xref: /linux/fs/btrfs/backref.c (revision 791d3ef2e11100449837dc0b6fe884e60ca3a484)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 
17 /* Just an arbitrary number so we can be sure this happened */
18 #define BACKREF_FOUND_SHARED 6
19 
20 struct extent_inode_elem {
21 	u64 inum;
22 	u64 offset;
23 	struct extent_inode_elem *next;
24 };
25 
26 static int check_extent_in_eb(const struct btrfs_key *key,
27 			      const struct extent_buffer *eb,
28 			      const struct btrfs_file_extent_item *fi,
29 			      u64 extent_item_pos,
30 			      struct extent_inode_elem **eie,
31 			      bool ignore_offset)
32 {
33 	u64 offset = 0;
34 	struct extent_inode_elem *e;
35 
36 	if (!ignore_offset &&
37 	    !btrfs_file_extent_compression(eb, fi) &&
38 	    !btrfs_file_extent_encryption(eb, fi) &&
39 	    !btrfs_file_extent_other_encoding(eb, fi)) {
40 		u64 data_offset;
41 		u64 data_len;
42 
43 		data_offset = btrfs_file_extent_offset(eb, fi);
44 		data_len = btrfs_file_extent_num_bytes(eb, fi);
45 
46 		if (extent_item_pos < data_offset ||
47 		    extent_item_pos >= data_offset + data_len)
48 			return 1;
49 		offset = extent_item_pos - data_offset;
50 	}
51 
52 	e = kmalloc(sizeof(*e), GFP_NOFS);
53 	if (!e)
54 		return -ENOMEM;
55 
56 	e->next = *eie;
57 	e->inum = key->objectid;
58 	e->offset = key->offset + offset;
59 	*eie = e;
60 
61 	return 0;
62 }
63 
64 static void free_inode_elem_list(struct extent_inode_elem *eie)
65 {
66 	struct extent_inode_elem *eie_next;
67 
68 	for (; eie; eie = eie_next) {
69 		eie_next = eie->next;
70 		kfree(eie);
71 	}
72 }
73 
74 static int find_extent_in_eb(const struct extent_buffer *eb,
75 			     u64 wanted_disk_byte, u64 extent_item_pos,
76 			     struct extent_inode_elem **eie,
77 			     bool ignore_offset)
78 {
79 	u64 disk_byte;
80 	struct btrfs_key key;
81 	struct btrfs_file_extent_item *fi;
82 	int slot;
83 	int nritems;
84 	int extent_type;
85 	int ret;
86 
87 	/*
88 	 * from the shared data ref, we only have the leaf but we need
89 	 * the key. thus, we must look into all items and see that we
90 	 * find one (some) with a reference to our extent item.
91 	 */
92 	nritems = btrfs_header_nritems(eb);
93 	for (slot = 0; slot < nritems; ++slot) {
94 		btrfs_item_key_to_cpu(eb, &key, slot);
95 		if (key.type != BTRFS_EXTENT_DATA_KEY)
96 			continue;
97 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
98 		extent_type = btrfs_file_extent_type(eb, fi);
99 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
100 			continue;
101 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
102 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
103 		if (disk_byte != wanted_disk_byte)
104 			continue;
105 
106 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
107 		if (ret < 0)
108 			return ret;
109 	}
110 
111 	return 0;
112 }
113 
114 struct preftree {
115 	struct rb_root root;
116 	unsigned int count;
117 };
118 
119 #define PREFTREE_INIT	{ .root = RB_ROOT, .count = 0 }
120 
121 struct preftrees {
122 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
123 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
124 	struct preftree indirect_missing_keys;
125 };
126 
127 /*
128  * Checks for a shared extent during backref search.
129  *
130  * The share_count tracks prelim_refs (direct and indirect) having a
131  * ref->count >0:
132  *  - incremented when a ref->count transitions to >0
133  *  - decremented when a ref->count transitions to <1
134  */
135 struct share_check {
136 	u64 root_objectid;
137 	u64 inum;
138 	int share_count;
139 };
140 
141 static inline int extent_is_shared(struct share_check *sc)
142 {
143 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
144 }
145 
146 static struct kmem_cache *btrfs_prelim_ref_cache;
147 
148 int __init btrfs_prelim_ref_init(void)
149 {
150 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
151 					sizeof(struct prelim_ref),
152 					0,
153 					SLAB_MEM_SPREAD,
154 					NULL);
155 	if (!btrfs_prelim_ref_cache)
156 		return -ENOMEM;
157 	return 0;
158 }
159 
160 void __cold btrfs_prelim_ref_exit(void)
161 {
162 	kmem_cache_destroy(btrfs_prelim_ref_cache);
163 }
164 
165 static void free_pref(struct prelim_ref *ref)
166 {
167 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
168 }
169 
170 /*
171  * Return 0 when both refs are for the same block (and can be merged).
172  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
173  * indicates a 'higher' block.
174  */
175 static int prelim_ref_compare(struct prelim_ref *ref1,
176 			      struct prelim_ref *ref2)
177 {
178 	if (ref1->level < ref2->level)
179 		return -1;
180 	if (ref1->level > ref2->level)
181 		return 1;
182 	if (ref1->root_id < ref2->root_id)
183 		return -1;
184 	if (ref1->root_id > ref2->root_id)
185 		return 1;
186 	if (ref1->key_for_search.type < ref2->key_for_search.type)
187 		return -1;
188 	if (ref1->key_for_search.type > ref2->key_for_search.type)
189 		return 1;
190 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
191 		return -1;
192 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
193 		return 1;
194 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
195 		return -1;
196 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
197 		return 1;
198 	if (ref1->parent < ref2->parent)
199 		return -1;
200 	if (ref1->parent > ref2->parent)
201 		return 1;
202 
203 	return 0;
204 }
205 
206 static void update_share_count(struct share_check *sc, int oldcount,
207 			       int newcount)
208 {
209 	if ((!sc) || (oldcount == 0 && newcount < 1))
210 		return;
211 
212 	if (oldcount > 0 && newcount < 1)
213 		sc->share_count--;
214 	else if (oldcount < 1 && newcount > 0)
215 		sc->share_count++;
216 }
217 
218 /*
219  * Add @newref to the @root rbtree, merging identical refs.
220  *
221  * Callers should assume that newref has been freed after calling.
222  */
223 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
224 			      struct preftree *preftree,
225 			      struct prelim_ref *newref,
226 			      struct share_check *sc)
227 {
228 	struct rb_root *root;
229 	struct rb_node **p;
230 	struct rb_node *parent = NULL;
231 	struct prelim_ref *ref;
232 	int result;
233 
234 	root = &preftree->root;
235 	p = &root->rb_node;
236 
237 	while (*p) {
238 		parent = *p;
239 		ref = rb_entry(parent, struct prelim_ref, rbnode);
240 		result = prelim_ref_compare(ref, newref);
241 		if (result < 0) {
242 			p = &(*p)->rb_left;
243 		} else if (result > 0) {
244 			p = &(*p)->rb_right;
245 		} else {
246 			/* Identical refs, merge them and free @newref */
247 			struct extent_inode_elem *eie = ref->inode_list;
248 
249 			while (eie && eie->next)
250 				eie = eie->next;
251 
252 			if (!eie)
253 				ref->inode_list = newref->inode_list;
254 			else
255 				eie->next = newref->inode_list;
256 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
257 						     preftree->count);
258 			/*
259 			 * A delayed ref can have newref->count < 0.
260 			 * The ref->count is updated to follow any
261 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
262 			 */
263 			update_share_count(sc, ref->count,
264 					   ref->count + newref->count);
265 			ref->count += newref->count;
266 			free_pref(newref);
267 			return;
268 		}
269 	}
270 
271 	update_share_count(sc, 0, newref->count);
272 	preftree->count++;
273 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
274 	rb_link_node(&newref->rbnode, parent, p);
275 	rb_insert_color(&newref->rbnode, root);
276 }
277 
278 /*
279  * Release the entire tree.  We don't care about internal consistency so
280  * just free everything and then reset the tree root.
281  */
282 static void prelim_release(struct preftree *preftree)
283 {
284 	struct prelim_ref *ref, *next_ref;
285 
286 	rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
287 					     rbnode)
288 		free_pref(ref);
289 
290 	preftree->root = RB_ROOT;
291 	preftree->count = 0;
292 }
293 
294 /*
295  * the rules for all callers of this function are:
296  * - obtaining the parent is the goal
297  * - if you add a key, you must know that it is a correct key
298  * - if you cannot add the parent or a correct key, then we will look into the
299  *   block later to set a correct key
300  *
301  * delayed refs
302  * ============
303  *        backref type | shared | indirect | shared | indirect
304  * information         |   tree |     tree |   data |     data
305  * --------------------+--------+----------+--------+----------
306  *      parent logical |    y   |     -    |    -   |     -
307  *      key to resolve |    -   |     y    |    y   |     y
308  *  tree block logical |    -   |     -    |    -   |     -
309  *  root for resolving |    y   |     y    |    y   |     y
310  *
311  * - column 1:       we've the parent -> done
312  * - column 2, 3, 4: we use the key to find the parent
313  *
314  * on disk refs (inline or keyed)
315  * ==============================
316  *        backref type | shared | indirect | shared | indirect
317  * information         |   tree |     tree |   data |     data
318  * --------------------+--------+----------+--------+----------
319  *      parent logical |    y   |     -    |    y   |     -
320  *      key to resolve |    -   |     -    |    -   |     y
321  *  tree block logical |    y   |     y    |    y   |     y
322  *  root for resolving |    -   |     y    |    y   |     y
323  *
324  * - column 1, 3: we've the parent -> done
325  * - column 2:    we take the first key from the block to find the parent
326  *                (see add_missing_keys)
327  * - column 4:    we use the key to find the parent
328  *
329  * additional information that's available but not required to find the parent
330  * block might help in merging entries to gain some speed.
