xref: /linux/fs/btrfs/backref.c (revision 9a379e77033f02c4a071891afdf0f0a01eff8ccb)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/mm.h>
20 #include <linux/rbtree.h>
21 #include <trace/events/btrfs.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "backref.h"
25 #include "ulist.h"
26 #include "transaction.h"
27 #include "delayed-ref.h"
28 #include "locking.h"
29 
30 /* Just an arbitrary number so we can be sure this happened */
31 #define BACKREF_FOUND_SHARED 6
32 
33 struct extent_inode_elem {
34 	u64 inum;
35 	u64 offset;
36 	struct extent_inode_elem *next;
37 };
38 
39 static int check_extent_in_eb(const struct btrfs_key *key,
40 			      const struct extent_buffer *eb,
41 			      const struct btrfs_file_extent_item *fi,
42 			      u64 extent_item_pos,
43 			      struct extent_inode_elem **eie,
44 			      bool ignore_offset)
45 {
46 	u64 offset = 0;
47 	struct extent_inode_elem *e;
48 
49 	if (!ignore_offset &&
50 	    !btrfs_file_extent_compression(eb, fi) &&
51 	    !btrfs_file_extent_encryption(eb, fi) &&
52 	    !btrfs_file_extent_other_encoding(eb, fi)) {
53 		u64 data_offset;
54 		u64 data_len;
55 
56 		data_offset = btrfs_file_extent_offset(eb, fi);
57 		data_len = btrfs_file_extent_num_bytes(eb, fi);
58 
59 		if (extent_item_pos < data_offset ||
60 		    extent_item_pos >= data_offset + data_len)
61 			return 1;
62 		offset = extent_item_pos - data_offset;
63 	}
64 
65 	e = kmalloc(sizeof(*e), GFP_NOFS);
66 	if (!e)
67 		return -ENOMEM;
68 
69 	e->next = *eie;
70 	e->inum = key->objectid;
71 	e->offset = key->offset + offset;
72 	*eie = e;
73 
74 	return 0;
75 }
76 
77 static void free_inode_elem_list(struct extent_inode_elem *eie)
78 {
79 	struct extent_inode_elem *eie_next;
80 
81 	for (; eie; eie = eie_next) {
82 		eie_next = eie->next;
83 		kfree(eie);
84 	}
85 }
86 
87 static int find_extent_in_eb(const struct extent_buffer *eb,
88 			     u64 wanted_disk_byte, u64 extent_item_pos,
89 			     struct extent_inode_elem **eie,
90 			     bool ignore_offset)
91 {
92 	u64 disk_byte;
93 	struct btrfs_key key;
94 	struct btrfs_file_extent_item *fi;
95 	int slot;
96 	int nritems;
97 	int extent_type;
98 	int ret;
99 
100 	/*
101 	 * from the shared data ref, we only have the leaf but we need
102 	 * the key. thus, we must look into all items and see that we
103 	 * find one (some) with a reference to our extent item.
104 	 */
105 	nritems = btrfs_header_nritems(eb);
106 	for (slot = 0; slot < nritems; ++slot) {
107 		btrfs_item_key_to_cpu(eb, &key, slot);
108 		if (key.type != BTRFS_EXTENT_DATA_KEY)
109 			continue;
110 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
111 		extent_type = btrfs_file_extent_type(eb, fi);
112 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
113 			continue;
114 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
115 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
116 		if (disk_byte != wanted_disk_byte)
117 			continue;
118 
119 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
120 		if (ret < 0)
121 			return ret;
122 	}
123 
124 	return 0;
125 }
126 
127 struct preftree {
128 	struct rb_root root;
129 	unsigned int count;
130 };
131 
132 #define PREFTREE_INIT	{ .root = RB_ROOT, .count = 0 }
133 
134 struct preftrees {
135 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
136 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
137 	struct preftree indirect_missing_keys;
138 };
139 
140 /*
141  * Checks for a shared extent during backref search.
142  *
143  * The share_count tracks prelim_refs (direct and indirect) having a
144  * ref->count >0:
145  *  - incremented when a ref->count transitions to >0
146  *  - decremented when a ref->count transitions to <1
147  */
148 struct share_check {
149 	u64 root_objectid;
150 	u64 inum;
151 	int share_count;
152 };
153 
154 static inline int extent_is_shared(struct share_check *sc)
155 {
156 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
157 }
158 
159 static struct kmem_cache *btrfs_prelim_ref_cache;
160 
161 int __init btrfs_prelim_ref_init(void)
162 {
163 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
164 					sizeof(struct prelim_ref),
165 					0,
166 					SLAB_MEM_SPREAD,
167 					NULL);
168 	if (!btrfs_prelim_ref_cache)
169 		return -ENOMEM;
170 	return 0;
171 }
172 
173 void btrfs_prelim_ref_exit(void)
174 {
175 	kmem_cache_destroy(btrfs_prelim_ref_cache);
176 }
177 
178 static void free_pref(struct prelim_ref *ref)
179 {
180 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
181 }
182 
183 /*
184  * Return 0 when both refs are for the same block (and can be merged).
185  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
186  * indicates a 'higher' block.
187  */
188 static int prelim_ref_compare(struct prelim_ref *ref1,
189 			      struct prelim_ref *ref2)
190 {
191 	if (ref1->level < ref2->level)
192 		return -1;
193 	if (ref1->level > ref2->level)
194 		return 1;
195 	if (ref1->root_id < ref2->root_id)
196 		return -1;
197 	if (ref1->root_id > ref2->root_id)
198 		return 1;
199 	if (ref1->key_for_search.type < ref2->key_for_search.type)
200 		return -1;
201 	if (ref1->key_for_search.type > ref2->key_for_search.type)
202 		return 1;
203 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
204 		return -1;
205 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
206 		return 1;
207 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
208 		return -1;
209 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
210 		return 1;
211 	if (ref1->parent < ref2->parent)
212 		return -1;
213 	if (ref1->parent > ref2->parent)
214 		return 1;
215 
216 	return 0;
217 }
218 
219 static void update_share_count(struct share_check *sc, int oldcount,
220 			       int newcount)
221 {
222 	if ((!sc) || (oldcount == 0 && newcount < 1))
223 		return;
224 
225 	if (oldcount > 0 && newcount < 1)
226 		sc->share_count--;
227 	else if (oldcount < 1 && newcount > 0)
228 		sc->share_count++;
229 }
230 
231 /*
232  * Add @newref to the @root rbtree, merging identical refs.
233  *
234  * Callers should assume that newref has been freed after calling.
235  */
236 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
237 			      struct preftree *preftree,
238 			      struct prelim_ref *newref,
239 			      struct share_check *sc)
240 {
241 	struct rb_root *root;
242 	struct rb_node **p;
243 	struct rb_node *parent = NULL;
244 	struct prelim_ref *ref;
245 	int result;
246 
247 	root = &preftree->root;
248 	p = &root->rb_node;
249 
250 	while (*p) {
251 		parent = *p;
252 		ref = rb_entry(parent, struct prelim_ref, rbnode);
253 		result = prelim_ref_compare(ref, newref);
254 		if (result < 0) {
255 			p = &(*p)->rb_left;
256 		} else if (result > 0) {
257 			p = &(*p)->rb_right;
258 		} else {
259 			/* Identical refs, merge them and free @newref */
260 			struct extent_inode_elem *eie = ref->inode_list;
261 
262 			while (eie && eie->next)
263 				eie = eie->next;
264 
265 			if (!eie)
266 				ref->inode_list = newref->inode_list;
267 			else
268 				eie->next = newref->inode_list;
269 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
270 						     preftree->count);
271 			/*
272 			 * A delayed ref can have newref->count < 0.
273 			 * The ref->count is updated to follow any
274 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
275 			 */
276 			update_share_count(sc, ref->count,
277 					   ref->count + newref->count);
278 			ref->count += newref->count;
279 			free_pref(newref);
280 			return;
281 		}
282 	}
283 
284 	update_share_count(sc, 0, newref->count);
285 	preftree->count++;
286 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
287 	rb_link_node(&newref->rbnode, parent, p);
288 	rb_insert_color(&newref->rbnode, root);
289 }
290 
291 /*
292  * Release the entire tree.  We don't care about internal consistency so
293  * just free everything and then reset the tree root.
