1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include <linux/rbtree.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "backref.h" 24 #include "ulist.h" 25 #include "transaction.h" 26 #include "delayed-ref.h" 27 #include "locking.h" 28 29 /* Just an arbitrary number so we can be sure this happened */ 30 #define BACKREF_FOUND_SHARED 6 31 32 struct extent_inode_elem { 33 u64 inum; 34 u64 offset; 35 struct extent_inode_elem *next; 36 }; 37 38 /* 39 * ref_root is used as the root of the ref tree that hold a collection 40 * of unique references. 41 */ 42 struct ref_root { 43 struct rb_root rb_root; 44 45 /* 46 * The unique_refs represents the number of ref_nodes with a positive 47 * count stored in the tree. Even if a ref_node (the count is greater 48 * than one) is added, the unique_refs will only increase by one. 49 */ 50 unsigned int unique_refs; 51 }; 52 53 /* ref_node is used to store a unique reference to the ref tree. */ 54 struct ref_node { 55 struct rb_node rb_node; 56 57 /* For NORMAL_REF, otherwise all these fields should be set to 0 */ 58 u64 root_id; 59 u64 object_id; 60 u64 offset; 61 62 /* For SHARED_REF, otherwise parent field should be set to 0 */ 63 u64 parent; 64 65 /* Ref to the ref_mod of btrfs_delayed_ref_node */ 66 int ref_mod; 67 }; 68 69 /* Dynamically allocate and initialize a ref_root */ 70 static struct ref_root *ref_root_alloc(void) 71 { 72 struct ref_root *ref_tree; 73 74 ref_tree = kmalloc(sizeof(*ref_tree), GFP_NOFS); 75 if (!ref_tree) 76 return NULL; 77 78 ref_tree->rb_root = RB_ROOT; 79 ref_tree->unique_refs = 0; 80 81 return ref_tree; 82 } 83 84 /* Free all nodes in the ref tree, and reinit ref_root */ 85 static void ref_root_fini(struct ref_root *ref_tree) 86 { 87 struct ref_node *node; 88 struct rb_node *next; 89 90 while ((next = rb_first(&ref_tree->rb_root)) != NULL) { 91 node = rb_entry(next, struct ref_node, rb_node); 92 rb_erase(next, &ref_tree->rb_root); 93 kfree(node); 94 } 95 96 ref_tree->rb_root = RB_ROOT; 97 ref_tree->unique_refs = 0; 98 } 99 100 static void ref_root_free(struct ref_root *ref_tree) 101 { 102 if (!ref_tree) 103 return; 104 105 ref_root_fini(ref_tree); 106 kfree(ref_tree); 107 } 108 109 /* 110 * Compare ref_node with (root_id, object_id, offset, parent) 111 * 112 * The function compares two ref_node a and b. It returns an integer less 113 * than, equal to, or greater than zero , respectively, to be less than, to 114 * equal, or be greater than b. 115 */ 116 static int ref_node_cmp(struct ref_node *a, struct ref_node *b) 117 { 118 if (a->root_id < b->root_id) 119 return -1; 120 else if (a->root_id > b->root_id) 121 return 1; 122 123 if (a->object_id < b->object_id) 124 return -1; 125 else if (a->object_id > b->object_id) 126 return 1; 127 128 if (a->offset < b->offset) 129 return -1; 130 else if (a->offset > b->offset) 131 return 1; 132 133 if (a->parent < b->parent) 134 return -1; 135 else if (a->parent > b->parent) 136 return 1; 137 138 return 0; 139 } 140 141 /* 142 * Search ref_node with (root_id, object_id, offset, parent) in the tree 143 * 144 * if found, the pointer of the ref_node will be returned; 145 * if not found, NULL will be returned and pos will point to the rb_node for 146 * insert, pos_parent will point to pos'parent for insert; 147 */ 148 static struct ref_node *__ref_tree_search(struct ref_root *ref_tree, 149 struct rb_node ***pos, 150 struct rb_node **pos_parent, 151 u64 root_id, u64 object_id, 152 u64 offset, u64 parent) 153 { 154 struct ref_node *cur = NULL; 155 struct ref_node entry; 156 int ret; 157 158 entry.root_id = root_id; 159 entry.object_id = object_id; 160 entry.offset = offset; 161 entry.parent = parent; 162 163 *pos = &ref_tree->rb_root.rb_node; 164 165 while (**pos) { 166 *pos_parent = **pos; 167 cur = rb_entry(*pos_parent, struct ref_node, rb_node); 168 169 ret = ref_node_cmp(cur, &entry); 170 if (ret > 0) 171 *pos = &(**pos)->rb_left; 172 else if (ret < 0) 173 *pos = &(**pos)->rb_right; 174 else 175 return cur; 176 } 177 178 return NULL; 179 } 180 181 /* 182 * Insert a ref_node to the ref tree 183 * @pos used for specifiy the position to insert 184 * @pos_parent for specifiy pos's parent 185 * 186 * success, return 0; 187 * ref_node already exists, return -EEXIST; 188 */ 189 static int ref_tree_insert(struct ref_root *ref_tree, struct rb_node **pos, 190 struct rb_node *pos_parent, struct ref_node *ins) 191 { 192 struct rb_node **p = NULL; 193 struct rb_node *parent = NULL; 194 struct ref_node *cur = NULL; 195 196 if (!pos) { 197 cur = __ref_tree_search(ref_tree, &p, &parent, ins->root_id, 198 ins->object_id, ins->offset, 199 ins->parent); 200 if (cur) 201 return -EEXIST; 202 } else { 203 p = pos; 204 parent = pos_parent; 205 } 206 207 rb_link_node(&ins->rb_node, parent, p); 208 rb_insert_color(&ins->rb_node, &ref_tree->rb_root); 209 210 return 0; 211 } 212 213 /* Erase and free ref_node, caller should update ref_root->unique_refs */ 214 static void ref_tree_remove(struct ref_root *ref_tree, struct ref_node *node) 215 { 216 rb_erase(&node->rb_node, &ref_tree->rb_root); 217 kfree(node); 218 } 219 220 /* 221 * Update ref_root->unique_refs 222 * 223 * Call __ref_tree_search 224 * 1. if ref_node doesn't