643 * We transferred the list ownership to the ref, 1644 * so set to NULL to avoid a double free in case 1645 * an error happens after this. 1646 */ 1647 eie = NULL; 1648 } 1649 ret = ulist_add_merge_ptr(ctx->refs, ref->parent, 1650 ref->inode_list, 1651 (void **)&eie, GFP_NOFS); 1652 if (ret < 0) 1653 goto out; 1654 if (!ret && !ctx->skip_inode_ref_list) { 1655 /* 1656 * We've recorded that parent, so we must extend 1657 * its inode list here. 1658 * 1659 * However if there was corruption we may not 1660 * have found an eie, return an error in this 1661 * case. 1662 */ 1663 ASSERT(eie); 1664 if (!eie) { 1665 ret = -EUCLEAN; 1666 goto out; 1667 } 1668 while (eie->next) 1669 eie = eie->next; 1670 eie->next = ref->inode_list; 1671 } 1672 eie = NULL; 1673 /* 1674 * We have transferred the inode list ownership from 1675 * this ref to the ref we added to the 'refs' ulist. 1676 * So set this ref's inode list to NULL to avoid 1677 * use-after-free when our caller uses it or double 1678 * frees in case an error happens before we return. 1679 */ 1680 ref->inode_list = NULL; 1681 } 1682 cond_resched(); 1683 } 1684 1685 out: 1686 btrfs_free_path(path); 1687 1688 prelim_release(&preftrees.direct); 1689 prelim_release(&preftrees.indirect); 1690 prelim_release(&preftrees.indirect_missing_keys); 1691 1692 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 1693 free_inode_elem_list(eie); 1694 return ret; 1695 } 1696 1697 /* 1698 * Finds all leaves with a reference to the specified combination of 1699 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are 1700 * added to the ulist at @ctx->refs, and that ulist is allocated by this 1701 * function. The caller should free the ulist with free_leaf_list() if 1702 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is 1703 * enough. 1704 * 1705 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated. 1706 */ 1707 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx) 1708 { 1709 int ret; 1710 1711 ASSERT(ctx->refs == NULL); 1712 1713 ctx->refs = ulist_alloc(GFP_NOFS); 1714 if (!ctx->refs) 1715 return -ENOMEM; 1716 1717 ret = find_parent_nodes(ctx, NULL); 1718 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1719 (ret < 0 && ret != -ENOENT)) { 1720 free_leaf_list(ctx->refs); 1721 ctx->refs = NULL; 1722 return ret; 1723 } 1724 1725 return 0; 1726 } 1727 1728 /* 1729 * Walk all backrefs for a given extent to find all roots that reference this 1730 * extent. Walking a backref means finding all extents that reference this 1731 * extent and in turn walk the backrefs of those, too. Naturally this is a 1732 * recursive process, but here it is implemented in an iterative fashion: We 1733 * find all referencing extents for the extent in question and put them on a 1734 * list. In turn, we find all referencing extents for those, further appending 1735 * to the list. The way we iterate the list allows adding more elements after 1736 * the current while iterating. The process stops when we reach the end of the 1737 * list. 1738 * 1739 * Found roots are added to @ctx->roots, which is allocated by this function if 1740 * it points to NULL, in which case the caller is responsible for freeing it 1741 * after it's not needed anymore. 1742 * This function requires @ctx->refs to be NULL, as it uses it for allocating a 1743 * ulist to do temporary work, and frees it before returning. 1744 * 1745 * Returns 0 on success, < 0 on error. 1746 */ 1747 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx) 1748 { 1749 const u64 orig_bytenr = ctx->bytenr; 1750 const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list; 1751 bool roots_ulist_allocated = false; 1752 struct ulist_iterator uiter; 1753 int ret = 0; 1754 1755 ASSERT(ctx->refs == NULL); 1756 1757 ctx->refs = ulist_alloc(GFP_NOFS); 1758 if (!ctx->refs) 1759 return -ENOMEM; 1760 1761 if (!ctx->roots) { 1762 ctx->roots = ulist_alloc(GFP_NOFS); 1763 if (!ctx->roots) { 1764 ulist_free(ctx->refs); 1765 ctx->refs = NULL; 1766 return -ENOMEM; 1767 } 1768 roots_ulist_allocated = true; 1769 } 1770 1771 ctx->skip_inode_ref_list = true; 1772 1773 ULIST_ITER_INIT(&uiter); 1774 while (1) { 1775 struct ulist_node *node; 1776 1777 ret = find_parent_nodes(ctx, NULL); 1778 if (ret < 0 && ret != -ENOENT) { 1779 if (roots_ulist_allocated) { 1780 ulist_free(ctx->roots); 1781 ctx->roots = NULL; 1782 } 1783 break; 1784 } 1785 ret = 0; 1786 node = ulist_next(ctx->refs, &uiter); 1787 if (!node) 1788 break; 1789 ctx->bytenr = node->val; 1790 cond_resched(); 1791 } 1792 1793 ulist_free(ctx->refs); 1794 ctx->refs = NULL; 1795 ctx->bytenr = orig_bytenr; 1796 ctx->skip_inode_ref_list = orig_skip_inode_ref_list; 1797 1798 return ret; 1799 } 1800 1801 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, 1802 bool skip_commit_root_sem) 1803 { 1804 int ret; 1805 1806 if (!ctx->trans && !skip_commit_root_sem) 1807 down_read(&ctx->fs_info->commit_root_sem); 1808 ret = btrfs_find_all_roots_safe(ctx); 1809 if (!ctx->trans && !skip_commit_root_sem) 1810 up_read(&ctx->fs_info->commit_root_sem); 1811 return ret; 1812 } 1813 1814 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void) 1815 { 1816 struct btrfs_backref_share_check_ctx *ctx; 1817 1818 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1819 if (!ctx) 1820 return NULL; 1821 1822 ulist_init(&ctx->refs); 1823 1824 return ctx; 1825 } 1826 1827 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx) 1828 { 1829 if (!ctx) 1830 return; 1831 1832 ulist_release(&ctx->refs); 1833 kfree(ctx); 1834 } 1835 1836 /* 1837 * Check if a data extent is shared or not. 1838 * 1839 * @inode: The inode whose extent we are checking. 1840 * @bytenr: Logical bytenr of the extent we are checking. 1841 * @extent_gen: Generation of the extent (file extent item) or 0 if it is 1842 * not known. 1843 * @ctx: A backref sharedness check context. 1844 * 1845 * btrfs_is_data_extent_shared uses the backref walking code but will short 1846 * circuit as soon as it finds a root or inode that doesn't match the 1847 * one passed in. This provides a significant performance benefit for 1848 * callers (such as fiemap) which want to know whether the extent is 1849 * shared but do not need a ref count. 1850 * 1851 * This attempts to attach to the running transaction in order to account for 1852 * delayed refs, but continues on even when no running transaction exists. 1853 * 1854 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1855 */ 1856 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, 1857 u64 extent_gen, 1858 struct btrfs_backref_share_check_ctx *ctx) 1859 { 1860 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 1861 struct btrfs_root *root = inode->root; 1862 struct btrfs_fs_info *fs_info = root->fs_info; 1863 struct btrfs_trans_handle *trans; 1864 struct ulist_iterator uiter; 1865 struct ulist_node *node; 1866 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1867 int ret = 0; 1868 struct share_check shared = { 1869 .ctx = ctx, 1870 .root = root, 1871 .inum = btrfs_ino(inode), 1872 .data_bytenr = bytenr, 1873 .data_extent_gen = extent_gen, 1874 .share_count = 0, 1875 .self_ref_count = 0, 1876 .have_delayed_delete_refs = false, 1877 }; 1878 int level; 1879 bool leaf_cached; 1880 bool leaf_is_shared; 1881 1882 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) { 1883 if (ctx->prev_extents_cache[i].bytenr == bytenr) 1884 return ctx->prev_extents_cache[i].is_shared; 1885 } 1886 1887 ulist_init(&ctx->refs); 1888 1889 trans = btrfs_join_transaction_nostart(root); 1890 if (IS_ERR(trans)) { 1891 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1892 ret = PTR_ERR(trans); 1893 goto out; 1894 } 1895 trans = NULL; 1896 down_read(&fs_info->commit_root_sem); 1897 } else { 1898 btrfs_get_tree_mod_seq(fs_info, &elem); 1899 walk_ctx.time_seq = elem.seq; 1900 } 1901 1902 ctx->use_path_cache = true; 1903 1904 /* 1905 * We may have previously determined that the current leaf is shared. 