1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/mm.h> 20 #include <linux/rbtree.h> 21 #include <trace/events/btrfs.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "backref.h" 25 #include "ulist.h" 26 #include "transaction.h" 27 #include "delayed-ref.h" 28 #include "locking.h" 29 30 /* Just an arbitrary number so we can be sure this happened */ 31 #define BACKREF_FOUND_SHARED 6 32 33 struct extent_inode_elem { 34 u64 inum; 35 u64 offset; 36 struct extent_inode_elem *next; 37 }; 38 39 static int check_extent_in_eb(const struct btrfs_key *key, 40 const struct extent_buffer *eb, 41 const struct btrfs_file_extent_item *fi, 42 u64 extent_item_pos, 43 struct extent_inode_elem **eie, 44 bool ignore_offset) 45 { 46 u64 offset = 0; 47 struct extent_inode_elem *e; 48 49 if (!ignore_offset && 50 !btrfs_file_extent_compression(eb, fi) && 51 !btrfs_file_extent_encryption(eb, fi) && 52 !btrfs_file_extent_other_encoding(eb, fi)) { 53 u64 data_offset; 54 u64 data_len; 55 56 data_offset = btrfs_file_extent_offset(eb, fi); 57 data_len = btrfs_file_extent_num_bytes(eb, fi); 58 59 if (extent_item_pos < data_offset || 60 extent_item_pos >= data_offset + data_len) 61 return 1; 62 offset = extent_item_pos - data_offset; 63 } 64 65 e = kmalloc(sizeof(*e), GFP_NOFS); 66 if (!e) 67 return -ENOMEM; 68 69 e->next = *eie; 70 e->inum = key->objectid; 71 e->offset = key->offset + offset; 72 *eie = e; 73 74 return 0; 75 } 76 77 static void free_inode_elem_list(struct extent_inode_elem *eie) 78 { 79 struct extent_inode_elem *eie_next; 80 81 for (; eie; eie = eie_next) { 82 eie_next = eie->next; 83 kfree(eie); 84 } 85 } 86 87 static int find_extent_in_eb(const struct extent_buffer *eb, 88 u64 wanted_disk_byte, u64 extent_item_pos, 89 struct extent_inode_elem **eie, 90 bool ignore_offset) 91 { 92 u64 disk_byte; 93 struct btrfs_key key; 94 struct btrfs_file_extent_item *fi; 95 int slot; 96 int nritems; 97 int extent_type; 98 int ret; 99 100 /* 101 * from the shared data ref, we only have the leaf but we need 102 * the key. thus, we must look into all items and see that we 103 * find one (some) with a reference to our extent item. 104 */ 105 nritems = btrfs_header_nritems(eb); 106 for (slot = 0; slot < nritems; ++slot) { 107 btrfs_item_key_to_cpu(eb, &key, slot); 108 if (key.type != BTRFS_EXTENT_DATA_KEY) 109 continue; 110 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 111 extent_type = btrfs_file_extent_type(eb, fi); 112 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 113 continue; 114 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 115 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 116 if (disk_byte != wanted_disk_byte) 117 continue; 118 119 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 120 if (ret < 0) 121 return ret; 122 } 123 124 return 0; 125 } 126 127 struct preftree { 128 struct rb_root root; 129 unsigned int count; 130 }; 131 132 #define PREFTREE_INIT { .root = RB_ROOT, .count = 0 } 133 134 struct preftrees { 135 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 136 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 137 struct preftree indirect_missing_keys; 138 }; 139 140 /* 141 * Checks for a shared extent during backref search. 142 * 143 * The share_count tracks prelim_refs (direct and indirect) having a 144 * ref->count >0: 145 * - incremented when a ref->count transitions to >0 146 * - decremented when a ref->count transitions to <1 147 */ 148 struct share_check { 149 u64 root_objectid; 150 u64 inum; 151 int share_count; 152 }; 153 154 static inline int extent_is_shared(struct share_check *sc) 155 { 156 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 157 } 158 159 static struct kmem_cache *btrfs_prelim_ref_cache; 160 161 int __init btrfs_prelim_ref_init(void) 162 { 163 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 164 sizeof(struct prelim_ref), 165 0, 166 SLAB_MEM_SPREAD, 167 NULL); 168 if (!btrfs_prelim_ref_cache) 169 return -ENOMEM; 170 return 0; 171 } 172 173 void btrfs_prelim_ref_exit(void) 174 { 175 kmem_cache_destroy(btrfs_prelim_ref_cache); 176 } 177 178 static void free_pref(struct prelim_ref *ref) 179 { 180 kmem_cache_free(btrfs_prelim_ref_cache, ref); 181 } 182 183 /* 184 * Return 0 when both refs are for the same block (and can be merged). 185 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 186 * indicates a 'higher' block. 187 */ 188 static int prelim_ref_compare(struct prelim_ref *ref1, 189 struct prelim_ref *ref2) 190 { 191 if (ref1->level < ref2->level) 192 return -1; 193 if (ref1->level > ref2->level) 194 return 1; 195 if (ref1->root_id < ref2->root_id) 196 return -1; 197 if (ref1->root_id > ref2->root_id) 198 return 1; 199 if (ref1->key_for_search.type < ref2->key_for_search.type) 200 return -1; 201 if (ref1->key_for_search.type > ref2->key_for_search.type) 202 return 1; 203 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 204 return -1; 205 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 206 return 1; 207 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 208 return -1; 209 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 210 return 1; 211 if (ref1->parent < ref2->parent) 212 return -1; 213 if (ref1->parent > ref2->parent) 214 return 1; 215 216 return 0; 217 } 218 219 static void update_share_count(struct share_check *sc, int oldcount, 220 int newcount) 221 { 222 if ((!sc) || (oldcount == 0 && newcount < 1)) 223 return; 224 225 if (oldcount > 0 && newcount < 1) 226 sc->share_count--; 227 else if (oldcount < 1 && newcount > 0) 228 sc->share_count++; 229 } 230 231 /* 232 * Add @newref to the @root rbtree, merging identical refs. 233 * 234 * Callers should assume that newref has been freed after calling. 235 */ 236 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 237 struct preftree *preftree, 238 struct prelim_ref *newref, 239 struct share_check *sc) 240 { 241 struct rb_root *root; 242 struct rb_node **p; 243 struct rb_node *parent = NULL; 244 struct prelim_ref *ref; 245 int result; 246 247 root = &preftree->root; 248 p = &root->rb_node; 249 250 while (*p) { 251 parent = *p; 252 ref = rb_entry(parent, struct prelim_ref, rbnode); 253 result = prelim_ref_compare(ref, newref); 254 if (result < 0) { 255 p = &(*p)->rb_left; 256 } else if (result > 0) { 257 p = &(*p)->rb_right; 258 } else { 259 /* Identical refs, merge them and free @newref */ 260 struct extent_inode_elem *eie = ref->inode_list; 261 262 while (eie && eie->next) 263 eie = eie->next; 264 265 if (!eie) 266 ref->inode_list = newref->inode_list; 267 else 268 eie->next = newref->inode_list; 269 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 270 preftree->count); 271 /* 272 * A delayed ref can have newref->count < 0. 273 * The ref->count is updated to follow any 274 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 275 */ 276 update_share_count(sc, ref->count, 277 ref->count + newref->count); 278 ref->count += newref->count; 279 free_pref(newref); 280 return; 281 } 282 } 283 284 update_share_count(sc, 0, newref->count); 285 preftree->count++; 286 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 287 rb_link_node(&newref->rbnode, parent, p); 288 rb_insert_color(&newref->rbnode, root); 289 } 290 291 /* 292 * Release the entire tree. We don't care about internal consistency so 293 * just free everything and then reset the tree root. 294 */ 295 static void prelim_release(struct preftree *preftree) 296 { 297 struct prelim_ref *ref, *next_ref; 298 299 rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root, 300 rbnode) 301 free_pref(ref); 302 303 preftree->root = RB_ROOT; 304 preftree->count = 0; 305 } 306 307 /* 308 * the rules for all callers of this function are: 309 * - obtaining the parent is the goal 310 * - if you add a key, you must know that it is a correct key 311 * - if you cannot add the parent or a correct key, then we will look into the 312 * block later to set a correct key 313 * 314 * delayed refs 315 * ============ 316 * backref type | shared | indirect | shared | indirect 317 * information | tree | tree | data | data 318 * --------------------+--------+----------+--------+---------- 319 * parent logical | y | - | - | - 320 * key to resolve | - | y | y | y 321 * tree block logical | - | - | - | - 322 * root for resolving | y | y | y | y 323 * 324 * - column 1: we've the parent -> done 325 * - column 2, 3, 4: we use the key to find the parent 326 * 327 * on disk refs (inline or keyed) 328 * ============================== 329 * backref type | shared | indirect | shared | indirect 330 * information | tree | tree | data | data 331 * --------------------+--------+----------+--------+---------- 332 * parent logical | y | - | y | - 333 * key to resolve | - | - | - | y 334 * tree block logical | y | y | y | y 335 * root for resolving | - | y | y | y 336 * 337 * - column 1, 3: we've the parent -> done 338 * - column 2: we take the first key from the block to find the parent 339 * (see add_missing_keys) 340 * - column 4: we use the key to find the parent 341 * 342 * additional information that's available but not required to find the parent 343 * block might help in merging entries to gain some speed. 