exist, ref_tree_insert this node, and update 225 * ref_root->unique_refs: 226 * if ref_node->ref_mod > 0, ref_root->unique_refs++; 227 * if ref_node->ref_mod < 0, do noting; 228 * 229 * 2. if ref_node is found, then get origin ref_node->ref_mod, and update 230 * ref_node->ref_mod. 231 * if ref_node->ref_mod is equal to 0,then call ref_tree_remove 232 * 233 * according to origin_mod and new_mod, update ref_root->items 234 * +----------------+--------------+-------------+ 235 * | |new_count <= 0|new_count > 0| 236 * +----------------+--------------+-------------+ 237 * |origin_count < 0| 0 | 1 | 238 * +----------------+--------------+-------------+ 239 * |origin_count > 0| -1 | 0 | 240 * +----------------+--------------+-------------+ 241 * 242 * In case of allocation failure, -ENOMEM is returned and the ref_tree stays 243 * unaltered. 244 * Success, return 0 245 */ 246 static int ref_tree_add(struct ref_root *ref_tree, u64 root_id, u64 object_id, 247 u64 offset, u64 parent, int count) 248 { 249 struct ref_node *node = NULL; 250 struct rb_node **pos = NULL; 251 struct rb_node *pos_parent = NULL; 252 int origin_count; 253 int ret; 254 255 if (!count) 256 return 0; 257 258 node = __ref_tree_search(ref_tree, &pos, &pos_parent, root_id, 259 object_id, offset, parent); 260 if (node == NULL) { 261 node = kmalloc(sizeof(*node), GFP_NOFS); 262 if (!node) 263 return -ENOMEM; 264 265 node->root_id = root_id; 266 node->object_id = object_id; 267 node->offset = offset; 268 node->parent = parent; 269 node->ref_mod = count; 270 271 ret = ref_tree_insert(ref_tree, pos, pos_parent, node); 272 ASSERT(!ret); 273 if (ret) { 274 kfree(node); 275 return ret; 276 } 277 278 ref_tree->unique_refs += node->ref_mod > 0 ? 1 : 0; 279 280 return 0; 281 } 282 283 origin_count = node->ref_mod; 284 node->ref_mod += count; 285 286 if (node->ref_mod > 0) 287 ref_tree->unique_refs += origin_count > 0 ? 0 : 1; 288 else if (node->ref_mod <= 0) 289 ref_tree->unique_refs += origin_count > 0 ? -1 : 0; 290 291 if (!node->ref_mod) 292 ref_tree_remove(ref_tree, node); 293 294 return 0; 295 } 296 297 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 298 struct btrfs_file_extent_item *fi, 299 u64 extent_item_pos, 300 struct extent_inode_elem **eie) 301 { 302 u64 offset = 0; 303 struct extent_inode_elem *e; 304 305 if (!btrfs_file_extent_compression(eb, fi) && 306 !btrfs_file_extent_encryption(eb, fi) && 307 !btrfs_file_extent_other_encoding(eb, fi)) { 308 u64 data_offset; 309 u64 data_len; 310 311 data_offset = btrfs_file_extent_offset(eb, fi); 312 data_len = btrfs_file_extent_num_bytes(eb, fi); 313 314 if (extent_item_pos < data_offset || 315 extent_item_pos >= data_offset + data_len) 316 return 1; 317 offset = extent_item_pos - data_offset; 318 } 319 320 e = kmalloc(sizeof(*e), GFP_NOFS); 321 if (!e) 322 return -ENOMEM; 323 324 e->next = *eie; 325 e->inum = key->objectid; 326 e->offset = key->offset + offset; 327 *eie = e; 328 329 return 0; 330 } 331 332 static void free_inode_elem_list(struct extent_inode_elem *eie) 333 { 334 struct extent_inode_elem *eie_next; 335 336 for (; eie; eie = eie_next) { 337 eie_next = eie->next; 338 kfree(eie); 339 } 340 } 341 342 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 343 u64 extent_item_pos, 344 struct extent_inode_elem **eie) 345 { 346 u64 disk_byte; 347 struct btrfs_key key; 348 struct btrfs_file_extent_item *fi; 349 int slot; 350 int nritems; 351 int extent_type; 352 int ret; 353 354 /* 355 * from the shared data ref, we only have the leaf but we need 356 * the key. thus, we must look into all items and see that we 357 * find one (some) with a reference to our extent item. 358 */ 359 nritems = btrfs_header_nritems(eb); 360 for (slot = 0; slot < nritems; ++slot) { 361 btrfs_item_key_to_cpu(eb, &key, slot); 362 if (key.type != BTRFS_EXTENT_DATA_KEY) 363 continue; 364 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 365 extent_type = btrfs_file_extent_type(eb, fi); 366 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 367 continue; 368 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 369 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 370 if (disk_byte != wanted_disk_byte) 371 continue; 372 373 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 374 if (ret < 0) 375 return ret; 376 } 377 378 return 0; 379 } 380 381 /* 382 * this structure records all encountered refs on the way up to the root 383 */ 384 struct __prelim_ref { 385 struct list_head list; 386 u64 root_id; 387 struct btrfs_key key_for_search; 388 int level; 389 int count; 390 struct extent_inode_elem *inode_list; 391 u64 parent; 392 u64 wanted_disk_byte; 393 }; 394 395 static struct kmem_cache *btrfs_prelim_ref_cache; 396 397 int __init btrfs_prelim_ref_init(void) 398 { 399 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 400 sizeof(struct __prelim_ref), 401 0, 402 SLAB_MEM_SPREAD, 403 NULL); 404 if (!btrfs_prelim_ref_cache) 405 return -ENOMEM; 406 return 0; 407 } 408 409 void btrfs_prelim_ref_exit(void) 410 { 411 kmem_cache_destroy(btrfs_prelim_ref_cache); 412 } 413 414 /* 415 * the rules for all callers of this function are: 416 * - obtaining the parent is the goal 417 * - if you add a key, you must