294  */
295 static void prelim_release(struct preftree *preftree)
296 {
297 	struct prelim_ref *ref, *next_ref;
298 
299 	rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
300 					     rbnode)
301 		free_pref(ref);
302 
303 	preftree->root = RB_ROOT;
304 	preftree->count = 0;
305 }
306 
307 /*
308  * the rules for all callers of this function are:
309  * - obtaining the parent is the goal
310  * - if you add a key, you must know that it is a correct key
311  * - if you cannot add the parent or a correct key, then we will look into the
312  *   block later to set a correct key
313  *
314  * delayed refs
315  * ============
316  *        backref type | shared | indirect | shared | indirect
317  * information         |   tree |     tree |   data |     data
318  * --------------------+--------+----------+--------+----------
319  *      parent logical |    y   |     -    |    -   |     -
320  *      key to resolve |    -   |     y    |    y   |     y
321  *  tree block logical |    -   |     -    |    -   |     -
322  *  root for resolving |    y   |     y    |    y   |     y
323  *
324  * - column 1:       we've the parent -> done
325  * - column 2, 3, 4: we use the key to find the parent
326  *
327  * on disk refs (inline or keyed)
328  * ==============================
329  *        backref type | shared | indirect | shared | indirect
330  * information         |   tree |     tree |   data |     data
331  * --------------------+--------+----------+--------+----------
332  *      parent logical |    y   |     -    |    y   |     -
333  *      key to resolve |    -   |     -    |    -   |     y
334  *  tree block logical |    y   |     y    |    y   |     y
335  *  root for resolving |    -   |     y    |    y   |     y
336  *
337  * - column 1, 3: we've the parent -> done
338  * - column 2:    we take the first key from the block to find the parent
339  *                (see add_missing_keys)
340  * - column 4:    we use the key to find the parent
341  *
342  * additional information that's available but not required to find the parent
343  * block might help in merging entries to gain some speed.
344  */
345 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
346 			  struct preftree *preftree, u64 root_id,
347 			  const struct btrfs_key *key, int level, u64 parent,
348 			  u64 wanted_disk_byte, int count,
349 			  struct share_check *sc, gfp_t gfp_mask)
350 {
351 	struct prelim_ref *ref;
352 
353 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
354 		return 0;
355 
356 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
357 	if (!ref)
358 		return -ENOMEM;
359 
360 	ref->root_id = root_id;
361 	if (key) {
362 		ref->key_for_search = *key;
363 		/*
364 		 * We can often find data backrefs with an offset that is too
365 		 * large (>= LLONG_MAX, maximum allowed file offset) due to
366 		 * underflows when subtracting a file's offset with the data
367 		 * offset of its corresponding extent data item. This can
368 		 * happen for example in the clone ioctl.
369 		 * So if we detect such case we set the search key's offset to
370 		 * zero to make sure we will find the matching file extent item
371 		 * at add_all_parents(), otherwise we will miss it because the
372 		 * offset taken form the backref is much larger then the offset
373 		 * of the file extent item. This can make us scan a very large
374 		 * number of file extent items, but at least it will not make
375 		 * us miss any.
376 		 * This is an ugly workaround for a behaviour that should have
377 		 * never existed, but it does and a fix for the clone ioctl
378 		 * would touch a lot of places, cause backwards incompatibility
379 		 * and would not fix the problem for extents cloned with older
380 		 * kernels.
381 		 */
382 		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
383 		    ref->key_for_search.offset >= LLONG_MAX)
384 			ref->key_for_search.offset = 0;
385 	} else {
386 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
387 	}
388 
389 	ref->inode_list = NULL;
390 	ref->level = level;
391 	ref->count = count;
392 	ref->parent = parent;
393 	ref->wanted_disk_byte = wanted_disk_byte;
394 	prelim_ref_insert(fs_info, preftree, ref, sc);
395 	return extent_is_shared(sc);
396 }
397 
398 /* direct refs use root == 0, key == NULL */
399 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
400 			  struct preftrees *preftrees, int level, u64 parent,
401 			  u64 wanted_disk_byte, int count,
402 			  struct share_check *sc, gfp_t gfp_mask)
403 {
404 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
405 			      parent, wanted_disk_byte, count, sc, gfp_mask);
406 }
407 
408 /* indirect refs use parent == 0 */
409 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
410 			    struct preftrees *preftrees, u64 root_id,
411 			    const struct btrfs_key *key, int level,
412 			    u64 wanted_disk_byte, int count,
413 			    struct share_check *sc, gfp_t gfp_mask)
414 {
415 	struct preftree *tree = &preftrees->indirect;
416 
417 	if (!key)
418 		tree = &preftrees->indirect_missing_keys;
419 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
420 			      wanted_disk_byte, count, sc, gfp_mask);
421 }
422 
423 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
424 			   struct ulist *parents, struct prelim_ref *ref,
425 			   int level, u64 time_seq, const u64 *extent_item_pos,
426 			   u64 total_refs, bool ignore_offset)
427 {
428 	int ret = 0;
429 	int slot;
430 	struct extent_buffer *eb;
431 	struct btrfs_key key;
432 	struct btrfs_key *key_for_search = &ref->key_for_search;
433 	struct btrfs_file_extent_item *fi;
434 	struct extent_inode_elem *eie = NULL, *old = NULL;
435 	u64 disk_byte;
436 	u64 wanted_disk_byte = ref->wanted_disk_byte;
437 	u64 count = 0;
438 
439 	if (level != 0) {
440 		eb = path->nodes[level];
441 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
442 		if (ret < 0)
443 			return ret;
444 		return 0;
445 	}
446 
447 	/*
448 	 * We normally enter this function with the path already pointing to
449 	 * the first item to check. But sometimes, we may enter it with
450 	 * slot==nritems. In that case, go to the next leaf before we continue.
451 	 */
452 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
453 		if (time_seq == SEQ_LAST)
454 			ret = btrfs_next_leaf(root, path);
455 		else
456 			ret = btrfs_next_old_leaf(root, path, time_seq);
457 	}
458 
459 	while (!ret && count < total_refs) {
460 		eb = path->nodes[0];
461 		slot = path->slots[0];
462 
463 		btrfs_item_key_to_cpu(eb, &key, slot);
464 
465 		if (key.objectid != key_for_search->objectid ||
466 		    key.type != BTRFS_EXTENT_DATA_KEY)
467 			break;
468 
469 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
470 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
471 
472 		if (disk_byte == wanted_disk_byte) {
473 			eie = NULL;
474 			old = NULL;
475 			count++;
476 			if (extent_item_pos) {
477 				ret = check_extent_in_eb(&key, eb, fi,
478 						*extent_item_pos,
479 						&eie, ignore_offset);
480 				if (ret < 0)
481 					break;
482 			}
483 			if (ret > 0)
484 				goto next;
485 			ret = ulist_add_merge_ptr(parents, eb->start,
486 						  eie, (void **)&old, GFP_NOFS);
487 			if (ret < 0)
488 				break;
489 			if (!ret && extent_item_pos) {
490 				while (old->next)
491 					old = old->next;
492 				old->next = eie;
493 			}
494 			eie = NULL;
495 		}
496 next:
497 		if (time_seq == SEQ_LAST)
498 			ret = btrfs_next_item(root, path);
499 		else
500 			ret = btrfs_next_old_item(root, path, time_seq);
501 	}
502 
503 	if (ret > 0)
504 		ret = 0;
505 	else if (ret < 0)
506 		free_inode_elem_list(eie);
507 	return ret;
508 }
509 
510 /*
511  * resolve an indirect backref in the form (root_id, key, level)
512  * to a logical address
513  */
514 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
515 				struct btrfs_path *path, u64 time_seq,
516 				struct prelim_ref *ref, struct ulist *parents,
517 				const u64 *extent_item_pos, u64 total_refs,
518 				bool ignore_offset)
519 {
520 	struct btrfs_root *root;
521 	struct btrfs_key root_key;
522 	struct extent_buffer *eb;
523 	int ret = 0;
524 	int root_level;
525 	int level = ref->level;
526 	int index;
527 
528 	root_key.objectid = ref->root_id;
529 	root_key.type = BTRFS_ROOT_ITEM_KEY;
530 	root_key.offset = (u64)-1;
531 
532 	index = srcu_read_lock(&fs_info->subvol_srcu);
533 
534 	root = btrfs_get_fs_root(fs_info, &root_key, false);
535 	if (IS_ERR(root)) {
536 		srcu_read_unlock(&fs_info->subvol_srcu, index);
537 		ret = PTR_ERR(root);
538 		goto out;
539 	}
540 
541 	if (btrfs_is_testing(fs_info)) {
542 		srcu_read_unlock(&fs_info->subvol_srcu, index);
543 		ret = -ENOENT;
544 		goto out;
545 	}
546 
547 	if (path->search_commit_root)
548 		root_level = btrfs_header_level(root->commit_root);
549 	else if (time_seq == SEQ_LAST)
550 		root_level = btrfs_header_level(root->node);
551 	else
552 		root_level = btrfs_old_root_level(root, time_seq);
553 
554 	if (root_level + 1 == level) {
555 		srcu_read_unlock(&fs_info->subvol_srcu, index);
556 		goto out;
557 	}
558 
559 	path->lowest_level = level;
560 	if (time_seq == SEQ_LAST)
561 		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
562 					0, 0);
563 	else
564 		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
565 					    time_seq);
566 
567 	/* root node has been locked, we can release @subvol_srcu safely here */
568 	srcu_read_unlock(&fs_info->subvol_srcu, index);
569 
570 	btrfs_debug(fs_info,
571 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
572 		 ref->root_id, level, ref->count, ret,
573 		 ref->key_for_search.objectid, ref->key_for_search.type,
574 		 ref->key_for_search.offset);
575 	if (ret < 0)
576 		goto out;
577 
578 	eb = path->nodes[level];
579 	while (!eb) {
580 		if (WARN_ON(!level)) {
581 			ret = 1;
582 			goto out;
583 		}
584 		level--;
585 		eb = path->nodes[level];
586 	}
587 
588 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
589 			      extent_item_pos, total_refs, ignore_offset);
590 out:
591 	path->lowest_level = 0;
592 	btrfs_release_path(path);
593 	return ret;
594 }
595 
596 static struct extent_inode_elem *
597 unode_aux_to_inode_list(struct ulist_node *node)
598 {
599 	if (!node)
600 		return NULL;
601 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
602 }
603 
604 /*
605  * We maintain three seperate rbtrees: one for direct refs, one for
606  * indirect refs which have a key, and one for indirect refs which do not
607  * have a key. Each tree does merge on insertion.
