1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "extent-tree.h" 21 #include "relocation.h" 22 #include "tree-checker.h" 23 24 /* Just arbitrary numbers so we can be sure one of these happened. */ 25 #define BACKREF_FOUND_SHARED 6 26 #define BACKREF_FOUND_NOT_SHARED 7 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 u64 num_bytes; 32 struct extent_inode_elem *next; 33 }; 34 35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 36 const struct btrfs_key *key, 37 const struct extent_buffer *eb, 38 const struct btrfs_file_extent_item *fi, 39 struct extent_inode_elem **eie) 40 { 41 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi); 42 u64 offset = key->offset; 43 struct extent_inode_elem *e; 44 const u64 *root_ids; 45 int root_count; 46 bool cached; 47 48 if (!btrfs_file_extent_compression(eb, fi) && 49 !btrfs_file_extent_encryption(eb, fi) && 50 !btrfs_file_extent_other_encoding(eb, fi)) { 51 u64 data_offset; 52 53 data_offset = btrfs_file_extent_offset(eb, fi); 54 55 if (ctx->extent_item_pos < data_offset || 56 ctx->extent_item_pos >= data_offset + data_len) 57 return 1; 58 offset += ctx->extent_item_pos - data_offset; 59 } 60 61 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup) 62 goto add_inode_elem; 63 64 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids, 65 &root_count); 66 if (!cached) 67 goto add_inode_elem; 68 69 for (int i = 0; i < root_count; i++) { 70 int ret; 71 72 ret = ctx->indirect_ref_iterator(key->objectid, offset, 73 data_len, root_ids[i], 74 ctx->user_ctx); 75 if (ret) 76 return ret; 77 } 78 79 add_inode_elem: 80 e = kmalloc(sizeof(*e), GFP_NOFS); 81 if (!e) 82 return -ENOMEM; 83 84 e->next = *eie; 85 e->inum = key->objectid; 86 e->offset = offset; 87 e->num_bytes = data_len; 88 *eie = e; 89 90 return 0; 91 } 92 93 static void free_inode_elem_list(struct extent_inode_elem *eie) 94 { 95 struct extent_inode_elem *eie_next; 96 97 for (; eie; eie = eie_next) { 98 eie_next = eie->next; 99 kfree(eie); 100 } 101 } 102 103 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 104 const struct extent_buffer *eb, 105 struct extent_inode_elem **eie) 106 { 107 u64 disk_byte; 108 struct btrfs_key key; 109 struct btrfs_file_extent_item *fi; 110 int slot; 111 int nritems; 112 int extent_type; 113 int ret; 114 115 /* 116 * from the shared data ref, we only have the leaf but we need 117 * the key. thus, we must look into all items and see that we 118 * find one (some) with a reference to our extent item. 119 */ 120 nritems = btrfs_header_nritems(eb); 121 for (slot = 0; slot < nritems; ++slot) { 122 btrfs_item_key_to_cpu(eb, &key, slot); 123 if (key.type != BTRFS_EXTENT_DATA_KEY) 124 continue; 125 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 126 extent_type = btrfs_file_extent_type(eb, fi); 127 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 128 continue; 129 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 130 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 131 if (disk_byte != ctx->bytenr) 132 continue; 133 134 ret = check_extent_in_eb(ctx, &key, eb, fi, eie); 135 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 136 return ret; 137 } 138 139 return 0; 140 } 141 142 struct preftree { 143 struct rb_root_cached root; 144 unsigned int count; 145 }; 146 147 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 148 149 struct preftrees { 150 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 151 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 152 struct preftree indirect_missing_keys; 153 }; 154 155 /* 156 * Checks for a shared extent during backref search. 157 * 158 * The share_count tracks prelim_refs (direct and indirect) having a 159 * ref->count >0: 160 * - incremented when a ref->count transitions to >0 161 * - decremented when a ref->count transitions to <1 162 */ 163 struct share_check { 164 struct btrfs_backref_share_check_ctx *ctx; 165 struct btrfs_root *root; 166 u64 inum; 167 u64 data_bytenr; 168 u64 data_extent_gen; 169 /* 170 * Counts number of inodes that refer to an extent (different inodes in 171 * the same root or different roots) that we could find. The sharedness 172 * check typically stops once this counter gets greater than 1, so it 173 * may not reflect the total number of inodes. 174 */ 175 int share_count; 176 /* 177 * The number of times we found our inode refers to the data extent we 178 * are determining the sharedness. In other words, how many file extent 179 * items we could find for our inode that point to our target data 180 * extent. The value we get here after finishing the extent sharedness 181 * check may be smaller than reality, but if it ends up being greater 182 * than 1, then we know for sure the inode has multiple file extent 183 * items that point to our inode, and we can safely assume it's useful 184 * to cache the sharedness check result. 185 */ 186 int self_ref_count; 187 bool have_delayed_delete_refs; 188 }; 189 190 static inline int extent_is_shared(struct share_check *sc) 191 { 192 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 193 } 194 195 static struct kmem_cache *btrfs_prelim_ref_cache; 196 197 int __init btrfs_prelim_ref_init(void) 198 { 199 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 200 sizeof(struct prelim_ref), 201 0, 202 SLAB_MEM_SPREAD, 203 NULL); 204 if (!btrfs_prelim_ref_cache) 205 return -ENOMEM; 206 return 0; 207 } 208 209 void __cold btrfs_prelim_ref_exit(void) 210 { 211 kmem_cache_destroy(btrfs_prelim_ref_cache); 212 } 213 214 static void free_pref(struct prelim_ref *ref) 215 { 216 kmem_cache_free(btrfs_prelim_ref_cache, ref); 217 } 218 219 /* 220 * Return 0 when both refs are for the same block (and can be merged). 221 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 222 * indicates a 'higher' block. 223 */ 224 static int prelim_ref_compare(struct prelim_ref *ref1, 225 struct prelim_ref *ref2) 226 { 227 if (ref1->level < ref2->level) 228 return -1; 229 if (ref1->level > ref2->level) 230 return 1; 231 if (ref1->root_id < ref2->root_id) 232 return -1; 233 if (ref1->root_id > ref2->root_id) 234 return 1; 235 if (ref1->key_for_search.type < ref2->key_for_search.type) 236 return -1; 237 if (ref1->key_for_search.type > ref2->key_for_search.type) 238 return 1; 239 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 240 return -1; 241 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 242 return 1; 243 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 244 return -1; 245 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 246 return 1; 247 if (ref1->parent < ref2->parent) 248 return -1; 249 if (ref1->parent > ref2->parent) 250 return 1; 251 252 return 0; 253 } 254 255 static void update_share_count(struct share_check *sc, int oldcount, 256 int newcount, struct prelim_ref *newref) 257 { 258 if ((!sc) || (oldcount == 0 && newcount < 1)) 259 return; 260 261 if (oldcount > 0 && newcount < 1) 262 sc->share_count--; 263 else if (oldcount < 1 && newcount > 0) 264 sc->share_count++; 265 266 if (newref->root_id == sc->root->root_key.objectid && 267 newref->wanted_disk_byte == sc->data_bytenr && 268 newref->key_for_search.objectid == sc->inum) 269 sc->self_ref_count += newref->count; 270 } 271 272 /* 273 * Add @newref to the @root rbtree, merging identical refs. 274 * 275 * Callers should assume that newref has been freed after calling. 276 */ 277 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 278 struct preftree *preftree, 279 struct prelim_ref *newref, 280 struct share_check *sc) 281 { 282 struct rb_root_cached *root; 283 struct rb_node **p; 284 struct rb_node *parent = NULL; 285 struct prelim_ref *ref; 286 int result; 287 bool leftmost = true; 288 289 root = &preftree->root; 290 p = &root->rb_root.rb_node; 291 292 while (*p) { 293 parent = *p; 294 ref = rb_entry(parent, struct prelim_ref, rbnode); 295 result = prelim_ref_compare(ref, newref); 296 if (result < 0) { 297 p = &(*p)->rb_left; 298 } else if (result > 0) { 299 p = &(*p)->rb_right; 300 leftmost = false; 301 } else { 302 /* Identical refs, merge them and free @newref */ 303 struct extent_inode_elem *eie = ref->inode_list; 304 305 while (eie && eie->next) 306 eie = eie->next; 307 308 if (!eie) 309 ref->inode_list = newref->inode_list; 310 else 311 eie->next = newref->inode_list; 312 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 313 preftree->count); 314 /* 315 * A delayed ref can have newref->count < 0. 316 * The ref->count is updated to follow any 317 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 318 */ 319 update_share_count(sc, ref->count, 320 ref->count + newref->count, newref); 321 ref->count += newref->count; 322 free_pref(newref); 323 return; 324 } 325 } 326 327 update_share_count(sc, 0, newref->count, newref); 328 preftree->count++; 329 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 330 rb_link_node(&newref->rbnode, parent, p); 331 rb_insert_color_cached(&newref->rbnode, root, leftmost); 332 } 333 334 /* 335 * Release the entire tree. We don't care about internal consistency so 336 * just free everything and then reset the tree root. 337 */ 338 static void prelim_release(struct preftree *preftree) 339 { 340 struct prelim_ref *ref, *next_ref; 341 342 rbtree_postorder_for_each_entry_safe(ref, next_ref, 343 &preftree->root.rb_root, rbnode) { 344 free_inode_elem_list(ref->inode_list); 345 free_pref(ref); 346 } 347 348 preftree->root = RB_ROOT_CACHED; 349 preftree->count = 0; 350 } 351 352 /* 353 * the rules for all callers of this function are: 354 * - obtaining the parent is the goal 355 * - if you add a key, you must know that it is a correct key 356 * - if you cannot add the parent or a correct key, then we will look into the 357 * block later to set a correct key 358 * 359 * delayed refs 360 * ============ 361 * backref type | shared | indirect | shared | indirect 362 * information | tree | tree | data | data 363 * --------------------+--------+----------+--------+---------- 364 * parent logical | y | - | - | - 365 * key to resolve | - | y | y | y 366 * tree block logical | - | - | - | - 367 * root for resolving | y | y | y | y 368 * 369 * - column 1: we've the parent -> done 370 * - column 2, 3, 4: we use the key to find the parent 371 * 372 * on disk refs (inline or keyed) 373 * ============================== 374 * backref type | shared | indirect | shared | indirect 375 * information | tree | tree | data | data 376 * --------------------+--------+----------+--------+---------- 377 * parent logical | y | - | y | - 378 * key to resolve | - | - | - | y 379 * tree block logical | y | y | y | y 380 * root for resolving | - | y | y | y 381 * 382 * - column 1, 3: we've the parent -> done 383 * - column 2: we take the first key from the block to find the parent 384 * (see add_missing_keys) 385 * - column 4: we use the key to find the parent 386 * 387 * additional information that's available but not required to find the parent 388 * block might help in merging entries to gain some speed. 389 */ 390 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 391 struct preftree *preftree, u64 root_id, 392 const struct btrfs_key *key, int level, u64 parent, 393 u64 wanted_disk_byte, int count, 394 struct share_check *sc, gfp_t gfp_mask) 395 { 396 struct prelim_ref *ref; 397 398 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 399 return 0; 400 401 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 402 if (!ref) 403 return -ENOMEM; 404 405 ref->root_id = root_id; 406 if (key) 407 ref->key_for_search = *key; 408 else 409 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 410 411 ref->inode_list = NULL; 412 ref->level = level; 413 ref->count = count; 414 ref->parent = parent; 415 ref->wanted_disk_byte = wanted_disk_byte; 416 prelim_ref_insert(fs_info, preftree, ref, sc); 417 return extent_is_shared(sc); 418 } 419 420 /* direct refs use root == 0, key == NULL */ 421 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 422 struct preftrees *preftrees, int level, u64 parent, 423 u64 wanted_disk_byte, int count, 424 struct share_check *sc, gfp_t gfp_mask) 425 { 426 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 427 parent, wanted_disk_byte, count, sc, gfp_mask); 428 } 429 430 /* indirect refs use parent == 0 */ 431 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 432 struct preftrees *preftrees, u64 root_id, 433 const struct btrfs_key *key, int level, 434 u64 wanted_disk_byte, int count, 435 struct share_check *sc, gfp_t gfp_mask) 436 { 437 struct preftree *tree = &preftrees->indirect; 438 439 if (!key) 440 tree = &preftrees->indirect_missing_keys; 441 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 442 wanted_disk_byte, count, sc, gfp_mask); 443 } 444 445 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 446 { 447 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 448 struct rb_node *parent = NULL; 449 struct prelim_ref *ref = NULL; 450 struct prelim_ref target = {}; 451 int result; 452 453 target.parent = bytenr; 454 455 while (*p) { 456 parent = *p; 457 ref = rb_entry(parent, struct prelim_ref, rbnode); 458 result = prelim_ref_compare(ref, &target); 459 460 if (result < 0) 461 p = &(*p)->rb_left; 462 else if (result > 0) 463 p = &(*p)->rb_right; 464 else 465 return 1; 466 } 467 return 0; 468 } 469 470 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx, 471 struct btrfs_root *root, struct btrfs_path *path, 472 struct ulist *parents, 473 struct preftrees *preftrees, struct prelim_ref *ref, 474 int level) 475 { 476 int ret = 0; 477 int slot; 478 struct extent_buffer *eb; 479 struct btrfs_key key; 480 struct btrfs_key *key_for_search = &ref->key_for_search; 481 struct btrfs_file_extent_item *fi; 482 struct extent_inode_elem *eie = NULL, *old = NULL; 483 u64 disk_byte; 484 u64 wanted_disk_byte = ref->wanted_disk_byte; 485 u64 count = 0; 486 u64 data_offset; 487 u8 type; 488 489 if (level != 0) { 490 eb = path->nodes[level]; 491 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 492 if (ret < 0) 493 return ret; 494 return 0; 495 } 496 497 /* 498 * 1. We normally enter this function with the path already pointing to 499 * the first item to check. But sometimes, we may enter it with 500 * slot == nritems. 