know that it is a correct key 418 * - if you cannot add the parent or a correct key, then we will look into the 419 * block later to set a correct key 420 * 421 * delayed refs 422 * ============ 423 * backref type | shared | indirect | shared | indirect 424 * information | tree | tree | data | data 425 * --------------------+--------+----------+--------+---------- 426 * parent logical | y | - | - | - 427 * key to resolve | - | y | y | y 428 * tree block logical | - | - | - | - 429 * root for resolving | y | y | y | y 430 * 431 * - column 1: we've the parent -> done 432 * - column 2, 3, 4: we use the key to find the parent 433 * 434 * on disk refs (inline or keyed) 435 * ============================== 436 * backref type | shared | indirect | shared | indirect 437 * information | tree | tree | data | data 438 * --------------------+--------+----------+--------+---------- 439 * parent logical | y | - | y | - 440 * key to resolve | - | - | - | y 441 * tree block logical | y | y | y | y 442 * root for resolving | - | y | y | y 443 * 444 * - column 1, 3: we've the parent -> done 445 * - column 2: we take the first key from the block to find the parent 446 * (see __add_missing_keys) 447 * - column 4: we use the key to find the parent 448 * 449 * additional information that's available but not required to find the parent 450 * block might help in merging entries to gain some speed. 451 */ 452 453 static int __add_prelim_ref(struct list_head *head, u64 root_id, 454 struct btrfs_key *key, int level, 455 u64 parent, u64 wanted_disk_byte, int count, 456 gfp_t gfp_mask) 457 { 458 struct __prelim_ref *ref; 459 460 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 461 return 0; 462 463 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 464 if (!ref) 465 return -ENOMEM; 466 467 ref->root_id = root_id; 468 if (key) { 469 ref->key_for_search = *key; 470 /* 471 * We can often find data backrefs with an offset that is too 472 * large (>= LLONG_MAX, maximum allowed file offset) due to 473 * underflows when subtracting a file's offset with the data 474 * offset of its corresponding extent data item. This can 475 * happen for example in the clone ioctl. 476 * So if we detect such case we set the search key's offset to 477 * zero to make sure we will find the matching file extent item 478 * at add_all_parents(), otherwise we will miss it because the 479 * offset taken form the backref is much larger then the offset 480 * of the file extent item. This can make us scan a very large 481 * number of file extent items, but at least it will not make 482 * us miss any. 483 * This is an ugly workaround for a behaviour that should have 484 * never existed, but it does and a fix for the clone ioctl 485 * would touch a lot of places, cause backwards incompatibility 486 * and would not fix the problem for extents cloned with older 487 * kernels. 488 */ 489 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY && 490 ref->key_for_search.offset >= LLONG_MAX) 491 ref->key_for_search.offset = 0; 492 } else { 493 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 494 } 495 496 ref->inode_list = NULL; 497 ref->level = level; 498 ref->count = count; 499 ref->parent = parent; 500 ref->wanted_disk_byte = wanted_disk_byte; 501 list_add_tail(&ref->list, head); 502 503 return 0; 504 } 505 506 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 507 struct ulist *parents, struct __prelim_ref *ref, 508 int level, u64 time_seq, const u64 *extent_item_pos, 509 u64 total_refs) 510 { 511 int ret = 0; 512 int slot; 513 struct extent_buffer *eb; 514 struct btrfs_key key; 515 struct btrfs_key *key_for_search = &ref->key_for_search; 516 struct btrfs_file_extent_item *fi; 517 struct extent_inode_elem *eie = NULL, *old = NULL; 518 u64 disk_byte; 519 u64 wanted_disk_byte = ref->wanted_disk_byte; 520 u64 count = 0; 521 522 if (level != 0) { 523 eb = path->nodes[level]; 524 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 525 if (ret < 0) 526 return ret; 527 return 0; 528 } 529 530 /* 531 * We normally enter this function with the path already pointing to 532 * the first item to check. But sometimes, we may enter it with 533 * slot==nritems. In that case, go to the next leaf before we continue. 534 */ 535 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 536 if (time_seq == (u64)-1) 537 ret = btrfs_next_leaf(root, path); 538 else 539 ret = btrfs_next_old_leaf(root, path, time_seq); 540 } 541 542 while (!ret && count < total_refs) { 543 eb = path->nodes[0]; 544 slot = path->slots[0]; 545 546 btrfs_item_key_to_cpu(eb, &key, slot); 547 548 if (key.objectid != key_for_search->objectid || 549 key.type != BTRFS_EXTENT_DATA_KEY) 550 break; 551 552 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 553 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 554 555 if (disk_byte == wanted_disk_byte) { 556 eie = NULL; 557 old = NULL; 558 count++; 559 if (extent_item_pos) { 560 ret = check_extent_in_eb(&key, eb, fi, 561 *extent_item_pos, 562 &eie); 563 if (ret < 0) 564 break; 565 } 566 if (ret > 0) 567 goto next; 568 ret = ulist_add_merge_ptr(parents, eb->start, 569 eie, (void **)&old, GFP_NOFS); 570 if (ret < 0) 571 break; 572 if (!ret && extent_item_pos) { 573 while (old->next) 574 old = old->next; 575 old->next = eie; 576 } 577 eie = NULL; 578 } 579 next: 580 if (time_seq == (u64)-1) 581 ret = btrfs_next_item(root, path); 582 else 583 ret = btrfs_next_old_item(root, path, time_seq); 584 } 585 586 if (ret > 0) 587 ret = 0; 588 else if (ret < 0) 589 free_inode_elem_list(eie); 590 return ret; 591 } 592 593 /* 594 * resolve an indirect backref in the form (root_id, key, level) 595 * to a logical address 596 */ 597 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 598 struct btrfs_path *path, u64 time_seq, 599 struct __prelim_ref *ref, 600 struct ulist *parents, 601 const u64 *extent_item_pos, u64 total_refs) 602 { 603 struct btrfs_root *root; 604 struct btrfs_key root_key; 605 struct extent_buffer *eb; 606 int ret = 0; 607 int root_level; 608 int level = ref->level; 609 int index; 610 611 root_key.objectid = ref->root_id; 612 root_key.type = BTRFS_ROOT_ITEM_KEY; 613 root_key.offset = (u64)-1; 614 615 index = srcu_read_lock(&fs_info->subvol_srcu); 616 617 root = btrfs_get_fs_root(fs_info, &root_key, false); 618 if (IS_ERR(root)) { 619 srcu_read_unlock(&fs_info->subvol_srcu, index); 620 ret = PTR_ERR(root); 621 goto out; 622 } 623 624 if (btrfs_is_testing(fs_info)) { 625 srcu_read_unlock(&fs_info->subvol_srcu, index); 626 ret = -ENOENT; 627 goto out; 628 } 629 630 if (path->search_commit_root) 631 root_level = btrfs_header_level(root->commit_root); 632 else if (time_seq == (u64)-1) 633 root_level = btrfs_header_level(root->node); 634 else 635 root_level = btrfs_old_root_level(root, time_seq); 636 637 if (root_level + 1 == level) { 638 srcu_read_unlock(&fs_info->subvol_srcu, index); 639 goto out; 640 } 641 642 path->lowest_level = level; 643 if (time_seq == (u64)-1) 644 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 645 0, 0); 646 else 647 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, 648 time_seq); 649 650 /* root node has been locked, we can release @subvol_srcu safely here */ 651 srcu_read_unlock(&fs_info->subvol_srcu, index); 652 653 btrfs_debug(fs_info, 654 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 655 ref->root_id, level, ref->count, ret, 656 ref->key_for_search.objectid, ref->key_for_search.type, 657 ref->key_for_search.offset); 658 if (ret < 0) 659 goto out; 660 661 eb = path->nodes[level]; 662 while (!eb) { 663 if (WARN_ON(!level)) { 664 ret = 1; 665 goto out; 666 } 667 level--; 668 eb = path->nodes[level]; 669 } 670 671 ret = add_all_parents(root, path, parents, ref, level, time_seq, 672 extent_item_pos, total_refs); 673 out: 674 path->lowest_level = 0; 675 btrfs_release_path(path); 676 return ret; 677 } 678 679 /* 680 * resolve all indirect backrefs from the list 681 */ 682 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 683 struct btrfs_path *path, u64 time_seq, 684 struct list_head *head, 685 const u64 *extent_item_pos, u64 total_refs, 686 u64 root_objectid) 687 { 688 int err; 689 int ret = 0; 690 struct __prelim_ref *ref; 691 struct __prelim_ref *ref_safe; 692 struct __prelim_ref *new_ref; 693 struct ulist *parents; 694 struct ulist_node *node; 695 struct ulist_iterator uiter; 696 697 parents = ulist_alloc(GFP_NOFS); 698 if (!parents) 699 return -ENOMEM; 700 701 /* 702 * _safe allows us to insert directly after the current item without 703 * iterating over the newly inserted items. 704 * we're also allowed to re-assign ref during iteration. 705 */ 706 list_for_each_entry_safe(ref, ref_safe, head, list) { 707 if (ref->parent) /* already direct */ 708 continue; 709 if (ref->count == 0) 710 continue; 711 if (root_objectid && ref->root_id != root_objectid) { 712 ret = BACKREF_FOUND_SHARED; 713 goto out; 714 } 715 err = __resolve_indirect_ref(fs_info, path, time_seq, ref, 716 parents, extent_item_pos, 717 total_refs); 718 /* 719 * we can only tolerate ENOENT,otherwise,we should catch error 720 * and return directly. 721 */ 722 if (err == -ENOENT) { 723 continue; 724 } else if (err) { 725 ret = err; 726 goto out; 727 } 728 729 /* we put the first parent into the ref at hand */ 730 ULIST_ITER_INIT(&uiter); 731 node = ulist_next(parents, &uiter); 732 ref->parent = node ? node->val : 0; 733 ref->inode_list = node ? 734 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL; 735 736 /* additional parents require new refs being added here */ 737 while ((node = ulist_next(parents, &uiter))) { 738 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 739 GFP_NOFS); 740 if (!new_ref) { 741 ret = -ENOMEM; 742 goto out; 743 } 744 memcpy(new_ref, ref, sizeof(*ref)); 745 new_ref->parent = node->val; 746 new_ref->inode_list = (struct extent_inode_elem *) 747 (uintptr_t)node->aux; 748 list_add(&new_ref->list, &ref->list); 749 } 750 ulist_reinit(parents); 751 } 752 out: 753 ulist_free(parents); 754 return ret; 755 } 756 757 static inline int ref_for_same_block(struct __prelim_ref *ref1, 758 struct __prelim_ref *ref2) 759 { 760 if (ref1->level != ref2->level) 761 return 0; 762 if (ref1->root_id != ref2->root_id) 763 return 0; 764 if (ref1->key_for_search.type != ref2->key_for_search.type) 765 return 0; 766 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 767 return 0; 768 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 769 return 0; 770 if (ref1->parent != ref2->parent) 771 return 0; 772 773 return 1; 774 } 775 776 /* 777 * read tree blocks and add keys where required. 