331  */
332 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
333 			  struct preftree *preftree, u64 root_id,
334 			  const struct btrfs_key *key, int level, u64 parent,
335 			  u64 wanted_disk_byte, int count,
336 			  struct share_check *sc, gfp_t gfp_mask)
337 {
338 	struct prelim_ref *ref;
339 
340 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
341 		return 0;
342 
343 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
344 	if (!ref)
345 		return -ENOMEM;
346 
347 	ref->root_id = root_id;
348 	if (key) {
349 		ref->key_for_search = *key;
350 		/*
351 		 * We can often find data backrefs with an offset that is too
352 		 * large (>= LLONG_MAX, maximum allowed file offset) due to
353 		 * underflows when subtracting a file's offset with the data
354 		 * offset of its corresponding extent data item. This can
355 		 * happen for example in the clone ioctl.
356 		 * So if we detect such case we set the search key's offset to
357 		 * zero to make sure we will find the matching file extent item
358 		 * at add_all_parents(), otherwise we will miss it because the
359 		 * offset taken form the backref is much larger then the offset
360 		 * of the file extent item. This can make us scan a very large
361 		 * number of file extent items, but at least it will not make
362 		 * us miss any.
363 		 * This is an ugly workaround for a behaviour that should have
364 		 * never existed, but it does and a fix for the clone ioctl
365 		 * would touch a lot of places, cause backwards incompatibility
366 		 * and would not fix the problem for extents cloned with older
367 		 * kernels.
368 		 */
369 		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
370 		    ref->key_for_search.offset >= LLONG_MAX)
371 			ref->key_for_search.offset = 0;
372 	} else {
373 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
374 	}
375 
376 	ref->inode_list = NULL;
377 	ref->level = level;
378 	ref->count = count;
379 	ref->parent = parent;
380 	ref->wanted_disk_byte = wanted_disk_byte;
381 	prelim_ref_insert(fs_info, preftree, ref, sc);
382 	return extent_is_shared(sc);
383 }
384 
385 /* direct refs use root == 0, key == NULL */
386 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
387 			  struct preftrees *preftrees, int level, u64 parent,
388 			  u64 wanted_disk_byte, int count,
389 			  struct share_check *sc, gfp_t gfp_mask)
390 {
391 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
392 			      parent, wanted_disk_byte, count, sc, gfp_mask);
393 }
394 
395 /* indirect refs use parent == 0 */
396 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
397 			    struct preftrees *preftrees, u64 root_id,
398 			    const struct btrfs_key *key, int level,
399 			    u64 wanted_disk_byte, int count,
400 			    struct share_check *sc, gfp_t gfp_mask)
401 {
402 	struct preftree *tree = &preftrees->indirect;
403 
404 	if (!key)
405 		tree = &preftrees->indirect_missing_keys;
406 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
407 			      wanted_disk_byte, count, sc, gfp_mask);
408 }
409 
410 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
411 			   struct ulist *parents, struct prelim_ref *ref,
412 			   int level, u64 time_seq, const u64 *extent_item_pos,
413 			   u64 total_refs, bool ignore_offset)
414 {
415 	int ret = 0;
416 	int slot;
417 	struct extent_buffer *eb;
418 	struct btrfs_key key;
419 	struct btrfs_key *key_for_search = &ref->key_for_search;
420 	struct btrfs_file_extent_item *fi;
421 	struct extent_inode_elem *eie = NULL, *old = NULL;
422 	u64 disk_byte;
423 	u64 wanted_disk_byte = ref->wanted_disk_byte;
424 	u64 count = 0;
425 
426 	if (level != 0) {
427 		eb = path->nodes[level];
428 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
429 		if (ret < 0)
430 			return ret;
431 		return 0;
432 	}
433 
434 	/*
435 	 * We normally enter this function with the path already pointing to
436 	 * the first item to check. But sometimes, we may enter it with
437 	 * slot==nritems. In that case, go to the next leaf before we continue.
438 	 */
439 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
440 		if (time_seq == SEQ_LAST)
441 			ret = btrfs_next_leaf(root, path);
442 		else
443 			ret = btrfs_next_old_leaf(root, path, time_seq);
444 	}
445 
446 	while (!ret && count < total_refs) {
447 		eb = path->nodes[0];
448 		slot = path->slots[0];
449 
450 		btrfs_item_key_to_cpu(eb, &key, slot);
451 
452 		if (key.objectid != key_for_search->objectid ||
453 		    key.type != BTRFS_EXTENT_DATA_KEY)
454 			break;
455 
456 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
457 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
458 
459 		if (disk_byte == wanted_disk_byte) {
460 			eie = NULL;
461 			old = NULL;
462 			count++;
463 			if (extent_item_pos) {
464 				ret = check_extent_in_eb(&key, eb, fi,
465 						*extent_item_pos,
466 						&eie, ignore_offset);
467 				if (ret < 0)
468 					break;
469 			}
470 			if (ret > 0)
471 				goto next;
472 			ret = ulist_add_merge_ptr(parents, eb->start,
473 						  eie, (void **)&old, GFP_NOFS);
474 			if (ret < 0)
475 				break;
476 			if (!ret && extent_item_pos) {
477 				while (old->next)
478 					old = old->next;
479 				old->next = eie;
480 			}
481 			eie = NULL;
482 		}
483 next:
484 		if (time_seq == SEQ_LAST)
485 			ret = btrfs_next_item(root, path);
486 		else
487 			ret = btrfs_next_old_item(root, path, time_seq);
488 	}
489 
490 	if (ret > 0)
491 		ret = 0;
492 	else if (ret < 0)
493 		free_inode_elem_list(eie);
494 	return ret;
495 }
496 
497 /*
498  * resolve an indirect backref in the form (root_id, key, level)
499  * to a logical address
500  */
501 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
502 				struct btrfs_path *path, u64 time_seq,
503 				struct prelim_ref *ref, struct ulist *parents,
504 				const u64 *extent_item_pos, u64 total_refs,
505 				bool ignore_offset)
506 {
507 	struct btrfs_root *root;
508 	struct btrfs_key root_key;
509 	struct extent_buffer *eb;
510 	int ret = 0;
511 	int root_level;
512 	int level = ref->level;
513 	int index;
514 
515 	root_key.objectid = ref->root_id;
516 	root_key.type = BTRFS_ROOT_ITEM_KEY;
517 	root_key.offset = (u64)-1;
518 
519 	index = srcu_read_lock(&fs_info->subvol_srcu);
520 
521 	root = btrfs_get_fs_root(fs_info, &root_key, false);
522 	if (IS_ERR(root)) {
523 		srcu_read_unlock(&fs_info->subvol_srcu, index);
524 		ret = PTR_ERR(root);
525 		goto out;
526 	}
527 
528 	if (btrfs_is_testing(fs_info)) {
529 		srcu_read_unlock(&fs_info->subvol_srcu, index);
530 		ret = -ENOENT;
531 		goto out;
532 	}
533 
534 	if (path->search_commit_root)
535 		root_level = btrfs_header_level(root->commit_root);
536 	else if (time_seq == SEQ_LAST)
537 		root_level = btrfs_header_level(root->node);
538 	else
539 		root_level = btrfs_old_root_level(root, time_seq);
540 
541 	if (root_level + 1 == level) {
542 		srcu_read_unlock(&fs_info->subvol_srcu, index);
543 		goto out;
544 	}
545 
546 	path->lowest_level = level;
547 	if (time_seq == SEQ_LAST)
548 		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
549 					0, 0);
550 	else
551 		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
552 					    time_seq);
553 
554 	/* root node has been locked, we can release @subvol_srcu safely here */
555 	srcu_read_unlock(&fs_info->subvol_srcu, index);
556 
557 	btrfs_debug(fs_info,
558 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
559 		 ref->root_id, level, ref->count, ret,
560 		 ref->key_for_search.objectid, ref->key_for_search.type,
561 		 ref->key_for_search.offset);
562 	if (ret < 0)
563 		goto out;
564 
565 	eb = path->nodes[level];
566 	while (!eb) {
567 		if (WARN_ON(!level)) {
568 			ret = 1;
569 			goto out;
570 		}
571 		level--;
572 		eb = path->nodes[level];
573 	}
574 
575 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
576 			      extent_item_pos, total_refs, ignore_offset);
577 out:
578 	path->lowest_level = 0;
579 	btrfs_release_path(path);
580 	return ret;
581 }
582 
583 static struct extent_inode_elem *
584 unode_aux_to_inode_list(struct ulist_node *node)
585 {
586 	if (!node)
587 		return NULL;
588 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
589 }
590 
591 /*
592  * We maintain three seperate rbtrees: one for direct refs, one for
593  * indirect refs which have a key, and one for indirect refs which do not
594  * have a key. Each tree does merge on insertion.