501 * 2. We are searching for normal backref but bytenr of this leaf 502 * matches shared data backref 503 * 3. The leaf owner is not equal to the root we are searching 504 * 505 * For these cases, go to the next leaf before we continue. 506 */ 507 eb = path->nodes[0]; 508 if (path->slots[0] >= btrfs_header_nritems(eb) || 509 is_shared_data_backref(preftrees, eb->start) || 510 ref->root_id != btrfs_header_owner(eb)) { 511 if (ctx->time_seq == BTRFS_SEQ_LAST) 512 ret = btrfs_next_leaf(root, path); 513 else 514 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 515 } 516 517 while (!ret && count < ref->count) { 518 eb = path->nodes[0]; 519 slot = path->slots[0]; 520 521 btrfs_item_key_to_cpu(eb, &key, slot); 522 523 if (key.objectid != key_for_search->objectid || 524 key.type != BTRFS_EXTENT_DATA_KEY) 525 break; 526 527 /* 528 * We are searching for normal backref but bytenr of this leaf 529 * matches shared data backref, OR 530 * the leaf owner is not equal to the root we are searching for 531 */ 532 if (slot == 0 && 533 (is_shared_data_backref(preftrees, eb->start) || 534 ref->root_id != btrfs_header_owner(eb))) { 535 if (ctx->time_seq == BTRFS_SEQ_LAST) 536 ret = btrfs_next_leaf(root, path); 537 else 538 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 539 continue; 540 } 541 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 542 type = btrfs_file_extent_type(eb, fi); 543 if (type == BTRFS_FILE_EXTENT_INLINE) 544 goto next; 545 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 546 data_offset = btrfs_file_extent_offset(eb, fi); 547 548 if (disk_byte == wanted_disk_byte) { 549 eie = NULL; 550 old = NULL; 551 if (ref->key_for_search.offset == key.offset - data_offset) 552 count++; 553 else 554 goto next; 555 if (!ctx->ignore_extent_item_pos) { 556 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie); 557 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 558 ret < 0) 559 break; 560 } 561 if (ret > 0) 562 goto next; 563 ret = ulist_add_merge_ptr(parents, eb->start, 564 eie, (void **)&old, GFP_NOFS); 565 if (ret < 0) 566 break; 567 if (!ret && !ctx->ignore_extent_item_pos) { 568 while (old->next) 569 old = old->next; 570 old->next = eie; 571 } 572 eie = NULL; 573 } 574 next: 575 if (ctx->time_seq == BTRFS_SEQ_LAST) 576 ret = btrfs_next_item(root, path); 577 else 578 ret = btrfs_next_old_item(root, path, ctx->time_seq); 579 } 580 581 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 582 free_inode_elem_list(eie); 583 else if (ret > 0) 584 ret = 0; 585 586 return ret; 587 } 588 589 /* 590 * resolve an indirect backref in the form (root_id, key, level) 591 * to a logical address 592 */ 593 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx, 594 struct btrfs_path *path, 595 struct preftrees *preftrees, 596 struct prelim_ref *ref, struct ulist *parents) 597 { 598 struct btrfs_root *root; 599 struct extent_buffer *eb; 600 int ret = 0; 601 int root_level; 602 int level = ref->level; 603 struct btrfs_key search_key = ref->key_for_search; 604 605 /* 606 * If we're search_commit_root we could possibly be holding locks on 607 * other tree nodes. This happens when qgroups does backref walks when 608 * adding new delayed refs. To deal with this we need to look in cache 609 * for the root, and if we don't find it then we need to search the 610 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 611 * here. 612 */ 613 if (path->search_commit_root) 614 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id); 615 else 616 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false); 617 if (IS_ERR(root)) { 618 ret = PTR_ERR(root); 619 goto out_free; 620 } 621 622 if (!path->search_commit_root && 623 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 624 ret = -ENOENT; 625 goto out; 626 } 627 628 if (btrfs_is_testing(ctx->fs_info)) { 629 ret = -ENOENT; 630 goto out; 631 } 632 633 if (path->search_commit_root) 634 root_level = btrfs_header_level(root->commit_root); 635 else if (ctx->time_seq == BTRFS_SEQ_LAST) 636 root_level = btrfs_header_level(root->node); 637 else 638 root_level = btrfs_old_root_level(root, ctx->time_seq); 639 640 if (root_level + 1 == level) 641 goto out; 642 643 /* 644 * We can often find data backrefs with an offset that is too large 645 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 646 * subtracting a file's offset with the data offset of its 647 * corresponding extent data item. This can happen for example in the 648 * clone ioctl. 649 * 650 * So if we detect such case we set the search key's offset to zero to 651 * make sure we will find the matching file extent item at 652 * add_all_parents(), otherwise we will miss it because the offset 653 * taken form the backref is much larger then the offset of the file 654 * extent item. This can make us scan a very large number of file 655 * extent items, but at least it will not make us miss any. 656 * 657 * This is an ugly workaround for a behaviour that should have never 658 * existed, but it does and a fix for the clone ioctl would touch a lot 659 * of places, cause backwards incompatibility and would not fix the 660 * problem for extents cloned with older kernels. 661 */ 662 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 663 search_key.offset >= LLONG_MAX) 664 search_key.offset = 0; 665 path->lowest_level = level; 666 if (ctx->time_seq == BTRFS_SEQ_LAST) 667 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 668 else 669 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq); 670 671 btrfs_debug(ctx->fs_info, 672 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 673 ref->root_id, level, ref->count, ret, 674 ref->key_for_search.objectid, ref->key_for_search.type, 675 ref->key_for_search.offset); 676 if (ret < 0) 677 goto out; 678 679 eb = path->nodes[level]; 680 while (!eb) { 681 if (WARN_ON(!level)) { 682 ret = 1; 683 goto out; 684 } 685 level--; 686 eb = path->nodes[level]; 687 } 688 689 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level); 690 out: 691 btrfs_put_root(root); 692 out_free: 693 path->lowest_level = 0; 694 btrfs_release_path(path); 695 return ret; 696 } 697 698 static struct extent_inode_elem * 699 unode_aux_to_inode_list(struct ulist_node *node) 700 { 701 if (!node) 702 return NULL; 703 return (struct extent_inode_elem *)(uintptr_t)node->aux; 704 } 705 706 static void free_leaf_list(struct ulist *ulist) 707 { 708 struct ulist_node *node; 709 struct ulist_iterator uiter; 710 711 ULIST_ITER_INIT(&uiter); 712 while ((node = ulist_next(ulist, &uiter))) 713 free_inode_elem_list(unode_aux_to_inode_list(node)); 714 715 ulist_free(ulist); 716 } 717 718 /* 719 * We maintain three separate rbtrees: one for direct refs, one for 720 * indirect refs which have a key, and one for indirect refs which do not 721 * have a key. Each tree does merge on insertion. 722 * 723 * Once all of the references are located, we iterate over the tree of 724 * indirect refs with missing keys. An appropriate key is located and 725 * the ref is moved onto the tree for indirect refs. After all missing 726 * keys are thus located, we iterate over the indirect ref tree, resolve 727 * each reference, and then insert the resolved reference onto the 728 * direct tree (merging there too). 729 * 730 * New backrefs (i.e., for parent nodes) are added to the appropriate 731 * rbtree as they are encountered. The new backrefs are subsequently 732 * resolved as above. 733 */ 734 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx, 735 struct btrfs_path *path, 736 struct preftrees *preftrees, 737 struct share_check *sc) 738 { 739 int err; 740 int ret = 0; 741 struct ulist *parents; 742 struct ulist_node *node; 743 struct ulist_iterator uiter; 744 struct rb_node *rnode; 745 746 parents = ulist_alloc(GFP_NOFS); 747 if (!parents) 748 return -ENOMEM; 749 750 /* 751 * We could trade memory usage for performance here by iterating 752 * the tree, allocating new refs for each insertion, and then 753 * freeing the entire indirect tree when we're done. In some test 754 * cases, the tree can grow quite large (~200k objects). 755 */ 756 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 757 struct prelim_ref *ref; 758 759 ref = rb_entry(rnode, struct prelim_ref, rbnode); 760 if (WARN(ref->parent, 761 "BUG: direct ref found in indirect tree")) { 762 ret = -EINVAL; 763 goto out; 764 } 765 766 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 767 preftrees->indirect.count--; 768 769 if (ref->count == 0) { 770 free_pref(ref); 771 continue; 772 } 773 774 if (sc && ref->root_id != sc->root->root_key.objectid) { 775 free_pref(ref); 776 ret = BACKREF_FOUND_SHARED; 777 goto out; 778 } 779 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents); 780 /* 781 * we can only tolerate ENOENT,otherwise,we should catch error 782 * and return directly. 783 */ 784 if (err == -ENOENT) { 785 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, 786 NULL); 787 continue; 788 } else if (err) { 789 free_pref(ref); 790 ret = err; 791 goto out; 792 } 793 794 /* we put the first parent into the ref at hand */ 795 ULIST_ITER_INIT(&uiter); 796 node = ulist_next(parents, &uiter); 797 ref->parent = node ? node->val : 0; 798 ref->inode_list = unode_aux_to_inode_list(node); 799 800 /* Add a prelim_ref(s) for any other parent(s). */ 801 while ((node = ulist_next(parents, &uiter))) { 802 struct prelim_ref *new_ref; 803 804 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 805 GFP_NOFS); 806 if (!new_ref) { 807 free_pref(ref); 808 ret = -ENOMEM; 809 goto out; 810 } 811 memcpy(new_ref, ref, sizeof(*ref)); 812 new_ref->parent = node->val; 813 new_ref->inode_list = unode_aux_to_inode_list(node); 814 prelim_ref_insert(ctx->fs_info, &preftrees->direct, 815 new_ref, NULL); 816 } 817 818 /* 819 * Now it's a direct ref, put it in the direct tree. We must 820 * do this last because the ref could be merged/freed here. 821 */ 822 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL); 823 824 ulist_reinit(parents); 825 cond_resched(); 826 } 827 out: 828 /* 829 * We may have inode lists attached to refs in the parents ulist, so we 830 * must free them before freeing the ulist and its refs. 831 */ 832 free_leaf_list(parents); 833 return ret; 834 } 835 836 /* 837 * read tree blocks and add keys where required. 838 */ 839 static int add_missing_keys(struct btrfs_fs_info *fs_info, 840 struct preftrees *preftrees, bool lock) 841 { 842 struct prelim_ref *ref; 843 struct extent_buffer *eb; 844 struct preftree *tree = &preftrees->indirect_missing_keys; 845 struct rb_node *node; 846 847 while ((node = rb_first_cached(&tree->root))) { 848 struct btrfs_tree_parent_check check = { 0 }; 849 850 ref = rb_entry(node, struct prelim_ref, rbnode); 851 rb_erase_cached(node, &tree->root); 852 853 BUG_ON(ref->parent); /* should not be a direct ref */ 854 BUG_ON(ref->key_for_search.type); 855 BUG_ON(!ref->wanted_disk_byte); 856 857 check.level = ref->level - 1; 858 check.owner_root = ref->root_id; 859 860 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check); 861 if (IS_ERR(eb)) { 862 free_pref(ref); 863 return PTR_ERR(eb); 864 } 865 if (!extent_buffer_uptodate(eb)) { 866 free_pref(ref); 867 free_extent_buffer(eb); 868 return -EIO; 869 } 870 871 if (lock) 872 btrfs_tree_read_lock(eb); 873 if (btrfs_header_level(eb) == 0) 874 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 875 else 876 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 877 if (lock) 878 btrfs_tree_read_unlock(eb); 879 free_extent_buffer(eb); 880 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 881 cond_resched(); 882 } 883 return 0; 884 } 885 886 /* 887 * add all currently queued delayed refs from this head whose seq nr is 888 * smaller or equal that seq to the list 889 */ 890 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 891 struct btrfs_delayed_ref_head *head, u64 seq, 892 struct preftrees *preftrees, struct share_check *sc) 893 { 894 struct btrfs_delayed_ref_node *node; 895 struct btrfs_key key; 896 struct rb_node *n; 897 int count; 898 int ret = 0; 899 900 spin_lock(&head->lock); 901 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 902 node = rb_entry(n, struct btrfs_delayed_ref_node, 903 ref_node); 904 if (node->seq > seq) 905 continue; 906 907 switch (node->action) { 908 case BTRFS_ADD_DELAYED_EXTENT: 909 case BTRFS_UPDATE_DELAYED_HEAD: 910 WARN_ON(1); 911 continue; 912 case BTRFS_ADD_DELAYED_REF: 913 count = node->ref_mod; 914 break; 915 case BTRFS_DROP_DELAYED_REF: 916 count = node->ref_mod * -1; 917 break; 918 default: 919 BUG(); 920 } 921 switch (node->type) { 922 case BTRFS_TREE_BLOCK_REF_KEY: { 923 /* NORMAL INDIRECT METADATA backref */ 924 struct btrfs_delayed_tree_ref *ref; 925 struct btrfs_key *key_ptr = NULL; 926 927 if (head->extent_op && head->extent_op->update_key) { 928 btrfs_disk_key_to_cpu(&key, &head->extent_op->key); 929 key_ptr = &key; 930 } 931 932 ref = btrfs_delayed_node_to_tree_ref(node); 933 ret = add_indirect_ref(fs_info, preftrees, ref->root, 934 key_ptr, ref->level + 1, 935 node->bytenr, count, sc, 936 GFP_ATOMIC); 937 break; 938 } 939 case BTRFS_SHARED_BLOCK_REF_KEY: { 940 /* SHARED DIRECT METADATA backref */ 941 struct btrfs_delayed_tree_ref *ref; 942 943 ref = btrfs_delayed_node_to_tree_ref(node); 944 945 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 946 ref->parent, node->bytenr, count, 947 sc, GFP_ATOMIC); 948 break; 949 } 950 case BTRFS_EXTENT_DATA_REF_KEY: { 951 /* NORMAL INDIRECT DATA backref */ 952 struct btrfs_delayed_data_ref *ref; 953 ref = btrfs_delayed_node_to_data_ref(node); 954 955 key.objectid = ref->objectid; 956 key.type = BTRFS_EXTENT_DATA_KEY; 957 key.offset = ref->offset; 958 959 /* 960 * If we have a share check context and a reference for 961 * another inode, we can't exit immediately. This is 962 * because even if this is a BTRFS_ADD_DELAYED_REF 963 * reference we may find next a BTRFS_DROP_DELAYED_REF 964 * which cancels out this ADD reference. 