778 */ 779 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 780 struct list_head *head) 781 { 782 struct __prelim_ref *ref; 783 struct extent_buffer *eb; 784 785 list_for_each_entry(ref, head, list) { 786 if (ref->parent) 787 continue; 788 if (ref->key_for_search.type) 789 continue; 790 BUG_ON(!ref->wanted_disk_byte); 791 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 792 0); 793 if (IS_ERR(eb)) { 794 return PTR_ERR(eb); 795 } else if (!extent_buffer_uptodate(eb)) { 796 free_extent_buffer(eb); 797 return -EIO; 798 } 799 btrfs_tree_read_lock(eb); 800 if (btrfs_header_level(eb) == 0) 801 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 802 else 803 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 804 btrfs_tree_read_unlock(eb); 805 free_extent_buffer(eb); 806 } 807 return 0; 808 } 809 810 /* 811 * merge backrefs and adjust counts accordingly 812 * 813 * mode = 1: merge identical keys, if key is set 814 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 815 * additionally, we could even add a key range for the blocks we 816 * looked into to merge even more (-> replace unresolved refs by those 817 * having a parent). 818 * mode = 2: merge identical parents 819 */ 820 static void __merge_refs(struct list_head *head, int mode) 821 { 822 struct __prelim_ref *pos1; 823 824 list_for_each_entry(pos1, head, list) { 825 struct __prelim_ref *pos2 = pos1, *tmp; 826 827 list_for_each_entry_safe_continue(pos2, tmp, head, list) { 828 struct __prelim_ref *ref1 = pos1, *ref2 = pos2; 829 struct extent_inode_elem *eie; 830 831 if (!ref_for_same_block(ref1, ref2)) 832 continue; 833 if (mode == 1) { 834 if (!ref1->parent && ref2->parent) 835 swap(ref1, ref2); 836 } else { 837 if (ref1->parent != ref2->parent) 838 continue; 839 } 840 841 eie = ref1->inode_list; 842 while (eie && eie->next) 843 eie = eie->next; 844 if (eie) 845 eie->next = ref2->inode_list; 846 else 847 ref1->inode_list = ref2->inode_list; 848 ref1->count += ref2->count; 849 850 list_del(&ref2->list); 851 kmem_cache_free(btrfs_prelim_ref_cache, ref2); 852 cond_resched(); 853 } 854 855 } 856 } 857 858 /* 859 * add all currently queued delayed refs from this head whose seq nr is 860 * smaller or equal that seq to the list 861 */ 862 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 863 struct list_head *prefs, u64 *total_refs, 864 u64 inum) 865 { 866 struct btrfs_delayed_ref_node *node; 867 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 868 struct btrfs_key key; 869 struct btrfs_key op_key = {0}; 870 int sgn; 871 int ret = 0; 872 873 if (extent_op && extent_op->update_key) 874 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 875 876 spin_lock(&head->lock); 877 list_for_each_entry(node, &head->ref_list, list) { 878 if (node->seq > seq) 879 continue; 880 881 switch (node->action) { 882 case BTRFS_ADD_DELAYED_EXTENT: 883 case BTRFS_UPDATE_DELAYED_HEAD: 884 WARN_ON(1); 885 continue; 886 case BTRFS_ADD_DELAYED_REF: 887 sgn = 1; 888 break; 889 case BTRFS_DROP_DELAYED_REF: 890 sgn = -1; 891 break; 892 default: 893 BUG_ON(1); 894 } 895 *total_refs += (node->ref_mod * sgn); 896 switch (node->type) { 897 case BTRFS_TREE_BLOCK_REF_KEY: { 898 struct btrfs_delayed_tree_ref *ref; 899 900 ref = btrfs_delayed_node_to_tree_ref(node); 901 ret = __add_prelim_ref(prefs, ref->root, &op_key, 902 ref->level + 1, 0, node->bytenr, 903 node->ref_mod * sgn, GFP_ATOMIC); 904 break; 905 } 906 case BTRFS_SHARED_BLOCK_REF_KEY: { 907 struct btrfs_delayed_tree_ref *ref; 908 909 ref = btrfs_delayed_node_to_tree_ref(node); 910 ret = __add_prelim_ref(prefs, 0, NULL, 911 ref->level + 1, ref->parent, 912 node->bytenr, 913 node->ref_mod * sgn, GFP_ATOMIC); 914 break; 915 } 916 case BTRFS_EXTENT_DATA_REF_KEY: { 917 struct btrfs_delayed_data_ref *ref; 918 ref = btrfs_delayed_node_to_data_ref(node); 919 920 key.objectid = ref->objectid; 921 key.type = BTRFS_EXTENT_DATA_KEY; 922 key.offset = ref->offset; 923 924 /* 925 * Found a inum that doesn't match our known inum, we 926 * know it's shared. 927 */ 928 if (inum && ref->objectid != inum) { 929 ret = BACKREF_FOUND_SHARED; 930 break; 931 } 932 933 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 934 node->bytenr, 935 node->ref_mod * sgn, GFP_ATOMIC); 936 break; 937 } 938 case BTRFS_SHARED_DATA_REF_KEY: { 939 struct btrfs_delayed_data_ref *ref; 940 941 ref = btrfs_delayed_node_to_data_ref(node); 942 ret = __add_prelim_ref(prefs, 0, NULL, 0, 943 ref->parent, node->bytenr, 944 node->ref_mod * sgn, GFP_ATOMIC); 945 break; 946 } 947 default: 948 WARN_ON(1); 949 } 950 if (ret) 951 break; 952 } 953 spin_unlock(&head->lock); 954 return ret; 955 } 956 957 /* 958 * add all inline backrefs for bytenr to the list 959 */ 960 static int __add_inline_refs(struct btrfs_fs_info *fs_info, 961 struct btrfs_path *path, u64 bytenr, 962 int *info_level, struct list_head *prefs, 963 struct ref_root *ref_tree, 964 u64 *total_refs, u64 inum) 965 { 966 int ret = 0; 967 int slot; 968 struct extent_buffer *leaf; 969 struct btrfs_key key; 970 struct btrfs_key found_key; 