1906 * If it is, then we have a data extent that is shared due to a shared 1907 * subtree (caused by snapshotting) and we don't need to check for data 1908 * backrefs. If the leaf is not shared, then we must do backref walking 1909 * to determine if the data extent is shared through reflinks. 1910 */ 1911 leaf_cached = lookup_backref_shared_cache(ctx, root, 1912 ctx->curr_leaf_bytenr, 0, 1913 &leaf_is_shared); 1914 if (leaf_cached && leaf_is_shared) { 1915 ret = 1; 1916 goto out_trans; 1917 } 1918 1919 walk_ctx.skip_inode_ref_list = true; 1920 walk_ctx.trans = trans; 1921 walk_ctx.fs_info = fs_info; 1922 walk_ctx.refs = &ctx->refs; 1923 1924 /* -1 means we are in the bytenr of the data extent. */ 1925 level = -1; 1926 ULIST_ITER_INIT(&uiter); 1927 while (1) { 1928 const unsigned long prev_ref_count = ctx->refs.nnodes; 1929 1930 walk_ctx.bytenr = bytenr; 1931 ret = find_parent_nodes(&walk_ctx, &shared); 1932 if (ret == BACKREF_FOUND_SHARED || 1933 ret == BACKREF_FOUND_NOT_SHARED) { 1934 /* If shared must return 1, otherwise return 0. */ 1935 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0; 1936 if (level >= 0) 1937 store_backref_shared_cache(ctx, root, bytenr, 1938 level, ret == 1); 1939 break; 1940 } 1941 if (ret < 0 && ret != -ENOENT) 1942 break; 1943 ret = 0; 1944 1945 /* 1946 * More than one extent buffer (bytenr) may have been added to 1947 * the ctx->refs ulist, in which case we have to check multiple 1948 * tree paths in case the first one is not shared, so we can not 1949 * use the path cache which is made for a single path. Multiple 1950 * extent buffers at the current level happen when: 1951 * 1952 * 1) level -1, the data extent: If our data extent was not 1953 * directly shared (without multiple reference items), then 1954 * it might have a single reference item with a count > 1 for 1955 * the same offset, which means there are 2 (or more) file 1956 * extent items that point to the data extent - this happens 1957 * when a file extent item needs to be split and then one 1958 * item gets moved to another leaf due to a b+tree leaf split 1959 * when inserting some item. In this case the file extent 1960 * items may be located in different leaves and therefore 1961 * some of the leaves may be referenced through shared 1962 * subtrees while others are not. Since our extent buffer 1963 * cache only works for a single path (by far the most common 1964 * case and simpler to deal with), we can not use it if we 1965 * have multiple leaves (which implies multiple paths). 1966 * 1967 * 2) level >= 0, a tree node/leaf: We can have a mix of direct 1968 * and indirect references on a b+tree node/leaf, so we have 1969 * to check multiple paths, and the extent buffer (the 1970 * current bytenr) may be shared or not. One example is 1971 * during relocation as we may get a shared tree block ref 1972 * (direct ref) and a non-shared tree block ref (indirect 1973 * ref) for the same node/leaf. 1974 */ 1975 if ((ctx->refs.nnodes - prev_ref_count) > 1) 1976 ctx->use_path_cache = false; 1977 1978 if (level >= 0) 1979 store_backref_shared_cache(ctx, root, bytenr, 1980 level, false); 1981 node = ulist_next(&ctx->refs, &uiter); 1982 if (!node) 1983 break; 1984 bytenr = node->val; 1985 if (ctx->use_path_cache) { 1986 bool is_shared; 1987 bool cached; 1988 1989 level++; 1990 cached = lookup_backref_shared_cache(ctx, root, bytenr, 1991 level, &is_shared); 1992 if (cached) { 1993 ret = (is_shared ? 1 : 0); 1994 break; 1995 } 1996 } 1997 shared.share_count = 0; 1998 shared.have_delayed_delete_refs = false; 1999 cond_resched(); 2000 } 2001 2002 /* 2003 * If the path cache is disabled, then it means at some tree level we 2004 * got multiple parents due to a mix of direct and indirect backrefs or 2005 * multiple leaves with file extent items pointing to the same data 2006 * extent. We have to invalidate the cache and cache only the sharedness 2007 * result for the levels where we got only one node/reference. 2008 */ 2009 if (!ctx->use_path_cache) { 2010 int i = 0; 2011 2012 level--; 2013 if (ret >= 0 && level >= 0) { 2014 bytenr = ctx->path_cache_entries[level].bytenr; 2015 ctx->use_path_cache = true; 2016 store_backref_shared_cache(ctx, root, bytenr, level, ret); 2017 i = level + 1; 2018 } 2019 2020 for ( ; i < BTRFS_MAX_LEVEL; i++) 2021 ctx->path_cache_entries[i].bytenr = 0; 2022 } 2023 2024 /* 2025 * Cache the sharedness result for the data extent if we know our inode 2026 * has more than 1 file extent item that refers to the data extent. 2027 */ 2028 if (ret >= 0 && shared.self_ref_count > 1) { 2029 int slot = ctx->prev_extents_cache_slot; 2030 2031 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr; 2032 ctx->prev_extents_cache[slot].is_shared = (ret == 1); 2033 2034 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; 2035 ctx->prev_extents_cache_slot = slot; 2036 } 2037 2038 out_trans: 2039 if (trans) { 2040 btrfs_put_tree_mod_seq(fs_info, &elem); 2041 btrfs_end_transaction(trans); 2042 } else { 2043 up_read(&fs_info->commit_root_sem); 2044 } 2045 out: 2046 ulist_release(&ctx->refs); 2047 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr; 2048 2049 return ret; 2050 } 2051 2052 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 2053 u64 start_off, struct btrfs_path *path, 2054 struct btrfs_inode_extref **ret_extref, 2055 u64 *found_off) 2056 { 2057 int ret, slot; 2058 struct btrfs_key key; 2059 struct btrfs_key found_key; 2060 struct btrfs_inode_extref *extref; 2061 const struct extent_buffer *leaf; 2062 unsigned long ptr; 2063 2064 key.objectid = inode_objectid; 2065 key.type = BTRFS_INODE_EXTREF_KEY; 2066 key.offset = start_off; 2067 2068 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2069 if (ret < 0) 2070 return ret; 2071 2072 while (1) { 2073 leaf = path->nodes[0]; 2074 slot = path->slots[0]; 2075 if (slot >= btrfs_header_nritems(leaf)) { 2076 /* 2077 * If the item at offset is not found, 2078 * btrfs_search_slot will point us to the slot 2079 * where it should be inserted. In our case 2080 * that will be the slot directly before the 2081 * next INODE_REF_KEY_V2 item. In the case 2082 * that we're pointing to the last slot in a 2083 * leaf, we must move one leaf over. 2084 */ 2085 ret = btrfs_next_leaf(root, path); 2086 if (ret) { 2087 if (ret >= 1) 2088 ret = -ENOENT; 2089 break; 2090 } 2091 continue; 2092 } 2093 2094 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2095 2096 /* 2097 * Check that we're still looking at an extended ref key for 2098 * this particular objectid. If we have different 2099 * objectid or type then there are no more to be found 2100 * in the tree and we can exit. 2101 */ 2102 ret = -ENOENT; 2103 if (found_key.objectid != inode_objectid) 2104 break; 2105 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 2106 break; 2107 2108 ret = 0; 2109 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 2110 extref = (struct btrfs_inode_extref *)ptr; 2111 *ret_extref = extref; 2112 if (found_off) 2113 *found_off = found_key.offset; 2114 break; 2115 } 2116 2117 return ret; 2118 } 2119 2120 /* 2121 * this iterates to turn a name (from iref/extref) into a full filesystem path. 2122 * Elements of the path are separated by '/' and the path is guaranteed to be 2123 * 0-terminated. the path is only given within the current file system. 