595  *
596  * Once all of the references are located, we iterate over the tree of
597  * indirect refs with missing keys. An appropriate key is located and
598  * the ref is moved onto the tree for indirect refs. After all missing
599  * keys are thus located, we iterate over the indirect ref tree, resolve
600  * each reference, and then insert the resolved reference onto the
601  * direct tree (merging there too).
602  *
603  * New backrefs (i.e., for parent nodes) are added to the appropriate
604  * rbtree as they are encountered. The new backrefs are subsequently
605  * resolved as above.
606  */
607 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
608 				 struct btrfs_path *path, u64 time_seq,
609 				 struct preftrees *preftrees,
610 				 const u64 *extent_item_pos, u64 total_refs,
611 				 struct share_check *sc, bool ignore_offset)
612 {
613 	int err;
614 	int ret = 0;
615 	struct ulist *parents;
616 	struct ulist_node *node;
617 	struct ulist_iterator uiter;
618 	struct rb_node *rnode;
619 
620 	parents = ulist_alloc(GFP_NOFS);
621 	if (!parents)
622 		return -ENOMEM;
623 
624 	/*
625 	 * We could trade memory usage for performance here by iterating
626 	 * the tree, allocating new refs for each insertion, and then
627 	 * freeing the entire indirect tree when we're done.  In some test
628 	 * cases, the tree can grow quite large (~200k objects).
629 	 */
630 	while ((rnode = rb_first(&preftrees->indirect.root))) {
631 		struct prelim_ref *ref;
632 
633 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
634 		if (WARN(ref->parent,
635 			 "BUG: direct ref found in indirect tree")) {
636 			ret = -EINVAL;
637 			goto out;
638 		}
639 
640 		rb_erase(&ref->rbnode, &preftrees->indirect.root);
641 		preftrees->indirect.count--;
642 
643 		if (ref->count == 0) {
644 			free_pref(ref);
645 			continue;
646 		}
647 
648 		if (sc && sc->root_objectid &&
649 		    ref->root_id != sc->root_objectid) {
650 			free_pref(ref);
651 			ret = BACKREF_FOUND_SHARED;
652 			goto out;
653 		}
654 		err = resolve_indirect_ref(fs_info, path, time_seq, ref,
655 					   parents, extent_item_pos,
656 					   total_refs, ignore_offset);
657 		/*
658 		 * we can only tolerate ENOENT,otherwise,we should catch error
659 		 * and return directly.
660 		 */
661 		if (err == -ENOENT) {
662 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
663 					  NULL);
664 			continue;
665 		} else if (err) {
666 			free_pref(ref);
667 			ret = err;
668 			goto out;
669 		}
670 
671 		/* we put the first parent into the ref at hand */
672 		ULIST_ITER_INIT(&uiter);
673 		node = ulist_next(parents, &uiter);
674 		ref->parent = node ? node->val : 0;
675 		ref->inode_list = unode_aux_to_inode_list(node);
676 
677 		/* Add a prelim_ref(s) for any other parent(s). */
678 		while ((node = ulist_next(parents, &uiter))) {
679 			struct prelim_ref *new_ref;
680 
681 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
682 						   GFP_NOFS);
683 			if (!new_ref) {
684 				free_pref(ref);
685 				ret = -ENOMEM;
686 				goto out;
687 			}
688 			memcpy(new_ref, ref, sizeof(*ref));
689 			new_ref->parent = node->val;
690 			new_ref->inode_list = unode_aux_to_inode_list(node);
691 			prelim_ref_insert(fs_info, &preftrees->direct,
692 					  new_ref, NULL);
693 		}
694 
695 		/*
696 		 * Now it's a direct ref, put it in the the direct tree. We must
697 		 * do this last because the ref could be merged/freed here.
698 		 */
699 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
700 
701 		ulist_reinit(parents);
702 		cond_resched();
703 	}
704 out:
705 	ulist_free(parents);
706 	return ret;
707 }
708 
709 /*
710  * read tree blocks and add keys where required.
711  */
712 static int add_missing_keys(struct btrfs_fs_info *fs_info,
713 			    struct preftrees *preftrees)
714 {
715 	struct prelim_ref *ref;
716 	struct extent_buffer *eb;
717 	struct preftree *tree = &preftrees->indirect_missing_keys;
718 	struct rb_node *node;
719 
720 	while ((node = rb_first(&tree->root))) {
721 		ref = rb_entry(node, struct prelim_ref, rbnode);
722 		rb_erase(node, &tree->root);
723 
724 		BUG_ON(ref->parent);	/* should not be a direct ref */
725 		BUG_ON(ref->key_for_search.type);
726 		BUG_ON(!ref->wanted_disk_byte);
727 
728 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
729 				     ref->level - 1, NULL);
730 		if (IS_ERR(eb)) {
731 			free_pref(ref);
732 			return PTR_ERR(eb);
733 		} else if (!extent_buffer_uptodate(eb)) {
734 			free_pref(ref);
735 			free_extent_buffer(eb);
736 			return -EIO;
737 		}
738 		btrfs_tree_read_lock(eb);
739 		if (btrfs_header_level(eb) == 0)
740 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
741 		else
742 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
743 		btrfs_tree_read_unlock(eb);
744 		free_extent_buffer(eb);
745 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
746 		cond_resched();
747 	}
748 	return 0;
749 }
750 
751 /*
752  * add all currently queued delayed refs from this head whose seq nr is
753  * smaller or equal that seq to the list
754  */
755 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
756 			    struct btrfs_delayed_ref_head *head, u64 seq,
757 			    struct preftrees *preftrees, u64 *total_refs,
758 			    struct share_check *sc)
759 {
760 	struct btrfs_delayed_ref_node *node;
761 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
762 	struct btrfs_key key;
763 	struct btrfs_key tmp_op_key;
764 	struct rb_node *n;
765 	int count;
766 	int ret = 0;
767 
768 	if (extent_op && extent_op->update_key)
769 		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
770 
771 	spin_lock(&head->lock);
772 	for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) {
773 		node = rb_entry(n, struct btrfs_delayed_ref_node,
774 				ref_node);
775 		if (node->seq > seq)
776 			continue;
777 
778 		switch (node->action) {
779 		case BTRFS_ADD_DELAYED_EXTENT:
780 		case BTRFS_UPDATE_DELAYED_HEAD:
781 			WARN_ON(1);
782 			continue;
783 		case BTRFS_ADD_DELAYED_REF:
784 			count = node->ref_mod;
785 			break;
786 		case BTRFS_DROP_DELAYED_REF:
787 			count = node->ref_mod * -1;
788 			break;
789 		default:
790 			BUG_ON(1);
791 		}
792 		*total_refs += count;
793 		switch (node->type) {
794 		case BTRFS_TREE_BLOCK_REF_KEY: {
795 			/* NORMAL INDIRECT METADATA backref */
796 			struct btrfs_delayed_tree_ref *ref;
797 
798 			ref = btrfs_delayed_node_to_tree_ref(node);
799 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
800 					       &tmp_op_key, ref->level + 1,
801 					       node->bytenr, count, sc,
802 					       GFP_ATOMIC);
803 			break;
804 		}
805 		case BTRFS_SHARED_BLOCK_REF_KEY: {
806 			/* SHARED DIRECT METADATA backref */
807 			struct btrfs_delayed_tree_ref *ref;
808 
809 			ref = btrfs_delayed_node_to_tree_ref(node);
810 
811 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
812 					     ref->parent, node->bytenr, count,
813 					     sc, GFP_ATOMIC);
814 			break;
815 		}
816 		case BTRFS_EXTENT_DATA_REF_KEY: {
817 			/* NORMAL INDIRECT DATA backref */
818 			struct btrfs_delayed_data_ref *ref;
819 			ref = btrfs_delayed_node_to_data_ref(node);
820 
821 			key.objectid = ref->objectid;
822 			key.type = BTRFS_EXTENT_DATA_KEY;
823 			key.offset = ref->offset;
824 
825 			/*
826 			 * Found a inum that doesn't match our known inum, we
827 			 * know it's shared.
828 			 */
829 			if (sc && sc->inum && ref->objectid != sc->inum) {
830 				ret = BACKREF_FOUND_SHARED;
831 				goto out;
832 			}
833 
834 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
835 					       &key, 0, node->bytenr, count, sc,
836 					       GFP_ATOMIC);
837 			break;
838 		}
839 		case BTRFS_SHARED_DATA_REF_KEY: {
840 			/* SHARED DIRECT FULL backref */
841 			struct btrfs_delayed_data_ref *ref;
842 
843 			ref = btrfs_delayed_node_to_data_ref(node);
844 
845 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
846 					     node->bytenr, count, sc,
847 					     GFP_ATOMIC);
848 			break;
849 		}
850 		default:
851 			WARN_ON(1);
852 		}
853 		/*
854 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
855 		 * refs have been checked.