344 */ 345 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 346 struct preftree *preftree, u64 root_id, 347 const struct btrfs_key *key, int level, u64 parent, 348 u64 wanted_disk_byte, int count, 349 struct share_check *sc, gfp_t gfp_mask) 350 { 351 struct prelim_ref *ref; 352 353 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 354 return 0; 355 356 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 357 if (!ref) 358 return -ENOMEM; 359 360 ref->root_id = root_id; 361 if (key) { 362 ref->key_for_search = *key; 363 /* 364 * We can often find data backrefs with an offset that is too 365 * large (>= LLONG_MAX, maximum allowed file offset) due to 366 * underflows when subtracting a file's offset with the data 367 * offset of its corresponding extent data item. This can 368 * happen for example in the clone ioctl. 369 * So if we detect such case we set the search key's offset to 370 * zero to make sure we will find the matching file extent item 371 * at add_all_parents(), otherwise we will miss it because the 372 * offset taken form the backref is much larger then the offset 373 * of the file extent item. This can make us scan a very large 374 * number of file extent items, but at least it will not make 375 * us miss any. 376 * This is an ugly workaround for a behaviour that should have 377 * never existed, but it does and a fix for the clone ioctl 378 * would touch a lot of places, cause backwards incompatibility 379 * and would not fix the problem for extents cloned with older 380 * kernels. 381 */ 382 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY && 383 ref->key_for_search.offset >= LLONG_MAX) 384 ref->key_for_search.offset = 0; 385 } else { 386 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 387 } 388 389 ref->inode_list = NULL; 390 ref->level = level; 391 ref->count = count; 392 ref->parent = parent; 393 ref->wanted_disk_byte = wanted_disk_byte; 394 prelim_ref_insert(fs_info, preftree, ref, sc); 395 return extent_is_shared(sc); 396 } 397 398 /* direct refs use root == 0, key == NULL */ 399 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 400 struct preftrees *preftrees, int level, u64 parent, 401 u64 wanted_disk_byte, int count, 402 struct share_check *sc, gfp_t gfp_mask) 403 { 404 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 405 parent, wanted_disk_byte, count, sc, gfp_mask); 406 } 407 408 /* indirect refs use parent == 0 */ 409 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 410 struct preftrees *preftrees, u64 root_id, 411 const struct btrfs_key *key, int level, 412 u64 wanted_disk_byte, int count, 413 struct share_check *sc, gfp_t gfp_mask) 414 { 415 struct preftree *tree = &preftrees->indirect; 416 417 if (!key) 418 tree = &preftrees->indirect_missing_keys; 419 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 420 wanted_disk_byte, count, sc, gfp_mask); 421 } 422 423 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 424 struct ulist *parents, struct prelim_ref *ref, 425 int level, u64 time_seq, const u64 *extent_item_pos, 426 u64 total_refs, bool ignore_offset) 427 { 428 int ret = 0; 429 int slot; 430 struct extent_buffer *eb; 431 struct btrfs_key key; 432 struct btrfs_key *key_for_search = &ref->key_for_search; 433 struct btrfs_file_extent_item *fi; 434 struct extent_inode_elem *eie = NULL, *old = NULL; 435 u64 disk_byte; 436 u64 wanted_disk_byte = ref->wanted_disk_byte; 437 u64 count = 0; 438 439 if (level != 0) { 440 eb = path->nodes[level]; 441 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 442 if (ret < 0) 443 return ret; 444 return 0; 445 } 446 447 /* 448 * We normally enter this function with the path already pointing to 449 * the first item to check. But sometimes, we may enter it with 450 * slot==nritems. In that case, go to the next leaf before we continue. 451 */ 452 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 453 if (time_seq == SEQ_LAST) 454 ret = btrfs_next_leaf(root, path); 455 else 456 ret = btrfs_next_old_leaf(root, path, time_seq); 457 } 458 459 while (!ret && count < total_refs) { 460 eb = path->nodes[0]; 461 slot = path->slots[0]; 462 463 btrfs_item_key_to_cpu(eb, &key, slot); 464 465 if (key.objectid != key_for_search->objectid || 466 key.type != BTRFS_EXTENT_DATA_KEY) 467 break; 468 469 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 470 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 471 472 if (disk_byte == wanted_disk_byte) { 473 eie = NULL; 474 old = NULL; 475 count++; 476 if (extent_item_pos) { 477 ret = check_extent_in_eb(&key, eb, fi, 478 *extent_item_pos, 479 &eie, ignore_offset); 480 if (ret < 0) 481 break; 482 } 483 if (ret > 0) 484 goto next; 485 ret = ulist_add_merge_ptr(parents, eb->start, 486 eie, (void **)&old, GFP_NOFS); 487 if (ret < 0) 488 break; 489 if (!ret && extent_item_pos) { 490 while (old->next) 491 old = old->next; 492 old->next = eie; 493 } 494 eie = NULL; 495 } 496 next: 497 if (time_seq == SEQ_LAST) 498 ret = btrfs_next_item(root, path); 499 else 500 ret = btrfs_next_old_item(root, path, time_seq); 501 } 502 503 if (ret > 0) 504 ret = 0; 505 else if (ret < 0) 506 free_inode_elem_list(eie); 507 return ret; 508 } 509 510 /* 511 * resolve an indirect backref in the form (root_id, key, level) 512 * to a logical address 513 */ 514 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 515 struct btrfs_path *path, u64 time_seq, 516 struct prelim_ref *ref, struct ulist *parents, 517 const u64 *extent_item_pos, u64 total_refs, 518 bool ignore_offset) 519 { 520 struct btrfs_root *root; 521 struct btrfs_key root_key; 522 struct extent_buffer *eb; 523 int ret = 0; 524 int root_level; 525 int level = ref->level; 526 int index; 527 528 root_key.objectid = ref->root_id; 529 root_key.type = BTRFS_ROOT_ITEM_KEY; 530 root_key.offset = (u64)-1; 531 532 index = srcu_read_lock(&fs_info->subvol_srcu); 533 534 root = btrfs_get_fs_root(fs_info, &root_key, false); 535 if (IS_ERR(root)) { 536 srcu_read_unlock(&fs_info->subvol_srcu, index); 537 ret = PTR_ERR(root); 538 goto out; 539 } 540 541 if (btrfs_is_testing(fs_info)) { 542 srcu_read_unlock(&fs_info->subvol_srcu, index); 543 ret = -ENOENT; 544 goto out; 545 } 546 547 if (path->search_commit_root) 548 root_level = btrfs_header_level(root->commit_root); 549 else if (time_seq == SEQ_LAST) 550 root_level = btrfs_header_level(root->node); 551 else 552 root_level = btrfs_old_root_level(root, time_seq); 553 554 if (root_level + 1 == level) { 555 srcu_read_unlock(&fs_info->subvol_srcu, index); 556 goto out; 557 } 558 559 path->lowest_level = level; 560 if (time_seq == SEQ_LAST) 561 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 562 0, 0); 563 else 564 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, 565 time_seq); 566 567 /* root node has been locked, we can release @subvol_srcu safely here */ 568 srcu_read_unlock(&fs_info->subvol_srcu, index); 569 570 btrfs_debug(fs_info, 571 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 572 ref->root_id, level, ref->count, ret, 573 ref->key_for_search.objectid, ref->key_for_search.type, 574 ref->key_for_search.offset); 575 if (ret < 0) 576 goto out; 577 578 eb = path->nodes[level]; 579 while (!eb) { 580 if (WARN_ON(!level)) { 581 ret = 1; 582 goto out; 583 } 584 level--; 585 eb = path->nodes[level]; 586 } 587 588 ret = add_all_parents(root, path, parents, ref, level, time_seq, 589 extent_item_pos, total_refs, ignore_offset); 590 out: 591 path->lowest_level = 0; 592 btrfs_release_path(path); 593 return ret; 594 } 595 596 static struct extent_inode_elem * 597 unode_aux_to_inode_list(struct ulist_node *node) 598 { 599 if (!node) 600 return NULL; 601 return (struct extent_inode_elem *)(uintptr_t)node->aux; 602 } 603 604 /* 605 * We maintain three seperate rbtrees: one for direct refs, one for 606 * indirect refs which have a key, and one for indirect refs which do not 607 * have a key. Each tree does merge on insertion. 