608  *
609  * Once all of the references are located, we iterate over the tree of
610  * indirect refs with missing keys. An appropriate key is located and
611  * the ref is moved onto the tree for indirect refs. After all missing
612  * keys are thus located, we iterate over the indirect ref tree, resolve
613  * each reference, and then insert the resolved reference onto the
614  * direct tree (merging there too).
615  *
616  * New backrefs (i.e., for parent nodes) are added to the appropriate
617  * rbtree as they are encountered. The new backrefs are subsequently
618  * resolved as above.
619  */
620 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
621 				 struct btrfs_path *path, u64 time_seq,
622 				 struct preftrees *preftrees,
623 				 const u64 *extent_item_pos, u64 total_refs,
624 				 struct share_check *sc, bool ignore_offset)
625 {
626 	int err;
627 	int ret = 0;
628 	struct ulist *parents;
629 	struct ulist_node *node;
630 	struct ulist_iterator uiter;
631 	struct rb_node *rnode;
632 
633 	parents = ulist_alloc(GFP_NOFS);
634 	if (!parents)
635 		return -ENOMEM;
636 
637 	/*
638 	 * We could trade memory usage for performance here by iterating
639 	 * the tree, allocating new refs for each insertion, and then
640 	 * freeing the entire indirect tree when we're done.  In some test
641 	 * cases, the tree can grow quite large (~200k objects).
642 	 */
643 	while ((rnode = rb_first(&preftrees->indirect.root))) {
644 		struct prelim_ref *ref;
645 
646 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
647 		if (WARN(ref->parent,
648 			 "BUG: direct ref found in indirect tree")) {
649 			ret = -EINVAL;
650 			goto out;
651 		}
652 
653 		rb_erase(&ref->rbnode, &preftrees->indirect.root);
654 		preftrees->indirect.count--;
655 
656 		if (ref->count == 0) {
657 			free_pref(ref);
658 			continue;
659 		}
660 
661 		if (sc && sc->root_objectid &&
662 		    ref->root_id != sc->root_objectid) {
663 			free_pref(ref);
664 			ret = BACKREF_FOUND_SHARED;
665 			goto out;
666 		}
667 		err = resolve_indirect_ref(fs_info, path, time_seq, ref,
668 					   parents, extent_item_pos,
669 					   total_refs, ignore_offset);
670 		/*
671 		 * we can only tolerate ENOENT,otherwise,we should catch error
672 		 * and return directly.
673 		 */
674 		if (err == -ENOENT) {
675 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
676 					  NULL);
677 			continue;
678 		} else if (err) {
679 			free_pref(ref);
680 			ret = err;
681 			goto out;
682 		}
683 
684 		/* we put the first parent into the ref at hand */
685 		ULIST_ITER_INIT(&uiter);
686 		node = ulist_next(parents, &uiter);
687 		ref->parent = node ? node->val : 0;
688 		ref->inode_list = unode_aux_to_inode_list(node);
689 
690 		/* Add a prelim_ref(s) for any other parent(s). */
691 		while ((node = ulist_next(parents, &uiter))) {
692 			struct prelim_ref *new_ref;
693 
694 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
695 						   GFP_NOFS);
696 			if (!new_ref) {
697 				free_pref(ref);
698 				ret = -ENOMEM;
699 				goto out;
700 			}
701 			memcpy(new_ref, ref, sizeof(*ref));
702 			new_ref->parent = node->val;
703 			new_ref->inode_list = unode_aux_to_inode_list(node);
704 			prelim_ref_insert(fs_info, &preftrees->direct,
705 					  new_ref, NULL);
706 		}
707 
708 		/*
709 		 * Now it's a direct ref, put it in the the direct tree. We must
710 		 * do this last because the ref could be merged/freed here.
711 		 */
712 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
713 
714 		ulist_reinit(parents);
715 		cond_resched();
716 	}
717 out:
718 	ulist_free(parents);
719 	return ret;
720 }
721 
722 /*
723  * read tree blocks and add keys where required.
724  */
725 static int add_missing_keys(struct btrfs_fs_info *fs_info,
726 			    struct preftrees *preftrees)
727 {
728 	struct prelim_ref *ref;
729 	struct extent_buffer *eb;
730 	struct preftree *tree = &preftrees->indirect_missing_keys;
731 	struct rb_node *node;
732 
733 	while ((node = rb_first(&tree->root))) {
734 		ref = rb_entry(node, struct prelim_ref, rbnode);
735 		rb_erase(node, &tree->root);
736 
737 		BUG_ON(ref->parent);	/* should not be a direct ref */
738 		BUG_ON(ref->key_for_search.type);
739 		BUG_ON(!ref->wanted_disk_byte);
740 
741 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
742 		if (IS_ERR(eb)) {
743 			free_pref(ref);
744 			return PTR_ERR(eb);
745 		} else if (!extent_buffer_uptodate(eb)) {
746 			free_pref(ref);
747 			free_extent_buffer(eb);
748 			return -EIO;
749 		}
750 		btrfs_tree_read_lock(eb);
751 		if (btrfs_header_level(eb) == 0)
752 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
753 		else
754 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
755 		btrfs_tree_read_unlock(eb);
756 		free_extent_buffer(eb);
757 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
758 		cond_resched();
759 	}
760 	return 0;
761 }
762 
763 /*
764  * add all currently queued delayed refs from this head whose seq nr is
765  * smaller or equal that seq to the list
766  */
767 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
768 			    struct btrfs_delayed_ref_head *head, u64 seq,
769 			    struct preftrees *preftrees, u64 *total_refs,
770 			    struct share_check *sc)
771 {
772 	struct btrfs_delayed_ref_node *node;
773 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
774 	struct btrfs_key key;
775 	struct btrfs_key tmp_op_key;
776 	struct btrfs_key *op_key = NULL;
777 	struct rb_node *n;
778 	int count;
779 	int ret = 0;
780 
781 	if (extent_op && extent_op->update_key) {
782 		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
783 		op_key = &tmp_op_key;
784 	}
785 
786 	spin_lock(&head->lock);
787 	for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) {
788 		node = rb_entry(n, struct btrfs_delayed_ref_node,
789 				ref_node);
790 		if (node->seq > seq)
791 			continue;
792 
793 		switch (node->action) {
794 		case BTRFS_ADD_DELAYED_EXTENT:
795 		case BTRFS_UPDATE_DELAYED_HEAD:
796 			WARN_ON(1);
797 			continue;
798 		case BTRFS_ADD_DELAYED_REF:
799 			count = node->ref_mod;
800 			break;
801 		case BTRFS_DROP_DELAYED_REF:
802 			count = node->ref_mod * -1;
803 			break;
804 		default:
805 			BUG_ON(1);
806 		}
807 		*total_refs += count;
808 		switch (node->type) {
809 		case BTRFS_TREE_BLOCK_REF_KEY: {
810 			/* NORMAL INDIRECT METADATA backref */
811 			struct btrfs_delayed_tree_ref *ref;
812 
813 			ref = btrfs_delayed_node_to_tree_ref(node);
814 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
815 					       &tmp_op_key, ref->level + 1,
816 					       node->bytenr, count, sc,
817 					       GFP_ATOMIC);
818 			break;
819 		}
820 		case BTRFS_SHARED_BLOCK_REF_KEY: {
821 			/* SHARED DIRECT METADATA backref */
822 			struct btrfs_delayed_tree_ref *ref;
823 
824 			ref = btrfs_delayed_node_to_tree_ref(node);
825 
826 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
827 					     ref->parent, node->bytenr, count,
828 					     sc, GFP_ATOMIC);
829 			break;
830 		}
831 		case BTRFS_EXTENT_DATA_REF_KEY: {
832 			/* NORMAL INDIRECT DATA backref */
833 			struct btrfs_delayed_data_ref *ref;
834 			ref = btrfs_delayed_node_to_data_ref(node);
835 
836 			key.objectid = ref->objectid;
837 			key.type = BTRFS_EXTENT_DATA_KEY;
838 			key.offset = ref->offset;
839 
840 			/*
841 			 * Found a inum that doesn't match our known inum, we
842 			 * know it's shared.