965 * 966 * If this is a DROP reference and there was no previous 967 * ADD reference, then we need to signal that when we 968 * process references from the extent tree (through 969 * add_inline_refs() and add_keyed_refs()), we should 970 * not exit early if we find a reference for another 971 * inode, because one of the delayed DROP references 972 * may cancel that reference in the extent tree. 973 */ 974 if (sc && count < 0) 975 sc->have_delayed_delete_refs = true; 976 977 ret = add_indirect_ref(fs_info, preftrees, ref->root, 978 &key, 0, node->bytenr, count, sc, 979 GFP_ATOMIC); 980 break; 981 } 982 case BTRFS_SHARED_DATA_REF_KEY: { 983 /* SHARED DIRECT FULL backref */ 984 struct btrfs_delayed_data_ref *ref; 985 986 ref = btrfs_delayed_node_to_data_ref(node); 987 988 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 989 node->bytenr, count, sc, 990 GFP_ATOMIC); 991 break; 992 } 993 default: 994 WARN_ON(1); 995 } 996 /* 997 * We must ignore BACKREF_FOUND_SHARED until all delayed 998 * refs have been checked. 999 */ 1000 if (ret && (ret != BACKREF_FOUND_SHARED)) 1001 break; 1002 } 1003 if (!ret) 1004 ret = extent_is_shared(sc); 1005 1006 spin_unlock(&head->lock); 1007 return ret; 1008 } 1009 1010 /* 1011 * add all inline backrefs for bytenr to the list 1012 * 1013 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1014 */ 1015 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx, 1016 struct btrfs_path *path, 1017 int *info_level, struct preftrees *preftrees, 1018 struct share_check *sc) 1019 { 1020 int ret = 0; 1021 int slot; 1022 struct extent_buffer *leaf; 1023 struct btrfs_key key; 1024 struct btrfs_key found_key; 1025 unsigned long ptr; 1026 unsigned long end; 1027 struct btrfs_extent_item *ei; 1028 u64 flags; 1029 u64 item_size; 1030 1031 /* 1032 * enumerate all inline refs 1033 */ 1034 leaf = path->nodes[0]; 1035 slot = path->slots[0]; 1036 1037 item_size = btrfs_item_size(leaf, slot); 1038 BUG_ON(item_size < sizeof(*ei)); 1039 1040 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1041 1042 if (ctx->check_extent_item) { 1043 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx); 1044 if (ret) 1045 return ret; 1046 } 1047 1048 flags = btrfs_extent_flags(leaf, ei); 1049 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1050 1051 ptr = (unsigned long)(ei + 1); 1052 end = (unsigned long)ei + item_size; 1053 1054 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 1055 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1056 struct btrfs_tree_block_info *info; 1057 1058 info = (struct btrfs_tree_block_info *)ptr; 1059 *info_level = btrfs_tree_block_level(leaf, info); 1060 ptr += sizeof(struct btrfs_tree_block_info); 1061 BUG_ON(ptr > end); 1062 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1063 *info_level = found_key.offset; 1064 } else { 1065 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1066 } 1067 1068 while (ptr < end) { 1069 struct btrfs_extent_inline_ref *iref; 1070 u64 offset; 1071 int type; 1072 1073 iref = (struct btrfs_extent_inline_ref *)ptr; 1074 type = btrfs_get_extent_inline_ref_type(leaf, iref, 1075 BTRFS_REF_TYPE_ANY); 1076 if (type == BTRFS_REF_TYPE_INVALID) 1077 return -EUCLEAN; 1078 1079 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1080 1081 switch (type) { 1082 case BTRFS_SHARED_BLOCK_REF_KEY: 1083 ret = add_direct_ref(ctx->fs_info, preftrees, 1084 *info_level + 1, offset, 1085 ctx->bytenr, 1, NULL, GFP_NOFS); 1086 break; 1087 case BTRFS_SHARED_DATA_REF_KEY: { 1088 struct btrfs_shared_data_ref *sdref; 1089 int count; 1090 1091 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1092 count = btrfs_shared_data_ref_count(leaf, sdref); 1093 1094 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset, 1095 ctx->bytenr, count, sc, GFP_NOFS); 1096 break; 1097 } 1098 case BTRFS_TREE_BLOCK_REF_KEY: 1099 ret = add_indirect_ref(ctx->fs_info, preftrees, offset, 1100 NULL, *info_level + 1, 1101 ctx->bytenr, 1, NULL, GFP_NOFS); 1102 break; 1103 case BTRFS_EXTENT_DATA_REF_KEY: { 1104 struct btrfs_extent_data_ref *dref; 1105 int count; 1106 u64 root; 1107 1108 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1109 count = btrfs_extent_data_ref_count(leaf, dref); 1110 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1111 dref); 1112 key.type = BTRFS_EXTENT_DATA_KEY; 1113 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1114 1115 if (sc && key.objectid != sc->inum && 1116 !sc->have_delayed_delete_refs) { 1117 ret = BACKREF_FOUND_SHARED; 1118 break; 1119 } 1120 1121 root = btrfs_extent_data_ref_root(leaf, dref); 1122 1123 if (!ctx->skip_data_ref || 1124 !ctx->skip_data_ref(root, key.objectid, key.offset, 1125 ctx->user_ctx)) 1126 ret = add_indirect_ref(ctx->fs_info, preftrees, 1127 root, &key, 0, ctx->bytenr, 1128 count, sc, GFP_NOFS); 1129 break; 1130 } 1131 default: 1132 WARN_ON(1); 1133 } 1134 if (ret) 1135 return ret; 1136 ptr += btrfs_extent_inline_ref_size(type); 1137 } 1138 1139 return 0; 1140 } 1141 1142 /* 1143 * add all non-inline backrefs for bytenr to the list 1144 * 1145 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1146 */ 1147 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx, 1148 struct btrfs_root *extent_root, 1149 struct btrfs_path *path, 1150 int info_level, struct preftrees *preftrees, 1151 struct share_check *sc) 1152 { 1153 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1154 int ret; 1155 int slot; 1156 struct extent_buffer *leaf; 1157 struct btrfs_key key; 1158 1159 while (1) { 1160 ret = btrfs_next_item(extent_root, path); 1161 if (ret < 0) 1162 break; 1163 if (ret) { 1164 ret = 0; 1165 break; 1166 } 1167 1168 slot = path->slots[0]; 1169 leaf = path->nodes[0]; 1170 btrfs_item_key_to_cpu(leaf, &key, slot); 1171 1172 if (key.objectid != ctx->bytenr) 1173 break; 1174 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1175 continue; 1176 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1177 break; 1178 1179 switch (key.type) { 1180 case BTRFS_SHARED_BLOCK_REF_KEY: 1181 /* SHARED DIRECT METADATA backref */ 1182 ret = add_direct_ref(fs_info, preftrees, 1183 info_level + 1, key.offset, 1184 ctx->bytenr, 1, NULL, GFP_NOFS); 1185 break; 1186 case BTRFS_SHARED_DATA_REF_KEY: { 1187 /* SHARED DIRECT FULL backref */ 1188 struct btrfs_shared_data_ref *sdref; 1189 int count; 1190 1191 sdref = btrfs_item_ptr(leaf, slot, 1192 struct btrfs_shared_data_ref); 1193 count = btrfs_shared_data_ref_count(leaf, sdref); 1194 ret = add_direct_ref(fs_info, preftrees, 0, 1195 key.offset, ctx->bytenr, count, 1196 sc, GFP_NOFS); 1197 break; 1198 } 1199 case BTRFS_TREE_BLOCK_REF_KEY: 1200 /* NORMAL INDIRECT METADATA backref */ 1201 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1202 NULL, info_level + 1, ctx->bytenr, 1203 1, NULL, GFP_NOFS); 1204 break; 1205 case BTRFS_EXTENT_DATA_REF_KEY: { 1206 /* NORMAL INDIRECT DATA backref */ 1207 struct btrfs_extent_data_ref *dref; 1208 int count; 1209 u64 root; 1210 1211 dref = btrfs_item_ptr(leaf, slot, 1212 struct btrfs_extent_data_ref); 1213 count = btrfs_extent_data_ref_count(leaf, dref); 1214 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1215 dref); 1216 key.type = BTRFS_EXTENT_DATA_KEY; 1217 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1218 1219 if (sc && key.objectid != sc->inum && 1220 !sc->have_delayed_delete_refs) { 1221 ret = BACKREF_FOUND_SHARED; 1222 break; 1223 } 1224 1225 root = btrfs_extent_data_ref_root(leaf, dref); 1226 1227 if (!ctx->skip_data_ref || 1228 !ctx->skip_data_ref(root, key.objectid, key.offset, 1229 ctx->user_ctx)) 1230 ret = add_indirect_ref(fs_info, preftrees, root, 1231 &key, 0, ctx->bytenr, 1232 count, sc, GFP_NOFS); 1233 break; 1234 } 1235 default: 1236 WARN_ON(1); 1237 } 1238 if (ret) 1239 return ret; 1240 1241 } 1242 1243 return ret; 1244 } 1245 1246 /* 1247 * The caller has joined a transaction or is holding a read lock on the 1248 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1249 * snapshot field changing while updating or checking the cache. 1250 */ 1251 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1252 struct btrfs_root *root, 1253 u64 bytenr, int level, bool *is_shared) 1254 { 1255 const struct btrfs_fs_info *fs_info = root->fs_info; 1256 struct btrfs_backref_shared_cache_entry *entry; 1257 1258 if (!current->journal_info) 1259 lockdep_assert_held(&fs_info->commit_root_sem); 1260 1261 if (!ctx->use_path_cache) 1262 return false; 1263 1264 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1265 return false; 1266 1267 /* 1268 * Level -1 is used for the data extent, which is not reliable to cache 1269 * because its reference count can increase or decrease without us 1270 * realizing. We cache results only for extent buffers that lead from 1271 * the root node down to the leaf with the file extent item. 1272 */ 1273 ASSERT(level >= 0); 1274 1275 entry = &ctx->path_cache_entries[level]; 1276 1277 /* Unused cache entry or being used for some other extent buffer. */ 1278 if (entry->bytenr != bytenr) 1279 return false; 1280 1281 /* 1282 * We cached a false result, but the last snapshot generation of the 1283 * root changed, so we now have a snapshot. Don't trust the result. 1284 */ 1285 if (!entry->is_shared && 1286 entry->gen != btrfs_root_last_snapshot(&root->root_item)) 1287 return false; 1288 1289 /* 1290 * If we cached a true result and the last generation used for dropping 1291 * a root changed, we can not trust the result, because the dropped root 1292 * could be a snapshot sharing this extent buffer. 1293 */ 1294 if (entry->is_shared && 1295 entry->gen != btrfs_get_last_root_drop_gen(fs_info)) 1296 return false; 1297 1298 *is_shared = entry->is_shared; 1299 /* 1300 * If the node at this level is shared, than all nodes below are also 1301 * shared. Currently some of the nodes below may be marked as not shared 1302 * because we have just switched from one leaf to another, and switched 1303 * also other nodes above the leaf and below the current level, so mark 1304 * them as shared. 1305 */ 1306 if (*is_shared) { 1307 for (int i = 0; i < level; i++) { 1308 ctx->path_cache_entries[i].is_shared = true; 1309 ctx->path_cache_entries[i].gen = entry->gen; 1310 } 1311 } 1312 1313 return true; 1314 } 1315 1316 /* 1317 * The caller has joined a transaction or is holding a read lock on the 1318 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1319 * snapshot field changing while updating or checking the cache. 1320 */ 1321 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1322 struct btrfs_root *root, 1323 u64 bytenr, int level, bool is_shared) 1324 { 1325 const struct btrfs_fs_info *fs_info = root->fs_info; 1326 struct btrfs_backref_shared_cache_entry *entry; 1327 u64 gen; 1328 1329 if (!current->journal_info) 1330 lockdep_assert_held(&fs_info->commit_root_sem); 1331 1332 if (!ctx->use_path_cache) 1333 return; 1334 1335 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1336 return; 1337 1338 /* 1339 * Level -1 is used for the data extent, which is not reliable to cache 1340 * because its reference count can increase or decrease without us 1341 * realizing. We cache results only for extent buffers that lead from 1342 * the root node down to the leaf with the file extent item. 1343 */ 1344 ASSERT(level >= 0); 1345 1346 if (is_shared) 1347 gen = btrfs_get_last_root_drop_gen(fs_info); 1348 else 1349 gen = btrfs_root_last_snapshot(&root->root_item); 1350 1351 entry = &ctx->path_cache_entries[level]; 1352 entry->bytenr = bytenr; 1353 entry->is_shared = is_shared; 1354 entry->gen = gen; 1355 1356 /* 1357 * If we found an extent buffer is shared, set the cache result for all 1358 * extent buffers below it to true. As nodes in the path are COWed, 1359 * their sharedness is moved to their children, and if a leaf is COWed, 1360 * then the sharedness of a data extent becomes direct, the refcount of 1361 * data extent is increased in the extent item at the extent tree. 1362 */ 1363 if (is_shared) { 1364 for (int i = 0; i < level; i++) { 1365 entry = &ctx->path_cache_entries[i]; 1366 entry->is_shared = is_shared; 1367 entry->gen = gen; 1368 } 1369 } 1370 } 1371 1372 /* 1373 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1374 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1375 * indirect refs to their parent bytenr. 