971 unsigned long ptr; 972 unsigned long end; 973 struct btrfs_extent_item *ei; 974 u64 flags; 975 u64 item_size; 976 977 /* 978 * enumerate all inline refs 979 */ 980 leaf = path->nodes[0]; 981 slot = path->slots[0]; 982 983 item_size = btrfs_item_size_nr(leaf, slot); 984 BUG_ON(item_size < sizeof(*ei)); 985 986 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 987 flags = btrfs_extent_flags(leaf, ei); 988 *total_refs += btrfs_extent_refs(leaf, ei); 989 btrfs_item_key_to_cpu(leaf, &found_key, slot); 990 991 ptr = (unsigned long)(ei + 1); 992 end = (unsigned long)ei + item_size; 993 994 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 995 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 996 struct btrfs_tree_block_info *info; 997 998 info = (struct btrfs_tree_block_info *)ptr; 999 *info_level = btrfs_tree_block_level(leaf, info); 1000 ptr += sizeof(struct btrfs_tree_block_info); 1001 BUG_ON(ptr > end); 1002 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1003 *info_level = found_key.offset; 1004 } else { 1005 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1006 } 1007 1008 while (ptr < end) { 1009 struct btrfs_extent_inline_ref *iref; 1010 u64 offset; 1011 int type; 1012 1013 iref = (struct btrfs_extent_inline_ref *)ptr; 1014 type = btrfs_extent_inline_ref_type(leaf, iref); 1015 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1016 1017 switch (type) { 1018 case BTRFS_SHARED_BLOCK_REF_KEY: 1019 ret = __add_prelim_ref(prefs, 0, NULL, 1020 *info_level + 1, offset, 1021 bytenr, 1, GFP_NOFS); 1022 break; 1023 case BTRFS_SHARED_DATA_REF_KEY: { 1024 struct btrfs_shared_data_ref *sdref; 1025 int count; 1026 1027 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1028 count = btrfs_shared_data_ref_count(leaf, sdref); 1029 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 1030 bytenr, count, GFP_NOFS); 1031 if (ref_tree) { 1032 if (!ret) 1033 ret = ref_tree_add(ref_tree, 0, 0, 0, 1034 bytenr, count); 1035 if (!ret && ref_tree->unique_refs > 1) 1036 ret = BACKREF_FOUND_SHARED; 1037 } 1038 break; 1039 } 1040 case BTRFS_TREE_BLOCK_REF_KEY: 1041 ret = __add_prelim_ref(prefs, offset, NULL, 1042 *info_level + 1, 0, 1043 bytenr, 1, GFP_NOFS); 1044 break; 1045 case BTRFS_EXTENT_DATA_REF_KEY: { 1046 struct btrfs_extent_data_ref *dref; 1047 int count; 1048 u64 root; 1049 1050 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1051 count = btrfs_extent_data_ref_count(leaf, dref); 1052 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1053 dref); 1054 key.type = BTRFS_EXTENT_DATA_KEY; 1055 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1056 1057 if (inum && key.objectid != inum) { 1058 ret = BACKREF_FOUND_SHARED; 1059 break; 1060 } 1061 1062 root = btrfs_extent_data_ref_root(leaf, dref); 1063 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 1064 bytenr, count, GFP_NOFS); 1065 if (ref_tree) { 1066 if (!ret) 1067 ret = ref_tree_add(ref_tree, root, 1068 key.objectid, 1069 key.offset, 0, 1070 count); 1071 if (!ret && ref_tree->unique_refs > 1) 1072 ret = BACKREF_FOUND_SHARED; 1073 } 1074 break; 1075 } 1076 default: 1077 WARN_ON(1); 1078 } 1079 if (ret) 1080 return ret; 1081 ptr += btrfs_extent_inline_ref_size(type); 1082 } 1083 1084 return 0; 1085 } 1086 1087 /* 1088 * add all non-inline backrefs for bytenr to the list 1089 */ 1090 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 1091 struct btrfs_path *path, u64 bytenr, 1092 int info_level, struct list_head *prefs, 1093 struct ref_root *ref_tree, u64 inum) 1094 { 1095 struct btrfs_root *extent_root = fs_info->extent_root; 1096 int ret; 1097 int slot; 1098 struct extent_buffer *leaf; 1099 struct btrfs_key key; 1100 1101 while (1) { 1102 ret = btrfs_next_item(extent_root, path); 1103 if (ret < 0) 1104 break; 1105 if (ret) { 1106 ret = 0; 1107 break; 1108 } 1109 1110 slot = path->slots[0]; 1111 leaf = path->nodes[0]; 1112 btrfs_item_key_to_cpu(leaf, &key, slot); 1113 1114 if (key.objectid != bytenr) 1115 break; 1116 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1117 continue; 1118 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1119 break; 1120 1121 switch (key.type) { 1122 case BTRFS_SHARED_BLOCK_REF_KEY: 1123 ret = __add_prelim_ref(prefs, 0, NULL, 1124 info_level + 1, key.offset, 1125 bytenr, 1, GFP_NOFS); 1126 break; 1127 case BTRFS_SHARED_DATA_REF_KEY: { 1128 struct btrfs_shared_data_ref *sdref; 1129 int count; 1130 1131 sdref = btrfs_item_ptr(leaf, slot, 1132 struct btrfs_shared_data_ref); 1133 count = btrfs_shared_data_ref_count(leaf, sdref); 1134 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 1135 bytenr, count, GFP_NOFS); 1136 if (ref_tree) { 1137 if (!ret) 1138 ret = ref_tree_add(ref_tree, 0, 0, 0, 1139 bytenr, count); 1140 if (!ret && ref_tree->unique_refs > 1) 1141 ret = BACKREF_FOUND_SHARED; 1142 } 1143 break; 1144 } 1145 case BTRFS_TREE_BLOCK_REF_KEY: 1146 ret = __add_prelim_ref(prefs, key.offset, NULL, 1147 info_level + 1, 0, 1148 bytenr, 1, GFP_NOFS); 1149 break; 1150 case BTRFS_EXTENT_DATA_REF_KEY: { 1151 struct btrfs_extent_data_ref *dref; 1152 int count; 1153 u64 root; 1154 1155 dref = btrfs_item_ptr(leaf, slot, 1156 struct btrfs_extent_data_ref); 1157 count = btrfs_extent_data_ref_count(leaf, dref); 