843 			 */
844 			if (sc && sc->inum && ref->objectid != sc->inum) {
845 				ret = BACKREF_FOUND_SHARED;
846 				goto out;
847 			}
848 
849 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
850 					       &key, 0, node->bytenr, count, sc,
851 					       GFP_ATOMIC);
852 			break;
853 		}
854 		case BTRFS_SHARED_DATA_REF_KEY: {
855 			/* SHARED DIRECT FULL backref */
856 			struct btrfs_delayed_data_ref *ref;
857 
858 			ref = btrfs_delayed_node_to_data_ref(node);
859 
860 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
861 					     node->bytenr, count, sc,
862 					     GFP_ATOMIC);
863 			break;
864 		}
865 		default:
866 			WARN_ON(1);
867 		}
868 		/*
869 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
870 		 * refs have been checked.
871 		 */
872 		if (ret && (ret != BACKREF_FOUND_SHARED))
873 			break;
874 	}
875 	if (!ret)
876 		ret = extent_is_shared(sc);
877 out:
878 	spin_unlock(&head->lock);
879 	return ret;
880 }
881 
882 /*
883  * add all inline backrefs for bytenr to the list
884  *
885  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
886  */
887 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
888 			   struct btrfs_path *path, u64 bytenr,
889 			   int *info_level, struct preftrees *preftrees,
890 			   u64 *total_refs, struct share_check *sc)
891 {
892 	int ret = 0;
893 	int slot;
894 	struct extent_buffer *leaf;
895 	struct btrfs_key key;
896 	struct btrfs_key found_key;
897 	unsigned long ptr;
898 	unsigned long end;
899 	struct btrfs_extent_item *ei;
900 	u64 flags;
901 	u64 item_size;
902 
903 	/*
904 	 * enumerate all inline refs
905 	 */
906 	leaf = path->nodes[0];
907 	slot = path->slots[0];
908 
909 	item_size = btrfs_item_size_nr(leaf, slot);
910 	BUG_ON(item_size < sizeof(*ei));
911 
912 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
913 	flags = btrfs_extent_flags(leaf, ei);
914 	*total_refs += btrfs_extent_refs(leaf, ei);
915 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
916 
917 	ptr = (unsigned long)(ei + 1);
918 	end = (unsigned long)ei + item_size;
919 
920 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
921 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
922 		struct btrfs_tree_block_info *info;
923 
924 		info = (struct btrfs_tree_block_info *)ptr;
925 		*info_level = btrfs_tree_block_level(leaf, info);
926 		ptr += sizeof(struct btrfs_tree_block_info);
927 		BUG_ON(ptr > end);
928 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
929 		*info_level = found_key.offset;
930 	} else {
931 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
932 	}
933 
934 	while (ptr < end) {
935 		struct btrfs_extent_inline_ref *iref;
936 		u64 offset;
937 		int type;
938 
939 		iref = (struct btrfs_extent_inline_ref *)ptr;
940 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
941 							BTRFS_REF_TYPE_ANY);
942 		if (type == BTRFS_REF_TYPE_INVALID)
943 			return -EINVAL;
944 
945 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
946 
947 		switch (type) {
948 		case BTRFS_SHARED_BLOCK_REF_KEY:
949 			ret = add_direct_ref(fs_info, preftrees,
950 					     *info_level + 1, offset,
951 					     bytenr, 1, NULL, GFP_NOFS);
952 			break;
953 		case BTRFS_SHARED_DATA_REF_KEY: {
954 			struct btrfs_shared_data_ref *sdref;
955 			int count;
956 
957 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
958 			count = btrfs_shared_data_ref_count(leaf, sdref);
959 
960 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
961 					     bytenr, count, sc, GFP_NOFS);
962 			break;
963 		}
964 		case BTRFS_TREE_BLOCK_REF_KEY:
965 			ret = add_indirect_ref(fs_info, preftrees, offset,
966 					       NULL, *info_level + 1,
967 					       bytenr, 1, NULL, GFP_NOFS);
968 			break;
969 		case BTRFS_EXTENT_DATA_REF_KEY: {
970 			struct btrfs_extent_data_ref *dref;
971 			int count;
972 			u64 root;
973 
974 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
975 			count = btrfs_extent_data_ref_count(leaf, dref);
976 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
977 								      dref);
978 			key.type = BTRFS_EXTENT_DATA_KEY;
979 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
980 
981 			if (sc && sc->inum && key.objectid != sc->inum) {
982 				ret = BACKREF_FOUND_SHARED;
983 				break;
984 			}
985 
986 			root = btrfs_extent_data_ref_root(leaf, dref);
987 
988 			ret = add_indirect_ref(fs_info, preftrees, root,
989 					       &key, 0, bytenr, count,
990 					       sc, GFP_NOFS);
991 			break;
992 		}
993 		default:
994 			WARN_ON(1);
995 		}
996 		if (ret)
997 			return ret;
998 		ptr += btrfs_extent_inline_ref_size(type);
999 	}
1000 
1001 	return 0;
1002 }
1003 
1004 /*
1005  * add all non-inline backrefs for bytenr to the list
1006  *
1007  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1008  */
1009 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1010 			  struct btrfs_path *path, u64 bytenr,
1011 			  int info_level, struct preftrees *preftrees,
1012 			  struct share_check *sc)
1013 {
1014 	struct btrfs_root *extent_root = fs_info->extent_root;
1015 	int ret;
1016 	int slot;
1017 	struct extent_buffer *leaf;
1018 	struct btrfs_key key;
1019 
1020 	while (1) {
1021 		ret = btrfs_next_item(extent_root, path);
1022 		if (ret < 0)
1023 			break;
1024 		if (ret) {
1025 			ret = 0;
1026 			break;
1027 		}
1028 
1029 		slot = path->slots[0];
1030 		leaf = path->nodes[0];
1031 		btrfs_item_key_to_cpu(leaf, &key, slot);
1032 
1033 		if (key.objectid != bytenr)
1034 			break;
1035 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1036 			continue;
1037 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1038 			break;
1039 
1040 		switch (key.type) {
1041 		case BTRFS_SHARED_BLOCK_REF_KEY:
1042 			/* SHARED DIRECT METADATA backref */
1043 			ret = add_direct_ref(fs_info, preftrees,
1044 					     info_level + 1, key.offset,
1045 					     bytenr, 1, NULL, GFP_NOFS);
1046 			break;
1047 		case BTRFS_SHARED_DATA_REF_KEY: {
1048 			/* SHARED DIRECT FULL backref */
1049 			struct btrfs_shared_data_ref *sdref;
1050 			int count;
1051 
1052 			sdref = btrfs_item_ptr(leaf, slot,
1053 					      struct btrfs_shared_data_ref);
1054 			count = btrfs_shared_data_ref_count(leaf, sdref);
1055 			ret = add_direct_ref(fs_info, preftrees, 0,
1056 					     key.offset, bytenr, count,
1057 					     sc, GFP_NOFS);
1058 			break;
1059 		}
1060 		case BTRFS_TREE_BLOCK_REF_KEY:
1061 			/* NORMAL INDIRECT METADATA backref */
1062 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1063 					       NULL, info_level + 1, bytenr,
1064 					       1, NULL, GFP_NOFS);
1065 			break;
1066 		case BTRFS_EXTENT_DATA_REF_KEY: {
1067 			/* NORMAL INDIRECT DATA backref */
1068 			struct btrfs_extent_data_ref *dref;
1069 			int count;
1070 			u64 root;
1071 
1072 			dref = btrfs_item_ptr(leaf, slot,
1073 					      struct btrfs_extent_data_ref);
1074 			count = btrfs_extent_data_ref_count(leaf, dref);
1075 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1076 								      dref);
1077 			key.type = BTRFS_EXTENT_DATA_KEY;
1078 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1079 
1080 			if (sc && sc->inum && key.objectid != sc->inum) {
1081 				ret = BACKREF_FOUND_SHARED;
1082 				break;
1083 			}
1084 
1085 			root = btrfs_extent_data_ref_root(leaf, dref);
1086 			ret = add_indirect_ref(fs_info, preftrees, root,
1087 					       &key, 0, bytenr, count,
1088 					       sc, GFP_NOFS);
1089 			break;
1090 		}
1091 		default:
1092 			WARN_ON(1);
1093 		}
1094 		if (ret)
1095 			return ret;
1096 
1097 	}
1098 
1099 	return ret;
1100 }
1101 
1102 /*
1103  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1104  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1105  * indirect refs to their parent bytenr.
1106  * When roots are found, they're added to the roots list
1107  *
1108  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1109  * much like trans == NULL case, the difference only lies in it will not
1110  * commit root.
1111  * The special case is for qgroup to search roots in commit_transaction().
1112  *
1113  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1114  * shared extent is detected.
1115  *
1116  * Otherwise this returns 0 for success and <0 for an error.
1117  *
1118  * If ignore_offset is set to false, only extent refs whose offsets match
1119  * extent_item_pos are returned.  If true, every extent ref is returned
1120  * and extent_item_pos is ignored.