856 		 */
857 		if (ret && (ret != BACKREF_FOUND_SHARED))
858 			break;
859 	}
860 	if (!ret)
861 		ret = extent_is_shared(sc);
862 out:
863 	spin_unlock(&head->lock);
864 	return ret;
865 }
866 
867 /*
868  * add all inline backrefs for bytenr to the list
869  *
870  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
871  */
872 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
873 			   struct btrfs_path *path, u64 bytenr,
874 			   int *info_level, struct preftrees *preftrees,
875 			   u64 *total_refs, struct share_check *sc)
876 {
877 	int ret = 0;
878 	int slot;
879 	struct extent_buffer *leaf;
880 	struct btrfs_key key;
881 	struct btrfs_key found_key;
882 	unsigned long ptr;
883 	unsigned long end;
884 	struct btrfs_extent_item *ei;
885 	u64 flags;
886 	u64 item_size;
887 
888 	/*
889 	 * enumerate all inline refs
890 	 */
891 	leaf = path->nodes[0];
892 	slot = path->slots[0];
893 
894 	item_size = btrfs_item_size_nr(leaf, slot);
895 	BUG_ON(item_size < sizeof(*ei));
896 
897 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
898 	flags = btrfs_extent_flags(leaf, ei);
899 	*total_refs += btrfs_extent_refs(leaf, ei);
900 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
901 
902 	ptr = (unsigned long)(ei + 1);
903 	end = (unsigned long)ei + item_size;
904 
905 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
906 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
907 		struct btrfs_tree_block_info *info;
908 
909 		info = (struct btrfs_tree_block_info *)ptr;
910 		*info_level = btrfs_tree_block_level(leaf, info);
911 		ptr += sizeof(struct btrfs_tree_block_info);
912 		BUG_ON(ptr > end);
913 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
914 		*info_level = found_key.offset;
915 	} else {
916 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
917 	}
918 
919 	while (ptr < end) {
920 		struct btrfs_extent_inline_ref *iref;
921 		u64 offset;
922 		int type;
923 
924 		iref = (struct btrfs_extent_inline_ref *)ptr;
925 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
926 							BTRFS_REF_TYPE_ANY);
927 		if (type == BTRFS_REF_TYPE_INVALID)
928 			return -EINVAL;
929 
930 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
931 
932 		switch (type) {
933 		case BTRFS_SHARED_BLOCK_REF_KEY:
934 			ret = add_direct_ref(fs_info, preftrees,
935 					     *info_level + 1, offset,
936 					     bytenr, 1, NULL, GFP_NOFS);
937 			break;
938 		case BTRFS_SHARED_DATA_REF_KEY: {
939 			struct btrfs_shared_data_ref *sdref;
940 			int count;
941 
942 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
943 			count = btrfs_shared_data_ref_count(leaf, sdref);
944 
945 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
946 					     bytenr, count, sc, GFP_NOFS);
947 			break;
948 		}
949 		case BTRFS_TREE_BLOCK_REF_KEY:
950 			ret = add_indirect_ref(fs_info, preftrees, offset,
951 					       NULL, *info_level + 1,
952 					       bytenr, 1, NULL, GFP_NOFS);
953 			break;
954 		case BTRFS_EXTENT_DATA_REF_KEY: {
955 			struct btrfs_extent_data_ref *dref;
956 			int count;
957 			u64 root;
958 
959 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
960 			count = btrfs_extent_data_ref_count(leaf, dref);
961 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
962 								      dref);
963 			key.type = BTRFS_EXTENT_DATA_KEY;
964 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
965 
966 			if (sc && sc->inum && key.objectid != sc->inum) {
967 				ret = BACKREF_FOUND_SHARED;
968 				break;
969 			}
970 
971 			root = btrfs_extent_data_ref_root(leaf, dref);
972 
973 			ret = add_indirect_ref(fs_info, preftrees, root,
974 					       &key, 0, bytenr, count,
975 					       sc, GFP_NOFS);
976 			break;
977 		}
978 		default:
979 			WARN_ON(1);
980 		}
981 		if (ret)
982 			return ret;
983 		ptr += btrfs_extent_inline_ref_size(type);
984 	}
985 
986 	return 0;
987 }
988 
989 /*
990  * add all non-inline backrefs for bytenr to the list
991  *
992  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
993  */
994 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
995 			  struct btrfs_path *path, u64 bytenr,
996 			  int info_level, struct preftrees *preftrees,
997 			  struct share_check *sc)
998 {
999 	struct btrfs_root *extent_root = fs_info->extent_root;
1000 	int ret;
1001 	int slot;
1002 	struct extent_buffer *leaf;
1003 	struct btrfs_key key;
1004 
1005 	while (1) {
1006 		ret = btrfs_next_item(extent_root, path);
1007 		if (ret < 0)
1008 			break;
1009 		if (ret) {
1010 			ret = 0;
1011 			break;
1012 		}
1013 
1014 		slot = path->slots[0];
1015 		leaf = path->nodes[0];
1016 		btrfs_item_key_to_cpu(leaf, &key, slot);
1017 
1018 		if (key.objectid != bytenr)
1019 			break;
1020 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1021 			continue;
1022 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1023 			break;
1024 
1025 		switch (key.type) {
1026 		case BTRFS_SHARED_BLOCK_REF_KEY:
1027 			/* SHARED DIRECT METADATA backref */
1028 			ret = add_direct_ref(fs_info, preftrees,
1029 					     info_level + 1, key.offset,
1030 					     bytenr, 1, NULL, GFP_NOFS);
1031 			break;
1032 		case BTRFS_SHARED_DATA_REF_KEY: {
1033 			/* SHARED DIRECT FULL backref */
1034 			struct btrfs_shared_data_ref *sdref;
1035 			int count;
1036 
1037 			sdref = btrfs_item_ptr(leaf, slot,
1038 					      struct btrfs_shared_data_ref);
1039 			count = btrfs_shared_data_ref_count(leaf, sdref);
1040 			ret = add_direct_ref(fs_info, preftrees, 0,
1041 					     key.offset, bytenr, count,
1042 					     sc, GFP_NOFS);
1043 			break;
1044 		}
1045 		case BTRFS_TREE_BLOCK_REF_KEY:
1046 			/* NORMAL INDIRECT METADATA backref */
1047 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1048 					       NULL, info_level + 1, bytenr,
1049 					       1, NULL, GFP_NOFS);
1050 			break;
1051 		case BTRFS_EXTENT_DATA_REF_KEY: {
1052 			/* NORMAL INDIRECT DATA backref */
1053 			struct btrfs_extent_data_ref *dref;
1054 			int count;
1055 			u64 root;
1056 
1057 			dref = btrfs_item_ptr(leaf, slot,
1058 					      struct btrfs_extent_data_ref);
1059 			count = btrfs_extent_data_ref_count(leaf, dref);
1060 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1061 								      dref);
1062 			key.type = BTRFS_EXTENT_DATA_KEY;
1063 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1064 
1065 			if (sc && sc->inum && key.objectid != sc->inum) {
1066 				ret = BACKREF_FOUND_SHARED;
1067 				break;
1068 			}
1069 
1070 			root = btrfs_extent_data_ref_root(leaf, dref);
1071 			ret = add_indirect_ref(fs_info, preftrees, root,
1072 					       &key, 0, bytenr, count,
1073 					       sc, GFP_NOFS);
1074 			break;
1075 		}
1076 		default:
1077 			WARN_ON(1);
1078 		}
1079 		if (ret)
1080 			return ret;
1081 
1082 	}
1083 
1084 	return ret;
1085 }
1086 
1087 /*
1088  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1089  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1090  * indirect refs to their parent bytenr.
1091  * When roots are found, they're added to the roots list
1092  *
1093  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1094  * much like trans == NULL case, the difference only lies in it will not
1095  * commit root.
1096  * The special case is for qgroup to search roots in commit_transaction().
1097  *
1098  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1099  * shared extent is detected.
1100  *
1101  * Otherwise this returns 0 for success and <0 for an error.
1102  *
1103  * If ignore_offset is set to false, only extent refs whose offsets match
1104  * extent_item_pos are returned.  If true, every extent ref is returned
1105  * and extent_item_pos is ignored.