2124 * Therefore, it never starts with a '/'. the caller is responsible to provide 2125 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 2126 * the start point of the resulting string is returned. this pointer is within 2127 * dest, normally. 2128 * in case the path buffer would overflow, the pointer is decremented further 2129 * as if output was written to the buffer, though no more output is actually 2130 * generated. that way, the caller can determine how much space would be 2131 * required for the path to fit into the buffer. in that case, the returned 2132 * value will be smaller than dest. callers must check this! 2133 */ 2134 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 2135 u32 name_len, unsigned long name_off, 2136 struct extent_buffer *eb_in, u64 parent, 2137 char *dest, u32 size) 2138 { 2139 int slot; 2140 u64 next_inum; 2141 int ret; 2142 s64 bytes_left = ((s64)size) - 1; 2143 struct extent_buffer *eb = eb_in; 2144 struct btrfs_key found_key; 2145 struct btrfs_inode_ref *iref; 2146 2147 if (bytes_left >= 0) 2148 dest[bytes_left] = '\0'; 2149 2150 while (1) { 2151 bytes_left -= name_len; 2152 if (bytes_left >= 0) 2153 read_extent_buffer(eb, dest + bytes_left, 2154 name_off, name_len); 2155 if (eb != eb_in) { 2156 if (!path->skip_locking) 2157 btrfs_tree_read_unlock(eb); 2158 free_extent_buffer(eb); 2159 } 2160 ret = btrfs_find_item(fs_root, path, parent, 0, 2161 BTRFS_INODE_REF_KEY, &found_key); 2162 if (ret > 0) 2163 ret = -ENOENT; 2164 if (ret) 2165 break; 2166 2167 next_inum = found_key.offset; 2168 2169 /* regular exit ahead */ 2170 if (parent == next_inum) 2171 break; 2172 2173 slot = path->slots[0]; 2174 eb = path->nodes[0]; 2175 /* make sure we can use eb after releasing the path */ 2176 if (eb != eb_in) { 2177 path->nodes[0] = NULL; 2178 path->locks[0] = 0; 2179 } 2180 btrfs_release_path(path); 2181 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2182 2183 name_len = btrfs_inode_ref_name_len(eb, iref); 2184 name_off = (unsigned long)(iref + 1); 2185 2186 parent = next_inum; 2187 --bytes_left; 2188 if (bytes_left >= 0) 2189 dest[bytes_left] = '/'; 2190 } 2191 2192 btrfs_release_path(path); 2193 2194 if (ret) 2195 return ERR_PTR(ret); 2196 2197 return dest + bytes_left; 2198 } 2199 2200 /* 2201 * this makes the path point to (logical EXTENT_ITEM *) 2202 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 2203 * tree blocks and <0 on error. 2204 */ 2205 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 2206 struct btrfs_path *path, struct btrfs_key *found_key, 2207 u64 *flags_ret) 2208 { 2209 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 2210 int ret; 2211 u64 flags; 2212 u64 size = 0; 2213 u32 item_size; 2214 const struct extent_buffer *eb; 2215 struct btrfs_extent_item *ei; 2216 struct btrfs_key key; 2217 2218 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2219 key.type = BTRFS_METADATA_ITEM_KEY; 2220 else 2221 key.type = BTRFS_EXTENT_ITEM_KEY; 2222 key.objectid = logical; 2223 key.offset = (u64)-1; 2224 2225 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2226 if (ret < 0) 2227 return ret; 2228 2229 ret = btrfs_previous_extent_item(extent_root, path, 0); 2230 if (ret) { 2231 if (ret > 0) 2232 ret = -ENOENT; 2233 return ret; 2234 } 2235 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 2236 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 2237 size = fs_info->nodesize; 2238 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 2239 size = found_key->offset; 2240 2241 if (found_key->objectid > logical || 2242 found_key->objectid + size <= logical) { 2243 btrfs_debug(fs_info, 2244 "logical %llu is not within any extent", logical); 2245 return -ENOENT; 2246 } 2247 2248 eb = path->nodes[0]; 2249 item_size = btrfs_item_size(eb, path->slots[0]); 2250 BUG_ON(item_size < sizeof(*ei)); 2251 2252 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 2253 flags = btrfs_extent_flags(eb, ei); 2254 2255 btrfs_debug(fs_info, 2256 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 2257 logical, logical - found_key->objectid, found_key->objectid, 2258 found_key->offset, flags, item_size); 2259 2260 WARN_ON(!flags_ret); 2261 if (flags_ret) { 2262 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2263 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 2264 else if (flags & BTRFS_EXTENT_FLAG_DATA) 2265 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 2266 else 2267 BUG(); 2268 return 0; 2269 } 2270 2271 return -EIO; 2272 } 2273 2274 /* 2275 * helper function to iterate extent inline refs. ptr must point to a 0 value 2276 * for the first call and may be modified. it is used to track state. 2277 * if more refs exist, 0 is returned and the next call to 2278 * get_extent_inline_ref must pass the modified ptr parameter to get the 2279 * next ref. after the last ref was processed, 1 is returned. 2280 * returns <0 on error 2281 */ 2282 static int get_extent_inline_ref(unsigned long *ptr, 2283 const struct extent_buffer *eb, 2284 const struct btrfs_key *key, 2285 const struct btrfs_extent_item *ei, 2286 u32 item_size, 2287 struct btrfs_extent_inline_ref **out_eiref, 2288 int *out_type) 2289 { 2290 unsigned long end; 2291 u64 flags; 2292 struct btrfs_tree_block_info *info; 2293 2294 if (!*ptr) { 2295 /* first call */ 2296 flags = btrfs_extent_flags(eb, ei); 2297 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2298 if (key->type == BTRFS_METADATA_ITEM_KEY) { 2299 /* a skinny metadata extent */ 2300 *out_eiref = 2301 (struct btrfs_extent_inline_ref *)(ei + 1); 2302 } else { 2303 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 2304 info = (struct btrfs_tree_block_info *)(ei + 1); 2305 *out_eiref = 2306 (struct btrfs_extent_inline_ref *)(info + 1); 2307 } 2308 } else { 2309 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 2310 } 2311 *ptr = (unsigned long)*out_eiref; 2312 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 2313 return -ENOENT; 2314 } 2315 2316 end = (unsigned long)ei + item_size; 2317 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 2318 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 2319 BTRFS_REF_TYPE_ANY); 2320 if (*out_type == BTRFS_REF_TYPE_INVALID) 2321 return -EUCLEAN; 2322 2323 *ptr += btrfs_extent_inline_ref_size(*out_type); 2324 WARN_ON(*ptr > end); 2325 if (*ptr == end) 2326 return 1; /* last */ 2327 2328 return 0; 2329 } 2330 2331 /* 2332 * reads the tree block backref for an extent. tree level and root are returned 2333 * through out_level and out_root. ptr must point to a 0 value for the first 2334 * call and may be modified (see get_extent_inline_ref comment). 2335 * returns 0 if data was provided, 1 if there was no more data to provide or 2336 * <0 on error. 