1376 * When roots are found, they're added to the roots list 1377 * 1378 * @ctx: Backref walking context object, must be not NULL. 1379 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a 1380 * shared extent is detected. 1381 * 1382 * Otherwise this returns 0 for success and <0 for an error. 1383 * 1384 * FIXME some caching might speed things up 1385 */ 1386 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx, 1387 struct share_check *sc) 1388 { 1389 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr); 1390 struct btrfs_key key; 1391 struct btrfs_path *path; 1392 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1393 struct btrfs_delayed_ref_head *head; 1394 int info_level = 0; 1395 int ret; 1396 struct prelim_ref *ref; 1397 struct rb_node *node; 1398 struct extent_inode_elem *eie = NULL; 1399 struct preftrees preftrees = { 1400 .direct = PREFTREE_INIT, 1401 .indirect = PREFTREE_INIT, 1402 .indirect_missing_keys = PREFTREE_INIT 1403 }; 1404 1405 /* Roots ulist is not needed when using a sharedness check context. */ 1406 if (sc) 1407 ASSERT(ctx->roots == NULL); 1408 1409 key.objectid = ctx->bytenr; 1410 key.offset = (u64)-1; 1411 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA)) 1412 key.type = BTRFS_METADATA_ITEM_KEY; 1413 else 1414 key.type = BTRFS_EXTENT_ITEM_KEY; 1415 1416 path = btrfs_alloc_path(); 1417 if (!path) 1418 return -ENOMEM; 1419 if (!ctx->trans) { 1420 path->search_commit_root = 1; 1421 path->skip_locking = 1; 1422 } 1423 1424 if (ctx->time_seq == BTRFS_SEQ_LAST) 1425 path->skip_locking = 1; 1426 1427 again: 1428 head = NULL; 1429 1430 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1431 if (ret < 0) 1432 goto out; 1433 if (ret == 0) { 1434 /* This shouldn't happen, indicates a bug or fs corruption. */ 1435 ASSERT(ret != 0); 1436 ret = -EUCLEAN; 1437 goto out; 1438 } 1439 1440 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) && 1441 ctx->time_seq != BTRFS_SEQ_LAST) { 1442 /* 1443 * We have a specific time_seq we care about and trans which 1444 * means we have the path lock, we need to grab the ref head and 1445 * lock it so we have a consistent view of the refs at the given 1446 * time. 1447 */ 1448 delayed_refs = &ctx->trans->transaction->delayed_refs; 1449 spin_lock(&delayed_refs->lock); 1450 head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr); 1451 if (head) { 1452 if (!mutex_trylock(&head->mutex)) { 1453 refcount_inc(&head->refs); 1454 spin_unlock(&delayed_refs->lock); 1455 1456 btrfs_release_path(path); 1457 1458 /* 1459 * Mutex was contended, block until it's 1460 * released and try again 1461 */ 1462 mutex_lock(&head->mutex); 1463 mutex_unlock(&head->mutex); 1464 btrfs_put_delayed_ref_head(head); 1465 goto again; 1466 } 1467 spin_unlock(&delayed_refs->lock); 1468 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq, 1469 &preftrees, sc); 1470 mutex_unlock(&head->mutex); 1471 if (ret) 1472 goto out; 1473 } else { 1474 spin_unlock(&delayed_refs->lock); 1475 } 1476 } 1477 1478 if (path->slots[0]) { 1479 struct extent_buffer *leaf; 1480 int slot; 1481 1482 path->slots[0]--; 1483 leaf = path->nodes[0]; 1484 slot = path->slots[0]; 1485 btrfs_item_key_to_cpu(leaf, &key, slot); 1486 if (key.objectid == ctx->bytenr && 1487 (key.type == BTRFS_EXTENT_ITEM_KEY || 1488 key.type == BTRFS_METADATA_ITEM_KEY)) { 1489 ret = add_inline_refs(ctx, path, &info_level, 1490 &preftrees, sc); 1491 if (ret) 1492 goto out; 1493 ret = add_keyed_refs(ctx, root, path, info_level, 1494 &preftrees, sc); 1495 if (ret) 1496 goto out; 1497 } 1498 } 1499 1500 /* 1501 * If we have a share context and we reached here, it means the extent 1502 * is not directly shared (no multiple reference items for it), 1503 * otherwise we would have exited earlier with a return value of 1504 * BACKREF_FOUND_SHARED after processing delayed references or while 1505 * processing inline or keyed references from the extent tree. 1506 * The extent may however be indirectly shared through shared subtrees 1507 * as a result from creating snapshots, so we determine below what is 1508 * its parent node, in case we are dealing with a metadata extent, or 1509 * what's the leaf (or leaves), from a fs tree, that has a file extent 1510 * item pointing to it in case we are dealing with a data extent. 1511 */ 1512 ASSERT(extent_is_shared(sc) == 0); 1513 1514 /* 1515 * If we are here for a data extent and we have a share_check structure 1516 * it means the data extent is not directly shared (does not have 1517 * multiple reference items), so we have to check if a path in the fs 1518 * tree (going from the root node down to the leaf that has the file 1519 * extent item pointing to the data extent) is shared, that is, if any 1520 * of the extent buffers in the path is referenced by other trees. 1521 */ 1522 if (sc && ctx->bytenr == sc->data_bytenr) { 1523 /* 1524 * If our data extent is from a generation more recent than the 1525 * last generation used to snapshot the root, then we know that 1526 * it can not be shared through subtrees, so we can skip 1527 * resolving indirect references, there's no point in 1528 * determining the extent buffers for the path from the fs tree 1529 * root node down to the leaf that has the file extent item that 1530 * points to the data extent. 1531 */ 1532 if (sc->data_extent_gen > 1533 btrfs_root_last_snapshot(&sc->root->root_item)) { 1534 ret = BACKREF_FOUND_NOT_SHARED; 1535 goto out; 1536 } 1537 1538 /* 1539 * If we are only determining if a data extent is shared or not 1540 * and the corresponding file extent item is located in the same 1541 * leaf as the previous file extent item, we can skip resolving 1542 * indirect references for a data extent, since the fs tree path 1543 * is the same (same leaf, so same path). We skip as long as the 1544 * cached result for the leaf is valid and only if there's only 1545 * one file extent item pointing to the data extent, because in 1546 * the case of multiple file extent items, they may be located 1547 * in different leaves and therefore we have multiple paths. 1548 */ 1549 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr && 1550 sc->self_ref_count == 1) { 1551 bool cached; 1552 bool is_shared; 1553 1554 cached = lookup_backref_shared_cache(sc->ctx, sc->root, 1555 sc->ctx->curr_leaf_bytenr, 1556 0, &is_shared); 1557 if (cached) { 1558 if (is_shared) 1559 ret = BACKREF_FOUND_SHARED; 1560 else 1561 ret = BACKREF_FOUND_NOT_SHARED; 1562 goto out; 1563 } 1564 } 1565 } 1566 1567 btrfs_release_path(path); 1568 1569 ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0); 1570 if (ret) 1571 goto out; 1572 1573 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1574 1575 ret = resolve_indirect_refs(ctx, path, &preftrees, sc); 1576 if (ret) 1577 goto out; 1578 1579 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1580 1581 /* 1582 * This walks the tree of merged and resolved refs. Tree blocks are 1583 * read in as needed. Unique entries are added to the ulist, and 1584 * the list of found roots is updated. 1585 * 1586 * We release the entire tree in one go before returning. 1587 */ 1588 node = rb_first_cached(&preftrees.direct.root); 1589 while (node) { 1590 ref = rb_entry(node, struct prelim_ref, rbnode); 1591 node = rb_next(&ref->rbnode); 1592 /* 1593 * ref->count < 0 can happen here if there are delayed 1594 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1595 * prelim_ref_insert() relies on this when merging 1596 * identical refs to keep the overall count correct. 1597 * prelim_ref_insert() will merge only those refs 1598 * which compare identically. Any refs having 1599 * e.g. different offsets would not be merged, 1600 * and would retain their original ref->count < 0. 1601 */ 1602 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) { 1603 /* no parent == root of tree */ 1604 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS); 1605 if (ret < 0) 1606 goto out; 1607 } 1608 if (ref->count && ref->parent) { 1609 if (!ctx->ignore_extent_item_pos && !ref->inode_list && 1610 ref->level == 0) { 1611 struct btrfs_tree_parent_check check = { 0 }; 1612 struct extent_buffer *eb; 1613 1614 check.level = ref->level; 1615 1616 eb = read_tree_block(ctx->fs_info, ref->parent, 1617 &check); 1618 if (IS_ERR(eb)) { 1619 ret = PTR_ERR(eb); 1620 goto out; 1621 } 1622 if (!extent_buffer_uptodate(eb)) { 1623 free_extent_buffer(eb); 1624 ret = -EIO; 1625 goto out; 1626 } 1627 1628 if (!path->skip_locking) 1629 btrfs_tree_read_lock(eb); 1630 ret = find_extent_in_eb(ctx, eb, &eie); 1631 if (!path->skip_locking) 1632 btrfs_tree_read_unlock(eb); 1633 free_extent_buffer(eb); 1634 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1635 ret < 0) 1636 goto out; 1637 ref->inode_list = eie; 1638 /* 1639 * We transferred the list ownership to the ref, 1640 * so set to NULL to avoid a double free in case 1641 * an error happens after this. 1642 */ 1643 eie = NULL; 1644 } 1645 ret = ulist_add_merge_ptr(ctx->refs, ref->parent, 1646 ref->inode_list, 1647 (void **)&eie, GFP_NOFS); 1648 if (ret < 0) 1649 goto out; 1650 if (!ret && !ctx->ignore_extent_item_pos) { 1651 /* 1652 * We've recorded that parent, so we must extend 1653 * its inode list here. 1654 * 1655 * However if there was corruption we may not 1656 * have found an eie, return an error in this 1657 * case. 1658 */ 1659 ASSERT(eie); 1660 if (!eie) { 1661 ret = -EUCLEAN; 1662 goto out; 1663 } 1664 while (eie->next) 1665 eie = eie->next; 1666 eie->next = ref->inode_list; 1667 } 1668 eie = NULL; 1669 /* 1670 * We have transferred the inode list ownership from 1671 * this ref to the ref we added to the 'refs' ulist. 1672 * So set this ref's inode list to NULL to avoid 1673 * use-after-free when our caller uses it or double 1674 * frees in case an error happens before we return. 1675 */ 1676 ref->inode_list = NULL; 1677 } 1678 cond_resched(); 1679 } 1680 1681 out: 1682 btrfs_free_path(path); 1683 1684 prelim_release(&preftrees.direct); 1685 prelim_release(&preftrees.indirect); 1686 prelim_release(&preftrees.indirect_missing_keys); 1687 1688 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 1689 free_inode_elem_list(eie); 1690 return ret; 1691 } 1692 1693 /* 1694 * Finds all leaves with a reference to the specified combination of 1695 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are 1696 * added to the ulist at @ctx->refs, and that ulist is allocated by this 1697 * function. The caller should free the ulist with free_leaf_list() if 1698 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is 1699 * enough. 1700 * 1701 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated. 1702 */ 1703 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx) 1704 { 1705 int ret; 1706 1707 ASSERT(ctx->refs == NULL); 1708 1709 ctx->refs = ulist_alloc(GFP_NOFS); 1710 if (!ctx->refs) 1711 return -ENOMEM; 1712 1713 ret = find_parent_nodes(ctx, NULL); 1714 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1715 (ret < 0 && ret != -ENOENT)) { 1716 free_leaf_list(ctx->refs); 1717 ctx->refs = NULL; 1718 return ret; 1719 } 1720 1721 return 0; 1722 } 1723 1724 /* 1725 * Walk all backrefs for a given extent to find all roots that reference this 1726 * extent. Walking a backref means finding all extents that reference this 1727 * extent and in turn walk the backrefs of those, too. Naturally this is a 1728 * recursive process, but here it is implemented in an iterative fashion: We 1729 * find all referencing extents for the extent in question and put them on a 1730 * list. In turn, we find all referencing extents for those, further appending 1731 * to the list. The way we iterate the list allows adding more elements after 1732 * the current while iterating. The process stops when we reach the end of the 1733 * list. 1734 * 1735 * Found roots are added to @ctx->roots, which is allocated by this function if 1736 * it points to NULL, in which case the caller is responsible for freeing it 1737 * after it's not needed anymore. 1738 * This function requires @ctx->refs to be NULL, as it uses it for allocating a 1739 * ulist to do temporary work, and frees it before returning. 1740 * 1741 * Returns 0 on success, < 0 on error. 1742 */ 1743 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx) 1744 { 1745 const u64 orig_bytenr = ctx->bytenr; 1746 const bool orig_ignore_extent_item_pos = ctx->ignore_extent_item_pos; 1747 bool roots_ulist_allocated = false; 1748 struct ulist_iterator uiter; 1749 int ret = 0; 1750 1751 ASSERT(ctx->refs == NULL); 1752 1753 ctx->refs = ulist_alloc(GFP_NOFS); 1754 if (!ctx->refs) 1755 return -ENOMEM; 1756 1757 if (!ctx->roots) { 1758 ctx->roots = ulist_alloc(GFP_NOFS); 1759 if (!ctx->roots) { 1760 ulist_free(ctx->refs); 1761 ctx->refs = NULL; 1762 return -ENOMEM; 1763 } 1764 roots_ulist_allocated = true; 1765 } 1766 1767 ctx->ignore_extent_item_pos = true; 1768 1769 ULIST_ITER_INIT(&uiter); 1770 while (1) { 1771 struct ulist_node *node; 1772 1773 ret = find_parent_nodes(ctx, NULL); 1774 if (ret < 0 && ret != -ENOENT) { 1775 if (roots_ulist_allocated) { 1776 ulist_free(ctx->roots); 1777 ctx->roots = NULL; 1778 } 1779 break; 1780 } 1781 ret = 0; 1782 node = ulist_next(ctx->refs, &uiter); 1783 if (!node) 1784 break; 1785 ctx->bytenr = node->val; 1786 cond_resched(); 1787 } 1788 1789 ulist_free(ctx->refs); 1790 ctx->refs = NULL; 1791 ctx->bytenr = orig_bytenr; 1792 ctx->ignore_extent_item_pos = orig_ignore_extent_item_pos; 1793 1794 return ret; 1795 } 1796 1797 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, 1798 bool skip_commit_root_sem) 1799 { 1800 int ret; 1801 1802 if (!ctx->trans && !skip_commit_root_sem) 1803 down_read(&ctx->fs_info->commit_root_sem); 1804 ret = btrfs_find_all_roots_safe(ctx); 1805 if (!ctx->trans && !skip_commit_root_sem) 1806 up_read(&ctx->fs_info->commit_root_sem); 1807 return ret; 1808 } 1809 1810 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void) 1811 { 1812 struct btrfs_backref_share_check_ctx *ctx; 1813 1814 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1815 if (!ctx) 1816 return NULL; 1817 1818 ulist_init(&ctx->refs); 1819 1820 return ctx; 1821 } 1822 1823 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx) 1824 { 1825 if (!ctx) 1826 return; 1827 1828 ulist_release(&ctx->refs); 1829 kfree(ctx); 1830 } 1831 1832 /* 1833 * Check if a data extent is shared or not. 1834 * 1835 * @inode: The inode whose extent we are checking. 