1106  *
1107  * FIXME some caching might speed things up
1108  */
1109 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1110 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1111 			     u64 time_seq, struct ulist *refs,
1112 			     struct ulist *roots, const u64 *extent_item_pos,
1113 			     struct share_check *sc, bool ignore_offset)
1114 {
1115 	struct btrfs_key key;
1116 	struct btrfs_path *path;
1117 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1118 	struct btrfs_delayed_ref_head *head;
1119 	int info_level = 0;
1120 	int ret;
1121 	struct prelim_ref *ref;
1122 	struct rb_node *node;
1123 	struct extent_inode_elem *eie = NULL;
1124 	/* total of both direct AND indirect refs! */
1125 	u64 total_refs = 0;
1126 	struct preftrees preftrees = {
1127 		.direct = PREFTREE_INIT,
1128 		.indirect = PREFTREE_INIT,
1129 		.indirect_missing_keys = PREFTREE_INIT
1130 	};
1131 
1132 	key.objectid = bytenr;
1133 	key.offset = (u64)-1;
1134 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1135 		key.type = BTRFS_METADATA_ITEM_KEY;
1136 	else
1137 		key.type = BTRFS_EXTENT_ITEM_KEY;
1138 
1139 	path = btrfs_alloc_path();
1140 	if (!path)
1141 		return -ENOMEM;
1142 	if (!trans) {
1143 		path->search_commit_root = 1;
1144 		path->skip_locking = 1;
1145 	}
1146 
1147 	if (time_seq == SEQ_LAST)
1148 		path->skip_locking = 1;
1149 
1150 	/*
1151 	 * grab both a lock on the path and a lock on the delayed ref head.
1152 	 * We need both to get a consistent picture of how the refs look
1153 	 * at a specified point in time
1154 	 */
1155 again:
1156 	head = NULL;
1157 
1158 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1159 	if (ret < 0)
1160 		goto out;
1161 	BUG_ON(ret == 0);
1162 
1163 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1164 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1165 	    time_seq != SEQ_LAST) {
1166 #else
1167 	if (trans && time_seq != SEQ_LAST) {
1168 #endif
1169 		/*
1170 		 * look if there are updates for this ref queued and lock the
1171 		 * head
1172 		 */
1173 		delayed_refs = &trans->transaction->delayed_refs;
1174 		spin_lock(&delayed_refs->lock);
1175 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1176 		if (head) {
1177 			if (!mutex_trylock(&head->mutex)) {
1178 				refcount_inc(&head->refs);
1179 				spin_unlock(&delayed_refs->lock);
1180 
1181 				btrfs_release_path(path);
1182 
1183 				/*
1184 				 * Mutex was contended, block until it's
1185 				 * released and try again
1186 				 */
1187 				mutex_lock(&head->mutex);
1188 				mutex_unlock(&head->mutex);
1189 				btrfs_put_delayed_ref_head(head);
1190 				goto again;
1191 			}
1192 			spin_unlock(&delayed_refs->lock);
1193 			ret = add_delayed_refs(fs_info, head, time_seq,
1194 					       &preftrees, &total_refs, sc);
1195 			mutex_unlock(&head->mutex);
1196 			if (ret)
1197 				goto out;
1198 		} else {
1199 			spin_unlock(&delayed_refs->lock);
1200 		}
1201 	}
1202 
1203 	if (path->slots[0]) {
1204 		struct extent_buffer *leaf;
1205 		int slot;
1206 
1207 		path->slots[0]--;
1208 		leaf = path->nodes[0];
1209 		slot = path->slots[0];
1210 		btrfs_item_key_to_cpu(leaf, &key, slot);
1211 		if (key.objectid == bytenr &&
1212 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1213 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1214 			ret = add_inline_refs(fs_info, path, bytenr,
1215 					      &info_level, &preftrees,
1216 					      &total_refs, sc);
1217 			if (ret)
1218 				goto out;
1219 			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1220 					     &preftrees, sc);
1221 			if (ret)
1222 				goto out;
1223 		}
1224 	}
1225 
1226 	btrfs_release_path(path);
1227 
1228 	ret = add_missing_keys(fs_info, &preftrees);
1229 	if (ret)
1230 		goto out;
1231 
1232 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1233 
1234 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1235 				    extent_item_pos, total_refs, sc, ignore_offset);
1236 	if (ret)
1237 		goto out;
1238 
1239 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1240 
1241 	/*
1242 	 * This walks the tree of merged and resolved refs. Tree blocks are
1243 	 * read in as needed. Unique entries are added to the ulist, and
1244 	 * the list of found roots is updated.
1245 	 *
1246 	 * We release the entire tree in one go before returning.
1247 	 */
1248 	node = rb_first(&preftrees.direct.root);
1249 	while (node) {
1250 		ref = rb_entry(node, struct prelim_ref, rbnode);
1251 		node = rb_next(&ref->rbnode);
1252 		/*
1253 		 * ref->count < 0 can happen here if there are delayed
1254 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1255 		 * prelim_ref_insert() relies on this when merging
1256 		 * identical refs to keep the overall count correct.
1257 		 * prelim_ref_insert() will merge only those refs
1258 		 * which compare identically.  Any refs having
1259 		 * e.g. different offsets would not be merged,
1260 		 * and would retain their original ref->count < 0.
1261 		 */
1262 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1263 			if (sc && sc->root_objectid &&
1264 			    ref->root_id != sc->root_objectid) {
1265 				ret = BACKREF_FOUND_SHARED;
1266 				goto out;
1267 			}
1268 
1269 			/* no parent == root of tree */
1270 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1271 			if (ret < 0)
1272 				goto out;
1273 		}
1274 		if (ref->count && ref->parent) {
1275 			if (extent_item_pos && !ref->inode_list &&
1276 			    ref->level == 0) {
1277 				struct extent_buffer *eb;
1278 
1279 				eb = read_tree_block(fs_info, ref->parent, 0,
1280 						     ref->level, NULL);
1281 				if (IS_ERR(eb)) {
1282 					ret = PTR_ERR(eb);
1283 					goto out;
1284 				} else if (!extent_buffer_uptodate(eb)) {
1285 					free_extent_buffer(eb);
1286 					ret = -EIO;
1287 					goto out;
1288 				}
1289 				btrfs_tree_read_lock(eb);
1290 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1291 				ret = find_extent_in_eb(eb, bytenr,
1292 							*extent_item_pos, &eie, ignore_offset);
1293 				btrfs_tree_read_unlock_blocking(eb);
1294 				free_extent_buffer(eb);
1295 				if (ret < 0)
1296 					goto out;
1297 				ref->inode_list = eie;
1298 			}
1299 			ret = ulist_add_merge_ptr(refs, ref->parent,
1300 						  ref->inode_list,
1301 						  (void **)&eie, GFP_NOFS);
1302 			if (ret < 0)
1303 				goto out;
1304 			if (!ret && extent_item_pos) {
1305 				/*
1306 				 * we've recorded that parent, so we must extend
1307 				 * its inode list here
1308 				 */
1309 				BUG_ON(!eie);
1310 				while (eie->next)
1311 					eie = eie->next;
1312 				eie->next = ref->inode_list;
1313 			}
1314 			eie = NULL;
1315 		}
1316 		cond_resched();
1317 	}
1318 
1319 out:
1320 	btrfs_free_path(path);
1321 
1322 	prelim_release(&preftrees.direct);
1323 	prelim_release(&preftrees.indirect);
1324 	prelim_release(&preftrees.indirect_missing_keys);
1325 
1326 	if (ret < 0)
1327 		free_inode_elem_list(eie);
1328 	return ret;
1329 }
1330 
1331 static void free_leaf_list(struct ulist *blocks)
1332 {
1333 	struct ulist_node *node = NULL;
1334 	struct extent_inode_elem *eie;
1335 	struct ulist_iterator uiter;
1336 
1337 	ULIST_ITER_INIT(&uiter);
1338 	while ((node = ulist_next(blocks, &uiter))) {
1339 		if (!node->aux)
1340 			continue;
1341 		eie = unode_aux_to_inode_list(node);
1342 		free_inode_elem_list(eie);
1343 		node->aux = 0;
1344 	}
1345 
1346 	ulist_free(blocks);
1347 }
1348 
1349 /*
1350  * Finds all leafs with a reference to the specified combination of bytenr and
1351  * offset. key_list_head will point to a list of corresponding keys (caller must
1352  * free each list element). The leafs will be stored in the leafs ulist, which
1353  * must be freed with ulist_free.
1354  *
1355  * returns 0 on success, <0 on error
1356  */
1357 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1358 				struct btrfs_fs_info *fs_info, u64 bytenr,
1359 				u64 time_seq, struct ulist **leafs,
1360 				const u64 *extent_item_pos, bool ignore_offset)
1361 {
1362 	int ret;
1363 
1364 	*leafs = ulist_alloc(GFP_NOFS);
1365 	if (!*leafs)
1366 		return -ENOMEM;
1367 
1368 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1369 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1370 	if (ret < 0 && ret != -ENOENT) {
1371 		free_leaf_list(*leafs);
1372 		return ret;
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 /*
1379  * walk all backrefs for a given extent to find all roots that reference this
1380  * extent. Walking a backref means finding all extents that reference this
1381  * extent and in turn walk the backrefs of those, too. Naturally this is a
1382  * recursive process, but here it is implemented in an iterative fashion: We
1383  * find all referencing extents for the extent in question and put them on a
1384  * list. In turn, we find all referencing extents for those, further appending
1385  * to the list. The way we iterate the list allows adding more elements after
1386  * the current while iterating. The process stops when we reach the end of the
1387  * list. Found roots are added to the roots list.