2337 */ 2338 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 2339 struct btrfs_key *key, struct btrfs_extent_item *ei, 2340 u32 item_size, u64 *out_root, u8 *out_level) 2341 { 2342 int ret; 2343 int type; 2344 struct btrfs_extent_inline_ref *eiref; 2345 2346 if (*ptr == (unsigned long)-1) 2347 return 1; 2348 2349 while (1) { 2350 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 2351 &eiref, &type); 2352 if (ret < 0) 2353 return ret; 2354 2355 if (type == BTRFS_TREE_BLOCK_REF_KEY || 2356 type == BTRFS_SHARED_BLOCK_REF_KEY) 2357 break; 2358 2359 if (ret == 1) 2360 return 1; 2361 } 2362 2363 /* we can treat both ref types equally here */ 2364 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 2365 2366 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 2367 struct btrfs_tree_block_info *info; 2368 2369 info = (struct btrfs_tree_block_info *)(ei + 1); 2370 *out_level = btrfs_tree_block_level(eb, info); 2371 } else { 2372 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 2373 *out_level = (u8)key->offset; 2374 } 2375 2376 if (ret == 1) 2377 *ptr = (unsigned long)-1; 2378 2379 return 0; 2380 } 2381 2382 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 2383 struct extent_inode_elem *inode_list, 2384 u64 root, u64 extent_item_objectid, 2385 iterate_extent_inodes_t *iterate, void *ctx) 2386 { 2387 struct extent_inode_elem *eie; 2388 int ret = 0; 2389 2390 for (eie = inode_list; eie; eie = eie->next) { 2391 btrfs_debug(fs_info, 2392 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 2393 extent_item_objectid, eie->inum, 2394 eie->offset, root); 2395 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx); 2396 if (ret) { 2397 btrfs_debug(fs_info, 2398 "stopping iteration for %llu due to ret=%d", 2399 extent_item_objectid, ret); 2400 break; 2401 } 2402 } 2403 2404 return ret; 2405 } 2406 2407 /* 2408 * calls iterate() for every inode that references the extent identified by 2409 * the given parameters. 2410 * when the iterator function returns a non-zero value, iteration stops. 2411 */ 2412 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, 2413 bool search_commit_root, 2414 iterate_extent_inodes_t *iterate, void *user_ctx) 2415 { 2416 int ret; 2417 struct ulist *refs; 2418 struct ulist_node *ref_node; 2419 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 2420 struct ulist_iterator ref_uiter; 2421 2422 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu", 2423 ctx->bytenr); 2424 2425 ASSERT(ctx->trans == NULL); 2426 ASSERT(ctx->roots == NULL); 2427 2428 if (!search_commit_root) { 2429 struct btrfs_trans_handle *trans; 2430 2431 trans = btrfs_attach_transaction(ctx->fs_info->tree_root); 2432 if (IS_ERR(trans)) { 2433 if (PTR_ERR(trans) != -ENOENT && 2434 PTR_ERR(trans) != -EROFS) 2435 return PTR_ERR(trans); 2436 trans = NULL; 2437 } 2438 ctx->trans = trans; 2439 } 2440 2441 if (ctx->trans) { 2442 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem); 2443 ctx->time_seq = seq_elem.seq; 2444 } else { 2445 down_read(&ctx->fs_info->commit_root_sem); 2446 } 2447 2448 ret = btrfs_find_all_leafs(ctx); 2449 if (ret) 2450 goto out; 2451 refs = ctx->refs; 2452 ctx->refs = NULL; 2453 2454 ULIST_ITER_INIT(&ref_uiter); 2455 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2456 const u64 leaf_bytenr = ref_node->val; 2457 struct ulist_node *root_node; 2458 struct ulist_iterator root_uiter; 2459 struct extent_inode_elem *inode_list; 2460 2461 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux; 2462 2463 if (ctx->cache_lookup) { 2464 const u64 *root_ids; 2465 int root_count; 2466 bool cached; 2467 2468 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx, 2469 &root_ids, &root_count); 2470 if (cached) { 2471 for (int i = 0; i < root_count; i++) { 2472 ret = iterate_leaf_refs(ctx->fs_info, 2473 inode_list, 2474 root_ids[i], 2475 leaf_bytenr, 2476 iterate, 2477 user_ctx); 2478 if (ret) 2479 break; 2480 } 2481 continue; 2482 } 2483 } 2484 2485 if (!ctx->roots) { 2486 ctx->roots = ulist_alloc(GFP_NOFS); 2487 if (!ctx->roots) { 2488 ret = -ENOMEM; 2489 break; 2490 } 2491 } 2492 2493 ctx->bytenr = leaf_bytenr; 2494 ret = btrfs_find_all_roots_safe(ctx); 2495 if (ret) 2496 break; 2497 2498 if (ctx->cache_store) 2499 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx); 2500 2501 ULIST_ITER_INIT(&root_uiter); 2502 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) { 2503 btrfs_debug(ctx->fs_info, 2504 "root %llu references leaf %llu, data list %#llx", 2505 root_node->val, ref_node->val, 2506 ref_node->aux); 2507 ret = iterate_leaf_refs(ctx->fs_info, inode_list, 2508 root_node->val, ctx->bytenr, 2509 iterate, user_ctx); 2510 } 2511 ulist_reinit(ctx->roots); 2512 } 2513 2514 free_leaf_list(refs); 2515 out: 2516 if (ctx->trans) { 2517 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem); 2518 btrfs_end_transaction(ctx->trans); 2519 ctx->trans = NULL; 2520 } else { 2521 up_read(&ctx->fs_info->commit_root_sem); 2522 } 2523 2524 ulist_free(ctx->roots); 2525 ctx->roots = NULL; 2526 2527 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP) 2528 ret = 0; 2529 2530 return ret; 2531 } 2532 2533 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx) 2534 { 2535 struct btrfs_data_container *inodes = ctx; 2536 const size_t c = 3 * sizeof(u64); 2537 2538 if (inodes->bytes_left >= c) { 2539 inodes->bytes_left -= c; 2540 inodes->val[inodes->elem_cnt] = inum; 2541 inodes->val[inodes->elem_cnt + 1] = offset; 2542 inodes->val[inodes->elem_cnt + 2] = root; 2543 inodes->elem_cnt += 3; 2544 } else { 2545 inodes->bytes_missing += c - inodes->bytes_left; 2546 inodes->bytes_left = 0; 2547 inodes->elem_missed += 3; 2548 } 2549 2550 return 0; 2551 } 2552 2553 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2554 struct btrfs_path *path, 2555 void *ctx, bool ignore_offset) 2556 { 2557 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 2558 int ret; 2559 u64 flags = 0; 2560 struct btrfs_key found_key; 2561 int search_commit_root = path->search_commit_root; 2562 2563 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2564 btrfs_release_path(path); 2565 if (ret < 0) 2566 return ret; 2567 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2568 return -EINVAL; 2569 2570 walk_ctx.bytenr = found_key.objectid; 2571 if (ignore_offset) 2572 walk_ctx.ignore_extent_item_pos = true; 2573 else 2574 walk_ctx.extent_item_pos = logical - found_key.objectid; 2575 walk_ctx.fs_info = fs_info; 2576 2577 return iterate_extent_inodes(&walk_ctx, search_commit_root, 2578 build_ino_list, ctx); 2579 } 2580 2581 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2582 struct extent_buffer *eb, struct inode_fs_paths *ipath); 2583 2584 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath) 2585 { 2586 int ret = 0; 2587 int slot; 2588 u32 cur; 2589 u32 len; 2590 u32 name_len; 2591 u64 parent = 0; 2592 int found = 0; 2593 struct btrfs_root *fs_root = ipath->fs_root; 2594 struct btrfs_path *path = ipath->btrfs_path; 2595 struct extent_buffer *eb; 2596 struct btrfs_inode_ref *iref; 2597 struct btrfs_key found_key; 2598 2599 while (!ret) { 2600 ret = btrfs_find_item(fs_root, path, inum, 2601 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2602 &found_key); 2603 2604 if (ret < 0) 2605 break; 2606 if (ret) { 2607 ret = found ? 0 : -ENOENT; 2608 break; 2609 } 2610 ++found; 2611 2612 parent = found_key.offset; 2613 slot = path->slots[0]; 2614 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2615 if (!eb) { 2616 ret = -ENOMEM; 2617 break; 2618 } 2619 btrfs_release_path(path); 2620 2621 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2622 2623 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2624 name_len = btrfs_inode_ref_name_len(eb, iref); 2625 /* path must be released before calling iterate()! */ 2626 btrfs_debug(fs_root->fs_info, 2627 "following ref at offset %u for inode %llu in tree %llu", 2628 cur, found_key.objectid, 2629 fs_root->root_key.objectid); 2630 ret = inode_to_path(parent, name_len, 2631 (unsigned long)(iref + 1), eb, ipath); 2632 if (ret) 2633 break; 2634 len = sizeof(*iref) + name_len; 2635 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2636 } 2637 free_extent_buffer(eb); 2638 } 2639 2640 btrfs_release_path(path); 2641 2642 return ret; 2643 } 2644 2645 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath) 2646 { 2647 int ret; 2648 int slot; 2649 u64 offset = 0; 2650 u64 parent; 2651 int found = 0; 2652 struct btrfs_root *fs_root = ipath->fs_root; 2653 struct btrfs_path *path = ipath->btrfs_path; 2654 struct extent_buffer *eb; 2655 struct btrfs_inode_extref *extref; 2656 u32 item_size; 2657 u32 cur_offset; 2658 unsigned long ptr; 2659 2660 while (1) { 2661 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2662 &offset); 2663 if (ret < 0) 2664 break; 2665 if (ret) { 2666 ret = found ? 