608 * 609 * Once all of the references are located, we iterate over the tree of 610 * indirect refs with missing keys. An appropriate key is located and 611 * the ref is moved onto the tree for indirect refs. After all missing 612 * keys are thus located, we iterate over the indirect ref tree, resolve 613 * each reference, and then insert the resolved reference onto the 614 * direct tree (merging there too). 615 * 616 * New backrefs (i.e., for parent nodes) are added to the appropriate 617 * rbtree as they are encountered. The new backrefs are subsequently 618 * resolved as above. 619 */ 620 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 621 struct btrfs_path *path, u64 time_seq, 622 struct preftrees *preftrees, 623 const u64 *extent_item_pos, u64 total_refs, 624 struct share_check *sc, bool ignore_offset) 625 { 626 int err; 627 int ret = 0; 628 struct ulist *parents; 629 struct ulist_node *node; 630 struct ulist_iterator uiter; 631 struct rb_node *rnode; 632 633 parents = ulist_alloc(GFP_NOFS); 634 if (!parents) 635 return -ENOMEM; 636 637 /* 638 * We could trade memory usage for performance here by iterating 639 * the tree, allocating new refs for each insertion, and then 640 * freeing the entire indirect tree when we're done. In some test 641 * cases, the tree can grow quite large (~200k objects). 642 */ 643 while ((rnode = rb_first(&preftrees->indirect.root))) { 644 struct prelim_ref *ref; 645 646 ref = rb_entry(rnode, struct prelim_ref, rbnode); 647 if (WARN(ref->parent, 648 "BUG: direct ref found in indirect tree")) { 649 ret = -EINVAL; 650 goto out; 651 } 652 653 rb_erase(&ref->rbnode, &preftrees->indirect.root); 654 preftrees->indirect.count--; 655 656 if (ref->count == 0) { 657 free_pref(ref); 658 continue; 659 } 660 661 if (sc && sc->root_objectid && 662 ref->root_id != sc->root_objectid) { 663 free_pref(ref); 664 ret = BACKREF_FOUND_SHARED; 665 goto out; 666 } 667 err = resolve_indirect_ref(fs_info, path, time_seq, ref, 668 parents, extent_item_pos, 669 total_refs, ignore_offset); 670 /* 671 * we can only tolerate ENOENT,otherwise,we should catch error 672 * and return directly. 673 */ 674 if (err == -ENOENT) { 675 prelim_ref_insert(fs_info, &preftrees->direct, ref, 676 NULL); 677 continue; 678 } else if (err) { 679 free_pref(ref); 680 ret = err; 681 goto out; 682 } 683 684 /* we put the first parent into the ref at hand */ 685 ULIST_ITER_INIT(&uiter); 686 node = ulist_next(parents, &uiter); 687 ref->parent = node ? node->val : 0; 688 ref->inode_list = unode_aux_to_inode_list(node); 689 690 /* Add a prelim_ref(s) for any other parent(s). */ 691 while ((node = ulist_next(parents, &uiter))) { 692 struct prelim_ref *new_ref; 693 694 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 695 GFP_NOFS); 696 if (!new_ref) { 697 free_pref(ref); 698 ret = -ENOMEM; 699 goto out; 700 } 701 memcpy(new_ref, ref, sizeof(*ref)); 702 new_ref->parent = node->val; 703 new_ref->inode_list = unode_aux_to_inode_list(node); 704 prelim_ref_insert(fs_info, &preftrees->direct, 705 new_ref, NULL); 706 } 707 708 /* 709 * Now it's a direct ref, put it in the the direct tree. We must 710 * do this last because the ref could be merged/freed here. 711 */ 712 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 713 714 ulist_reinit(parents); 715 cond_resched(); 716 } 717 out: 718 ulist_free(parents); 719 return ret; 720 } 721 722 /* 723 * read tree blocks and add keys where required. 724 */ 725 static int add_missing_keys(struct btrfs_fs_info *fs_info, 726 struct preftrees *preftrees) 727 { 728 struct prelim_ref *ref; 729 struct extent_buffer *eb; 730 struct preftree *tree = &preftrees->indirect_missing_keys; 731 struct rb_node *node; 732 733 while ((node = rb_first(&tree->root))) { 734 ref = rb_entry(node, struct prelim_ref, rbnode); 735 rb_erase(node, &tree->root); 736 737 BUG_ON(ref->parent); /* should not be a direct ref */ 738 BUG_ON(ref->key_for_search.type); 739 BUG_ON(!ref->wanted_disk_byte); 740 741 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0); 742 if (IS_ERR(eb)) { 743 free_pref(ref); 744 return PTR_ERR(eb); 745 } else if (!extent_buffer_uptodate(eb)) { 746 free_pref(ref); 747 free_extent_buffer(eb); 748 return -EIO; 749 } 750 btrfs_tree_read_lock(eb); 751 if (btrfs_header_level(eb) == 0) 752 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 753 else 754 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 755 btrfs_tree_read_unlock(eb); 756 free_extent_buffer(eb); 757 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 758 cond_resched(); 759 } 760 return 0; 761 } 762 763 /* 764 * add all currently queued delayed refs from this head whose seq nr is 765 * smaller or equal that seq to the list 766 */ 767 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 768 struct btrfs_delayed_ref_head *head, u64 seq, 769 struct preftrees *preftrees, u64 *total_refs, 770 struct share_check *sc) 771 { 772 struct btrfs_delayed_ref_node *node; 773 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 774 struct btrfs_key key; 775 struct btrfs_key tmp_op_key; 776 struct btrfs_key *op_key = NULL; 777 struct rb_node *n; 778 int count; 779 int ret = 0; 780 781 if (extent_op && extent_op->update_key) { 782 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 783 op_key = &tmp_op_key; 784 } 785 786 spin_lock(&head->lock); 787 for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) { 788 node = rb_entry(n, struct btrfs_delayed_ref_node, 789 ref_node); 790 if (node->seq > seq) 791 continue; 792 793 switch (node->action) { 794 case BTRFS_ADD_DELAYED_EXTENT: 795 case BTRFS_UPDATE_DELAYED_HEAD: 796 WARN_ON(1); 797 continue; 798 case BTRFS_ADD_DELAYED_REF: 799 count = node->ref_mod; 800 break; 801 case BTRFS_DROP_DELAYED_REF: 802 count = node->ref_mod * -1; 803 break; 804 default: 805 BUG_ON(1); 806 } 807 *total_refs += count; 808 switch (node->type) { 809 case BTRFS_TREE_BLOCK_REF_KEY: { 810 /* NORMAL INDIRECT METADATA backref */ 811 struct btrfs_delayed_tree_ref *ref; 812 813 ref = btrfs_delayed_node_to_tree_ref(node); 814 ret = add_indirect_ref(fs_info, preftrees, ref->root, 815 &tmp_op_key, ref->level + 1, 816 node->bytenr, count, sc, 817 GFP_ATOMIC); 818 break; 819 } 820 case BTRFS_SHARED_BLOCK_REF_KEY: { 821 /* SHARED DIRECT METADATA backref */ 822 struct btrfs_delayed_tree_ref *ref; 823 824 ref = btrfs_delayed_node_to_tree_ref(node); 825 826 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 827 ref->parent, node->bytenr, count, 828 sc, GFP_ATOMIC); 829 break; 830 } 831 case BTRFS_EXTENT_DATA_REF_KEY: { 832 /* NORMAL INDIRECT DATA backref */ 833 struct btrfs_delayed_data_ref *ref; 834 ref = btrfs_delayed_node_to_data_ref(node); 835 836 key.objectid = ref->objectid; 837 key.type = BTRFS_EXTENT_DATA_KEY; 838 key.offset = ref->offset; 839 840 /* 841 * Found a inum that doesn't match our known inum, we 842 * know it's shared. 