1388  *
1389  * returns 0 on success, < 0 on error.
1390  */
1391 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1392 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1393 				     u64 time_seq, struct ulist **roots,
1394 				     bool ignore_offset)
1395 {
1396 	struct ulist *tmp;
1397 	struct ulist_node *node = NULL;
1398 	struct ulist_iterator uiter;
1399 	int ret;
1400 
1401 	tmp = ulist_alloc(GFP_NOFS);
1402 	if (!tmp)
1403 		return -ENOMEM;
1404 	*roots = ulist_alloc(GFP_NOFS);
1405 	if (!*roots) {
1406 		ulist_free(tmp);
1407 		return -ENOMEM;
1408 	}
1409 
1410 	ULIST_ITER_INIT(&uiter);
1411 	while (1) {
1412 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1413 					tmp, *roots, NULL, NULL, ignore_offset);
1414 		if (ret < 0 && ret != -ENOENT) {
1415 			ulist_free(tmp);
1416 			ulist_free(*roots);
1417 			return ret;
1418 		}
1419 		node = ulist_next(tmp, &uiter);
1420 		if (!node)
1421 			break;
1422 		bytenr = node->val;
1423 		cond_resched();
1424 	}
1425 
1426 	ulist_free(tmp);
1427 	return 0;
1428 }
1429 
1430 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1431 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1432 			 u64 time_seq, struct ulist **roots,
1433 			 bool ignore_offset)
1434 {
1435 	int ret;
1436 
1437 	if (!trans)
1438 		down_read(&fs_info->commit_root_sem);
1439 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1440 					time_seq, roots, ignore_offset);
1441 	if (!trans)
1442 		up_read(&fs_info->commit_root_sem);
1443 	return ret;
1444 }
1445 
1446 /**
1447  * btrfs_check_shared - tell us whether an extent is shared
1448  *
1449  * btrfs_check_shared uses the backref walking code but will short
1450  * circuit as soon as it finds a root or inode that doesn't match the
1451  * one passed in. This provides a significant performance benefit for
1452  * callers (such as fiemap) which want to know whether the extent is
1453  * shared but do not need a ref count.
1454  *
1455  * This attempts to allocate a transaction in order to account for
1456  * delayed refs, but continues on even when the alloc fails.
1457  *
1458  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1459  */
1460 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1461 {
1462 	struct btrfs_fs_info *fs_info = root->fs_info;
1463 	struct btrfs_trans_handle *trans;
1464 	struct ulist *tmp = NULL;
1465 	struct ulist *roots = NULL;
1466 	struct ulist_iterator uiter;
1467 	struct ulist_node *node;
1468 	struct seq_list elem = SEQ_LIST_INIT(elem);
1469 	int ret = 0;
1470 	struct share_check shared = {
1471 		.root_objectid = root->objectid,
1472 		.inum = inum,
1473 		.share_count = 0,
1474 	};
1475 
1476 	tmp = ulist_alloc(GFP_NOFS);
1477 	roots = ulist_alloc(GFP_NOFS);
1478 	if (!tmp || !roots) {
1479 		ulist_free(tmp);
1480 		ulist_free(roots);
1481 		return -ENOMEM;
1482 	}
1483 
1484 	trans = btrfs_join_transaction(root);
1485 	if (IS_ERR(trans)) {
1486 		trans = NULL;
1487 		down_read(&fs_info->commit_root_sem);
1488 	} else {
1489 		btrfs_get_tree_mod_seq(fs_info, &elem);
1490 	}
1491 
1492 	ULIST_ITER_INIT(&uiter);
1493 	while (1) {
1494 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1495 					roots, NULL, &shared, false);
1496 		if (ret == BACKREF_FOUND_SHARED) {
1497 			/* this is the only condition under which we return 1 */
1498 			ret = 1;
1499 			break;
1500 		}
1501 		if (ret < 0 && ret != -ENOENT)
1502 			break;
1503 		ret = 0;
1504 		node = ulist_next(tmp, &uiter);
1505 		if (!node)
1506 			break;
1507 		bytenr = node->val;
1508 		shared.share_count = 0;
1509 		cond_resched();
1510 	}
1511 
1512 	if (trans) {
1513 		btrfs_put_tree_mod_seq(fs_info, &elem);
1514 		btrfs_end_transaction(trans);
1515 	} else {
1516 		up_read(&fs_info->commit_root_sem);
1517 	}
1518 	ulist_free(tmp);
1519 	ulist_free(roots);
1520 	return ret;
1521 }
1522 
1523 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1524 			  u64 start_off, struct btrfs_path *path,
1525 			  struct btrfs_inode_extref **ret_extref,
1526 			  u64 *found_off)
1527 {
1528 	int ret, slot;
1529 	struct btrfs_key key;
1530 	struct btrfs_key found_key;
1531 	struct btrfs_inode_extref *extref;
1532 	const struct extent_buffer *leaf;
1533 	unsigned long ptr;
1534 
1535 	key.objectid = inode_objectid;
1536 	key.type = BTRFS_INODE_EXTREF_KEY;
1537 	key.offset = start_off;
1538 
1539 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1540 	if (ret < 0)
1541 		return ret;
1542 
1543 	while (1) {
1544 		leaf = path->nodes[0];
1545 		slot = path->slots[0];
1546 		if (slot >= btrfs_header_nritems(leaf)) {
1547 			/*
1548 			 * If the item at offset is not found,
1549 			 * btrfs_search_slot will point us to the slot
1550 			 * where it should be inserted. In our case
1551 			 * that will be the slot directly before the
1552 			 * next INODE_REF_KEY_V2 item. In the case
1553 			 * that we're pointing to the last slot in a
1554 			 * leaf, we must move one leaf over.
1555 			 */
1556 			ret = btrfs_next_leaf(root, path);
1557 			if (ret) {
1558 				if (ret >= 1)
1559 					ret = -ENOENT;
1560 				break;
1561 			}
1562 			continue;
1563 		}
1564 
1565 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1566 
1567 		/*
1568 		 * Check that we're still looking at an extended ref key for
1569 		 * this particular objectid. If we have different
1570 		 * objectid or type then there are no more to be found
1571 		 * in the tree and we can exit.
1572 		 */
1573 		ret = -ENOENT;
1574 		if (found_key.objectid != inode_objectid)
1575 			break;
1576 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1577 			break;
1578 
1579 		ret = 0;
1580 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1581 		extref = (struct btrfs_inode_extref *)ptr;
1582 		*ret_extref = extref;
1583 		if (found_off)
1584 			*found_off = found_key.offset;
1585 		break;
1586 	}
1587 
1588 	return ret;
1589 }
1590 
1591 /*
1592  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1593  * Elements of the path are separated by '/' and the path is guaranteed to be
1594  * 0-terminated. the path is only given within the current file system.
1595  * Therefore, it never starts with a '/'. the caller is responsible to provide
1596  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1597  * the start point of the resulting string is returned. this pointer is within
1598  * dest, normally.
1599  * in case the path buffer would overflow, the pointer is decremented further
1600  * as if output was written to the buffer, though no more output is actually
1601  * generated. that way, the caller can determine how much space would be
1602  * required for the path to fit into the buffer. in that case, the returned
1603  * value will be smaller than dest. callers must check this!
1604  */
1605 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1606 			u32 name_len, unsigned long name_off,
1607 			struct extent_buffer *eb_in, u64 parent,
1608 			char *dest, u32 size)
1609 {
1610 	int slot;
1611 	u64 next_inum;
1612 	int ret;
1613 	s64 bytes_left = ((s64)size) - 1;
1614 	struct extent_buffer *eb = eb_in;
1615 	struct btrfs_key found_key;
1616 	int leave_spinning = path->leave_spinning;
1617 	struct btrfs_inode_ref *iref;
1618 
1619 	if (bytes_left >= 0)
1620 		dest[bytes_left] = '\0';
1621 
1622 	path->leave_spinning = 1;
1623 	while (1) {
1624 		bytes_left -= name_len;
1625 		if (bytes_left >= 0)
1626 			read_extent_buffer(eb, dest + bytes_left,
1627 					   name_off, name_len);
1628 		if (eb != eb_in) {
1629 			if (!path->skip_locking)
1630 				btrfs_tree_read_unlock_blocking(eb);
1631 			free_extent_buffer(eb);
1632 		}
1633 		ret = btrfs_find_item(fs_root, path, parent, 0,
1634 				BTRFS_INODE_REF_KEY, &found_key);
1635 		if (ret > 0)
1636 			ret = -ENOENT;
1637 		if (ret)
1638 			break;
1639 
1640 		next_inum = found_key.offset;
1641 
1642 		/* regular exit ahead */
1643 		if (parent == next_inum)
1644 			break;
1645 
1646 		slot = path->slots[0];
1647 		eb = path->nodes[0];
1648 		/* make sure we can use eb after releasing the path */
1649 		if (eb != eb_in) {
1650 			if (!path->skip_locking)
1651 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1652 			path->nodes[0] = NULL;
1653 			path->locks[0] = 0;
1654 		}
1655 		btrfs_release_path(path);
1656 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1657 
1658 		name_len = btrfs_inode_ref_name_len(eb, iref);
1659 		name_off = (unsigned long)(iref + 1);
1660 
1661 		parent = next_inum;
1662 		--bytes_left;
1663 		if (bytes_left >= 0)
1664 			dest[bytes_left] = '/';
1665 	}
1666 
1667 	btrfs_release_path(path);
1668 	path->leave_spinning = leave_spinning;
1669 
1670 	if (ret)
1671 		return ERR_PTR(ret);
1672 
1673 	return dest + bytes_left;
1674 }
1675 
1676 /*
1677  * this makes the path point to (logical EXTENT_ITEM *)
1678  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1679  * tree blocks and <0 on error.