1836 * @bytenr: Logical bytenr of the extent we are checking. 1837 * @extent_gen: Generation of the extent (file extent item) or 0 if it is 1838 * not known. 1839 * @ctx: A backref sharedness check context. 1840 * 1841 * btrfs_is_data_extent_shared uses the backref walking code but will short 1842 * circuit as soon as it finds a root or inode that doesn't match the 1843 * one passed in. This provides a significant performance benefit for 1844 * callers (such as fiemap) which want to know whether the extent is 1845 * shared but do not need a ref count. 1846 * 1847 * This attempts to attach to the running transaction in order to account for 1848 * delayed refs, but continues on even when no running transaction exists. 1849 * 1850 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1851 */ 1852 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, 1853 u64 extent_gen, 1854 struct btrfs_backref_share_check_ctx *ctx) 1855 { 1856 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 1857 struct btrfs_root *root = inode->root; 1858 struct btrfs_fs_info *fs_info = root->fs_info; 1859 struct btrfs_trans_handle *trans; 1860 struct ulist_iterator uiter; 1861 struct ulist_node *node; 1862 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1863 int ret = 0; 1864 struct share_check shared = { 1865 .ctx = ctx, 1866 .root = root, 1867 .inum = btrfs_ino(inode), 1868 .data_bytenr = bytenr, 1869 .data_extent_gen = extent_gen, 1870 .share_count = 0, 1871 .self_ref_count = 0, 1872 .have_delayed_delete_refs = false, 1873 }; 1874 int level; 1875 bool leaf_cached; 1876 bool leaf_is_shared; 1877 1878 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) { 1879 if (ctx->prev_extents_cache[i].bytenr == bytenr) 1880 return ctx->prev_extents_cache[i].is_shared; 1881 } 1882 1883 ulist_init(&ctx->refs); 1884 1885 trans = btrfs_join_transaction_nostart(root); 1886 if (IS_ERR(trans)) { 1887 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1888 ret = PTR_ERR(trans); 1889 goto out; 1890 } 1891 trans = NULL; 1892 down_read(&fs_info->commit_root_sem); 1893 } else { 1894 btrfs_get_tree_mod_seq(fs_info, &elem); 1895 walk_ctx.time_seq = elem.seq; 1896 } 1897 1898 ctx->use_path_cache = true; 1899 1900 /* 1901 * We may have previously determined that the current leaf is shared. 1902 * If it is, then we have a data extent that is shared due to a shared 1903 * subtree (caused by snapshotting) and we don't need to check for data 1904 * backrefs. If the leaf is not shared, then we must do backref walking 1905 * to determine if the data extent is shared through reflinks. 1906 */ 1907 leaf_cached = lookup_backref_shared_cache(ctx, root, 1908 ctx->curr_leaf_bytenr, 0, 1909 &leaf_is_shared); 1910 if (leaf_cached && leaf_is_shared) { 1911 ret = 1; 1912 goto out_trans; 1913 } 1914 1915 walk_ctx.ignore_extent_item_pos = true; 1916 walk_ctx.trans = trans; 1917 walk_ctx.fs_info = fs_info; 1918 walk_ctx.refs = &ctx->refs; 1919 1920 /* -1 means we are in the bytenr of the data extent. */ 1921 level = -1; 1922 ULIST_ITER_INIT(&uiter); 1923 while (1) { 1924 bool is_shared; 1925 bool cached; 1926 1927 walk_ctx.bytenr = bytenr; 1928 ret = find_parent_nodes(&walk_ctx, &shared); 1929 if (ret == BACKREF_FOUND_SHARED || 1930 ret == BACKREF_FOUND_NOT_SHARED) { 1931 /* If shared must return 1, otherwise return 0. */ 1932 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0; 1933 if (level >= 0) 1934 store_backref_shared_cache(ctx, root, bytenr, 1935 level, ret == 1); 1936 break; 1937 } 1938 if (ret < 0 && ret != -ENOENT) 1939 break; 1940 ret = 0; 1941 1942 /* 1943 * If our data extent was not directly shared (without multiple 1944 * reference items), than it might have a single reference item 1945 * with a count > 1 for the same offset, which means there are 2 1946 * (or more) file extent items that point to the data extent - 1947 * this happens when a file extent item needs to be split and 1948 * then one item gets moved to another leaf due to a b+tree leaf 1949 * split when inserting some item. In this case the file extent 1950 * items may be located in different leaves and therefore some 1951 * of the leaves may be referenced through shared subtrees while 1952 * others are not. Since our extent buffer cache only works for 1953 * a single path (by far the most common case and simpler to 1954 * deal with), we can not use it if we have multiple leaves 1955 * (which implies multiple paths). 1956 */ 1957 if (level == -1 && ctx->refs.nnodes > 1) 1958 ctx->use_path_cache = false; 1959 1960 if (level >= 0) 1961 store_backref_shared_cache(ctx, root, bytenr, 1962 level, false); 1963 node = ulist_next(&ctx->refs, &uiter); 1964 if (!node) 1965 break; 1966 bytenr = node->val; 1967 level++; 1968 cached = lookup_backref_shared_cache(ctx, root, bytenr, level, 1969 &is_shared); 1970 if (cached) { 1971 ret = (is_shared ? 1 : 0); 1972 break; 1973 } 1974 shared.share_count = 0; 1975 shared.have_delayed_delete_refs = false; 1976 cond_resched(); 1977 } 1978 1979 /* 1980 * Cache the sharedness result for the data extent if we know our inode 1981 * has more than 1 file extent item that refers to the data extent. 1982 */ 1983 if (ret >= 0 && shared.self_ref_count > 1) { 1984 int slot = ctx->prev_extents_cache_slot; 1985 1986 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr; 1987 ctx->prev_extents_cache[slot].is_shared = (ret == 1); 1988 1989 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; 1990 ctx->prev_extents_cache_slot = slot; 1991 } 1992 1993 out_trans: 1994 if (trans) { 1995 btrfs_put_tree_mod_seq(fs_info, &elem); 1996 btrfs_end_transaction(trans); 1997 } else { 1998 up_read(&fs_info->commit_root_sem); 1999 } 2000 out: 2001 ulist_release(&ctx->refs); 2002 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr; 2003 2004 return ret; 2005 } 2006 2007 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 2008 u64 start_off, struct btrfs_path *path, 2009 struct btrfs_inode_extref **ret_extref, 2010 u64 *found_off) 2011 { 2012 int ret, slot; 2013 struct btrfs_key key; 2014 struct btrfs_key found_key; 2015 struct btrfs_inode_extref *extref; 2016 const struct extent_buffer *leaf; 2017 unsigned long ptr; 2018 2019 key.objectid = inode_objectid; 2020 key.type = BTRFS_INODE_EXTREF_KEY; 2021 key.offset = start_off; 2022 2023 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2024 if (ret < 0) 2025 return ret; 2026 2027 while (1) { 2028 leaf = path->nodes[0]; 2029 slot = path->slots[0]; 2030 if (slot >= btrfs_header_nritems(leaf)) { 2031 /* 2032 * If the item at offset is not found, 2033 * btrfs_search_slot will point us to the slot 2034 * where it should be inserted. In our case 2035 * that will be the slot directly before the 2036 * next INODE_REF_KEY_V2 item. In the case 2037 * that we're pointing to the last slot in a 2038 * leaf, we must move one leaf over. 2039 */ 2040 ret = btrfs_next_leaf(root, path); 2041 if (ret) { 2042 if (ret >= 1) 2043 ret = -ENOENT; 2044 break; 2045 } 2046 continue; 2047 } 2048 2049 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2050 2051 /* 2052 * Check that we're still looking at an extended ref key for 2053 * this particular objectid. If we have different 2054 * objectid or type then there are no more to be found 2055 * in the tree and we can exit. 2056 */ 2057 ret = -ENOENT; 2058 if (found_key.objectid != inode_objectid) 2059 break; 2060 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 2061 break; 2062 2063 ret = 0; 2064 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 2065 extref = (struct btrfs_inode_extref *)ptr; 2066 *ret_extref = extref; 2067 if (found_off) 2068 *found_off = found_key.offset; 2069 break; 2070 } 2071 2072 return ret; 2073 } 2074 2075 /* 2076 * this iterates to turn a name (from iref/extref) into a full filesystem path. 2077 * Elements of the path are separated by '/' and the path is guaranteed to be 2078 * 0-terminated. the path is only given within the current file system. 2079 * Therefore, it never starts with a '/'. the caller is responsible to provide 2080 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 2081 * the start point of the resulting string is returned. this pointer is within 2082 * dest, normally. 2083 * in case the path buffer would overflow, the pointer is decremented further 2084 * as if output was written to the buffer, though no more output is actually 2085 * generated. that way, the caller can determine how much space would be 2086 * required for the path to fit into the buffer. in that case, the returned 2087 * value will be smaller than dest. callers must check this! 2088 */ 2089 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 2090 u32 name_len, unsigned long name_off, 2091 struct extent_buffer *eb_in, u64 parent, 2092 char *dest, u32 size) 2093 { 2094 int slot; 2095 u64 next_inum; 2096 int ret; 2097 s64 bytes_left = ((s64)size) - 1; 2098 struct extent_buffer *eb = eb_in; 2099 struct btrfs_key found_key; 2100 struct btrfs_inode_ref *iref; 2101 2102 if (bytes_left >= 0) 2103 dest[bytes_left] = '\0'; 2104 2105 while (1) { 2106 bytes_left -= name_len; 2107 if (bytes_left >= 0) 2108 read_extent_buffer(eb, dest + bytes_left, 2109 name_off, name_len); 2110 if (eb != eb_in) { 2111 if (!path->skip_locking) 2112 btrfs_tree_read_unlock(eb); 2113 free_extent_buffer(eb); 2114 } 2115 ret = btrfs_find_item(fs_root, path, parent, 0, 2116 BTRFS_INODE_REF_KEY, &found_key); 2117 if (ret > 0) 2118 ret = -ENOENT; 2119 if (ret) 2120 break; 2121 2122 next_inum = found_key.offset; 2123 2124 /* regular exit ahead */ 2125 if (parent == next_inum) 2126 break; 2127 2128 slot = path->slots[0]; 2129 eb = path->nodes[0]; 2130 /* make sure we can use eb after releasing the path */ 2131 if (eb != eb_in) { 2132 path->nodes[0] = NULL; 2133 path->locks[0] = 0; 2134 } 2135 btrfs_release_path(path); 2136 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2137 2138 name_len = btrfs_inode_ref_name_len(eb, iref); 2139 name_off = (unsigned long)(iref + 1); 2140 2141 parent = next_inum; 2142 --bytes_left; 2143 if (bytes_left >= 0) 2144 dest[bytes_left] = '/'; 2145 } 2146 2147 btrfs_release_path(path); 2148 2149 if (ret) 2150 return ERR_PTR(ret); 2151 2152 return dest + bytes_left; 2153 } 2154 2155 /* 2156 * this makes the path point to (logical EXTENT_ITEM *) 2157 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 2158 * tree blocks and <0 on error. 2159 */ 2160 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 2161 struct btrfs_path *path, struct btrfs_key *found_key, 2162 u64 *flags_ret) 2163 { 2164 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 2165 int ret; 2166 u64 flags; 2167 u64 size = 0; 2168 u32 item_size; 2169 const struct extent_buffer *eb; 2170 struct btrfs_extent_item *ei; 2171 struct btrfs_key key; 2172 2173 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2174 key.type = BTRFS_METADATA_ITEM_KEY; 2175 else 2176 key.type = BTRFS_EXTENT_ITEM_KEY; 2177 key.objectid = logical; 2178 key.offset = (u64)-1; 2179 2180 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2181 if (ret < 0) 2182 return ret; 2183 2184 ret = btrfs_previous_extent_item(extent_root, path, 0); 2185 if (ret) { 2186 if (ret > 0) 2187 ret = -ENOENT; 2188 return ret; 2189 } 2190 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 2191 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 2192 size = fs_info->nodesize; 2193 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 2194 size = found_key->offset; 2195 2196 if (found_key->objectid > logical || 2197 found_key->objectid + size <= logical) { 2198 btrfs_debug(fs_info, 2199 "logical %llu is not within any extent", logical); 2200 return -ENOENT; 2201 } 2202 2203 eb = path->nodes[0]; 2204 item_size = btrfs_item_size(eb, path->slots[0]); 2205 BUG_ON(item_size < sizeof(*ei)); 2206 2207 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 2208 flags = btrfs_extent_flags(eb, ei); 2209 2210 btrfs_debug(fs_info, 2211 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 2212 logical, logical - found_key->objectid, found_key->objectid, 2213 found_key->offset, flags, item_size); 2214 2215 WARN_ON(!flags_ret); 2216 if (flags_ret) { 2217 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2218 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 2219 else if (flags & BTRFS_EXTENT_FLAG_DATA) 2220 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 2221 else 2222 BUG(); 2223 return 0; 2224 } 2225 2226 return -EIO; 2227 } 2228 2229 /* 2230 * helper function to iterate extent inline refs. ptr must point to a 0 value 2231 * for the first call and may be modified. it is used to track state. 