843 */ 844 if (sc && sc->inum && ref->objectid != sc->inum) { 845 ret = BACKREF_FOUND_SHARED; 846 goto out; 847 } 848 849 ret = add_indirect_ref(fs_info, preftrees, ref->root, 850 &key, 0, node->bytenr, count, sc, 851 GFP_ATOMIC); 852 break; 853 } 854 case BTRFS_SHARED_DATA_REF_KEY: { 855 /* SHARED DIRECT FULL backref */ 856 struct btrfs_delayed_data_ref *ref; 857 858 ref = btrfs_delayed_node_to_data_ref(node); 859 860 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 861 node->bytenr, count, sc, 862 GFP_ATOMIC); 863 break; 864 } 865 default: 866 WARN_ON(1); 867 } 868 /* 869 * We must ignore BACKREF_FOUND_SHARED until all delayed 870 * refs have been checked. 871 */ 872 if (ret && (ret != BACKREF_FOUND_SHARED)) 873 break; 874 } 875 if (!ret) 876 ret = extent_is_shared(sc); 877 out: 878 spin_unlock(&head->lock); 879 return ret; 880 } 881 882 /* 883 * add all inline backrefs for bytenr to the list 884 * 885 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 886 */ 887 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 888 struct btrfs_path *path, u64 bytenr, 889 int *info_level, struct preftrees *preftrees, 890 u64 *total_refs, struct share_check *sc) 891 { 892 int ret = 0; 893 int slot; 894 struct extent_buffer *leaf; 895 struct btrfs_key key; 896 struct btrfs_key found_key; 897 unsigned long ptr; 898 unsigned long end; 899 struct btrfs_extent_item *ei; 900 u64 flags; 901 u64 item_size; 902 903 /* 904 * enumerate all inline refs 905 */ 906 leaf = path->nodes[0]; 907 slot = path->slots[0]; 908 909 item_size = btrfs_item_size_nr(leaf, slot); 910 BUG_ON(item_size < sizeof(*ei)); 911 912 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 913 flags = btrfs_extent_flags(leaf, ei); 914 *total_refs += btrfs_extent_refs(leaf, ei); 915 btrfs_item_key_to_cpu(leaf, &found_key, slot); 916 917 ptr = (unsigned long)(ei + 1); 918 end = (unsigned long)ei + item_size; 919 920 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 921 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 922 struct btrfs_tree_block_info *info; 923 924 info = (struct btrfs_tree_block_info *)ptr; 925 *info_level = btrfs_tree_block_level(leaf, info); 926 ptr += sizeof(struct btrfs_tree_block_info); 927 BUG_ON(ptr > end); 928 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 929 *info_level = found_key.offset; 930 } else { 931 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 932 } 933 934 while (ptr < end) { 935 struct btrfs_extent_inline_ref *iref; 936 u64 offset; 937 int type; 938 939 iref = (struct btrfs_extent_inline_ref *)ptr; 940 type = btrfs_get_extent_inline_ref_type(leaf, iref, 941 BTRFS_REF_TYPE_ANY); 942 if (type == BTRFS_REF_TYPE_INVALID) 943 return -EINVAL; 944 945 offset = btrfs_extent_inline_ref_offset(leaf, iref); 946 947 switch (type) { 948 case BTRFS_SHARED_BLOCK_REF_KEY: 949 ret = add_direct_ref(fs_info, preftrees, 950 *info_level + 1, offset, 951 bytenr, 1, NULL, GFP_NOFS); 952 break; 953 case BTRFS_SHARED_DATA_REF_KEY: { 954 struct btrfs_shared_data_ref *sdref; 955 int count; 956 957 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 958 count = btrfs_shared_data_ref_count(leaf, sdref); 959 960 ret = add_direct_ref(fs_info, preftrees, 0, offset, 961 bytenr, count, sc, GFP_NOFS); 962 break; 963 } 964 case BTRFS_TREE_BLOCK_REF_KEY: 965 ret = add_indirect_ref(fs_info, preftrees, offset, 966 NULL, *info_level + 1, 967 bytenr, 1, NULL, GFP_NOFS); 968 break; 969 case BTRFS_EXTENT_DATA_REF_KEY: { 970 struct btrfs_extent_data_ref *dref; 971 int count; 972 u64 root; 973 974 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 975 count = btrfs_extent_data_ref_count(leaf, dref); 976 key.objectid = btrfs_extent_data_ref_objectid(leaf, 977 dref); 978 key.type = BTRFS_EXTENT_DATA_KEY; 979 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 980 981 if (sc && sc->inum && key.objectid != sc->inum) { 982 ret = BACKREF_FOUND_SHARED; 983 break; 984 } 985 986 root = btrfs_extent_data_ref_root(leaf, dref); 987 988 ret = add_indirect_ref(fs_info, preftrees, root, 989 &key, 0, bytenr, count, 990 sc, GFP_NOFS); 991 break; 992 } 993 default: 994 WARN_ON(1); 995 } 996 if (ret) 997 return ret; 998 ptr += btrfs_extent_inline_ref_size(type); 999 } 1000 1001 return 0; 1002 } 1003 1004 /* 1005 * add all non-inline backrefs for bytenr to the list 1006 * 1007 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1008 */ 1009 static int add_keyed_refs(struct btrfs_fs_info *fs_info, 1010 struct btrfs_path *path, u64 bytenr, 1011 int info_level, struct preftrees *preftrees, 1012 struct share_check *sc) 1013 { 1014 struct btrfs_root *extent_root = fs_info->extent_root; 1015 int ret; 1016 int slot; 1017 struct extent_buffer *leaf; 1018 struct btrfs_key key; 1019 1020 while (1) { 1021 ret = btrfs_next_item(extent_root, path); 1022 if (ret < 0) 1023 break; 1024 if (ret) { 1025 ret = 0; 1026 break; 1027 } 1028 1029 slot = path->slots[0]; 1030 leaf = path->nodes[0]; 1031 btrfs_item_key_to_cpu(leaf, &key, slot); 1032 1033 if (key.objectid != bytenr) 1034 break; 1035 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1036 continue; 1037 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1038 break; 1039 1040 switch (key.type) { 1041 case BTRFS_SHARED_BLOCK_REF_KEY: 1042 /* SHARED DIRECT METADATA backref */ 1043 ret = add_direct_ref(fs_info, preftrees, 1044 info_level + 1, key.offset, 1045 bytenr, 1, NULL, GFP_NOFS); 1046 break; 1047 case BTRFS_SHARED_DATA_REF_KEY: { 1048 /* SHARED DIRECT FULL backref */ 1049 struct btrfs_shared_data_ref *sdref; 1050 int count; 1051 1052 sdref = btrfs_item_ptr(leaf, slot, 1053 struct btrfs_shared_data_ref); 1054 count = btrfs_shared_data_ref_count(leaf, sdref); 1055 ret = add_direct_ref(fs_info, preftrees, 0, 1056 key.offset, bytenr, count, 1057 sc, GFP_NOFS); 1058 break; 1059 } 1060 case BTRFS_TREE_BLOCK_REF_KEY: 1061 /* NORMAL INDIRECT METADATA backref */ 1062 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1063 NULL, info_level + 1, bytenr, 1064 1, NULL, GFP_NOFS); 1065 break; 1066 case BTRFS_EXTENT_DATA_REF_KEY: { 1067 /* NORMAL INDIRECT DATA backref */ 1068 struct btrfs_extent_data_ref *dref; 1069 int count; 1070 u64 root; 1071 1072 dref = btrfs_item_ptr(leaf, slot, 1073 struct btrfs_extent_data_ref); 1074 count = btrfs_extent_data_ref_count(leaf, dref); 1075 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1076 dref); 1077 key.type = BTRFS_EXTENT_DATA_KEY; 1078 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1079 1080 if (sc && sc->inum && key.objectid != sc->inum) { 1081 ret = BACKREF_FOUND_SHARED; 1082 break; 1083 } 1084 1085 root = btrfs_extent_data_ref_root(leaf, dref); 1086 ret = add_indirect_ref(fs_info, preftrees, root, 1087 &key, 0, bytenr, count, 1088 sc, GFP_NOFS); 1089 break; 1090 } 1091 default: 1092 WARN_ON(1); 1093 } 1094 if (ret) 1095 return ret; 1096 1097 } 1098 1099 return ret; 1100 } 1101 1102 /* 1103 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1104 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1105 * indirect refs to their parent bytenr. 1106 * When roots are found, they're added to the roots list 1107 * 1108 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave 1109 * much like trans == NULL case, the difference only lies in it will not 1110 * commit root. 1111 * The special case is for qgroup to search roots in commit_transaction(). 1112 * 1113 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1114 * shared extent is detected. 1115 * 1116 * Otherwise this returns 0 for success and <0 for an error. 1117 * 1118 * If ignore_offset is set to false, only extent refs whose offsets match 1119 * extent_item_pos are returned. If true, every extent ref is returned 1120 * and extent_item_pos is ignored. 