1680  */
1681 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1682 			struct btrfs_path *path, struct btrfs_key *found_key,
1683 			u64 *flags_ret)
1684 {
1685 	int ret;
1686 	u64 flags;
1687 	u64 size = 0;
1688 	u32 item_size;
1689 	const struct extent_buffer *eb;
1690 	struct btrfs_extent_item *ei;
1691 	struct btrfs_key key;
1692 
1693 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1694 		key.type = BTRFS_METADATA_ITEM_KEY;
1695 	else
1696 		key.type = BTRFS_EXTENT_ITEM_KEY;
1697 	key.objectid = logical;
1698 	key.offset = (u64)-1;
1699 
1700 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1701 	if (ret < 0)
1702 		return ret;
1703 
1704 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1705 	if (ret) {
1706 		if (ret > 0)
1707 			ret = -ENOENT;
1708 		return ret;
1709 	}
1710 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1711 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1712 		size = fs_info->nodesize;
1713 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1714 		size = found_key->offset;
1715 
1716 	if (found_key->objectid > logical ||
1717 	    found_key->objectid + size <= logical) {
1718 		btrfs_debug(fs_info,
1719 			"logical %llu is not within any extent", logical);
1720 		return -ENOENT;
1721 	}
1722 
1723 	eb = path->nodes[0];
1724 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1725 	BUG_ON(item_size < sizeof(*ei));
1726 
1727 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1728 	flags = btrfs_extent_flags(eb, ei);
1729 
1730 	btrfs_debug(fs_info,
1731 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1732 		 logical, logical - found_key->objectid, found_key->objectid,
1733 		 found_key->offset, flags, item_size);
1734 
1735 	WARN_ON(!flags_ret);
1736 	if (flags_ret) {
1737 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1738 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1739 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1740 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1741 		else
1742 			BUG_ON(1);
1743 		return 0;
1744 	}
1745 
1746 	return -EIO;
1747 }
1748 
1749 /*
1750  * helper function to iterate extent inline refs. ptr must point to a 0 value
1751  * for the first call and may be modified. it is used to track state.
1752  * if more refs exist, 0 is returned and the next call to
1753  * get_extent_inline_ref must pass the modified ptr parameter to get the
1754  * next ref. after the last ref was processed, 1 is returned.
1755  * returns <0 on error
1756  */
1757 static int get_extent_inline_ref(unsigned long *ptr,
1758 				 const struct extent_buffer *eb,
1759 				 const struct btrfs_key *key,
1760 				 const struct btrfs_extent_item *ei,
1761 				 u32 item_size,
1762 				 struct btrfs_extent_inline_ref **out_eiref,
1763 				 int *out_type)
1764 {
1765 	unsigned long end;
1766 	u64 flags;
1767 	struct btrfs_tree_block_info *info;
1768 
1769 	if (!*ptr) {
1770 		/* first call */
1771 		flags = btrfs_extent_flags(eb, ei);
1772 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1773 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1774 				/* a skinny metadata extent */
1775 				*out_eiref =
1776 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1777 			} else {
1778 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1779 				info = (struct btrfs_tree_block_info *)(ei + 1);
1780 				*out_eiref =
1781 				   (struct btrfs_extent_inline_ref *)(info + 1);
1782 			}
1783 		} else {
1784 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1785 		}
1786 		*ptr = (unsigned long)*out_eiref;
1787 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1788 			return -ENOENT;
1789 	}
1790 
1791 	end = (unsigned long)ei + item_size;
1792 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1793 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1794 						     BTRFS_REF_TYPE_ANY);
1795 	if (*out_type == BTRFS_REF_TYPE_INVALID)
1796 		return -EINVAL;
1797 
1798 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1799 	WARN_ON(*ptr > end);
1800 	if (*ptr == end)
1801 		return 1; /* last */
1802 
1803 	return 0;
1804 }
1805 
1806 /*
1807  * reads the tree block backref for an extent. tree level and root are returned
1808  * through out_level and out_root. ptr must point to a 0 value for the first
1809  * call and may be modified (see get_extent_inline_ref comment).
1810  * returns 0 if data was provided, 1 if there was no more data to provide or
1811  * <0 on error.
1812  */
1813 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1814 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1815 			    u32 item_size, u64 *out_root, u8 *out_level)
1816 {
1817 	int ret;
1818 	int type;
1819 	struct btrfs_extent_inline_ref *eiref;
1820 
1821 	if (*ptr == (unsigned long)-1)
1822 		return 1;
1823 
1824 	while (1) {
1825 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1826 					      &eiref, &type);
1827 		if (ret < 0)
1828 			return ret;
1829 
1830 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1831 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1832 			break;
1833 
1834 		if (ret == 1)
1835 			return 1;
1836 	}
1837 
1838 	/* we can treat both ref types equally here */
1839 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1840 
1841 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1842 		struct btrfs_tree_block_info *info;
1843 
1844 		info = (struct btrfs_tree_block_info *)(ei + 1);
1845 		*out_level = btrfs_tree_block_level(eb, info);
1846 	} else {
1847 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1848 		*out_level = (u8)key->offset;
1849 	}
1850 
1851 	if (ret == 1)
1852 		*ptr = (unsigned long)-1;
1853 
1854 	return 0;
1855 }
1856 
1857 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1858 			     struct extent_inode_elem *inode_list,
1859 			     u64 root, u64 extent_item_objectid,
1860 			     iterate_extent_inodes_t *iterate, void *ctx)
1861 {
1862 	struct extent_inode_elem *eie;
1863 	int ret = 0;
1864 
1865 	for (eie = inode_list; eie; eie = eie->next) {
1866 		btrfs_debug(fs_info,
1867 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1868 			    extent_item_objectid, eie->inum,
1869 			    eie->offset, root);
1870 		ret = iterate(eie->inum, eie->offset, root, ctx);
1871 		if (ret) {
1872 			btrfs_debug(fs_info,
1873 				    "stopping iteration for %llu due to ret=%d",
1874 				    extent_item_objectid, ret);
1875 			break;
1876 		}
1877 	}
1878 
1879 	return ret;
1880 }
1881 
1882 /*
1883  * calls iterate() for every inode that references the extent identified by
1884  * the given parameters.
1885  * when the iterator function returns a non-zero value, iteration stops.