1121  *
1122  * FIXME some caching might speed things up
1123  */
1124 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1125 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1126 			     u64 time_seq, struct ulist *refs,
1127 			     struct ulist *roots, const u64 *extent_item_pos,
1128 			     struct share_check *sc, bool ignore_offset)
1129 {
1130 	struct btrfs_key key;
1131 	struct btrfs_path *path;
1132 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1133 	struct btrfs_delayed_ref_head *head;
1134 	int info_level = 0;
1135 	int ret;
1136 	struct prelim_ref *ref;
1137 	struct rb_node *node;
1138 	struct extent_inode_elem *eie = NULL;
1139 	/* total of both direct AND indirect refs! */
1140 	u64 total_refs = 0;
1141 	struct preftrees preftrees = {
1142 		.direct = PREFTREE_INIT,
1143 		.indirect = PREFTREE_INIT,
1144 		.indirect_missing_keys = PREFTREE_INIT
1145 	};
1146 
1147 	key.objectid = bytenr;
1148 	key.offset = (u64)-1;
1149 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1150 		key.type = BTRFS_METADATA_ITEM_KEY;
1151 	else
1152 		key.type = BTRFS_EXTENT_ITEM_KEY;
1153 
1154 	path = btrfs_alloc_path();
1155 	if (!path)
1156 		return -ENOMEM;
1157 	if (!trans) {
1158 		path->search_commit_root = 1;
1159 		path->skip_locking = 1;
1160 	}
1161 
1162 	if (time_seq == SEQ_LAST)
1163 		path->skip_locking = 1;
1164 
1165 	/*
1166 	 * grab both a lock on the path and a lock on the delayed ref head.
1167 	 * We need both to get a consistent picture of how the refs look
1168 	 * at a specified point in time
1169 	 */
1170 again:
1171 	head = NULL;
1172 
1173 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1174 	if (ret < 0)
1175 		goto out;
1176 	BUG_ON(ret == 0);
1177 
1178 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1179 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1180 	    time_seq != SEQ_LAST) {
1181 #else
1182 	if (trans && time_seq != SEQ_LAST) {
1183 #endif
1184 		/*
1185 		 * look if there are updates for this ref queued and lock the
1186 		 * head
1187 		 */
1188 		delayed_refs = &trans->transaction->delayed_refs;
1189 		spin_lock(&delayed_refs->lock);
1190 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1191 		if (head) {
1192 			if (!mutex_trylock(&head->mutex)) {
1193 				refcount_inc(&head->refs);
1194 				spin_unlock(&delayed_refs->lock);
1195 
1196 				btrfs_release_path(path);
1197 
1198 				/*
1199 				 * Mutex was contended, block until it's
1200 				 * released and try again
1201 				 */
1202 				mutex_lock(&head->mutex);
1203 				mutex_unlock(&head->mutex);
1204 				btrfs_put_delayed_ref_head(head);
1205 				goto again;
1206 			}
1207 			spin_unlock(&delayed_refs->lock);
1208 			ret = add_delayed_refs(fs_info, head, time_seq,
1209 					       &preftrees, &total_refs, sc);
1210 			mutex_unlock(&head->mutex);
1211 			if (ret)
1212 				goto out;
1213 		} else {
1214 			spin_unlock(&delayed_refs->lock);
1215 		}
1216 	}
1217 
1218 	if (path->slots[0]) {
1219 		struct extent_buffer *leaf;
1220 		int slot;
1221 
1222 		path->slots[0]--;
1223 		leaf = path->nodes[0];
1224 		slot = path->slots[0];
1225 		btrfs_item_key_to_cpu(leaf, &key, slot);
1226 		if (key.objectid == bytenr &&
1227 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1228 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1229 			ret = add_inline_refs(fs_info, path, bytenr,
1230 					      &info_level, &preftrees,
1231 					      &total_refs, sc);
1232 			if (ret)
1233 				goto out;
1234 			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1235 					     &preftrees, sc);
1236 			if (ret)
1237 				goto out;
1238 		}
1239 	}
1240 
1241 	btrfs_release_path(path);
1242 
1243 	ret = add_missing_keys(fs_info, &preftrees);
1244 	if (ret)
1245 		goto out;
1246 
1247 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1248 
1249 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1250 				    extent_item_pos, total_refs, sc, ignore_offset);
1251 	if (ret)
1252 		goto out;
1253 
1254 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1255 
1256 	/*
1257 	 * This walks the tree of merged and resolved refs. Tree blocks are
1258 	 * read in as needed. Unique entries are added to the ulist, and
1259 	 * the list of found roots is updated.
1260 	 *
1261 	 * We release the entire tree in one go before returning.
1262 	 */
1263 	node = rb_first(&preftrees.direct.root);
1264 	while (node) {
1265 		ref = rb_entry(node, struct prelim_ref, rbnode);
1266 		node = rb_next(&ref->rbnode);
1267 		WARN_ON(ref->count < 0);
1268 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1269 			if (sc && sc->root_objectid &&
1270 			    ref->root_id != sc->root_objectid) {
1271 				ret = BACKREF_FOUND_SHARED;
1272 				goto out;
1273 			}
1274 
1275 			/* no parent == root of tree */
1276 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1277 			if (ret < 0)
1278 				goto out;
1279 		}
1280 		if (ref->count && ref->parent) {
1281 			if (extent_item_pos && !ref->inode_list &&
1282 			    ref->level == 0) {
1283 				struct extent_buffer *eb;
1284 
1285 				eb = read_tree_block(fs_info, ref->parent, 0);
1286 				if (IS_ERR(eb)) {
1287 					ret = PTR_ERR(eb);
1288 					goto out;
1289 				} else if (!extent_buffer_uptodate(eb)) {
1290 					free_extent_buffer(eb);
1291 					ret = -EIO;
1292 					goto out;
1293 				}
1294 				btrfs_tree_read_lock(eb);
1295 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1296 				ret = find_extent_in_eb(eb, bytenr,
1297 							*extent_item_pos, &eie, ignore_offset);
1298 				btrfs_tree_read_unlock_blocking(eb);
1299 				free_extent_buffer(eb);
1300 				if (ret < 0)
1301 					goto out;
1302 				ref->inode_list = eie;
1303 			}
1304 			ret = ulist_add_merge_ptr(refs, ref->parent,
1305 						  ref->inode_list,
1306 						  (void **)&eie, GFP_NOFS);
1307 			if (ret < 0)
1308 				goto out;
1309 			if (!ret && extent_item_pos) {
1310 				/*
1311 				 * we've recorded that parent, so we must extend
1312 				 * its inode list here
1313 				 */
1314 				BUG_ON(!eie);
1315 				while (eie->next)
1316 					eie = eie->next;
1317 				eie->next = ref->inode_list;
1318 			}
1319 			eie = NULL;
1320 		}
1321 		cond_resched();
1322 	}
1323 
1324 out:
1325 	btrfs_free_path(path);
1326 
1327 	prelim_release(&preftrees.direct);
1328 	prelim_release(&preftrees.indirect);
1329 	prelim_release(&preftrees.indirect_missing_keys);
1330 
1331 	if (ret < 0)
1332 		free_inode_elem_list(eie);
1333 	return ret;
1334 }
1335 
1336 static void free_leaf_list(struct ulist *blocks)
1337 {
1338 	struct ulist_node *node = NULL;
1339 	struct extent_inode_elem *eie;
1340 	struct ulist_iterator uiter;
1341 
1342 	ULIST_ITER_INIT(&uiter);
1343 	while ((node = ulist_next(blocks, &uiter))) {
1344 		if (!node->aux)
1345 			continue;
1346 		eie = unode_aux_to_inode_list(node);
1347 		free_inode_elem_list(eie);
1348 		node->aux = 0;
1349 	}
1350 
1351 	ulist_free(blocks);
1352 }
1353 
1354 /*
1355  * Finds all leafs with a reference to the specified combination of bytenr and
1356  * offset. key_list_head will point to a list of corresponding keys (caller must
1357  * free each list element). The leafs will be stored in the leafs ulist, which
1358  * must be freed with ulist_free.
1359  *
1360  * returns 0 on success, <0 on error
1361  */
1362 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1363 				struct btrfs_fs_info *fs_info, u64 bytenr,
1364 				u64 time_seq, struct ulist **leafs,
1365 				const u64 *extent_item_pos, bool ignore_offset)
1366 {
1367 	int ret;
1368 
1369 	*leafs = ulist_alloc(GFP_NOFS);
1370 	if (!*leafs)
1371 		return -ENOMEM;
1372 
1373 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1374 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1375 	if (ret < 0 && ret != -ENOENT) {
1376 		free_leaf_list(*leafs);
1377 		return ret;
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 /*
1384  * walk all backrefs for a given extent to find all roots that reference this
1385  * extent. Walking a backref means finding all extents that reference this
1386  * extent and in turn walk the backrefs of those, too. Naturally this is a
1387  * recursive process, but here it is implemented in an iterative fashion: We
1388  * find all referencing extents for the extent in question and put them on a
1389  * list. In turn, we find all referencing extents for those, further appending
1390  * to the list. The way we iterate the list allows adding more elements after
1391  * the current while iterating. The process stops when we reach the end of the
1392  * list. Found roots are added to the roots list.