0 : -ENOENT; 2667 break; 2668 } 2669 ++found; 2670 2671 slot = path->slots[0]; 2672 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2673 if (!eb) { 2674 ret = -ENOMEM; 2675 break; 2676 } 2677 btrfs_release_path(path); 2678 2679 item_size = btrfs_item_size(eb, slot); 2680 ptr = btrfs_item_ptr_offset(eb, slot); 2681 cur_offset = 0; 2682 2683 while (cur_offset < item_size) { 2684 u32 name_len; 2685 2686 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2687 parent = btrfs_inode_extref_parent(eb, extref); 2688 name_len = btrfs_inode_extref_name_len(eb, extref); 2689 ret = inode_to_path(parent, name_len, 2690 (unsigned long)&extref->name, eb, ipath); 2691 if (ret) 2692 break; 2693 2694 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2695 cur_offset += sizeof(*extref); 2696 } 2697 free_extent_buffer(eb); 2698 2699 offset++; 2700 } 2701 2702 btrfs_release_path(path); 2703 2704 return ret; 2705 } 2706 2707 /* 2708 * returns 0 if the path could be dumped (probably truncated) 2709 * returns <0 in case of an error 2710 */ 2711 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2712 struct extent_buffer *eb, struct inode_fs_paths *ipath) 2713 { 2714 char *fspath; 2715 char *fspath_min; 2716 int i = ipath->fspath->elem_cnt; 2717 const int s_ptr = sizeof(char *); 2718 u32 bytes_left; 2719 2720 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2721 ipath->fspath->bytes_left - s_ptr : 0; 2722 2723 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2724 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2725 name_off, eb, inum, fspath_min, bytes_left); 2726 if (IS_ERR(fspath)) 2727 return PTR_ERR(fspath); 2728 2729 if (fspath > fspath_min) { 2730 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2731 ++ipath->fspath->elem_cnt; 2732 ipath->fspath->bytes_left = fspath - fspath_min; 2733 } else { 2734 ++ipath->fspath->elem_missed; 2735 ipath->fspath->bytes_missing += fspath_min - fspath; 2736 ipath->fspath->bytes_left = 0; 2737 } 2738 2739 return 0; 2740 } 2741 2742 /* 2743 * this dumps all file system paths to the inode into the ipath struct, provided 2744 * is has been created large enough. each path is zero-terminated and accessed 2745 * from ipath->fspath->val[i]. 2746 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2747 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2748 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2749 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2750 * have been needed to return all paths. 2751 */ 2752 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2753 { 2754 int ret; 2755 int found_refs = 0; 2756 2757 ret = iterate_inode_refs(inum, ipath); 2758 if (!ret) 2759 ++found_refs; 2760 else if (ret != -ENOENT) 2761 return ret; 2762 2763 ret = iterate_inode_extrefs(inum, ipath); 2764 if (ret == -ENOENT && found_refs) 2765 return 0; 2766 2767 return ret; 2768 } 2769 2770 struct btrfs_data_container *init_data_container(u32 total_bytes) 2771 { 2772 struct btrfs_data_container *data; 2773 size_t alloc_bytes; 2774 2775 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2776 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2777 if (!data) 2778 return ERR_PTR(-ENOMEM); 2779 2780 if (total_bytes >= sizeof(*data)) { 2781 data->bytes_left = total_bytes - sizeof(*data); 2782 data->bytes_missing = 0; 2783 } else { 2784 data->bytes_missing = sizeof(*data) - total_bytes; 2785 data->bytes_left = 0; 2786 } 2787 2788 data->elem_cnt = 0; 2789 data->elem_missed = 0; 2790 2791 return data; 2792 } 2793 2794 /* 2795 * allocates space to return multiple file system paths for an inode. 2796 * total_bytes to allocate are passed, note that space usable for actual path 2797 * information will be total_bytes - sizeof(struct inode_fs_paths). 2798 * the returned pointer must be freed with free_ipath() in the end. 2799 */ 2800 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2801 struct btrfs_path *path) 2802 { 2803 struct inode_fs_paths *ifp; 2804 struct btrfs_data_container *fspath; 2805 2806 fspath = init_data_container(total_bytes); 2807 if (IS_ERR(fspath)) 2808 return ERR_CAST(fspath); 2809 2810 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2811 if (!ifp) { 2812 kvfree(fspath); 2813 return ERR_PTR(-ENOMEM); 2814 } 2815 2816 ifp->btrfs_path = path; 2817 ifp->fspath = fspath; 2818 ifp->fs_root = fs_root; 2819 2820 return ifp; 2821 } 2822 2823 void free_ipath(struct inode_fs_paths *ipath) 2824 { 2825 if (!ipath) 2826 return; 2827 kvfree(ipath->fspath); 2828 kfree(ipath); 2829 } 2830 2831 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info) 2832 { 2833 struct btrfs_backref_iter *ret; 2834 2835 ret = kzalloc(sizeof(*ret), GFP_NOFS); 2836 if (!ret) 2837 return NULL; 2838 2839 ret->path = btrfs_alloc_path(); 2840 if (!ret->path) { 2841 kfree(ret); 2842 return NULL; 2843 } 2844 2845 /* Current backref iterator only supports iteration in commit root */ 2846 ret->path->search_commit_root = 1; 2847 ret->path->skip_locking = 1; 2848 ret->fs_info = fs_info; 2849 2850 return ret; 2851 } 2852 2853 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2854 { 2855 struct btrfs_fs_info *fs_info = iter->fs_info; 2856 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2857 struct btrfs_path *path = iter->path; 2858 struct btrfs_extent_item *ei; 2859 struct btrfs_key key; 2860 int ret; 2861 2862 key.objectid = bytenr; 2863 key.type = BTRFS_METADATA_ITEM_KEY; 2864 key.offset = (u64)-1; 2865 iter->bytenr = bytenr; 2866 2867 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2868 if (ret < 0) 2869 return ret; 2870 if (ret == 0) { 2871 ret = -EUCLEAN; 2872 goto release; 2873 } 2874 if (path->slots[0] == 0) { 2875 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2876 ret = -EUCLEAN; 2877 goto release; 2878 } 2879 path->slots[0]--; 2880 2881 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2882 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2883 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2884 ret = -ENOENT; 2885 goto release; 2886 } 2887 memcpy(&iter->cur_key, &key, sizeof(key)); 2888 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2889 path->slots[0]); 2890 iter->end_ptr = (u32)(iter->item_ptr + 2891 btrfs_item_size(path->nodes[0], path->slots[0])); 2892 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2893 struct btrfs_extent_item); 2894 2895 /* 2896 * Only support iteration on tree backref yet. 2897 * 2898 * This is an extra precaution for non skinny-metadata, where 2899 * EXTENT_ITEM is also used for tree blocks, that we can only use 2900 * extent flags to determine if it's a tree block. 