1158 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1159 dref); 1160 key.type = BTRFS_EXTENT_DATA_KEY; 1161 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1162 1163 if (inum && key.objectid != inum) { 1164 ret = BACKREF_FOUND_SHARED; 1165 break; 1166 } 1167 1168 root = btrfs_extent_data_ref_root(leaf, dref); 1169 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 1170 bytenr, count, GFP_NOFS); 1171 if (ref_tree) { 1172 if (!ret) 1173 ret = ref_tree_add(ref_tree, root, 1174 key.objectid, 1175 key.offset, 0, 1176 count); 1177 if (!ret && ref_tree->unique_refs > 1) 1178 ret = BACKREF_FOUND_SHARED; 1179 } 1180 break; 1181 } 1182 default: 1183 WARN_ON(1); 1184 } 1185 if (ret) 1186 return ret; 1187 1188 } 1189 1190 return ret; 1191 } 1192 1193 /* 1194 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1195 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1196 * indirect refs to their parent bytenr. 1197 * When roots are found, they're added to the roots list 1198 * 1199 * NOTE: This can return values > 0 1200 * 1201 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave 1202 * much like trans == NULL case, the difference only lies in it will not 1203 * commit root. 1204 * The special case is for qgroup to search roots in commit_transaction(). 1205 * 1206 * If check_shared is set to 1, any extent has more than one ref item, will 1207 * be returned BACKREF_FOUND_SHARED immediately. 1208 * 1209 * FIXME some caching might speed things up 1210 */ 1211 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1212 struct btrfs_fs_info *fs_info, u64 bytenr, 1213 u64 time_seq, struct ulist *refs, 1214 struct ulist *roots, const u64 *extent_item_pos, 1215 u64 root_objectid, u64 inum, int check_shared) 1216 { 1217 struct btrfs_key key; 1218 struct btrfs_path *path; 1219 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1220 struct btrfs_delayed_ref_head *head; 1221 int info_level = 0; 1222 int ret; 1223 struct list_head prefs_delayed; 1224 struct list_head prefs; 1225 struct __prelim_ref *ref; 1226 struct extent_inode_elem *eie = NULL; 1227 struct ref_root *ref_tree = NULL; 1228 u64 total_refs = 0; 1229 1230 INIT_LIST_HEAD(&prefs); 1231 INIT_LIST_HEAD(&prefs_delayed); 1232 1233 key.objectid = bytenr; 1234 key.offset = (u64)-1; 1235 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1236 key.type = BTRFS_METADATA_ITEM_KEY; 1237 else 1238 key.type = BTRFS_EXTENT_ITEM_KEY; 1239 1240 path = btrfs_alloc_path(); 1241 if (!path) 1242 return -ENOMEM; 1243 if (!trans) { 1244 path->search_commit_root = 1; 1245 path->skip_locking = 1; 1246 } 1247 1248 if (time_seq == (u64)-1) 1249 path->skip_locking = 1; 1250 1251 /* 1252 * grab both a lock on the path and a lock on the delayed ref head. 1253 * We need both to get a consistent picture of how the refs look 1254 * at a specified point in time 1255 */ 1256 again: 1257 head = NULL; 1258 1259 if (check_shared) { 1260 if (!ref_tree) { 1261 ref_tree = ref_root_alloc(); 1262 if (!ref_tree) { 1263 ret = -ENOMEM; 1264 goto out; 1265 } 1266 } else { 1267 ref_root_fini(ref_tree); 1268 } 1269 } 1270 1271 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1272 if (ret < 0) 1273 goto out; 1274 BUG_ON(ret == 0); 1275 1276 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1277 if (trans && likely(trans->type != __TRANS_DUMMY) && 1278 time_seq != (u64)-1) { 1279 #else 1280 if (trans && time_seq != (u64)-1) { 1281 #endif 1282 /* 1283 * look if there are updates for this ref queued and lock the 1284 * head 1285 */ 1286 delayed_refs = &trans->transaction->delayed_refs; 1287 spin_lock(&delayed_refs->lock); 1288 head = btrfs_find_delayed_ref_head(trans, bytenr); 1289 if (head) { 1290 if (!mutex_trylock(&head->mutex)) { 1291 atomic_inc(&head->node.refs); 1292 spin_unlock(&delayed_refs->lock); 1293 1294 btrfs_release_path(path); 1295 1296 /* 1297 * Mutex was contended, block until it's 1298 * released and try again 1299 */ 1300 mutex_lock(&head->mutex); 1301 mutex_unlock(&head->mutex); 1302 btrfs_put_delayed_ref(&head->node); 1303 goto again; 1304 } 1305 spin_unlock(&delayed_refs->lock); 1306 ret = __add_delayed_refs(head, time_seq, 1307 &prefs_delayed, &total_refs, 1308 inum); 1309 mutex_unlock(&head->mutex); 1310 if (ret) 1311 goto out; 1312 } else { 1313 spin_unlock(&delayed_refs->lock); 1314 } 1315 1316 if (check_shared && !list_empty(&prefs_delayed)) { 1317 /* 1318 * Add all delay_ref to the ref_tree and check if there 1319 * are multiple ref items added. 