2232 * if more refs exist, 0 is returned and the next call to 2233 * get_extent_inline_ref must pass the modified ptr parameter to get the 2234 * next ref. after the last ref was processed, 1 is returned. 2235 * returns <0 on error 2236 */ 2237 static int get_extent_inline_ref(unsigned long *ptr, 2238 const struct extent_buffer *eb, 2239 const struct btrfs_key *key, 2240 const struct btrfs_extent_item *ei, 2241 u32 item_size, 2242 struct btrfs_extent_inline_ref **out_eiref, 2243 int *out_type) 2244 { 2245 unsigned long end; 2246 u64 flags; 2247 struct btrfs_tree_block_info *info; 2248 2249 if (!*ptr) { 2250 /* first call */ 2251 flags = btrfs_extent_flags(eb, ei); 2252 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2253 if (key->type == BTRFS_METADATA_ITEM_KEY) { 2254 /* a skinny metadata extent */ 2255 *out_eiref = 2256 (struct btrfs_extent_inline_ref *)(ei + 1); 2257 } else { 2258 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 2259 info = (struct btrfs_tree_block_info *)(ei + 1); 2260 *out_eiref = 2261 (struct btrfs_extent_inline_ref *)(info + 1); 2262 } 2263 } else { 2264 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 2265 } 2266 *ptr = (unsigned long)*out_eiref; 2267 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 2268 return -ENOENT; 2269 } 2270 2271 end = (unsigned long)ei + item_size; 2272 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 2273 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 2274 BTRFS_REF_TYPE_ANY); 2275 if (*out_type == BTRFS_REF_TYPE_INVALID) 2276 return -EUCLEAN; 2277 2278 *ptr += btrfs_extent_inline_ref_size(*out_type); 2279 WARN_ON(*ptr > end); 2280 if (*ptr == end) 2281 return 1; /* last */ 2282 2283 return 0; 2284 } 2285 2286 /* 2287 * reads the tree block backref for an extent. tree level and root are returned 2288 * through out_level and out_root. ptr must point to a 0 value for the first 2289 * call and may be modified (see get_extent_inline_ref comment). 2290 * returns 0 if data was provided, 1 if there was no more data to provide or 2291 * <0 on error. 2292 */ 2293 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 2294 struct btrfs_key *key, struct btrfs_extent_item *ei, 2295 u32 item_size, u64 *out_root, u8 *out_level) 2296 { 2297 int ret; 2298 int type; 2299 struct btrfs_extent_inline_ref *eiref; 2300 2301 if (*ptr == (unsigned long)-1) 2302 return 1; 2303 2304 while (1) { 2305 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 2306 &eiref, &type); 2307 if (ret < 0) 2308 return ret; 2309 2310 if (type == BTRFS_TREE_BLOCK_REF_KEY || 2311 type == BTRFS_SHARED_BLOCK_REF_KEY) 2312 break; 2313 2314 if (ret == 1) 2315 return 1; 2316 } 2317 2318 /* we can treat both ref types equally here */ 2319 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 2320 2321 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 2322 struct btrfs_tree_block_info *info; 2323 2324 info = (struct btrfs_tree_block_info *)(ei + 1); 2325 *out_level = btrfs_tree_block_level(eb, info); 2326 } else { 2327 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 2328 *out_level = (u8)key->offset; 2329 } 2330 2331 if (ret == 1) 2332 *ptr = (unsigned long)-1; 2333 2334 return 0; 2335 } 2336 2337 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 2338 struct extent_inode_elem *inode_list, 2339 u64 root, u64 extent_item_objectid, 2340 iterate_extent_inodes_t *iterate, void *ctx) 2341 { 2342 struct extent_inode_elem *eie; 2343 int ret = 0; 2344 2345 for (eie = inode_list; eie; eie = eie->next) { 2346 btrfs_debug(fs_info, 2347 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 2348 extent_item_objectid, eie->inum, 2349 eie->offset, root); 2350 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx); 2351 if (ret) { 2352 btrfs_debug(fs_info, 2353 "stopping iteration for %llu due to ret=%d", 2354 extent_item_objectid, ret); 2355 break; 2356 } 2357 } 2358 2359 return ret; 2360 } 2361 2362 /* 2363 * calls iterate() for every inode that references the extent identified by 2364 * the given parameters. 2365 * when the iterator function returns a non-zero value, iteration stops. 2366 */ 2367 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, 2368 bool search_commit_root, 2369 iterate_extent_inodes_t *iterate, void *user_ctx) 2370 { 2371 int ret; 2372 struct ulist *refs; 2373 struct ulist_node *ref_node; 2374 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 2375 struct ulist_iterator ref_uiter; 2376 2377 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu", 2378 ctx->bytenr); 2379 2380 ASSERT(ctx->trans == NULL); 2381 ASSERT(ctx->roots == NULL); 2382 2383 if (!search_commit_root) { 2384 struct btrfs_trans_handle *trans; 2385 2386 trans = btrfs_attach_transaction(ctx->fs_info->tree_root); 2387 if (IS_ERR(trans)) { 2388 if (PTR_ERR(trans) != -ENOENT && 2389 PTR_ERR(trans) != -EROFS) 2390 return PTR_ERR(trans); 2391 trans = NULL; 2392 } 2393 ctx->trans = trans; 2394 } 2395 2396 if (ctx->trans) { 2397 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem); 2398 ctx->time_seq = seq_elem.seq; 2399 } else { 2400 down_read(&ctx->fs_info->commit_root_sem); 2401 } 2402 2403 ret = btrfs_find_all_leafs(ctx); 2404 if (ret) 2405 goto out; 2406 refs = ctx->refs; 2407 ctx->refs = NULL; 2408 2409 ULIST_ITER_INIT(&ref_uiter); 2410 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2411 const u64 leaf_bytenr = ref_node->val; 2412 struct ulist_node *root_node; 2413 struct ulist_iterator root_uiter; 2414 struct extent_inode_elem *inode_list; 2415 2416 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux; 2417 2418 if (ctx->cache_lookup) { 2419 const u64 *root_ids; 2420 int root_count; 2421 bool cached; 2422 2423 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx, 2424 &root_ids, &root_count); 2425 if (cached) { 2426 for (int i = 0; i < root_count; i++) { 2427 ret = iterate_leaf_refs(ctx->fs_info, 2428 inode_list, 2429 root_ids[i], 2430 leaf_bytenr, 2431 iterate, 2432 user_ctx); 2433 if (ret) 2434 break; 2435 } 2436 continue; 2437 } 2438 } 2439 2440 if (!ctx->roots) { 2441 ctx->roots = ulist_alloc(GFP_NOFS); 2442 if (!ctx->roots) { 2443 ret = -ENOMEM; 2444 break; 2445 } 2446 } 2447 2448 ctx->bytenr = leaf_bytenr; 2449 ret = btrfs_find_all_roots_safe(ctx); 2450 if (ret) 2451 break; 2452 2453 if (ctx->cache_store) 2454 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx); 2455 2456 ULIST_ITER_INIT(&root_uiter); 2457 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) { 2458 btrfs_debug(ctx->fs_info, 2459 "root %llu references leaf %llu, data list %#llx", 2460 root_node->val, ref_node->val, 2461 ref_node->aux); 2462 ret = iterate_leaf_refs(ctx->fs_info, inode_list, 2463 root_node->val, ctx->bytenr, 2464 iterate, user_ctx); 2465 } 2466 ulist_reinit(ctx->roots); 2467 } 2468 2469 free_leaf_list(refs); 2470 out: 2471 if (ctx->trans) { 2472 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem); 2473 btrfs_end_transaction(ctx->trans); 2474 ctx->trans = NULL; 2475 } else { 2476 up_read(&ctx->fs_info->commit_root_sem); 2477 } 2478 2479 ulist_free(ctx->roots); 2480 ctx->roots = NULL; 2481 2482 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP) 2483 ret = 0; 2484 2485 return ret; 2486 } 2487 2488 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx) 2489 { 2490 struct btrfs_data_container *inodes = ctx; 2491 const size_t c = 3 * sizeof(u64); 2492 2493 if (inodes->bytes_left >= c) { 2494 inodes->bytes_left -= c; 2495 inodes->val[inodes->elem_cnt] = inum; 2496 inodes->val[inodes->elem_cnt + 1] = offset; 2497 inodes->val[inodes->elem_cnt + 2] = root; 2498 inodes->elem_cnt += 3; 2499 } else { 2500 inodes->bytes_missing += c - inodes->bytes_left; 2501 inodes->bytes_left = 0; 2502 inodes->elem_missed += 3; 2503 } 2504 2505 return 0; 2506 } 2507 2508 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2509 struct btrfs_path *path, 2510 void *ctx, bool ignore_offset) 2511 { 2512 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 2513 int ret; 2514 u64 flags = 0; 2515 struct btrfs_key found_key; 2516 int search_commit_root = path->search_commit_root; 2517 2518 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2519 btrfs_release_path(path); 2520 if (ret < 0) 2521 return ret; 2522 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2523 return -EINVAL; 2524 2525 walk_ctx.bytenr = found_key.objectid; 2526 if (ignore_offset) 2527 walk_ctx.ignore_extent_item_pos = true; 2528 else 2529 walk_ctx.extent_item_pos = logical - found_key.objectid; 2530 walk_ctx.fs_info = fs_info; 2531 2532 return iterate_extent_inodes(&walk_ctx, search_commit_root, 2533 build_ino_list, ctx); 2534 } 2535 2536 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2537 struct extent_buffer *eb, struct inode_fs_paths *ipath); 2538 2539 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath) 2540 { 2541 int ret = 0; 2542 int slot; 2543 u32 cur; 2544 u32 len; 2545 u32 name_len; 2546 u64 parent = 0; 2547 int found = 0; 2548 struct btrfs_root *fs_root = ipath->fs_root; 2549 struct btrfs_path *path = ipath->btrfs_path; 2550 struct extent_buffer *eb; 2551 struct btrfs_inode_ref *iref; 2552 struct btrfs_key found_key; 2553 2554 while (!ret) { 2555 ret = btrfs_find_item(fs_root, path, inum, 2556 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2557 &found_key); 2558 2559 if (ret < 0) 2560 break; 2561 if (ret) { 2562 ret = found ? 0 : -ENOENT; 2563 break; 2564 } 2565 ++found; 2566 2567 parent = found_key.offset; 2568 slot = path->slots[0]; 2569 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2570 if (!eb) { 2571 ret = -ENOMEM; 2572 break; 2573 } 2574 btrfs_release_path(path); 2575 2576 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2577 2578 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2579 name_len = btrfs_inode_ref_name_len(eb, iref); 2580 /* path must be released before calling iterate()! */ 2581 btrfs_debug(fs_root->fs_info, 2582 "following ref at offset %u for inode %llu in tree %llu", 2583 cur, found_key.objectid, 2584 fs_root->root_key.objectid); 2585 ret = inode_to_path(parent, name_len, 2586 (unsigned long)(iref + 1), eb, ipath); 2587 if (ret) 2588 break; 2589 len = sizeof(*iref) + name_len; 2590 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2591 } 2592 free_extent_buffer(eb); 2593 } 2594 2595 btrfs_release_path(path); 2596 2597 return ret; 2598 } 2599 2600 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath) 2601 { 2602 int ret; 2603 int slot; 2604 u64 offset = 0; 2605 u64 parent; 2606 int found = 0; 2607 struct btrfs_root *fs_root = ipath->fs_root; 2608 struct btrfs_path *path = ipath->btrfs_path; 2609 struct extent_buffer *eb; 2610 struct btrfs_inode_extref *extref; 2611 u32 item_size; 2612 u32 cur_offset; 2613 unsigned long ptr; 2614 2615 while (1) { 2616 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2617 &offset); 2618 if (ret < 0) 2619 break; 2620 if (ret) { 2621 ret = found ? 0 : -ENOENT; 2622 break; 2623 } 2624 ++found; 2625 2626 slot = path->slots[0]; 2627 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2628 if (!eb) { 2629 ret = -ENOMEM; 2630 break; 2631 } 2632 btrfs_release_path(path); 2633 2634 item_size = btrfs_item_size(eb, slot); 2635 ptr = btrfs_item_ptr_offset(eb, slot); 2636 cur_offset = 0; 2637 2638 while (cur_offset < item_size) { 2639 u32 name_len; 2640 2641 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2642 parent = btrfs_inode_extref_parent(eb, extref); 2643 name_len = btrfs_inode_extref_name_len(eb, extref); 2644 ret = inode_to_path(parent, name_len, 2645 (unsigned long)&extref->name, eb, ipath); 2646 if (ret) 2647 break; 2648 2649 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2650 cur_offset += sizeof(*extref); 2651 } 2652 free_extent_buffer(eb); 2653 2654 offset++; 2655 } 2656 2657 btrfs_release_path(path); 2658 2659 return ret; 2660 } 2661 2662 /* 2663 * returns 0 if the path could be dumped (probably truncated) 2664 * returns <0 in case of an error 2665 */ 2666 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2667 struct extent_buffer *eb, struct inode_fs_paths *ipath) 2668 { 2669 char *fspath; 2670 char *fspath_min; 2671 int i = ipath->fspath->elem_cnt; 2672 const int s_ptr = sizeof(char *); 2673 u32 bytes_left; 2674 2675 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2676 ipath->fspath->bytes_left - s_ptr : 0; 2677 2678 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2679 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2680 name_off, eb, inum, fspath_min, bytes_left); 2681 if (IS_ERR(fspath)) 2682 return PTR_ERR(fspath); 2683 2684 if (fspath > fspath_min) { 2685 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2686 ++ipath->fspath->elem_cnt; 2687 ipath->fspath->bytes_left = fspath - fspath_min; 2688 } else { 2689 ++ipath->fspath->elem_missed; 2690 ipath->fspath->bytes_missing += fspath_min - fspath; 2691 ipath->fspath->bytes_left = 0; 2692 } 2693 2694 return 0; 2695 } 2696 2697 /* 2698 * this dumps all file system paths to the inode into the ipath struct, provided 2699 * is has been created large enough. each path is zero-terminated and accessed 2700 * from ipath->fspath->val[i]. 2701 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2702 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2703 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2704 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2705 * have been needed to return all paths. 