2901 */ 2902 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2903 ret = -ENOTSUPP; 2904 goto release; 2905 } 2906 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2907 2908 /* If there is no inline backref, go search for keyed backref */ 2909 if (iter->cur_ptr >= iter->end_ptr) { 2910 ret = btrfs_next_item(extent_root, path); 2911 2912 /* No inline nor keyed ref */ 2913 if (ret > 0) { 2914 ret = -ENOENT; 2915 goto release; 2916 } 2917 if (ret < 0) 2918 goto release; 2919 2920 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2921 path->slots[0]); 2922 if (iter->cur_key.objectid != bytenr || 2923 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2924 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2925 ret = -ENOENT; 2926 goto release; 2927 } 2928 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2929 path->slots[0]); 2930 iter->item_ptr = iter->cur_ptr; 2931 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2932 path->nodes[0], path->slots[0])); 2933 } 2934 2935 return 0; 2936 release: 2937 btrfs_backref_iter_release(iter); 2938 return ret; 2939 } 2940 2941 /* 2942 * Go to the next backref item of current bytenr, can be either inlined or 2943 * keyed. 2944 * 2945 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2946 * 2947 * Return 0 if we get next backref without problem. 2948 * Return >0 if there is no extra backref for this bytenr. 2949 * Return <0 if there is something wrong happened. 2950 */ 2951 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2952 { 2953 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2954 struct btrfs_root *extent_root; 2955 struct btrfs_path *path = iter->path; 2956 struct btrfs_extent_inline_ref *iref; 2957 int ret; 2958 u32 size; 2959 2960 if (btrfs_backref_iter_is_inline_ref(iter)) { 2961 /* We're still inside the inline refs */ 2962 ASSERT(iter->cur_ptr < iter->end_ptr); 2963 2964 if (btrfs_backref_has_tree_block_info(iter)) { 2965 /* First tree block info */ 2966 size = sizeof(struct btrfs_tree_block_info); 2967 } else { 2968 /* Use inline ref type to determine the size */ 2969 int type; 2970 2971 iref = (struct btrfs_extent_inline_ref *) 2972 ((unsigned long)iter->cur_ptr); 2973 type = btrfs_extent_inline_ref_type(eb, iref); 2974 2975 size = btrfs_extent_inline_ref_size(type); 2976 } 2977 iter->cur_ptr += size; 2978 if (iter->cur_ptr < iter->end_ptr) 2979 return 0; 2980 2981 /* All inline items iterated, fall through */ 2982 } 2983 2984 /* We're at keyed items, there is no inline item, go to the next one */ 2985 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); 2986 ret = btrfs_next_item(extent_root, iter->path); 2987 if (ret) 2988 return ret; 2989 2990 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2991 if (iter->cur_key.objectid != iter->bytenr || 2992 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2993 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2994 return 1; 2995 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2996 path->slots[0]); 2997 iter->cur_ptr = iter->item_ptr; 2998 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 2999 path->slots[0]); 3000 return 0; 3001 } 3002 3003 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 3004 struct btrfs_backref_cache *cache, bool is_reloc) 3005 { 3006 int i; 3007 3008 cache->rb_root = RB_ROOT; 3009 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 3010 INIT_LIST_HEAD(&cache->pending[i]); 3011 INIT_LIST_HEAD(&cache->changed); 3012 INIT_LIST_HEAD(&cache->detached); 3013 INIT_LIST_HEAD(&cache->leaves); 3014 INIT_LIST_HEAD(&cache->pending_edge); 3015 INIT_LIST_HEAD(&cache->useless_node); 3016 cache->fs_info = fs_info; 3017 cache->is_reloc = is_reloc; 3018 } 3019 3020 struct btrfs_backref_node *btrfs_backref_alloc_node( 3021 struct btrfs_backref_cache *cache, u64 bytenr, int level) 3022 { 3023 struct btrfs_backref_node *node; 3024 3025 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 3026 node = kzalloc(sizeof(*node), GFP_NOFS); 3027 if (!node) 3028 return node; 3029 3030 INIT_LIST_HEAD(&node->list); 3031 INIT_LIST_HEAD(&node->upper); 3032 INIT_LIST_HEAD(&node->lower); 3033 RB_CLEAR_NODE(&node->rb_node); 3034 cache->nr_nodes++; 3035 node->level = level; 3036 node->bytenr = bytenr; 3037 3038 return node; 3039 } 3040 3041 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 3042 struct btrfs_backref_cache *cache) 3043 { 3044 struct btrfs_backref_edge *edge; 3045 3046 edge = kzalloc(sizeof(*edge), GFP_NOFS); 3047 if (edge) 3048 cache->nr_edges++; 3049 return edge; 3050 } 3051 3052 /* 3053 * Drop the backref node from cache, also cleaning up all its 3054 * upper edges and any uncached nodes in the path. 3055 * 3056 * This cleanup happens bottom up, thus the node should either 3057 * be the lowest node in the cache or a detached node. 3058 */ 3059 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 3060 struct btrfs_backref_node *node) 3061 { 3062 struct btrfs_backref_node *upper; 3063 struct btrfs_backref_edge *edge; 3064 3065 if (!node) 3066 return; 3067 3068 BUG_ON(!node->lowest && !node->detached); 3069 while (!list_empty(&node->upper)) { 3070 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 3071 list[LOWER]); 3072 upper = edge->node[UPPER]; 3073 list_del(&edge->list[LOWER]); 3074 list_del(&edge->list[UPPER]); 3075 btrfs_backref_free_edge(cache, edge); 3076 3077 /* 3078 * Add the node to leaf node list if no other child block 3079 * cached. 3080 */ 3081 if (list_empty(&upper->lower)) { 3082 list_add_tail(&upper->lower, &cache->leaves); 3083 upper->lowest = 1; 3084 } 3085 } 3086 3087 btrfs_backref_drop_node(cache, node); 3088 } 3089 3090 /* 3091 * Release all nodes/edges from current cache 3092 */ 3093 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 3094 { 3095 struct btrfs_backref_node *node; 3096 int i; 3097 3098 while (!list_empty(&cache->detached)) { 3099 node = list_entry(cache->detached.next, 3100 struct btrfs_backref_node, list); 3101 btrfs_backref_cleanup_node(cache, node); 3102 } 3103 3104 while (!list_empty(&cache->leaves)) { 3105 node = list_entry(cache->leaves.next, 3106 struct btrfs_backref_node, lower); 3107 btrfs_backref_cleanup_node(cache, node); 3108 } 3109 3110 cache->last_trans = 0; 3111 3112 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 3113 ASSERT(list_empty(&cache->pending[i])); 3114 ASSERT(list_empty(&cache->pending_edge)); 3115 ASSERT(list_empty(&cache->useless_node)); 3116 ASSERT(list_empty(&cache->changed)); 3117 ASSERT(list_empty(&cache->detached)); 3118 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 3119 ASSERT(!cache->nr_nodes); 3120 ASSERT(!cache->nr_edges); 3121 } 3122 3123 /* 3124 * Handle direct tree backref 3125 * 3126 * Direct tree backref means, the backref item shows its parent bytenr 3127 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 3128 * 3129 * @ref_key: The converted backref key. 3130 * For keyed backref, it's the item key. 3131 * For inlined backref, objectid is the bytenr, 3132 * type is btrfs_inline_ref_type, offset is 3133 * btrfs_inline_ref_offset. 3134 */ 3135 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 3136 struct btrfs_key *ref_key, 3137 struct btrfs_backref_node *cur) 3138 { 3139 struct btrfs_backref_edge *edge; 3140 struct btrfs_backref_node *upper; 3141 struct rb_node *rb_node; 3142 3143 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 3144 3145 /* Only reloc root uses backref pointing to itself */ 3146 if (ref_key->objectid == ref_key->offset) { 3147 struct btrfs_root *root; 3148 3149 cur->is_reloc_root = 1; 3150 /* Only reloc backref cache cares about a specific root */ 3151 if (cache->is_reloc) { 3152 root = find_reloc_root(cache->fs_info, cur->bytenr); 3153 if (!root) 3154 return -ENOENT; 3155 cur->root = root; 3156 } else { 3157 /* 3158 * For generic purpose backref cache, reloc root node 3159 * is useless. 