1121 * 1122 * FIXME some caching might speed things up 1123 */ 1124 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1125 struct btrfs_fs_info *fs_info, u64 bytenr, 1126 u64 time_seq, struct ulist *refs, 1127 struct ulist *roots, const u64 *extent_item_pos, 1128 struct share_check *sc, bool ignore_offset) 1129 { 1130 struct btrfs_key key; 1131 struct btrfs_path *path; 1132 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1133 struct btrfs_delayed_ref_head *head; 1134 int info_level = 0; 1135 int ret; 1136 struct prelim_ref *ref; 1137 struct rb_node *node; 1138 struct extent_inode_elem *eie = NULL; 1139 /* total of both direct AND indirect refs! */ 1140 u64 total_refs = 0; 1141 struct preftrees preftrees = { 1142 .direct = PREFTREE_INIT, 1143 .indirect = PREFTREE_INIT, 1144 .indirect_missing_keys = PREFTREE_INIT 1145 }; 1146 1147 key.objectid = bytenr; 1148 key.offset = (u64)-1; 1149 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1150 key.type = BTRFS_METADATA_ITEM_KEY; 1151 else 1152 key.type = BTRFS_EXTENT_ITEM_KEY; 1153 1154 path = btrfs_alloc_path(); 1155 if (!path) 1156 return -ENOMEM; 1157 if (!trans) { 1158 path->search_commit_root = 1; 1159 path->skip_locking = 1; 1160 } 1161 1162 if (time_seq == SEQ_LAST) 1163 path->skip_locking = 1; 1164 1165 /* 1166 * grab both a lock on the path and a lock on the delayed ref head. 1167 * We need both to get a consistent picture of how the refs look 1168 * at a specified point in time 1169 */ 1170 again: 1171 head = NULL; 1172 1173 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1174 if (ret < 0) 1175 goto out; 1176 BUG_ON(ret == 0); 1177 1178 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1179 if (trans && likely(trans->type != __TRANS_DUMMY) && 1180 time_seq != SEQ_LAST) { 1181 #else 1182 if (trans && time_seq != SEQ_LAST) { 1183 #endif 1184 /* 1185 * look if there are updates for this ref queued and lock the 1186 * head 1187 */ 1188 delayed_refs = &trans->transaction->delayed_refs; 1189 spin_lock(&delayed_refs->lock); 1190 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1191 if (head) { 1192 if (!mutex_trylock(&head->mutex)) { 1193 refcount_inc(&head->refs); 1194 spin_unlock(&delayed_refs->lock); 1195 1196 btrfs_release_path(path); 1197 1198 /* 1199 * Mutex was contended, block until it's 1200 * released and try again 1201 */ 1202 mutex_lock(&head->mutex); 1203 mutex_unlock(&head->mutex); 1204 btrfs_put_delayed_ref_head(head); 1205 goto again; 1206 } 1207 spin_unlock(&delayed_refs->lock); 1208 ret = add_delayed_refs(fs_info, head, time_seq, 1209 &preftrees, &total_refs, sc); 1210 mutex_unlock(&head->mutex); 1211 if (ret) 1212 goto out; 1213 } else { 1214 spin_unlock(&delayed_refs->lock); 1215 } 1216 } 1217 1218 if (path->slots[0]) { 1219 struct extent_buffer *leaf; 1220 int slot; 1221 1222 path->slots[0]--; 1223 leaf = path->nodes[0]; 1224 slot = path->slots[0]; 1225 btrfs_item_key_to_cpu(leaf, &key, slot); 1226 if (key.objectid == bytenr && 1227 (key.type == BTRFS_EXTENT_ITEM_KEY || 1228 key.type == BTRFS_METADATA_ITEM_KEY)) { 1229 ret = add_inline_refs(fs_info, path, bytenr, 1230 &info_level, &preftrees, 1231 &total_refs, sc); 1232 if (ret) 1233 goto out; 1234 ret = add_keyed_refs(fs_info, path, bytenr, info_level, 1235 &preftrees, sc); 1236 if (ret) 1237 goto out; 1238 } 1239 } 1240 1241 btrfs_release_path(path); 1242 1243 ret = add_missing_keys(fs_info, &preftrees); 1244 if (ret) 1245 goto out; 1246 1247 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root)); 1248 1249 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1250 extent_item_pos, total_refs, sc, ignore_offset); 1251 if (ret) 1252 goto out; 1253 1254 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root)); 1255 1256 /* 1257 * This walks the tree of merged and resolved refs. Tree blocks are 1258 * read in as needed. Unique entries are added to the ulist, and 1259 * the list of found roots is updated. 1260 * 1261 * We release the entire tree in one go before returning. 1262 */ 1263 node = rb_first(&preftrees.direct.root); 1264 while (node) { 1265 ref = rb_entry(node, struct prelim_ref, rbnode); 1266 node = rb_next(&ref->rbnode); 1267 WARN_ON(ref->count < 0); 1268 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1269 if (sc && sc->root_objectid && 1270 ref->root_id != sc->root_objectid) { 1271 ret = BACKREF_FOUND_SHARED; 1272 goto out; 1273 } 1274 1275 /* no parent == root of tree */ 1276 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1277 if (ret < 0) 1278 goto out; 1279 } 1280 if (ref->count && ref->parent) { 1281 if (extent_item_pos && !ref->inode_list && 1282 ref->level == 0) { 1283 struct extent_buffer *eb; 1284 1285 eb = read_tree_block(fs_info, ref->parent, 0); 1286 if (IS_ERR(eb)) { 1287 ret = PTR_ERR(eb); 1288 goto out; 1289 } else if (!extent_buffer_uptodate(eb)) { 1290 free_extent_buffer(eb); 1291 ret = -EIO; 1292 goto out; 1293 } 1294 btrfs_tree_read_lock(eb); 1295 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1296 ret = find_extent_in_eb(eb, bytenr, 1297 *extent_item_pos, &eie, ignore_offset); 1298 btrfs_tree_read_unlock_blocking(eb); 1299 free_extent_buffer(eb); 1300 if (ret < 0) 1301 goto out; 1302 ref->inode_list = eie; 1303 } 1304 ret = ulist_add_merge_ptr(refs, ref->parent, 1305 ref->inode_list, 1306 (void **)&eie, GFP_NOFS); 1307 if (ret < 0) 1308 goto out; 1309 if (!ret && extent_item_pos) { 1310 /* 1311 * we've recorded that parent, so we must extend 1312 * its inode list here 1313 */ 1314 BUG_ON(!eie); 1315 while (eie->next) 1316 eie = eie->next; 1317 eie->next = ref->inode_list; 1318 } 1319 eie = NULL; 1320 } 1321 cond_resched(); 1322 } 1323 1324 out: 1325 btrfs_free_path(path); 1326 1327 prelim_release(&preftrees.direct); 1328 prelim_release(&preftrees.indirect); 1329 prelim_release(&preftrees.indirect_missing_keys); 1330 1331 if (ret < 0) 1332 free_inode_elem_list(eie); 1333 return ret; 1334 } 1335 1336 static void free_leaf_list(struct ulist *blocks) 1337 { 1338 struct ulist_node *node = NULL; 1339 struct extent_inode_elem *eie; 1340 struct ulist_iterator uiter; 1341 1342 ULIST_ITER_INIT(&uiter); 1343 while ((node = ulist_next(blocks, &uiter))) { 1344 if (!node->aux) 1345 continue; 1346 eie = unode_aux_to_inode_list(node); 1347 free_inode_elem_list(eie); 1348 node->aux = 0; 1349 } 1350 1351 ulist_free(blocks); 1352 } 1353 1354 /* 1355 * Finds all leafs with a reference to the specified combination of bytenr and 1356 * offset. key_list_head will point to a list of corresponding keys (caller must 1357 * free each list element). The leafs will be stored in the leafs ulist, which 1358 * must be freed with ulist_free. 1359 * 1360 * returns 0 on success, <0 on error 1361 */ 1362 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1363 struct btrfs_fs_info *fs_info, u64 bytenr, 1364 u64 time_seq, struct ulist **leafs, 1365 const u64 *extent_item_pos, bool ignore_offset) 1366 { 1367 int ret; 1368 1369 *leafs = ulist_alloc(GFP_NOFS); 1370 if (!*leafs) 1371 return -ENOMEM; 1372 1373 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1374 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1375 if (ret < 0 && ret != -ENOENT) { 1376 free_leaf_list(*leafs); 1377 return ret; 1378 } 1379 1380 return 0; 1381 } 1382 1383 /* 1384 * walk all backrefs for a given extent to find all roots that reference this 1385 * extent. Walking a backref means finding all extents that reference this 1386 * extent and in turn walk the backrefs of those, too. Naturally this is a 1387 * recursive process, but here it is implemented in an iterative fashion: We 1388 * find all referencing extents for the extent in question and put them on a 1389 * list. In turn, we find all referencing extents for those, further appending 1390 * to the list. The way we iterate the list allows adding more elements after 1391 * the current while iterating. The process stops when we reach the end of the 1392 * list. Found roots are added to the roots list. 1393 * 1394 * returns 0 on success, < 0 on error. 1395 */ 1396 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1397 struct btrfs_fs_info *fs_info, u64 bytenr, 1398 u64 time_seq, struct ulist **roots, 1399 bool ignore_offset) 1400 { 1401 struct ulist *tmp; 1402 struct ulist_node *node = NULL; 1403 struct ulist_iterator uiter; 1404 int ret; 1405 1406 tmp = ulist_alloc(GFP_NOFS); 1407 if (!tmp) 1408 return -ENOMEM; 1409 *roots = ulist_alloc(GFP_NOFS); 1410 if (!