1886  */
1887 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1888 				u64 extent_item_objectid, u64 extent_item_pos,
1889 				int search_commit_root,
1890 				iterate_extent_inodes_t *iterate, void *ctx,
1891 				bool ignore_offset)
1892 {
1893 	int ret;
1894 	struct btrfs_trans_handle *trans = NULL;
1895 	struct ulist *refs = NULL;
1896 	struct ulist *roots = NULL;
1897 	struct ulist_node *ref_node = NULL;
1898 	struct ulist_node *root_node = NULL;
1899 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1900 	struct ulist_iterator ref_uiter;
1901 	struct ulist_iterator root_uiter;
1902 
1903 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1904 			extent_item_objectid);
1905 
1906 	if (!search_commit_root) {
1907 		trans = btrfs_join_transaction(fs_info->extent_root);
1908 		if (IS_ERR(trans))
1909 			return PTR_ERR(trans);
1910 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1911 	} else {
1912 		down_read(&fs_info->commit_root_sem);
1913 	}
1914 
1915 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1916 				   tree_mod_seq_elem.seq, &refs,
1917 				   &extent_item_pos, ignore_offset);
1918 	if (ret)
1919 		goto out;
1920 
1921 	ULIST_ITER_INIT(&ref_uiter);
1922 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1923 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1924 						tree_mod_seq_elem.seq, &roots,
1925 						ignore_offset);
1926 		if (ret)
1927 			break;
1928 		ULIST_ITER_INIT(&root_uiter);
1929 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1930 			btrfs_debug(fs_info,
1931 				    "root %llu references leaf %llu, data list %#llx",
1932 				    root_node->val, ref_node->val,
1933 				    ref_node->aux);
1934 			ret = iterate_leaf_refs(fs_info,
1935 						(struct extent_inode_elem *)
1936 						(uintptr_t)ref_node->aux,
1937 						root_node->val,
1938 						extent_item_objectid,
1939 						iterate, ctx);
1940 		}
1941 		ulist_free(roots);
1942 	}
1943 
1944 	free_leaf_list(refs);
1945 out:
1946 	if (!search_commit_root) {
1947 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1948 		btrfs_end_transaction(trans);
1949 	} else {
1950 		up_read(&fs_info->commit_root_sem);
1951 	}
1952 
1953 	return ret;
1954 }
1955 
1956 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1957 				struct btrfs_path *path,
1958 				iterate_extent_inodes_t *iterate, void *ctx,
1959 				bool ignore_offset)
1960 {
1961 	int ret;
1962 	u64 extent_item_pos;
1963 	u64 flags = 0;
1964 	struct btrfs_key found_key;
1965 	int search_commit_root = path->search_commit_root;
1966 
1967 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1968 	btrfs_release_path(path);
1969 	if (ret < 0)
1970 		return ret;
1971 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1972 		return -EINVAL;
1973 
1974 	extent_item_pos = logical - found_key.objectid;
1975 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1976 					extent_item_pos, search_commit_root,
1977 					iterate, ctx, ignore_offset);
1978 
1979 	return ret;
1980 }
1981 
1982 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1983 			      struct extent_buffer *eb, void *ctx);
1984 
1985 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1986 			      struct btrfs_path *path,
1987 			      iterate_irefs_t *iterate, void *ctx)
1988 {
1989 	int ret = 0;
1990 	int slot;
1991 	u32 cur;
1992 	u32 len;
1993 	u32 name_len;
1994 	u64 parent = 0;
1995 	int found = 0;
1996 	struct extent_buffer *eb;
1997 	struct btrfs_item *item;
1998 	struct btrfs_inode_ref *iref;
1999 	struct btrfs_key found_key;
2000 
2001 	while (!ret) {
2002 		ret = btrfs_find_item(fs_root, path, inum,
2003 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2004 				&found_key);
2005 
2006 		if (ret < 0)
2007 			break;
2008 		if (ret) {
2009 			ret = found ? 0 : -ENOENT;
2010 			break;
2011 		}
2012 		++found;
2013 
2014 		parent = found_key.offset;
2015 		slot = path->slots[0];
2016 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2017 		if (!eb) {
2018 			ret = -ENOMEM;
2019 			break;
2020 		}
2021 		extent_buffer_get(eb);
2022 		btrfs_tree_read_lock(eb);
2023 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2024 		btrfs_release_path(path);
2025 
2026 		item = btrfs_item_nr(slot);
2027 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2028 
2029 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2030 			name_len = btrfs_inode_ref_name_len(eb, iref);
2031 			/* path must be released before calling iterate()! */
2032 			btrfs_debug(fs_root->fs_info,
2033 				"following ref at offset %u for inode %llu in tree %llu",
2034 				cur, found_key.objectid, fs_root->objectid);
2035 			ret = iterate(parent, name_len,
2036 				      (unsigned long)(iref + 1), eb, ctx);
2037 			if (ret)
2038 				break;
2039 			len = sizeof(*iref) + name_len;
2040 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2041 		}
2042 		btrfs_tree_read_unlock_blocking(eb);
2043 		free_extent_buffer(eb);
2044 	}
2045 
2046 	btrfs_release_path(path);
2047 
2048 	return ret;
2049 }
2050 
2051 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2052 				 struct btrfs_path *path,
2053 				 iterate_irefs_t *iterate, void *ctx)
2054 {
2055 	int ret;
2056 	int slot;
2057 	u64 offset = 0;
2058 	u64 parent;
2059 	int found = 0;
2060 	struct extent_buffer *eb;
2061 	struct btrfs_inode_extref *extref;
2062 	u32 item_size;
2063 	u32 cur_offset;
2064 	unsigned long ptr;
2065 
2066 	while (1) {
2067 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2068 					    &offset);
2069 		if (ret < 0)
2070 			break;
2071 		if (ret) {
2072 			ret = found ? 0 : -ENOENT;
2073 			break;
2074 		}
2075 		++found;
2076 
2077 		slot = path->slots[0];
2078 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2079 		if (!eb) {
2080 			ret = -ENOMEM;
2081 			break;
2082 		}
2083 		extent_buffer_get(eb);
2084 
2085 		btrfs_tree_read_lock(eb);
2086 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2087 		btrfs_release_path(path);
2088 
2089 		item_size = btrfs_item_size_nr(eb, slot);
2090 		ptr = btrfs_item_ptr_offset(eb, slot);
2091 		cur_offset = 0;
2092 
2093 		while (cur_offset < item_size) {
2094 			u32 name_len;
2095 
2096 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2097 			parent = btrfs_inode_extref_parent(eb, extref);
2098 			name_len = btrfs_inode_extref_name_len(eb, extref);
2099 			ret = iterate(parent, name_len,
2100 				      (unsigned long)&extref->name, eb, ctx);
2101 			if (ret)
2102 				break;
2103 
2104 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2105 			cur_offset += sizeof(*extref);
2106 		}
2107 		btrfs_tree_read_unlock_blocking(eb);
2108 		free_extent_buffer(eb);
2109 
2110 		offset++;
2111 	}
2112 
2113 	btrfs_release_path(path);
2114 
2115 	return ret;
2116 }
2117 
2118 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2119 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2120 			 void *ctx)
2121 {
2122 	int ret;
2123 	int found_refs = 0;
2124 
2125 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2126 	if (!ret)
2127 		++found_refs;
2128 	else if (ret != -ENOENT)
2129 		return ret;
2130 
2131 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2132 	if (ret == -ENOENT && found_refs)
2133 		return 0;
2134 
2135 	return ret;
2136 }
2137 
2138 /*
2139  * returns 0 if the path could be dumped (probably truncated)
2140  * returns <0 in case of an error
2141  */
2142 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2143 			 struct extent_buffer *eb, void *ctx)
2144 {
2145 	struct inode_fs_paths *ipath = ctx;
2146 	char *fspath;
2147 	char *fspath_min;
2148 	int i = ipath->fspath->elem_cnt;
2149 	const int s_ptr = sizeof(char *);
2150 	u32 bytes_left;
2151 
2152 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2153 					ipath->fspath->bytes_left - s_ptr : 0;
2154 
2155 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2156 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2157 				   name_off, eb, inum, fspath_min, bytes_left);
2158 	if (IS_ERR(fspath))
2159 		return PTR_ERR(fspath);
2160 
2161 	if (fspath > fspath_min) {
2162 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2163 		++ipath->fspath->elem_cnt;
2164 		ipath->fspath->bytes_left = fspath - fspath_min;
2165 	} else {
2166 		++ipath->fspath->elem_missed;
2167 		ipath->fspath->bytes_missing += fspath_min - fspath;
2168 		ipath->fspath->bytes_left = 0;
2169 	}
2170 
2171 	return 0;
2172 }
2173 
2174 /*
2175  * this dumps all file system paths to the inode into the ipath struct, provided
2176  * is has been created large enough. each path is zero-terminated and accessed
2177  * from ipath->fspath->val[i].
2178  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2179  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2180  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2181  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2182  * have been needed to return all paths.
2183  */
2184 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2185 {
2186 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2187 			     inode_to_path, ipath);
2188 }
2189 
2190 struct btrfs_data_container *init_data_container(u32 total_bytes)
2191 {
2192 	struct btrfs_data_container *data;
2193 	size_t alloc_bytes;
2194 
2195 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2196 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2197 	if (!data)
2198 		return ERR_PTR(-ENOMEM);
2199 
2200 	if (total_bytes >= sizeof(*data)) {
2201 		data->bytes_left = total_bytes - sizeof(*data);
2202 		data->bytes_missing = 0;
2203 	} else {
2204 		data->bytes_missing = sizeof(*data) - total_bytes;
2205 		data->bytes_left = 0;
2206 	}
2207 
2208 	data->elem_cnt = 0;
2209 	data->elem_missed = 0;
2210 
2211 	return data;
2212 }
2213 
2214 /*
2215  * allocates space to return multiple file system paths for an inode.
2216  * total_bytes to allocate are passed, note that space usable for actual path
2217  * information will be total_bytes - sizeof(struct inode_fs_paths).
2218  * the returned pointer must be freed with free_ipath() in the end.
2219  */
2220 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2221 					struct btrfs_path *path)
2222 {
2223 	struct inode_fs_paths *ifp;
2224 	struct btrfs_data_container *fspath;
2225 
2226 	fspath = init_data_container(total_bytes);
2227 	if (IS_ERR(fspath))
2228 		return (void *)fspath;
2229 
2230 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2231 	if (!ifp) {
2232 		kvfree(fspath);
2233 		return ERR_PTR(-ENOMEM);
2234 	}
2235 
2236 	ifp->btrfs_path = path;
2237 	ifp->fspath = fspath;
2238 	ifp->fs_root = fs_root;
2239 
2240 	return ifp;
2241 }
2242 
2243 void free_ipath(struct inode_fs_paths *ipath)
2244 {
2245 	if (!ipath)
2246 		return;
2247 	kvfree(ipath->fspath);
2248 	kfree(ipath);
2249 }
2250