3160 */ 3161 list_add(&cur->list, &cache->useless_node); 3162 } 3163 return 0; 3164 } 3165 3166 edge = btrfs_backref_alloc_edge(cache); 3167 if (!edge) 3168 return -ENOMEM; 3169 3170 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 3171 if (!rb_node) { 3172 /* Parent node not yet cached */ 3173 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 3174 cur->level + 1); 3175 if (!upper) { 3176 btrfs_backref_free_edge(cache, edge); 3177 return -ENOMEM; 3178 } 3179 3180 /* 3181 * Backrefs for the upper level block isn't cached, add the 3182 * block to pending list 3183 */ 3184 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3185 } else { 3186 /* Parent node already cached */ 3187 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 3188 ASSERT(upper->checked); 3189 INIT_LIST_HEAD(&edge->list[UPPER]); 3190 } 3191 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 3192 return 0; 3193 } 3194 3195 /* 3196 * Handle indirect tree backref 3197 * 3198 * Indirect tree backref means, we only know which tree the node belongs to. 3199 * We still need to do a tree search to find out the parents. This is for 3200 * TREE_BLOCK_REF backref (keyed or inlined). 3201 * 3202 * @trans: Transaction handle. 3203 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 3204 * @tree_key: The first key of this tree block. 3205 * @path: A clean (released) path, to avoid allocating path every time 3206 * the function get called. 3207 */ 3208 static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans, 3209 struct btrfs_backref_cache *cache, 3210 struct btrfs_path *path, 3211 struct btrfs_key *ref_key, 3212 struct btrfs_key *tree_key, 3213 struct btrfs_backref_node *cur) 3214 { 3215 struct btrfs_fs_info *fs_info = cache->fs_info; 3216 struct btrfs_backref_node *upper; 3217 struct btrfs_backref_node *lower; 3218 struct btrfs_backref_edge *edge; 3219 struct extent_buffer *eb; 3220 struct btrfs_root *root; 3221 struct rb_node *rb_node; 3222 int level; 3223 bool need_check = true; 3224 int ret; 3225 3226 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 3227 if (IS_ERR(root)) 3228 return PTR_ERR(root); 3229 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3230 cur->cowonly = 1; 3231 3232 if (btrfs_root_level(&root->root_item) == cur->level) { 3233 /* Tree root */ 3234 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 3235 /* 3236 * For reloc backref cache, we may ignore reloc root. But for 3237 * general purpose backref cache, we can't rely on 3238 * btrfs_should_ignore_reloc_root() as it may conflict with 3239 * current running relocation and lead to missing root. 3240 * 3241 * For general purpose backref cache, reloc root detection is 3242 * completely relying on direct backref (key->offset is parent 3243 * bytenr), thus only do such check for reloc cache. 3244 */ 3245 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 3246 btrfs_put_root(root); 3247 list_add(&cur->list, &cache->useless_node); 3248 } else { 3249 cur->root = root; 3250 } 3251 return 0; 3252 } 3253 3254 level = cur->level + 1; 3255 3256 /* Search the tree to find parent blocks referring to the block */ 3257 path->search_commit_root = 1; 3258 path->skip_locking = 1; 3259 path->lowest_level = level; 3260 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 3261 path->lowest_level = 0; 3262 if (ret < 0) { 3263 btrfs_put_root(root); 3264 return ret; 3265 } 3266 if (ret > 0 && path->slots[level] > 0) 3267 path->slots[level]--; 3268 3269 eb = path->nodes[level]; 3270 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 3271 btrfs_err(fs_info, 3272 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 3273 cur->bytenr, level - 1, root->root_key.objectid, 3274 tree_key->objectid, tree_key->type, tree_key->offset); 3275 btrfs_put_root(root); 3276 ret = -ENOENT; 3277 goto out; 3278 } 3279 lower = cur; 3280 3281 /* Add all nodes and edges in the path */ 3282 for (; level < BTRFS_MAX_LEVEL; level++) { 3283 if (!path->nodes[level]) { 3284 ASSERT(btrfs_root_bytenr(&root->root_item) == 3285 lower->bytenr); 3286 /* Same as previous should_ignore_reloc_root() call */ 3287 if (btrfs_should_ignore_reloc_root(root) && 3288 cache->is_reloc) { 3289 btrfs_put_root(root); 3290 list_add(&lower->list, &cache->useless_node); 3291 } else { 3292 lower->root = root; 3293 } 3294 break; 3295 } 3296 3297 edge = btrfs_backref_alloc_edge(cache); 3298 if (!edge) { 3299 btrfs_put_root(root); 3300 ret = -ENOMEM; 3301 goto out; 3302 } 3303 3304 eb = path->nodes[level]; 3305 rb_node = rb_simple_search(&cache->rb_root, eb->start); 3306 if (!rb_node) { 3307 upper = btrfs_backref_alloc_node(cache, eb->start, 3308 lower->level + 1); 3309 if (!upper) { 3310 btrfs_put_root(root); 3311 btrfs_backref_free_edge(cache, edge); 3312 ret = -ENOMEM; 3313 goto out; 3314 } 3315 upper->owner = btrfs_header_owner(eb); 3316 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3317 upper->cowonly = 1; 3318 3319 /* 3320 * If we know the block isn't shared we can avoid 3321 * checking its backrefs. 3322 */ 3323 if (btrfs_block_can_be_shared(trans, root, eb)) 3324 upper->checked = 0; 3325 else 3326 upper->checked = 1; 3327 3328 /* 3329 * Add the block to pending list if we need to check its 3330 * backrefs, we only do this once while walking up a 3331 * tree as we will catch anything else later on. 3332 */ 3333 if (!upper->checked && need_check) { 3334 need_check = false; 3335 list_add_tail(&edge->list[UPPER], 3336 &cache->pending_edge); 3337 } else { 3338 if (upper->checked) 3339 need_check = true; 3340 INIT_LIST_HEAD(&edge->list[UPPER]); 3341 } 3342 } else { 3343 upper = rb_entry(rb_node, struct btrfs_backref_node, 3344 rb_node); 3345 ASSERT(upper->checked); 3346 INIT_LIST_HEAD(&edge->list[UPPER]); 3347 if (!upper->owner) 3348 upper->owner = btrfs_header_owner(eb); 3349 } 3350 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 3351 3352 if (rb_node) { 3353 btrfs_put_root(root); 3354 break; 3355 } 3356 lower = upper; 3357 upper = NULL; 3358 } 3359 out: 3360 btrfs_release_path(path); 3361 return ret; 3362 } 3363 3364 /* 3365 * Add backref node @cur into @cache. 3366 * 3367 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 3368 * links aren't yet bi-directional. Needs to finish such links. 3369 * Use btrfs_backref_finish_upper_links() to finish such linkage. 3370 * 3371 * @trans: Transaction handle. 