*roots) { 1411 ulist_free(tmp); 1412 return -ENOMEM; 1413 } 1414 1415 ULIST_ITER_INIT(&uiter); 1416 while (1) { 1417 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1418 tmp, *roots, NULL, NULL, ignore_offset); 1419 if (ret < 0 && ret != -ENOENT) { 1420 ulist_free(tmp); 1421 ulist_free(*roots); 1422 return ret; 1423 } 1424 node = ulist_next(tmp, &uiter); 1425 if (!node) 1426 break; 1427 bytenr = node->val; 1428 cond_resched(); 1429 } 1430 1431 ulist_free(tmp); 1432 return 0; 1433 } 1434 1435 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1436 struct btrfs_fs_info *fs_info, u64 bytenr, 1437 u64 time_seq, struct ulist **roots, 1438 bool ignore_offset) 1439 { 1440 int ret; 1441 1442 if (!trans) 1443 down_read(&fs_info->commit_root_sem); 1444 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1445 time_seq, roots, ignore_offset); 1446 if (!trans) 1447 up_read(&fs_info->commit_root_sem); 1448 return ret; 1449 } 1450 1451 /** 1452 * btrfs_check_shared - tell us whether an extent is shared 1453 * 1454 * btrfs_check_shared uses the backref walking code but will short 1455 * circuit as soon as it finds a root or inode that doesn't match the 1456 * one passed in. This provides a significant performance benefit for 1457 * callers (such as fiemap) which want to know whether the extent is 1458 * shared but do not need a ref count. 1459 * 1460 * This attempts to allocate a transaction in order to account for 1461 * delayed refs, but continues on even when the alloc fails. 1462 * 1463 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1464 */ 1465 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr) 1466 { 1467 struct btrfs_fs_info *fs_info = root->fs_info; 1468 struct btrfs_trans_handle *trans; 1469 struct ulist *tmp = NULL; 1470 struct ulist *roots = NULL; 1471 struct ulist_iterator uiter; 1472 struct ulist_node *node; 1473 struct seq_list elem = SEQ_LIST_INIT(elem); 1474 int ret = 0; 1475 struct share_check shared = { 1476 .root_objectid = root->objectid, 1477 .inum = inum, 1478 .share_count = 0, 1479 }; 1480 1481 tmp = ulist_alloc(GFP_NOFS); 1482 roots = ulist_alloc(GFP_NOFS); 1483 if (!tmp || !roots) { 1484 ulist_free(tmp); 1485 ulist_free(roots); 1486 return -ENOMEM; 1487 } 1488 1489 trans = btrfs_join_transaction(root); 1490 if (IS_ERR(trans)) { 1491 trans = NULL; 1492 down_read(&fs_info->commit_root_sem); 1493 } else { 1494 btrfs_get_tree_mod_seq(fs_info, &elem); 1495 } 1496 1497 ULIST_ITER_INIT(&uiter); 1498 while (1) { 1499 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1500 roots, NULL, &shared, false); 1501 if (ret == BACKREF_FOUND_SHARED) { 1502 /* this is the only condition under which we return 1 */ 1503 ret = 1; 1504 break; 1505 } 1506 if (ret < 0 && ret != -ENOENT) 1507 break; 1508 ret = 0; 1509 node = ulist_next(tmp, &uiter); 1510 if (!node) 1511 break; 1512 bytenr = node->val; 1513 cond_resched(); 1514 } 1515 1516 if (trans) { 1517 btrfs_put_tree_mod_seq(fs_info, &elem); 1518 btrfs_end_transaction(trans); 1519 } else { 1520 up_read(&fs_info->commit_root_sem); 1521 } 1522 ulist_free(tmp); 1523 ulist_free(roots); 1524 return ret; 1525 } 1526 1527 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1528 u64 start_off, struct btrfs_path *path, 1529 struct btrfs_inode_extref **ret_extref, 1530 u64 *found_off) 1531 { 1532 int ret, slot; 1533 struct btrfs_key key; 1534 struct btrfs_key found_key; 1535 struct btrfs_inode_extref *extref; 1536 const struct extent_buffer *leaf; 1537 unsigned long ptr; 1538 1539 key.objectid = inode_objectid; 1540 key.type = BTRFS_INODE_EXTREF_KEY; 1541 key.offset = start_off; 1542 1543 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1544 if (ret < 0) 1545 return ret; 1546 1547 while (1) { 1548 leaf = path->nodes[0]; 1549 slot = path->slots[0]; 1550 if (slot >= btrfs_header_nritems(leaf)) { 1551 /* 1552 * If the item at offset is not found, 1553 * btrfs_search_slot will point us to the slot 1554 * where it should be inserted. In our case 1555 * that will be the slot directly before the 1556 * next INODE_REF_KEY_V2 item. In the case 1557 * that we're pointing to the last slot in a 1558 * leaf, we must move one leaf over. 1559 */ 1560 ret = btrfs_next_leaf(root, path); 1561 if (ret) { 1562 if (ret >= 1) 1563 ret = -ENOENT; 1564 break; 1565 } 1566 continue; 1567 } 1568 1569 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1570 1571 /* 1572 * Check that we're still looking at an extended ref key for 1573 * this particular objectid. If we have different 1574 * objectid or type then there are no more to be found 1575 * in the tree and we can exit. 1576 */ 1577 ret = -ENOENT; 1578 if (found_key.objectid != inode_objectid) 1579 break; 1580 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1581 break; 1582 1583 ret = 0; 1584 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1585 extref = (struct btrfs_inode_extref *)ptr; 1586 *ret_extref = extref; 1587 if (found_off) 1588 *found_off = found_key.offset; 1589 break; 1590 } 1591 1592 return ret; 1593 } 1594 1595 /* 1596 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1597 * Elements of the path are separated by '/' and the path is guaranteed to be 1598 * 0-terminated. the path is only given within the current file system. 1599 * Therefore, it never starts with a '/'. the caller is responsible to provide 1600 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1601 * the start point of the resulting string is returned. this pointer is within 1602 * dest, normally. 1603 * in case the path buffer would overflow, the pointer is decremented further 1604 * as if output was written to the buffer, though no more output is actually 1605 * generated. that way, the caller can determine how much space would be 1606 * required for the path to fit into the buffer. in that case, the returned 1607 * value will be smaller than dest. callers must check this! 1608 */ 1609 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1610 u32 name_len, unsigned long name_off, 1611 struct extent_buffer *eb_in, u64 parent, 1612 char *dest, u32 size) 1613 { 1614 int slot; 1615 u64 next_inum; 1616 int ret; 1617 s64 bytes_left = ((s64)size) - 1; 1618 struct extent_buffer *eb = eb_in; 1619 struct btrfs_key found_key; 1620 int leave_spinning = path->leave_spinning; 1621 struct btrfs_inode_ref *iref; 1622 1623 if (bytes_left >= 0) 1624 dest[bytes_left] = '\0'; 1625 1626 path->leave_spinning = 1; 1627 while (1) { 1628 bytes_left -= name_len; 1629 if (bytes_left >= 0) 1630 read_extent_buffer(eb, dest + bytes_left, 1631 name_off, name_len); 1632 if (eb != eb_in) { 1633 if (!path->skip_locking) 1634 btrfs_tree_read_unlock_blocking(eb); 1635 free_extent_buffer(eb); 1636 } 1637 ret = btrfs_find_item(fs_root, path, parent, 0, 1638 BTRFS_INODE_REF_KEY, &found_key); 1639 if (ret > 0) 1640 ret = -ENOENT; 1641 if (ret) 1642 break; 1643 1644 next_inum = found_key.offset; 1645 1646 /* regular exit ahead */ 1647 if (parent == next_inum) 1648 break; 1649 1650 slot = path->slots[0]; 1651 eb = path->nodes[0]; 1652 /* make sure we can use eb after releasing the path */ 1653 if (eb != eb_in) { 1654 if (!path->skip_locking) 1655 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1656 path->nodes[0] = NULL; 1657 path->locks[0] = 0; 1658 } 1659 btrfs_release_path(path); 1660 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1661 1662 name_len = btrfs_inode_ref_name_len(eb, iref); 1663 name_off = (unsigned long)(iref + 1); 1664 1665 parent = next_inum; 1666 --bytes_left; 1667 if (bytes_left >= 0) 1668 dest[bytes_left] = '/'; 1669 } 1670 1671 btrfs_release_path(path); 1672 path->leave_spinning = leave_spinning; 1673 1674 if (ret) 1675 return ERR_PTR(ret); 1676 1677 return dest + bytes_left; 1678 } 1679 1680 /* 1681 * this makes the path point to (logical EXTENT_ITEM *) 1682 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1683 * tree blocks and <0 on error. 