2706 */ 2707 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2708 { 2709 int ret; 2710 int found_refs = 0; 2711 2712 ret = iterate_inode_refs(inum, ipath); 2713 if (!ret) 2714 ++found_refs; 2715 else if (ret != -ENOENT) 2716 return ret; 2717 2718 ret = iterate_inode_extrefs(inum, ipath); 2719 if (ret == -ENOENT && found_refs) 2720 return 0; 2721 2722 return ret; 2723 } 2724 2725 struct btrfs_data_container *init_data_container(u32 total_bytes) 2726 { 2727 struct btrfs_data_container *data; 2728 size_t alloc_bytes; 2729 2730 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2731 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2732 if (!data) 2733 return ERR_PTR(-ENOMEM); 2734 2735 if (total_bytes >= sizeof(*data)) { 2736 data->bytes_left = total_bytes - sizeof(*data); 2737 data->bytes_missing = 0; 2738 } else { 2739 data->bytes_missing = sizeof(*data) - total_bytes; 2740 data->bytes_left = 0; 2741 } 2742 2743 data->elem_cnt = 0; 2744 data->elem_missed = 0; 2745 2746 return data; 2747 } 2748 2749 /* 2750 * allocates space to return multiple file system paths for an inode. 2751 * total_bytes to allocate are passed, note that space usable for actual path 2752 * information will be total_bytes - sizeof(struct inode_fs_paths). 2753 * the returned pointer must be freed with free_ipath() in the end. 2754 */ 2755 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2756 struct btrfs_path *path) 2757 { 2758 struct inode_fs_paths *ifp; 2759 struct btrfs_data_container *fspath; 2760 2761 fspath = init_data_container(total_bytes); 2762 if (IS_ERR(fspath)) 2763 return ERR_CAST(fspath); 2764 2765 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2766 if (!ifp) { 2767 kvfree(fspath); 2768 return ERR_PTR(-ENOMEM); 2769 } 2770 2771 ifp->btrfs_path = path; 2772 ifp->fspath = fspath; 2773 ifp->fs_root = fs_root; 2774 2775 return ifp; 2776 } 2777 2778 void free_ipath(struct inode_fs_paths *ipath) 2779 { 2780 if (!ipath) 2781 return; 2782 kvfree(ipath->fspath); 2783 kfree(ipath); 2784 } 2785 2786 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info) 2787 { 2788 struct btrfs_backref_iter *ret; 2789 2790 ret = kzalloc(sizeof(*ret), GFP_NOFS); 2791 if (!ret) 2792 return NULL; 2793 2794 ret->path = btrfs_alloc_path(); 2795 if (!ret->path) { 2796 kfree(ret); 2797 return NULL; 2798 } 2799 2800 /* Current backref iterator only supports iteration in commit root */ 2801 ret->path->search_commit_root = 1; 2802 ret->path->skip_locking = 1; 2803 ret->fs_info = fs_info; 2804 2805 return ret; 2806 } 2807 2808 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2809 { 2810 struct btrfs_fs_info *fs_info = iter->fs_info; 2811 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2812 struct btrfs_path *path = iter->path; 2813 struct btrfs_extent_item *ei; 2814 struct btrfs_key key; 2815 int ret; 2816 2817 key.objectid = bytenr; 2818 key.type = BTRFS_METADATA_ITEM_KEY; 2819 key.offset = (u64)-1; 2820 iter->bytenr = bytenr; 2821 2822 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2823 if (ret < 0) 2824 return ret; 2825 if (ret == 0) { 2826 ret = -EUCLEAN; 2827 goto release; 2828 } 2829 if (path->slots[0] == 0) { 2830 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2831 ret = -EUCLEAN; 2832 goto release; 2833 } 2834 path->slots[0]--; 2835 2836 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2837 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2838 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2839 ret = -ENOENT; 2840 goto release; 2841 } 2842 memcpy(&iter->cur_key, &key, sizeof(key)); 2843 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2844 path->slots[0]); 2845 iter->end_ptr = (u32)(iter->item_ptr + 2846 btrfs_item_size(path->nodes[0], path->slots[0])); 2847 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2848 struct btrfs_extent_item); 2849 2850 /* 2851 * Only support iteration on tree backref yet. 2852 * 2853 * This is an extra precaution for non skinny-metadata, where 2854 * EXTENT_ITEM is also used for tree blocks, that we can only use 2855 * extent flags to determine if it's a tree block. 2856 */ 2857 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2858 ret = -ENOTSUPP; 2859 goto release; 2860 } 2861 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2862 2863 /* If there is no inline backref, go search for keyed backref */ 2864 if (iter->cur_ptr >= iter->end_ptr) { 2865 ret = btrfs_next_item(extent_root, path); 2866 2867 /* No inline nor keyed ref */ 2868 if (ret > 0) { 2869 ret = -ENOENT; 2870 goto release; 2871 } 2872 if (ret < 0) 2873 goto release; 2874 2875 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2876 path->slots[0]); 2877 if (iter->cur_key.objectid != bytenr || 2878 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2879 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2880 ret = -ENOENT; 2881 goto release; 2882 } 2883 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2884 path->slots[0]); 2885 iter->item_ptr = iter->cur_ptr; 2886 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2887 path->nodes[0], path->slots[0])); 2888 } 2889 2890 return 0; 2891 release: 2892 btrfs_backref_iter_release(iter); 2893 return ret; 2894 } 2895 2896 /* 2897 * Go to the next backref item of current bytenr, can be either inlined or 2898 * keyed. 2899 * 2900 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2901 * 2902 * Return 0 if we get next backref without problem. 2903 * Return >0 if there is no extra backref for this bytenr. 2904 * Return <0 if there is something wrong happened. 2905 */ 2906 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2907 { 2908 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2909 struct btrfs_root *extent_root; 2910 struct btrfs_path *path = iter->path; 2911 struct btrfs_extent_inline_ref *iref; 2912 int ret; 2913 u32 size; 2914 2915 if (btrfs_backref_iter_is_inline_ref(iter)) { 2916 /* We're still inside the inline refs */ 2917 ASSERT(iter->cur_ptr < iter->end_ptr); 2918 2919 if (btrfs_backref_has_tree_block_info(iter)) { 2920 /* First tree block info */ 2921 size = sizeof(struct btrfs_tree_block_info); 2922 } else { 2923 /* Use inline ref type to determine the size */ 2924 int type; 2925 2926 iref = (struct btrfs_extent_inline_ref *) 2927 ((unsigned long)iter->cur_ptr); 2928 type = btrfs_extent_inline_ref_type(eb, iref); 2929 2930 size = btrfs_extent_inline_ref_size(type); 2931 } 2932 iter->cur_ptr += size; 2933 if (iter->cur_ptr < iter->end_ptr) 2934 return 0; 2935 2936 /* All inline items iterated, fall through */ 2937 } 2938 2939 /* We're at keyed items, there is no inline item, go to the next one */ 2940 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); 2941 ret = btrfs_next_item(extent_root, iter->path); 2942 if (ret) 2943 return ret; 2944 2945 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2946 if (iter->cur_key.objectid != iter->bytenr || 2947 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2948 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2949 return 1; 2950 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2951 path->slots[0]); 2952 iter->cur_ptr = iter->item_ptr; 2953 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 2954 path->slots[0]); 2955 return 0; 2956 } 2957 2958 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 2959 struct btrfs_backref_cache *cache, int is_reloc) 2960 { 2961 int i; 2962 2963 cache->rb_root = RB_ROOT; 2964 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2965 INIT_LIST_HEAD(&cache->pending[i]); 2966 INIT_LIST_HEAD(&cache->changed); 2967 INIT_LIST_HEAD(&cache->detached); 2968 INIT_LIST_HEAD(&cache->leaves); 2969 INIT_LIST_HEAD(&cache->pending_edge); 2970 INIT_LIST_HEAD(&cache->useless_node); 2971 cache->fs_info = fs_info; 2972 cache->is_reloc = is_reloc; 2973 } 2974 2975 struct btrfs_backref_node *btrfs_backref_alloc_node( 2976 struct btrfs_backref_cache *cache, u64 bytenr, int level) 2977 { 2978 struct btrfs_backref_node *node; 2979 2980 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 2981 node = kzalloc(sizeof(*node), GFP_NOFS); 2982 if (!node) 2983 return node; 2984 2985 INIT_LIST_HEAD(&node->list); 2986 INIT_LIST_HEAD(&node->upper); 2987 INIT_LIST_HEAD(&node->lower); 2988 RB_CLEAR_NODE(&node->rb_node); 2989 cache->nr_nodes++; 2990 node->level = level; 2991 node->bytenr = bytenr; 2992 2993 return node; 2994 } 2995 2996 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 2997 struct btrfs_backref_cache *cache) 2998 { 2999 struct btrfs_backref_edge *edge; 3000 3001 edge = kzalloc(sizeof(*edge), GFP_NOFS); 3002 if (edge) 3003 cache->nr_edges++; 3004 return edge; 3005 } 3006 3007 /* 3008 * Drop the backref node from cache, also cleaning up all its 3009 * upper edges and any uncached nodes in the path. 3010 * 3011 * This cleanup happens bottom up, thus the node should either 3012 * be the lowest node in the cache or a detached node. 3013 */ 3014 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 3015 struct btrfs_backref_node *node) 3016 { 3017 struct btrfs_backref_node *upper; 3018 struct btrfs_backref_edge *edge; 3019 3020 if (!node) 3021 return; 3022 3023 BUG_ON(!node->lowest && !node->detached); 3024 while (!list_empty(&node->upper)) { 3025 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 3026 list[LOWER]); 3027 upper = edge->node[UPPER]; 3028 list_del(&edge->list[LOWER]); 3029 list_del(&edge->list[UPPER]); 3030 btrfs_backref_free_edge(cache, edge); 3031 3032 /* 3033 * Add the node to leaf node list if no other child block 3034 * cached. 3035 */ 3036 if (list_empty(&upper->lower)) { 3037 list_add_tail(&upper->lower, &cache->leaves); 3038 upper->lowest = 1; 3039 } 3040 } 3041 3042 btrfs_backref_drop_node(cache, node); 3043 } 3044 3045 /* 3046 * Release all nodes/edges from current cache 3047 */ 3048 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 3049 { 3050 struct btrfs_backref_node *node; 3051 int i; 3052 3053 while (!list_empty(&cache->detached)) { 3054 node = list_entry(cache->detached.next, 3055 struct btrfs_backref_node, list); 3056 btrfs_backref_cleanup_node(cache, node); 3057 } 3058 3059 while (!list_empty(&cache->leaves)) { 3060 node = list_entry(cache->leaves.next, 3061 struct btrfs_backref_node, lower); 3062 btrfs_backref_cleanup_node(cache, node); 3063 } 3064 3065 cache->last_trans = 0; 3066 3067 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 3068 ASSERT(list_empty(&cache->pending[i])); 3069 ASSERT(list_empty(&cache->pending_edge)); 3070 ASSERT(list_empty(&cache->useless_node)); 3071 ASSERT(list_empty(&cache->changed)); 3072 ASSERT(list_empty(&cache->detached)); 3073 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 3074 ASSERT(!cache->nr_nodes); 3075 ASSERT(!cache->nr_edges); 3076 } 3077 3078 /* 3079 * Handle direct tree backref 3080 * 3081 * Direct tree backref means, the backref item shows its parent bytenr 3082 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 3083 * 3084 * @ref_key: The converted backref key. 3085 * For keyed backref, it's the item key. 3086 * For inlined backref, objectid is the bytenr, 3087 * type is btrfs_inline_ref_type, offset is 3088 * btrfs_inline_ref_offset. 3089 */ 3090 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 3091 struct btrfs_key *ref_key, 3092 struct btrfs_backref_node *cur) 3093 { 3094 struct btrfs_backref_edge *edge; 3095 struct btrfs_backref_node *upper; 3096 struct rb_node *rb_node; 3097 3098 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 3099 3100 /* Only reloc root uses backref pointing to itself */ 3101 if (ref_key->objectid == ref_key->offset) { 3102 struct btrfs_root *root; 3103 3104 cur->is_reloc_root = 1; 3105 /* Only reloc backref cache cares about a specific root */ 3106 if (cache->is_reloc) { 3107 root = find_reloc_root(cache->fs_info, cur->bytenr); 3108 if (!root) 3109 return -ENOENT; 3110 cur->root = root; 3111 } else { 3112 /* 3113 * For generic purpose backref cache, reloc root node 3114 * is useless. 3115 */ 3116 list_add(&cur->list, &cache->useless_node); 3117 } 3118 return 0; 3119 } 3120 3121 edge = btrfs_backref_alloc_edge(cache); 3122 if (!edge) 3123 return -ENOMEM; 3124 3125 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 3126 if (!rb_node) { 3127 /* Parent node not yet cached */ 3128 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 3129 cur->level + 1); 3130 if (!upper) { 3131 btrfs_backref_free_edge(cache, edge); 3132 return -ENOMEM; 3133 } 3134 3135 /* 3136 * Backrefs for the upper level block isn't cached, add the 3137 * block to pending list 3138 */ 3139 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3140 } else { 3141 /* Parent node already cached */ 3142 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 3143 ASSERT(upper->checked); 3144 INIT_LIST_HEAD(&edge->list[UPPER]); 3145 } 3146 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 3147 return 0; 3148 } 3149 3150 /* 3151 * Handle indirect tree backref 3152 * 3153 * Indirect tree backref means, we only know which tree the node belongs to. 3154 * We still need to do a tree search to find out the parents. This is for 3155 * TREE_BLOCK_REF backref (keyed or inlined). 3156 * 3157 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 3158 * @tree_key: The first key of this tree block. 3159 * @path: A clean (released) path, to avoid allocating path every time 3160 * the function get called. 