1393  *
1394  * returns 0 on success, < 0 on error.
1395  */
1396 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1397 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1398 				     u64 time_seq, struct ulist **roots,
1399 				     bool ignore_offset)
1400 {
1401 	struct ulist *tmp;
1402 	struct ulist_node *node = NULL;
1403 	struct ulist_iterator uiter;
1404 	int ret;
1405 
1406 	tmp = ulist_alloc(GFP_NOFS);
1407 	if (!tmp)
1408 		return -ENOMEM;
1409 	*roots = ulist_alloc(GFP_NOFS);
1410 	if (!*roots) {
1411 		ulist_free(tmp);
1412 		return -ENOMEM;
1413 	}
1414 
1415 	ULIST_ITER_INIT(&uiter);
1416 	while (1) {
1417 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1418 					tmp, *roots, NULL, NULL, ignore_offset);
1419 		if (ret < 0 && ret != -ENOENT) {
1420 			ulist_free(tmp);
1421 			ulist_free(*roots);
1422 			return ret;
1423 		}
1424 		node = ulist_next(tmp, &uiter);
1425 		if (!node)
1426 			break;
1427 		bytenr = node->val;
1428 		cond_resched();
1429 	}
1430 
1431 	ulist_free(tmp);
1432 	return 0;
1433 }
1434 
1435 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1436 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1437 			 u64 time_seq, struct ulist **roots,
1438 			 bool ignore_offset)
1439 {
1440 	int ret;
1441 
1442 	if (!trans)
1443 		down_read(&fs_info->commit_root_sem);
1444 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1445 					time_seq, roots, ignore_offset);
1446 	if (!trans)
1447 		up_read(&fs_info->commit_root_sem);
1448 	return ret;
1449 }
1450 
1451 /**
1452  * btrfs_check_shared - tell us whether an extent is shared
1453  *
1454  * btrfs_check_shared uses the backref walking code but will short
1455  * circuit as soon as it finds a root or inode that doesn't match the
1456  * one passed in. This provides a significant performance benefit for
1457  * callers (such as fiemap) which want to know whether the extent is
1458  * shared but do not need a ref count.
1459  *
1460  * This attempts to allocate a transaction in order to account for
1461  * delayed refs, but continues on even when the alloc fails.
1462  *
1463  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1464  */
1465 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1466 {
1467 	struct btrfs_fs_info *fs_info = root->fs_info;
1468 	struct btrfs_trans_handle *trans;
1469 	struct ulist *tmp = NULL;
1470 	struct ulist *roots = NULL;
1471 	struct ulist_iterator uiter;
1472 	struct ulist_node *node;
1473 	struct seq_list elem = SEQ_LIST_INIT(elem);
1474 	int ret = 0;
1475 	struct share_check shared = {
1476 		.root_objectid = root->objectid,
1477 		.inum = inum,
1478 		.share_count = 0,
1479 	};
1480 
1481 	tmp = ulist_alloc(GFP_NOFS);
1482 	roots = ulist_alloc(GFP_NOFS);
1483 	if (!tmp || !roots) {
1484 		ulist_free(tmp);
1485 		ulist_free(roots);
1486 		return -ENOMEM;
1487 	}
1488 
1489 	trans = btrfs_join_transaction(root);
1490 	if (IS_ERR(trans)) {
1491 		trans = NULL;
1492 		down_read(&fs_info->commit_root_sem);
1493 	} else {
1494 		btrfs_get_tree_mod_seq(fs_info, &elem);
1495 	}
1496 
1497 	ULIST_ITER_INIT(&uiter);
1498 	while (1) {
1499 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1500 					roots, NULL, &shared, false);
1501 		if (ret == BACKREF_FOUND_SHARED) {
1502 			/* this is the only condition under which we return 1 */
1503 			ret = 1;
1504 			break;
1505 		}
1506 		if (ret < 0 && ret != -ENOENT)
1507 			break;
1508 		ret = 0;
1509 		node = ulist_next(tmp, &uiter);
1510 		if (!node)
1511 			break;
1512 		bytenr = node->val;
1513 		cond_resched();
1514 	}
1515 
1516 	if (trans) {
1517 		btrfs_put_tree_mod_seq(fs_info, &elem);
1518 		btrfs_end_transaction(trans);
1519 	} else {
1520 		up_read(&fs_info->commit_root_sem);
1521 	}
1522 	ulist_free(tmp);
1523 	ulist_free(roots);
1524 	return ret;
1525 }
1526 
1527 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1528 			  u64 start_off, struct btrfs_path *path,
1529 			  struct btrfs_inode_extref **ret_extref,
1530 			  u64 *found_off)
1531 {
1532 	int ret, slot;
1533 	struct btrfs_key key;
1534 	struct btrfs_key found_key;
1535 	struct btrfs_inode_extref *extref;
1536 	const struct extent_buffer *leaf;
1537 	unsigned long ptr;
1538 
1539 	key.objectid = inode_objectid;
1540 	key.type = BTRFS_INODE_EXTREF_KEY;
1541 	key.offset = start_off;
1542 
1543 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1544 	if (ret < 0)
1545 		return ret;
1546 
1547 	while (1) {
1548 		leaf = path->nodes[0];
1549 		slot = path->slots[0];
1550 		if (slot >= btrfs_header_nritems(leaf)) {
1551 			/*
1552 			 * If the item at offset is not found,
1553 			 * btrfs_search_slot will point us to the slot
1554 			 * where it should be inserted. In our case
1555 			 * that will be the slot directly before the
1556 			 * next INODE_REF_KEY_V2 item. In the case
1557 			 * that we're pointing to the last slot in a
1558 			 * leaf, we must move one leaf over.
1559 			 */
1560 			ret = btrfs_next_leaf(root, path);
1561 			if (ret) {
1562 				if (ret >= 1)
1563 					ret = -ENOENT;
1564 				break;
1565 			}
1566 			continue;
1567 		}
1568 
1569 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1570 
1571 		/*
1572 		 * Check that we're still looking at an extended ref key for
1573 		 * this particular objectid. If we have different
1574 		 * objectid or type then there are no more to be found
1575 		 * in the tree and we can exit.
1576 		 */
1577 		ret = -ENOENT;
1578 		if (found_key.objectid != inode_objectid)
1579 			break;
1580 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1581 			break;
1582 
1583 		ret = 0;
1584 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1585 		extref = (struct btrfs_inode_extref *)ptr;
1586 		*ret_extref = extref;
1587 		if (found_off)
1588 			*found_off = found_key.offset;
1589 		break;
1590 	}
1591 
1592 	return ret;
1593 }
1594 
1595 /*
1596  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1597  * Elements of the path are separated by '/' and the path is guaranteed to be
1598  * 0-terminated. the path is only given within the current file system.
1599  * Therefore, it never starts with a '/'. the caller is responsible to provide
1600  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1601  * the start point of the resulting string is returned. this pointer is within
1602  * dest, normally.
1603  * in case the path buffer would overflow, the pointer is decremented further
1604  * as if output was written to the buffer, though no more output is actually
1605  * generated. that way, the caller can determine how much space would be
1606  * required for the path to fit into the buffer. in that case, the returned
1607  * value will be smaller than dest. callers must check this!
1608  */
1609 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1610 			u32 name_len, unsigned long name_off,
1611 			struct extent_buffer *eb_in, u64 parent,
1612 			char *dest, u32 size)
1613 {
1614 	int slot;
1615 	u64 next_inum;
1616 	int ret;
1617 	s64 bytes_left = ((s64)size) - 1;
1618 	struct extent_buffer *eb = eb_in;
1619 	struct btrfs_key found_key;
1620 	int leave_spinning = path->leave_spinning;
1621 	struct btrfs_inode_ref *iref;
1622 
1623 	if (bytes_left >= 0)
1624 		dest[bytes_left] = '\0';
1625 
1626 	path->leave_spinning = 1;
1627 	while (1) {
1628 		bytes_left -= name_len;
1629 		if (bytes_left >= 0)
1630 			read_extent_buffer(eb, dest + bytes_left,
1631 					   name_off, name_len);
1632 		if (eb != eb_in) {
1633 			if (!path->skip_locking)
1634 				btrfs_tree_read_unlock_blocking(eb);
1635 			free_extent_buffer(eb);
1636 		}
1637 		ret = btrfs_find_item(fs_root, path, parent, 0,
1638 				BTRFS_INODE_REF_KEY, &found_key);
1639 		if (ret > 0)
1640 			ret = -ENOENT;
1641 		if (ret)
1642 			break;
1643 
1644 		next_inum = found_key.offset;
1645 
1646 		/* regular exit ahead */
1647 		if (parent == next_inum)
1648 			break;
1649 
1650 		slot = path->slots[0];
1651 		eb = path->nodes[0];
1652 		/* make sure we can use eb after releasing the path */
1653 		if (eb != eb_in) {
1654 			if (!path->skip_locking)
1655 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1656 			path->nodes[0] = NULL;
1657 			path->locks[0] = 0;
1658 		}
1659 		btrfs_release_path(path);
1660 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1661 
1662 		name_len = btrfs_inode_ref_name_len(eb, iref);
1663 		name_off = (unsigned long)(iref + 1);
1664 
1665 		parent = next_inum;
1666 		--bytes_left;
1667 		if (bytes_left >= 0)
1668 			dest[bytes_left] = '/';
1669 	}
1670 
1671 	btrfs_release_path(path);
1672 	path->leave_spinning = leave_spinning;
1673 
1674 	if (ret)
1675 		return ERR_PTR(ret);
1676 
1677 	return dest + bytes_left;
1678 }
1679 
1680 /*
1681  * this makes the path point to (logical EXTENT_ITEM *)
1682  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1683  * tree blocks and <0 on error.