1684 */ 1685 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1686 struct btrfs_path *path, struct btrfs_key *found_key, 1687 u64 *flags_ret) 1688 { 1689 int ret; 1690 u64 flags; 1691 u64 size = 0; 1692 u32 item_size; 1693 const struct extent_buffer *eb; 1694 struct btrfs_extent_item *ei; 1695 struct btrfs_key key; 1696 1697 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1698 key.type = BTRFS_METADATA_ITEM_KEY; 1699 else 1700 key.type = BTRFS_EXTENT_ITEM_KEY; 1701 key.objectid = logical; 1702 key.offset = (u64)-1; 1703 1704 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1705 if (ret < 0) 1706 return ret; 1707 1708 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1709 if (ret) { 1710 if (ret > 0) 1711 ret = -ENOENT; 1712 return ret; 1713 } 1714 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1715 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1716 size = fs_info->nodesize; 1717 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1718 size = found_key->offset; 1719 1720 if (found_key->objectid > logical || 1721 found_key->objectid + size <= logical) { 1722 btrfs_debug(fs_info, 1723 "logical %llu is not within any extent", logical); 1724 return -ENOENT; 1725 } 1726 1727 eb = path->nodes[0]; 1728 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1729 BUG_ON(item_size < sizeof(*ei)); 1730 1731 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1732 flags = btrfs_extent_flags(eb, ei); 1733 1734 btrfs_debug(fs_info, 1735 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1736 logical, logical - found_key->objectid, found_key->objectid, 1737 found_key->offset, flags, item_size); 1738 1739 WARN_ON(!flags_ret); 1740 if (flags_ret) { 1741 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1742 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1743 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1744 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1745 else 1746 BUG_ON(1); 1747 return 0; 1748 } 1749 1750 return -EIO; 1751 } 1752 1753 /* 1754 * helper function to iterate extent inline refs. ptr must point to a 0 value 1755 * for the first call and may be modified. it is used to track state. 1756 * if more refs exist, 0 is returned and the next call to 1757 * get_extent_inline_ref must pass the modified ptr parameter to get the 1758 * next ref. after the last ref was processed, 1 is returned. 1759 * returns <0 on error 1760 */ 1761 static int get_extent_inline_ref(unsigned long *ptr, 1762 const struct extent_buffer *eb, 1763 const struct btrfs_key *key, 1764 const struct btrfs_extent_item *ei, 1765 u32 item_size, 1766 struct btrfs_extent_inline_ref **out_eiref, 1767 int *out_type) 1768 { 1769 unsigned long end; 1770 u64 flags; 1771 struct btrfs_tree_block_info *info; 1772 1773 if (!*ptr) { 1774 /* first call */ 1775 flags = btrfs_extent_flags(eb, ei); 1776 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1777 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1778 /* a skinny metadata extent */ 1779 *out_eiref = 1780 (struct btrfs_extent_inline_ref *)(ei + 1); 1781 } else { 1782 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1783 info = (struct btrfs_tree_block_info *)(ei + 1); 1784 *out_eiref = 1785 (struct btrfs_extent_inline_ref *)(info + 1); 1786 } 1787 } else { 1788 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1789 } 1790 *ptr = (unsigned long)*out_eiref; 1791 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1792 return -ENOENT; 1793 } 1794 1795 end = (unsigned long)ei + item_size; 1796 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1797 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1798 BTRFS_REF_TYPE_ANY); 1799 if (*out_type == BTRFS_REF_TYPE_INVALID) 1800 return -EINVAL; 1801 1802 *ptr += btrfs_extent_inline_ref_size(*out_type); 1803 WARN_ON(*ptr > end); 1804 if (*ptr == end) 1805 return 1; /* last */ 1806 1807 return 0; 1808 } 1809 1810 /* 1811 * reads the tree block backref for an extent. tree level and root are returned 1812 * through out_level and out_root. ptr must point to a 0 value for the first 1813 * call and may be modified (see get_extent_inline_ref comment). 1814 * returns 0 if data was provided, 1 if there was no more data to provide or 1815 * <0 on error. 1816 */ 1817 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1818 struct btrfs_key *key, struct btrfs_extent_item *ei, 1819 u32 item_size, u64 *out_root, u8 *out_level) 1820 { 1821 int ret; 1822 int type; 1823 struct btrfs_extent_inline_ref *eiref; 1824 1825 if (*ptr == (unsigned long)-1) 1826 return 1; 1827 1828 while (1) { 1829 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1830 &eiref, &type); 1831 if (ret < 0) 1832 return ret; 1833 1834 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1835 type == BTRFS_SHARED_BLOCK_REF_KEY) 1836 break; 1837 1838 if (ret == 1) 1839 return 1; 1840 } 1841 1842 /* we can treat both ref types equally here */ 1843 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1844 1845 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1846 struct btrfs_tree_block_info *info; 1847 1848 info = (struct btrfs_tree_block_info *)(ei + 1); 1849 *out_level = btrfs_tree_block_level(eb, info); 1850 } else { 1851 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1852 *out_level = (u8)key->offset; 1853 } 1854 1855 if (ret == 1) 1856 *ptr = (unsigned long)-1; 1857 1858 return 0; 1859 } 1860 1861 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1862 struct extent_inode_elem *inode_list, 1863 u64 root, u64 extent_item_objectid, 1864 iterate_extent_inodes_t *iterate, void *ctx) 1865 { 1866 struct extent_inode_elem *eie; 1867 int ret = 0; 1868 1869 for (eie = inode_list; eie; eie = eie->next) { 1870 btrfs_debug(fs_info, 1871 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1872 extent_item_objectid, eie->inum, 1873 eie->offset, root); 1874 ret = iterate(eie->inum, eie->offset, root, ctx); 1875 if (ret) { 1876 btrfs_debug(fs_info, 1877 "stopping iteration for %llu due to ret=%d", 1878 extent_item_objectid, ret); 1879 break; 1880 } 1881 } 1882 1883 return ret; 1884 } 1885 1886 /* 1887 * calls iterate() for every inode that references the extent identified by 1888 * the given parameters. 1889 * when the iterator function returns a non-zero value, iteration stops. 1890 */ 1891 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1892 u64 extent_item_objectid, u64 extent_item_pos, 1893 int search_commit_root, 1894 iterate_extent_inodes_t *iterate, void *ctx, 1895 bool ignore_offset) 1896 { 1897 int ret; 1898 struct btrfs_trans_handle *trans = NULL; 1899 struct ulist *refs = NULL; 1900 struct ulist *roots = NULL; 1901 struct ulist_node *ref_node = NULL; 1902 struct ulist_node *root_node = NULL; 1903 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 1904 struct ulist_iterator ref_uiter; 1905 struct ulist_iterator root_uiter; 1906 1907 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1908 extent_item_objectid); 1909 1910 if (!search_commit_root) { 1911 trans = btrfs_join_transaction(fs_info->extent_root); 1912 if (IS_ERR(trans)) 1913 return PTR_ERR(trans); 1914 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1915 } else { 1916 down_read(&fs_info->commit_root_sem); 1917 } 1918 1919 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1920 tree_mod_seq_elem.seq, &refs, 1921 &extent_item_pos, ignore_offset); 1922 if (ret) 1923 goto out; 1924 1925 ULIST_ITER_INIT(&ref_uiter); 1926 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1927 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 1928 tree_mod_seq_elem.seq, &roots, 1929 ignore_offset); 1930 if (ret) 1931 break; 1932 ULIST_ITER_INIT(&root_uiter); 1933 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1934 btrfs_debug(fs_info, 1935 "root %llu references leaf %llu, data list %#llx", 1936 root_node->val, ref_node->val, 1937 ref_node->aux); 1938 ret = iterate_leaf_refs(fs_info, 1939 (struct extent_inode_elem *) 1940 (uintptr_t)ref_node->aux, 1941 root_node->val, 1942 extent_item_objectid, 1943 iterate, ctx); 1944 } 1945 ulist_free(roots); 1946 } 1947 1948 free_leaf_list(refs); 1949 out: 1950 if (!search_commit_root) { 1951 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1952 btrfs_end_transaction(trans); 1953 } else { 1954 up_read(&fs_info->commit_root_sem); 1955 } 1956 1957 return ret; 1958 } 1959 1960 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1961 