3161 */ 3162 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 3163 struct btrfs_path *path, 3164 struct btrfs_key *ref_key, 3165 struct btrfs_key *tree_key, 3166 struct btrfs_backref_node *cur) 3167 { 3168 struct btrfs_fs_info *fs_info = cache->fs_info; 3169 struct btrfs_backref_node *upper; 3170 struct btrfs_backref_node *lower; 3171 struct btrfs_backref_edge *edge; 3172 struct extent_buffer *eb; 3173 struct btrfs_root *root; 3174 struct rb_node *rb_node; 3175 int level; 3176 bool need_check = true; 3177 int ret; 3178 3179 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 3180 if (IS_ERR(root)) 3181 return PTR_ERR(root); 3182 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3183 cur->cowonly = 1; 3184 3185 if (btrfs_root_level(&root->root_item) == cur->level) { 3186 /* Tree root */ 3187 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 3188 /* 3189 * For reloc backref cache, we may ignore reloc root. But for 3190 * general purpose backref cache, we can't rely on 3191 * btrfs_should_ignore_reloc_root() as it may conflict with 3192 * current running relocation and lead to missing root. 3193 * 3194 * For general purpose backref cache, reloc root detection is 3195 * completely relying on direct backref (key->offset is parent 3196 * bytenr), thus only do such check for reloc cache. 3197 */ 3198 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 3199 btrfs_put_root(root); 3200 list_add(&cur->list, &cache->useless_node); 3201 } else { 3202 cur->root = root; 3203 } 3204 return 0; 3205 } 3206 3207 level = cur->level + 1; 3208 3209 /* Search the tree to find parent blocks referring to the block */ 3210 path->search_commit_root = 1; 3211 path->skip_locking = 1; 3212 path->lowest_level = level; 3213 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 3214 path->lowest_level = 0; 3215 if (ret < 0) { 3216 btrfs_put_root(root); 3217 return ret; 3218 } 3219 if (ret > 0 && path->slots[level] > 0) 3220 path->slots[level]--; 3221 3222 eb = path->nodes[level]; 3223 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 3224 btrfs_err(fs_info, 3225 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 3226 cur->bytenr, level - 1, root->root_key.objectid, 3227 tree_key->objectid, tree_key->type, tree_key->offset); 3228 btrfs_put_root(root); 3229 ret = -ENOENT; 3230 goto out; 3231 } 3232 lower = cur; 3233 3234 /* Add all nodes and edges in the path */ 3235 for (; level < BTRFS_MAX_LEVEL; level++) { 3236 if (!path->nodes[level]) { 3237 ASSERT(btrfs_root_bytenr(&root->root_item) == 3238 lower->bytenr); 3239 /* Same as previous should_ignore_reloc_root() call */ 3240 if (btrfs_should_ignore_reloc_root(root) && 3241 cache->is_reloc) { 3242 btrfs_put_root(root); 3243 list_add(&lower->list, &cache->useless_node); 3244 } else { 3245 lower->root = root; 3246 } 3247 break; 3248 } 3249 3250 edge = btrfs_backref_alloc_edge(cache); 3251 if (!edge) { 3252 btrfs_put_root(root); 3253 ret = -ENOMEM; 3254 goto out; 3255 } 3256 3257 eb = path->nodes[level]; 3258 rb_node = rb_simple_search(&cache->rb_root, eb->start); 3259 if (!rb_node) { 3260 upper = btrfs_backref_alloc_node(cache, eb->start, 3261 lower->level + 1); 3262 if (!upper) { 3263 btrfs_put_root(root); 3264 btrfs_backref_free_edge(cache, edge); 3265 ret = -ENOMEM; 3266 goto out; 3267 } 3268 upper->owner = btrfs_header_owner(eb); 3269 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3270 upper->cowonly = 1; 3271 3272 /* 3273 * If we know the block isn't shared we can avoid 3274 * checking its backrefs. 3275 */ 3276 if (btrfs_block_can_be_shared(root, eb)) 3277 upper->checked = 0; 3278 else 3279 upper->checked = 1; 3280 3281 /* 3282 * Add the block to pending list if we need to check its 3283 * backrefs, we only do this once while walking up a 3284 * tree as we will catch anything else later on. 3285 */ 3286 if (!upper->checked && need_check) { 3287 need_check = false; 3288 list_add_tail(&edge->list[UPPER], 3289 &cache->pending_edge); 3290 } else { 3291 if (upper->checked) 3292 need_check = true; 3293 INIT_LIST_HEAD(&edge->list[UPPER]); 3294 } 3295 } else { 3296 upper = rb_entry(rb_node, struct btrfs_backref_node, 3297 rb_node); 3298 ASSERT(upper->checked); 3299 INIT_LIST_HEAD(&edge->list[UPPER]); 3300 if (!upper->owner) 3301 upper->owner = btrfs_header_owner(eb); 3302 } 3303 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 3304 3305 if (rb_node) { 3306 btrfs_put_root(root); 3307 break; 3308 } 3309 lower = upper; 3310 upper = NULL; 3311 } 3312 out: 3313 btrfs_release_path(path); 3314 return ret; 3315 } 3316 3317 /* 3318 * Add backref node @cur into @cache. 3319 * 3320 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 3321 * links aren't yet bi-directional. Needs to finish such links. 3322 * Use btrfs_backref_finish_upper_links() to finish such linkage. 3323 * 3324 * @path: Released path for indirect tree backref lookup 3325 * @iter: Released backref iter for extent tree search 3326 * @node_key: The first key of the tree block 3327 */ 3328 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 3329 struct btrfs_path *path, 3330 struct btrfs_backref_iter *iter, 3331 struct btrfs_key *node_key, 3332 struct btrfs_backref_node *cur) 3333 { 3334 struct btrfs_fs_info *fs_info = cache->fs_info; 3335 struct btrfs_backref_edge *edge; 3336 struct btrfs_backref_node *exist; 3337 int ret; 3338 3339 ret = btrfs_backref_iter_start(iter, cur->bytenr); 3340 if (ret < 0) 3341 return ret; 3342 /* 3343 * We skip the first btrfs_tree_block_info, as we don't use the key 3344 * stored in it, but fetch it from the tree block 3345 */ 3346 if (btrfs_backref_has_tree_block_info(iter)) { 3347 ret = btrfs_backref_iter_next(iter); 3348 if (ret < 0) 3349 goto out; 3350 /* No extra backref? This means the tree block is corrupted */ 3351 if (ret > 0) { 3352 ret = -EUCLEAN; 3353 goto out; 3354 } 3355 } 3356 WARN_ON(cur->checked); 3357 if (!list_empty(&cur->upper)) { 3358 /* 3359 * The backref was added previously when processing backref of 3360 * type BTRFS_TREE_BLOCK_REF_KEY 3361 */ 3362 ASSERT(list_is_singular(&cur->upper)); 3363 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 3364 list[LOWER]); 3365 ASSERT(list_empty(&edge->list[UPPER])); 3366 exist = edge->node[UPPER]; 3367 /* 3368 * Add the upper level block to pending list if we need check 3369 * its backrefs 3370 */ 3371 if (!exist->checked) 3372 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3373 } else { 3374 exist = NULL; 3375 } 3376 3377 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 3378 struct extent_buffer *eb; 3379 struct btrfs_key key; 3380 int type; 3381 3382 cond_resched(); 3383 eb = btrfs_backref_get_eb(iter); 3384 3385 key.objectid = iter->bytenr; 3386 if (btrfs_backref_iter_is_inline_ref(iter)) { 3387 struct btrfs_extent_inline_ref *iref; 3388 3389 /* Update key for inline backref */ 3390 iref = (struct btrfs_extent_inline_ref *) 3391 ((unsigned long)iter->cur_ptr); 3392 type = btrfs_get_extent_inline_ref_type(eb, iref, 3393 BTRFS_REF_TYPE_BLOCK); 3394 if (type == BTRFS_REF_TYPE_INVALID) { 3395 ret = -EUCLEAN; 3396 goto out; 3397 } 3398 key.type = type; 3399 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3400 } else { 3401 key.type = iter->cur_key.type; 3402 key.offset = iter->cur_key.offset; 3403 } 3404 3405 /* 3406 * Parent node found and matches current inline ref, no need to 3407 * rebuild this node for this inline ref 3408 */ 3409 if (exist && 3410 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 3411 exist->owner == key.offset) || 3412 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 3413 exist->bytenr == key.offset))) { 3414 exist = NULL; 3415 continue; 3416 } 3417 3418 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 3419 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 3420 ret = handle_direct_tree_backref(cache, &key, cur); 3421 if (ret < 0) 3422 goto out; 3423 continue; 3424 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 3425 ret = -EINVAL; 3426 btrfs_print_v0_err(fs_info); 3427 btrfs_handle_fs_error(fs_info, ret, NULL); 3428 goto out; 3429 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 3430 continue; 3431 } 3432 3433 /* 3434 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 3435 * means the root objectid. We need to search the tree to get 3436 * its parent bytenr. 3437 */ 3438 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 3439 cur); 3440 if (ret < 0) 3441 goto out; 3442 } 3443 ret = 0; 3444 cur->checked = 1; 3445 WARN_ON(exist); 3446 out: 3447 btrfs_backref_iter_release(iter); 3448 return ret; 3449 } 3450 3451 /* 3452 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 3453 */ 3454 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 3455 struct btrfs_backref_node *start) 3456 { 3457 struct list_head *useless_node = &cache->useless_node; 3458 struct btrfs_backref_edge *edge; 3459 struct rb_node *rb_node; 3460 LIST_HEAD(pending_edge); 3461 3462 ASSERT(start->checked); 3463 3464 /* Insert this node to cache if it's not COW-only */ 3465 if (!start->cowonly) { 3466 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 3467 &start->rb_node); 3468 if (rb_node) 3469 btrfs_backref_panic(cache->fs_info, start->bytenr, 3470 -EEXIST); 3471 list_add_tail(&start->lower, &cache->leaves); 3472 } 3473 3474 /* 3475 * Use breadth first search to iterate all related edges. 3476 * 3477 * The starting points are all the edges of this node 3478 */ 3479 list_for_each_entry(edge, &start->upper, list[LOWER]) 3480 list_add_tail(&edge->list[UPPER], &pending_edge); 3481 3482 while (!list_empty(&pending_edge)) { 3483 struct btrfs_backref_node *upper; 3484 struct btrfs_backref_node *lower; 3485 3486 edge = list_first_entry(&pending_edge, 3487 struct btrfs_backref_edge, list[UPPER]); 3488 list_del_init(&edge->list[UPPER]); 3489 upper = edge->node[UPPER]; 3490 lower = edge->node[LOWER]; 3491 3492 /* Parent is detached, no need to keep any edges */ 3493 if (upper->detached) { 3494 list_del(&edge->list[LOWER]); 3495 btrfs_backref_free_edge(cache, edge); 3496 3497 /* Lower node is orphan, queue for cleanup */ 3498 if (list_empty(&lower->upper)) 3499 list_add(&lower->list, useless_node); 3500 continue; 3501 } 3502 3503 /* 3504 * All new nodes added in current build_backref_tree() haven't 3505 * been linked to the cache rb tree. 3506 * So if we have upper->rb_node populated, this means a cache 3507 * hit. We only need to link the edge, as @upper and all its 3508 * parents have already been linked. 3509 */ 3510 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3511 if (upper->lowest) { 3512 list_del_init(&upper->lower); 3513 upper->lowest = 0; 3514 } 3515 3516 list_add_tail(&edge->list[UPPER], &upper->lower); 3517 continue; 3518 } 3519 3520 /* Sanity check, we shouldn't have any unchecked nodes */ 3521 if (!upper->checked) { 3522 ASSERT(0); 3523 return -EUCLEAN; 3524 } 3525 3526 /* Sanity check, COW-only node has non-COW-only parent */ 3527 if (start->cowonly != upper->cowonly) { 3528 ASSERT(0); 3529 return -EUCLEAN; 3530 } 3531 3532 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3533 if (!upper->cowonly) { 3534 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3535 &upper->rb_node); 3536 if (rb_node) { 3537 btrfs_backref_panic(cache->fs_info, 3538 upper->bytenr, -EEXIST); 3539 return -EUCLEAN; 3540 } 3541 } 3542 3543 list_add_tail(&edge->list[UPPER], &upper->lower); 3544 3545 /* 3546 * Also queue all the parent edges of this uncached node 3547 * to finish the upper linkage 3548 */ 3549 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3550 list_add_tail(&edge->list[UPPER], &pending_edge); 3551 } 3552 return 0; 3553 } 3554 3555 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3556 struct btrfs_backref_node *node) 3557 { 3558 struct btrfs_backref_node *lower; 3559 struct btrfs_backref_node *upper; 3560 struct btrfs_backref_edge *edge; 3561 3562 while (!list_empty(&cache->useless_node)) { 3563 lower = list_first_entry(&cache->useless_node, 3564 struct btrfs_backref_node, list); 3565 list_del_init(&lower->list); 3566 } 3567 while (!list_empty(&cache->pending_edge)) { 3568 edge = list_first_entry(&cache->pending_edge, 3569 struct btrfs_backref_edge, list[UPPER]); 3570 list_del(&edge->list[UPPER]); 3571 list_del(&edge->list[LOWER]); 3572 lower = edge->node[LOWER]; 3573 upper = edge->node[UPPER]; 3574 btrfs_backref_free_edge(cache, edge); 3575 3576 /* 3577 * Lower is no longer linked to any upper backref nodes and 3578 * isn't in the cache, we can free it ourselves. 3579 */ 3580 if (list_empty(&lower->upper) && 3581 RB_EMPTY_NODE(&lower->rb_node)) 3582 list_add(&lower->list, &cache->useless_node); 3583 3584 if (!RB_EMPTY_NODE(&upper->rb_node)) 3585 continue; 3586 3587 /* Add this guy's upper edges to the list to process */ 3588 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3589 list_add_tail(&edge->list[UPPER], 3590 &cache->pending_edge); 3591 if (list_empty(&upper->upper)) 3592 list_add(&upper->list, &cache->useless_node); 3593 } 3594 3595 while (!list_empty(&cache->useless_node)) { 3596 lower = list_first_entry(&cache->useless_node, 3597 struct btrfs_backref_node, list); 3598 list_del_init(&lower->list); 3599 if (lower == node) 3600 node = NULL; 3601 btrfs_backref_drop_node(cache, lower); 3602 } 3603 3604 btrfs_backref_cleanup_node(cache, node); 3605 ASSERT(list_empty(&cache->useless_node) && 3606 list_empty(&cache->pending_edge)); 3607 } 3608