1684  */
1685 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1686 			struct btrfs_path *path, struct btrfs_key *found_key,
1687 			u64 *flags_ret)
1688 {
1689 	int ret;
1690 	u64 flags;
1691 	u64 size = 0;
1692 	u32 item_size;
1693 	const struct extent_buffer *eb;
1694 	struct btrfs_extent_item *ei;
1695 	struct btrfs_key key;
1696 
1697 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1698 		key.type = BTRFS_METADATA_ITEM_KEY;
1699 	else
1700 		key.type = BTRFS_EXTENT_ITEM_KEY;
1701 	key.objectid = logical;
1702 	key.offset = (u64)-1;
1703 
1704 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1705 	if (ret < 0)
1706 		return ret;
1707 
1708 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1709 	if (ret) {
1710 		if (ret > 0)
1711 			ret = -ENOENT;
1712 		return ret;
1713 	}
1714 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1715 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1716 		size = fs_info->nodesize;
1717 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1718 		size = found_key->offset;
1719 
1720 	if (found_key->objectid > logical ||
1721 	    found_key->objectid + size <= logical) {
1722 		btrfs_debug(fs_info,
1723 			"logical %llu is not within any extent", logical);
1724 		return -ENOENT;
1725 	}
1726 
1727 	eb = path->nodes[0];
1728 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1729 	BUG_ON(item_size < sizeof(*ei));
1730 
1731 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1732 	flags = btrfs_extent_flags(eb, ei);
1733 
1734 	btrfs_debug(fs_info,
1735 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1736 		 logical, logical - found_key->objectid, found_key->objectid,
1737 		 found_key->offset, flags, item_size);
1738 
1739 	WARN_ON(!flags_ret);
1740 	if (flags_ret) {
1741 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1742 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1743 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1744 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1745 		else
1746 			BUG_ON(1);
1747 		return 0;
1748 	}
1749 
1750 	return -EIO;
1751 }
1752 
1753 /*
1754  * helper function to iterate extent inline refs. ptr must point to a 0 value
1755  * for the first call and may be modified. it is used to track state.
1756  * if more refs exist, 0 is returned and the next call to
1757  * get_extent_inline_ref must pass the modified ptr parameter to get the
1758  * next ref. after the last ref was processed, 1 is returned.
1759  * returns <0 on error
1760  */
1761 static int get_extent_inline_ref(unsigned long *ptr,
1762 				 const struct extent_buffer *eb,
1763 				 const struct btrfs_key *key,
1764 				 const struct btrfs_extent_item *ei,
1765 				 u32 item_size,
1766 				 struct btrfs_extent_inline_ref **out_eiref,
1767 				 int *out_type)
1768 {
1769 	unsigned long end;
1770 	u64 flags;
1771 	struct btrfs_tree_block_info *info;
1772 
1773 	if (!*ptr) {
1774 		/* first call */
1775 		flags = btrfs_extent_flags(eb, ei);
1776 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1777 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1778 				/* a skinny metadata extent */
1779 				*out_eiref =
1780 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1781 			} else {
1782 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1783 				info = (struct btrfs_tree_block_info *)(ei + 1);
1784 				*out_eiref =
1785 				   (struct btrfs_extent_inline_ref *)(info + 1);
1786 			}
1787 		} else {
1788 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1789 		}
1790 		*ptr = (unsigned long)*out_eiref;
1791 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1792 			return -ENOENT;
1793 	}
1794 
1795 	end = (unsigned long)ei + item_size;
1796 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1797 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1798 						     BTRFS_REF_TYPE_ANY);
1799 	if (*out_type == BTRFS_REF_TYPE_INVALID)
1800 		return -EINVAL;
1801 
1802 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1803 	WARN_ON(*ptr > end);
1804 	if (*ptr == end)
1805 		return 1; /* last */
1806 
1807 	return 0;
1808 }
1809 
1810 /*
1811  * reads the tree block backref for an extent. tree level and root are returned
1812  * through out_level and out_root. ptr must point to a 0 value for the first
1813  * call and may be modified (see get_extent_inline_ref comment).
1814  * returns 0 if data was provided, 1 if there was no more data to provide or
1815  * <0 on error.
1816  */
1817 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1818 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1819 			    u32 item_size, u64 *out_root, u8 *out_level)
1820 {
1821 	int ret;
1822 	int type;
1823 	struct btrfs_extent_inline_ref *eiref;
1824 
1825 	if (*ptr == (unsigned long)-1)
1826 		return 1;
1827 
1828 	while (1) {
1829 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1830 					      &eiref, &type);
1831 		if (ret < 0)
1832 			return ret;
1833 
1834 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1835 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1836 			break;
1837 
1838 		if (ret == 1)
1839 			return 1;
1840 	}
1841 
1842 	/* we can treat both ref types equally here */
1843 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1844 
1845 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1846 		struct btrfs_tree_block_info *info;
1847 
1848 		info = (struct btrfs_tree_block_info *)(ei + 1);
1849 		*out_level = btrfs_tree_block_level(eb, info);
1850 	} else {
1851 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1852 		*out_level = (u8)key->offset;
1853 	}
1854 
1855 	if (ret == 1)
1856 		*ptr = (unsigned long)-1;
1857 
1858 	return 0;
1859 }
1860 
1861 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1862 			     struct extent_inode_elem *inode_list,
1863 			     u64 root, u64 extent_item_objectid,
1864 			     iterate_extent_inodes_t *iterate, void *ctx)
1865 {
1866 	struct extent_inode_elem *eie;
1867 	int ret = 0;
1868 
1869 	for (eie = inode_list; eie; eie = eie->next) {
1870 		btrfs_debug(fs_info,
1871 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1872 			    extent_item_objectid, eie->inum,
1873 			    eie->offset, root);
1874 		ret = iterate(eie->inum, eie->offset, root, ctx);
1875 		if (ret) {
1876 			btrfs_debug(fs_info,
1877 				    "stopping iteration for %llu due to ret=%d",
1878 				    extent_item_objectid, ret);
1879 			break;
1880 		}
1881 	}
1882 
1883 	return ret;
1884 }
1885 
1886 /*
1887  * calls iterate() for every inode that references the extent identified by
1888  * the given parameters.
1889  * when the iterator function returns a non-zero value, iteration stops.