3372 * @path: Released path for indirect tree backref lookup 3373 * @iter: Released backref iter for extent tree search 3374 * @node_key: The first key of the tree block 3375 */ 3376 int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans, 3377 struct btrfs_backref_cache *cache, 3378 struct btrfs_path *path, 3379 struct btrfs_backref_iter *iter, 3380 struct btrfs_key *node_key, 3381 struct btrfs_backref_node *cur) 3382 { 3383 struct btrfs_backref_edge *edge; 3384 struct btrfs_backref_node *exist; 3385 int ret; 3386 3387 ret = btrfs_backref_iter_start(iter, cur->bytenr); 3388 if (ret < 0) 3389 return ret; 3390 /* 3391 * We skip the first btrfs_tree_block_info, as we don't use the key 3392 * stored in it, but fetch it from the tree block 3393 */ 3394 if (btrfs_backref_has_tree_block_info(iter)) { 3395 ret = btrfs_backref_iter_next(iter); 3396 if (ret < 0) 3397 goto out; 3398 /* No extra backref? This means the tree block is corrupted */ 3399 if (ret > 0) { 3400 ret = -EUCLEAN; 3401 goto out; 3402 } 3403 } 3404 WARN_ON(cur->checked); 3405 if (!list_empty(&cur->upper)) { 3406 /* 3407 * The backref was added previously when processing backref of 3408 * type BTRFS_TREE_BLOCK_REF_KEY 3409 */ 3410 ASSERT(list_is_singular(&cur->upper)); 3411 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 3412 list[LOWER]); 3413 ASSERT(list_empty(&edge->list[UPPER])); 3414 exist = edge->node[UPPER]; 3415 /* 3416 * Add the upper level block to pending list if we need check 3417 * its backrefs 3418 */ 3419 if (!exist->checked) 3420 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3421 } else { 3422 exist = NULL; 3423 } 3424 3425 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 3426 struct extent_buffer *eb; 3427 struct btrfs_key key; 3428 int type; 3429 3430 cond_resched(); 3431 eb = btrfs_backref_get_eb(iter); 3432 3433 key.objectid = iter->bytenr; 3434 if (btrfs_backref_iter_is_inline_ref(iter)) { 3435 struct btrfs_extent_inline_ref *iref; 3436 3437 /* Update key for inline backref */ 3438 iref = (struct btrfs_extent_inline_ref *) 3439 ((unsigned long)iter->cur_ptr); 3440 type = btrfs_get_extent_inline_ref_type(eb, iref, 3441 BTRFS_REF_TYPE_BLOCK); 3442 if (type == BTRFS_REF_TYPE_INVALID) { 3443 ret = -EUCLEAN; 3444 goto out; 3445 } 3446 key.type = type; 3447 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3448 } else { 3449 key.type = iter->cur_key.type; 3450 key.offset = iter->cur_key.offset; 3451 } 3452 3453 /* 3454 * Parent node found and matches current inline ref, no need to 3455 * rebuild this node for this inline ref 3456 */ 3457 if (exist && 3458 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 3459 exist->owner == key.offset) || 3460 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 3461 exist->bytenr == key.offset))) { 3462 exist = NULL; 3463 continue; 3464 } 3465 3466 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 3467 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 3468 ret = handle_direct_tree_backref(cache, &key, cur); 3469 if (ret < 0) 3470 goto out; 3471 } else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) { 3472 /* 3473 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref 3474 * offset means the root objectid. We need to search 3475 * the tree to get its parent bytenr. 3476 */ 3477 ret = handle_indirect_tree_backref(trans, cache, path, 3478 &key, node_key, cur); 3479 if (ret < 0) 3480 goto out; 3481 } 3482 /* 3483 * Unrecognized tree backref items (if it can pass tree-checker) 3484 * would be ignored. 3485 */ 3486 } 3487 ret = 0; 3488 cur->checked = 1; 3489 WARN_ON(exist); 3490 out: 3491 btrfs_backref_iter_release(iter); 3492 return ret; 3493 } 3494 3495 /* 3496 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 3497 */ 3498 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 3499 struct btrfs_backref_node *start) 3500 { 3501 struct list_head *useless_node = &cache->useless_node; 3502 struct btrfs_backref_edge *edge; 3503 struct rb_node *rb_node; 3504 LIST_HEAD(pending_edge); 3505 3506 ASSERT(start->checked); 3507 3508 /* Insert this node to cache if it's not COW-only */ 3509 if (!start->cowonly) { 3510 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 3511 &start->rb_node); 3512 if (rb_node) 3513 btrfs_backref_panic(cache->fs_info, start->bytenr, 3514 -EEXIST); 3515 list_add_tail(&start->lower, &cache->leaves); 3516 } 3517 3518 /* 3519 * Use breadth first search to iterate all related edges. 3520 * 3521 * The starting points are all the edges of this node 3522 */ 3523 list_for_each_entry(edge, &start->upper, list[LOWER]) 3524 list_add_tail(&edge->list[UPPER], &pending_edge); 3525 3526 while (!list_empty(&pending_edge)) { 3527 struct btrfs_backref_node *upper; 3528 struct btrfs_backref_node *lower; 3529 3530 edge = list_first_entry(&pending_edge, 3531 struct btrfs_backref_edge, list[UPPER]); 3532 list_del_init(&edge->list[UPPER]); 3533 upper = edge->node[UPPER]; 3534 lower = edge->node[LOWER]; 3535 3536 /* Parent is detached, no need to keep any edges */ 3537 if (upper->detached) { 3538 list_del(&edge->list[LOWER]); 3539 btrfs_backref_free_edge(cache, edge); 3540 3541 /* Lower node is orphan, queue for cleanup */ 3542 if (list_empty(&lower->upper)) 3543 list_add(&lower->list, useless_node); 3544 continue; 3545 } 3546 3547 /* 3548 * All new nodes added in current build_backref_tree() haven't 3549 * been linked to the cache rb tree. 3550 * So if we have upper->rb_node populated, this means a cache 3551 * hit. We only need to link the edge, as @upper and all its 3552 * parents have already been linked. 3553 */ 3554 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3555 if (upper->lowest) { 3556 list_del_init(&upper->lower); 3557 upper->lowest = 0; 3558 } 3559 3560 list_add_tail(&edge->list[UPPER], &upper->lower); 3561 continue; 3562 } 3563 3564 /* Sanity check, we shouldn't have any unchecked nodes */ 3565 if (!upper->checked) { 3566 ASSERT(0); 3567 return -EUCLEAN; 3568 } 3569 3570 /* Sanity check, COW-only node has non-COW-only parent */ 3571 if (start->cowonly != upper->cowonly) { 3572 ASSERT(0); 3573 return -EUCLEAN; 3574 } 3575 3576 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3577 if (!upper->cowonly) { 3578 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3579 &upper->rb_node); 3580 if (rb_node) { 3581 btrfs_backref_panic(cache->fs_info, 3582 upper->bytenr, -EEXIST); 3583 return -EUCLEAN; 3584 } 3585 } 3586 3587 list_add_tail(&edge->list[UPPER], &upper->lower); 3588 3589 /* 3590 * Also queue all the parent edges of this uncached node 3591 * to finish the upper linkage 3592 */ 3593 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3594 list_add_tail(&edge->list[UPPER], &pending_edge); 3595 } 3596 return 0; 3597 } 3598 3599 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3600 struct btrfs_backref_node *node) 3601 { 3602 struct btrfs_backref_node *lower; 3603 struct btrfs_backref_node *upper; 3604 struct btrfs_backref_edge *edge; 3605 3606 while (!list_empty(&cache->useless_node)) { 3607 lower = list_first_entry(&cache->useless_node, 3608 struct btrfs_backref_node, list); 3609 list_del_init(&lower->list); 3610 } 3611 while (!list_empty(&cache->pending_edge)) { 3612 edge = list_first_entry(&cache->pending_edge, 3613 struct btrfs_backref_edge, list[UPPER]); 3614 list_del(&edge->list[UPPER]); 3615 list_del(&edge->list[LOWER]); 3616 lower = edge->node[LOWER]; 3617 upper = edge->node[UPPER]; 3618 btrfs_backref_free_edge(cache, edge); 3619 3620 /* 3621 * Lower is no longer linked to any upper backref nodes and 3622 * isn't in the cache, we can free it ourselves. 3623 */ 3624 if (list_empty(&lower->upper) && 3625 RB_EMPTY_NODE(&lower->rb_node)) 3626 list_add(&lower->list, &cache->useless_node); 3627 3628 if (!RB_EMPTY_NODE(&upper->rb_node)) 3629 continue; 3630 3631 /* Add this guy's upper edges to the list to process */ 3632 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3633 list_add_tail(&edge->list[UPPER], 3634 &cache->pending_edge); 3635 if (list_empty(&upper->upper)) 3636 list_add(&upper->list, &cache->useless_node); 3637 } 3638 3639 while (!list_empty(&cache->useless_node)) { 3640 lower = list_first_entry(&cache->useless_node, 3641 struct btrfs_backref_node, list); 3642 list_del_init(&lower->list); 3643 if (lower == node) 3644 node = NULL; 3645 btrfs_backref_drop_node(cache, lower); 3646 } 3647 3648 btrfs_backref_cleanup_node(cache, node); 3649 ASSERT(list_empty(&cache->useless_node) && 3650 list_empty(&cache->pending_edge)); 3651 } 3652