struct btrfs_path *path, 1962 iterate_extent_inodes_t *iterate, void *ctx, 1963 bool ignore_offset) 1964 { 1965 int ret; 1966 u64 extent_item_pos; 1967 u64 flags = 0; 1968 struct btrfs_key found_key; 1969 int search_commit_root = path->search_commit_root; 1970 1971 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1972 btrfs_release_path(path); 1973 if (ret < 0) 1974 return ret; 1975 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1976 return -EINVAL; 1977 1978 extent_item_pos = logical - found_key.objectid; 1979 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1980 extent_item_pos, search_commit_root, 1981 iterate, ctx, ignore_offset); 1982 1983 return ret; 1984 } 1985 1986 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1987 struct extent_buffer *eb, void *ctx); 1988 1989 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1990 struct btrfs_path *path, 1991 iterate_irefs_t *iterate, void *ctx) 1992 { 1993 int ret = 0; 1994 int slot; 1995 u32 cur; 1996 u32 len; 1997 u32 name_len; 1998 u64 parent = 0; 1999 int found = 0; 2000 struct extent_buffer *eb; 2001 struct btrfs_item *item; 2002 struct btrfs_inode_ref *iref; 2003 struct btrfs_key found_key; 2004 2005 while (!ret) { 2006 ret = btrfs_find_item(fs_root, path, inum, 2007 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2008 &found_key); 2009 2010 if (ret < 0) 2011 break; 2012 if (ret) { 2013 ret = found ? 0 : -ENOENT; 2014 break; 2015 } 2016 ++found; 2017 2018 parent = found_key.offset; 2019 slot = path->slots[0]; 2020 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2021 if (!eb) { 2022 ret = -ENOMEM; 2023 break; 2024 } 2025 extent_buffer_get(eb); 2026 btrfs_tree_read_lock(eb); 2027 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 2028 btrfs_release_path(path); 2029 2030 item = btrfs_item_nr(slot); 2031 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2032 2033 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2034 name_len = btrfs_inode_ref_name_len(eb, iref); 2035 /* path must be released before calling iterate()! */ 2036 btrfs_debug(fs_root->fs_info, 2037 "following ref at offset %u for inode %llu in tree %llu", 2038 cur, found_key.objectid, fs_root->objectid); 2039 ret = iterate(parent, name_len, 2040 (unsigned long)(iref + 1), eb, ctx); 2041 if (ret) 2042 break; 2043 len = sizeof(*iref) + name_len; 2044 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2045 } 2046 btrfs_tree_read_unlock_blocking(eb); 2047 free_extent_buffer(eb); 2048 } 2049 2050 btrfs_release_path(path); 2051 2052 return ret; 2053 } 2054 2055 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2056 struct btrfs_path *path, 2057 iterate_irefs_t *iterate, void *ctx) 2058 { 2059 int ret; 2060 int slot; 2061 u64 offset = 0; 2062 u64 parent; 2063 int found = 0; 2064 struct extent_buffer *eb; 2065 struct btrfs_inode_extref *extref; 2066 u32 item_size; 2067 u32 cur_offset; 2068 unsigned long ptr; 2069 2070 while (1) { 2071 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2072 &offset); 2073 if (ret < 0) 2074 break; 2075 if (ret) { 2076 ret = found ? 0 : -ENOENT; 2077 break; 2078 } 2079 ++found; 2080 2081 slot = path->slots[0]; 2082 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2083 if (!eb) { 2084 ret = -ENOMEM; 2085 break; 2086 } 2087 extent_buffer_get(eb); 2088 2089 btrfs_tree_read_lock(eb); 2090 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 2091 btrfs_release_path(path); 2092 2093 item_size = btrfs_item_size_nr(eb, slot); 2094 ptr = btrfs_item_ptr_offset(eb, slot); 2095 cur_offset = 0; 2096 2097 while (cur_offset < item_size) { 2098 u32 name_len; 2099 2100 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2101 parent = btrfs_inode_extref_parent(eb, extref); 2102 name_len = btrfs_inode_extref_name_len(eb, extref); 2103 ret = iterate(parent, name_len, 2104 (unsigned long)&extref->name, eb, ctx); 2105 if (ret) 2106 break; 2107 2108 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2109 cur_offset += sizeof(*extref); 2110 } 2111 btrfs_tree_read_unlock_blocking(eb); 2112 free_extent_buffer(eb); 2113 2114 offset++; 2115 } 2116 2117 btrfs_release_path(path); 2118 2119 return ret; 2120 } 2121 2122 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2123 struct btrfs_path *path, iterate_irefs_t *iterate, 2124 void *ctx) 2125 { 2126 int ret; 2127 int found_refs = 0; 2128 2129 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2130 if (!ret) 2131 ++found_refs; 2132 else if (ret != -ENOENT) 2133 return ret; 2134 2135 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2136 if (ret == -ENOENT && found_refs) 2137 return 0; 2138 2139 return ret; 2140 } 2141 2142 /* 2143 * returns 0 if the path could be dumped (probably truncated) 2144 * returns <0 in case of an error 2145 */ 2146 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2147 struct extent_buffer *eb, void *ctx) 2148 { 2149 struct inode_fs_paths *ipath = ctx; 2150 char *fspath; 2151 char *fspath_min; 2152 int i = ipath->fspath->elem_cnt; 2153 const int s_ptr = sizeof(char *); 2154 u32 bytes_left; 2155 2156 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2157 ipath->fspath->bytes_left - s_ptr : 0; 2158 2159 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2160 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2161 name_off, eb, inum, fspath_min, bytes_left); 2162 if (IS_ERR(fspath)) 2163 return PTR_ERR(fspath); 2164 2165 if (fspath > fspath_min) { 2166 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2167 ++ipath->fspath->elem_cnt; 2168 ipath->fspath->bytes_left = fspath - fspath_min; 2169 } else { 2170 ++ipath->fspath->elem_missed; 2171 ipath->fspath->bytes_missing += fspath_min - fspath; 2172 ipath->fspath->bytes_left = 0; 2173 } 2174 2175 return 0; 2176 } 2177 2178 /* 2179 * this dumps all file system paths to the inode into the ipath struct, provided 2180 * is has been created large enough. each path is zero-terminated and accessed 2181 * from ipath->fspath->val[i]. 2182 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2183 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2184 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2185 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2186 * have been needed to return all paths. 2187 */ 2188 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2189 { 2190 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2191 inode_to_path, ipath); 2192 } 2193 2194 struct btrfs_data_container *init_data_container(u32 total_bytes) 2195 { 2196 struct btrfs_data_container *data; 2197 size_t alloc_bytes; 2198 2199 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2200 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2201 if (!data) 2202 return ERR_PTR(-ENOMEM); 2203 2204 if (total_bytes >= sizeof(*data)) { 2205 data->bytes_left = total_bytes - sizeof(*data); 2206 data->bytes_missing = 0; 2207 } else { 2208 data->bytes_missing = sizeof(*data) - total_bytes; 2209 data->bytes_left = 0; 2210 } 2211 2212 data->elem_cnt = 0; 2213 data->elem_missed = 0; 2214 2215 return data; 2216 } 2217 2218 /* 2219 * allocates space to return multiple file system paths for an inode. 2220 * total_bytes to allocate are passed, note that space usable for actual path 2221 * information will be total_bytes - sizeof(struct inode_fs_paths). 2222 * the returned pointer must be freed with free_ipath() in the end. 2223 */ 2224 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2225 struct btrfs_path *path) 2226 { 2227 struct inode_fs_paths *ifp; 2228 struct btrfs_data_container *fspath; 2229 2230 fspath = init_data_container(total_bytes); 2231 if (IS_ERR(fspath)) 2232 return (void *)fspath; 2233 2234 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2235 if (!ifp) { 2236 kvfree(fspath); 2237 return ERR_PTR(-ENOMEM); 2238 } 2239 2240 ifp->btrfs_path = path; 2241 ifp->fspath = fspath; 2242 ifp->fs_root = fs_root; 2243 2244 return ifp; 2245 } 2246 2247 void free_ipath(struct inode_fs_paths *ipath) 2248 { 2249 if (!ipath) 2250 return; 2251 kvfree(ipath->fspath); 2252 kfree(ipath); 2253 } 2254