1890  */
1891 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1892 				u64 extent_item_objectid, u64 extent_item_pos,
1893 				int search_commit_root,
1894 				iterate_extent_inodes_t *iterate, void *ctx,
1895 				bool ignore_offset)
1896 {
1897 	int ret;
1898 	struct btrfs_trans_handle *trans = NULL;
1899 	struct ulist *refs = NULL;
1900 	struct ulist *roots = NULL;
1901 	struct ulist_node *ref_node = NULL;
1902 	struct ulist_node *root_node = NULL;
1903 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1904 	struct ulist_iterator ref_uiter;
1905 	struct ulist_iterator root_uiter;
1906 
1907 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1908 			extent_item_objectid);
1909 
1910 	if (!search_commit_root) {
1911 		trans = btrfs_join_transaction(fs_info->extent_root);
1912 		if (IS_ERR(trans))
1913 			return PTR_ERR(trans);
1914 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1915 	} else {
1916 		down_read(&fs_info->commit_root_sem);
1917 	}
1918 
1919 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1920 				   tree_mod_seq_elem.seq, &refs,
1921 				   &extent_item_pos, ignore_offset);
1922 	if (ret)
1923 		goto out;
1924 
1925 	ULIST_ITER_INIT(&ref_uiter);
1926 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1927 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1928 						tree_mod_seq_elem.seq, &roots,
1929 						ignore_offset);
1930 		if (ret)
1931 			break;
1932 		ULIST_ITER_INIT(&root_uiter);
1933 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1934 			btrfs_debug(fs_info,
1935 				    "root %llu references leaf %llu, data list %#llx",
1936 				    root_node->val, ref_node->val,
1937 				    ref_node->aux);
1938 			ret = iterate_leaf_refs(fs_info,
1939 						(struct extent_inode_elem *)
1940 						(uintptr_t)ref_node->aux,
1941 						root_node->val,
1942 						extent_item_objectid,
1943 						iterate, ctx);
1944 		}
1945 		ulist_free(roots);
1946 	}
1947 
1948 	free_leaf_list(refs);
1949 out:
1950 	if (!search_commit_root) {
1951 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1952 		btrfs_end_transaction(trans);
1953 	} else {
1954 		up_read(&fs_info->commit_root_sem);
1955 	}
1956 
1957 	return ret;
1958 }
1959 
1960 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1961 				struct btrfs_path *path,
1962 				iterate_extent_inodes_t *iterate, void *ctx,
1963 				bool ignore_offset)
1964 {
1965 	int ret;
1966 	u64 extent_item_pos;
1967 	u64 flags = 0;
1968 	struct btrfs_key found_key;
1969 	int search_commit_root = path->search_commit_root;
1970 
1971 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1972 	btrfs_release_path(path);
1973 	if (ret < 0)
1974 		return ret;
1975 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1976 		return -EINVAL;
1977 
1978 	extent_item_pos = logical - found_key.objectid;
1979 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1980 					extent_item_pos, search_commit_root,
1981 					iterate, ctx, ignore_offset);
1982 
1983 	return ret;
1984 }
1985 
1986 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1987 			      struct extent_buffer *eb, void *ctx);
1988 
1989 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1990 			      struct btrfs_path *path,
1991 			      iterate_irefs_t *iterate, void *ctx)
1992 {
1993 	int ret = 0;
1994 	int slot;
1995 	u32 cur;
1996 	u32 len;
1997 	u32 name_len;
1998 	u64 parent = 0;
1999 	int found = 0;
2000 	struct extent_buffer *eb;
2001 	struct btrfs_item *item;
2002 	struct btrfs_inode_ref *iref;
2003 	struct btrfs_key found_key;
2004 
2005 	while (!ret) {
2006 		ret = btrfs_find_item(fs_root, path, inum,
2007 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2008 				&found_key);
2009 
2010 		if (ret < 0)
2011 			break;
2012 		if (ret) {
2013 			ret = found ? 0 : -ENOENT;
2014 			break;
2015 		}
2016 		++found;
2017 
2018 		parent = found_key.offset;
2019 		slot = path->slots[0];
2020 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2021 		if (!eb) {
2022 			ret = -ENOMEM;
2023 			break;
2024 		}
2025 		extent_buffer_get(eb);
2026 		btrfs_tree_read_lock(eb);
2027 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2028 		btrfs_release_path(path);
2029 
2030 		item = btrfs_item_nr(slot);
2031 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2032 
2033 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2034 			name_len = btrfs_inode_ref_name_len(eb, iref);
2035 			/* path must be released before calling iterate()! */
2036 			btrfs_debug(fs_root->fs_info,
2037 				"following ref at offset %u for inode %llu in tree %llu",
2038 				cur, found_key.objectid, fs_root->objectid);
2039 			ret = iterate(parent, name_len,
2040 				      (unsigned long)(iref + 1), eb, ctx);
2041 			if (ret)
2042 				break;
2043 			len = sizeof(*iref) + name_len;
2044 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2045 		}
2046 		btrfs_tree_read_unlock_blocking(eb);
2047 		free_extent_buffer(eb);
2048 	}
2049 
2050 	btrfs_release_path(path);
2051 
2052 	return ret;
2053 }
2054 
2055 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2056 				 struct btrfs_path *path,
2057 				 iterate_irefs_t *iterate, void *ctx)
2058 {
2059 	int ret;
2060 	int slot;
2061 	u64 offset = 0;
2062 	u64 parent;
2063 	int found = 0;
2064 	struct extent_buffer *eb;
2065 	struct btrfs_inode_extref *extref;
2066 	u32 item_size;
2067 	u32 cur_offset;
2068 	unsigned long ptr;
2069 
2070 	while (1) {
2071 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2072 					    &offset);
2073 		if (ret < 0)
2074 			break;
2075 		if (ret) {
2076 			ret = found ? 0 : -ENOENT;
2077 			break;
2078 		}
2079 		++found;
2080 
2081 		slot = path->slots[0];
2082 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2083 		if (!eb) {
2084 			ret = -ENOMEM;
2085 			break;
2086 		}
2087 		extent_buffer_get(eb);
2088 
2089 		btrfs_tree_read_lock(eb);
2090 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2091 		btrfs_release_path(path);
2092 
2093 		item_size = btrfs_item_size_nr(eb, slot);
2094 		ptr = btrfs_item_ptr_offset(eb, slot);
2095 		cur_offset = 0;
2096 
2097 		while (cur_offset < item_size) {
2098 			u32 name_len;
2099 
2100 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2101 			parent = btrfs_inode_extref_parent(eb, extref);
2102 			name_len = btrfs_inode_extref_name_len(eb, extref);
2103 			ret = iterate(parent, name_len,
2104 				      (unsigned long)&extref->name, eb, ctx);
2105 			if (ret)
2106 				break;
2107 
2108 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2109 			cur_offset += sizeof(*extref);
2110 		}
2111 		btrfs_tree_read_unlock_blocking(eb);
2112 		free_extent_buffer(eb);
2113 
2114 		offset++;
2115 	}
2116 
2117 	btrfs_release_path(path);
2118 
2119 	return ret;
2120 }
2121 
2122 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2123 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2124 			 void *ctx)
2125 {
2126 	int ret;
2127 	int found_refs = 0;
2128 
2129 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2130 	if (!ret)
2131 		++found_refs;
2132 	else if (ret != -ENOENT)
2133 		return ret;
2134 
2135 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2136 	if (ret == -ENOENT && found_refs)
2137 		return 0;
2138 
2139 	return ret;
2140 }
2141 
2142 /*
2143  * returns 0 if the path could be dumped (probably truncated)
2144  * returns <0 in case of an error
2145  */
2146 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2147 			 struct extent_buffer *eb, void *ctx)
2148 {
2149 	struct inode_fs_paths *ipath = ctx;
2150 	char *fspath;
2151 	char *fspath_min;
2152 	int i = ipath->fspath->elem_cnt;
2153 	const int s_ptr = sizeof(char *);
2154 	u32 bytes_left;
2155 
2156 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2157 					ipath->fspath->bytes_left - s_ptr : 0;
2158 
2159 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2160 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2161 				   name_off, eb, inum, fspath_min, bytes_left);
2162 	if (IS_ERR(fspath))
2163 		return PTR_ERR(fspath);
2164 
2165 	if (fspath > fspath_min) {
2166 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2167 		++ipath->fspath->elem_cnt;
2168 		ipath->fspath->bytes_left = fspath - fspath_min;
2169 	} else {
2170 		++ipath->fspath->elem_missed;
2171 		ipath->fspath->bytes_missing += fspath_min - fspath;
2172 		ipath->fspath->bytes_left = 0;
2173 	}
2174 
2175 	return 0;
2176 }
2177 
2178 /*
2179  * this dumps all file system paths to the inode into the ipath struct, provided
2180  * is has been created large enough. each path is zero-terminated and accessed
2181  * from ipath->fspath->val[i].
2182  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2183  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2184  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2185  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2186  * have been needed to return all paths.
2187  */
2188 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2189 {
2190 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2191 			     inode_to_path, ipath);
2192 }
2193 
2194 struct btrfs_data_container *init_data_container(u32 total_bytes)
2195 {
2196 	struct btrfs_data_container *data;
2197 	size_t alloc_bytes;
2198 
2199 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2200 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2201 	if (!data)
2202 		return ERR_PTR(-ENOMEM);
2203 
2204 	if (total_bytes >= sizeof(*data)) {
2205 		data->bytes_left = total_bytes - sizeof(*data);
2206 		data->bytes_missing = 0;
2207 	} else {
2208 		data->bytes_missing = sizeof(*data) - total_bytes;
2209 		data->bytes_left = 0;
2210 	}
2211 
2212 	data->elem_cnt = 0;
2213 	data->elem_missed = 0;
2214 
2215 	return data;
2216 }
2217 
2218 /*
2219  * allocates space to return multiple file system paths for an inode.
2220  * total_bytes to allocate are passed, note that space usable for actual path
2221  * information will be total_bytes - sizeof(struct inode_fs_paths).
2222  * the returned pointer must be freed with free_ipath() in the end.
2223  */
2224 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2225 					struct btrfs_path *path)
2226 {
2227 	struct inode_fs_paths *ifp;
2228 	struct btrfs_data_container *fspath;
2229 
2230 	fspath = init_data_container(total_bytes);
2231 	if (IS_ERR(fspath))
2232 		return (void *)fspath;
2233 
2234 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2235 	if (!ifp) {
2236 		kvfree(fspath);
2237 		return ERR_PTR(-ENOMEM);
2238 	}
2239 
2240 	ifp->btrfs_path = path;
2241 	ifp->fspath = fspath;
2242 	ifp->fs_root = fs_root;
2243 
2244 	return ifp;
2245 }
2246 
2247 void free_ipath(struct inode_fs_paths *ipath)
2248 {
2249 	if (!ipath)
2250 		return;
2251 	kvfree(ipath->fspath);
2252 	kfree(ipath);
2253 }
2254