1320 */ 1321 list_for_each_entry(ref, &prefs_delayed, list) { 1322 if (ref->key_for_search.type) { 1323 ret = ref_tree_add(ref_tree, 1324 ref->root_id, 1325 ref->key_for_search.objectid, 1326 ref->key_for_search.offset, 1327 0, ref->count); 1328 if (ret) 1329 goto out; 1330 } else { 1331 ret = ref_tree_add(ref_tree, 0, 0, 0, 1332 ref->parent, ref->count); 1333 if (ret) 1334 goto out; 1335 } 1336 1337 } 1338 1339 if (ref_tree->unique_refs > 1) { 1340 ret = BACKREF_FOUND_SHARED; 1341 goto out; 1342 } 1343 1344 } 1345 } 1346 1347 if (path->slots[0]) { 1348 struct extent_buffer *leaf; 1349 int slot; 1350 1351 path->slots[0]--; 1352 leaf = path->nodes[0]; 1353 slot = path->slots[0]; 1354 btrfs_item_key_to_cpu(leaf, &key, slot); 1355 if (key.objectid == bytenr && 1356 (key.type == BTRFS_EXTENT_ITEM_KEY || 1357 key.type == BTRFS_METADATA_ITEM_KEY)) { 1358 ret = __add_inline_refs(fs_info, path, bytenr, 1359 &info_level, &prefs, 1360 ref_tree, &total_refs, 1361 inum); 1362 if (ret) 1363 goto out; 1364 ret = __add_keyed_refs(fs_info, path, bytenr, 1365 info_level, &prefs, 1366 ref_tree, inum); 1367 if (ret) 1368 goto out; 1369 } 1370 } 1371 btrfs_release_path(path); 1372 1373 list_splice_init(&prefs_delayed, &prefs); 1374 1375 ret = __add_missing_keys(fs_info, &prefs); 1376 if (ret) 1377 goto out; 1378 1379 __merge_refs(&prefs, 1); 1380 1381 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs, 1382 extent_item_pos, total_refs, 1383 root_objectid); 1384 if (ret) 1385 goto out; 1386 1387 __merge_refs(&prefs, 2); 1388 1389 while (!list_empty(&prefs)) { 1390 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1391 WARN_ON(ref->count < 0); 1392 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1393 if (root_objectid && ref->root_id != root_objectid) { 1394 ret = BACKREF_FOUND_SHARED; 1395 goto out; 1396 } 1397 1398 /* no parent == root of tree */ 1399 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1400 if (ret < 0) 1401 goto out; 1402 } 1403 if (ref->count && ref->parent) { 1404 if (extent_item_pos && !ref->inode_list && 1405 ref->level == 0) { 1406 struct extent_buffer *eb; 1407 1408 eb = read_tree_block(fs_info->extent_root, 1409 ref->parent, 0); 1410 if (IS_ERR(eb)) { 1411 ret = PTR_ERR(eb); 1412 goto out; 1413 } else if (!extent_buffer_uptodate(eb)) { 1414 free_extent_buffer(eb); 1415 ret = -EIO; 1416 goto out; 1417 } 1418 btrfs_tree_read_lock(eb); 1419 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1420 ret = find_extent_in_eb(eb, bytenr, 1421 *extent_item_pos, &eie); 1422 btrfs_tree_read_unlock_blocking(eb); 1423 free_extent_buffer(eb); 1424 if (ret < 0) 1425 goto out; 1426 ref->inode_list = eie; 1427 } 1428 ret = ulist_add_merge_ptr(refs, ref->parent, 1429 ref->inode_list, 1430 (void **)&eie, GFP_NOFS); 1431 if (ret < 0) 1432 goto out; 1433 if (!ret && extent_item_pos) { 1434 /* 1435 * we've recorded that parent, so we must extend 1436 * its inode list here 1437 */ 1438 BUG_ON(!eie); 1439 while (eie->next) 1440 eie = eie->next; 1441 eie->next = ref->inode_list; 1442 } 1443 eie = NULL; 1444 } 1445 list_del(&ref->list); 1446 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1447 } 1448 1449 out: 1450 btrfs_free_path(path); 1451 ref_root_free(ref_tree); 1452 while (!list_empty(&prefs)) { 1453 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1454 list_del(&ref->list); 1455 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1456 } 1457 while (!list_empty(&prefs_delayed)) { 1458 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 1459 list); 1460 list_del(&ref->list); 1461 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1462 } 1463 if (ret < 0) 1464 free_inode_elem_list(eie); 1465 return ret; 1466 } 1467 1468 static void free_leaf_list(struct ulist *blocks) 1469 { 1470 struct ulist_node *node = NULL; 1471 struct extent_inode_elem *eie; 1472 struct ulist_iterator uiter; 1473 1474 ULIST_ITER_INIT(&uiter); 1475 while ((node = ulist_next(blocks, &uiter))) { 1476 if (!node->aux) 1477 continue; 1478 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 1479 free_inode_elem_list(eie); 1480 node->aux = 0; 1481 } 1482 1483 ulist_free(blocks); 1484 } 1485 1486 /* 1487 * Finds all leafs with a reference to the specified combination of bytenr and 1488 * offset. key_list_head will point to a list of corresponding keys (caller must 1489 * free each list element). The leafs will be stored in the leafs ulist, which 1490 * must be freed with ulist_free. 1491 * 1492 * returns 0 on success, <0 on error 1493 */ 1494 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1495 struct btrfs_fs_info *fs_info, u64 bytenr, 1496 u64 time_seq, struct ulist **leafs, 1497 const u64 *extent_item_pos) 1498 { 1499 int ret; 1500 1501 *leafs = ulist_alloc(GFP_NOFS); 1502 if (!*leafs) 1503 return -ENOMEM; 1504 1505 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1506 *leafs, NULL, extent_item_pos, 0, 0, 0); 1507 if (ret < 0 && ret != -ENOENT) { 1508 free_leaf_list(*leafs); 1509 return ret; 1510 } 1511 1512 return 0; 1513 } 1514 1515 /* 1516 * walk all backrefs for a given extent to find all roots that reference this 1517 * extent. Walking a backref means finding all extents that reference this 1518 * extent and in turn walk the backrefs of those, too. Naturally this is a 1519 * recursive process, but here it is implemented in an iterative fashion: We 1520 * find all referencing extents for the extent in question and put them on a 1521 * list. In turn, we find all referencing extents for those, further appending 1522 * to the list. The way we iterate the list allows adding more elements after 1523 * the current while iterating. The process stops when we reach the end of the 1524 * list. Found roots are added to the roots list. 1525 * 1526 * returns 0 on success, < 0 on error. 1527 */ 1528 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1529 struct btrfs_fs_info *fs_info, u64 bytenr, 1530 u64 time_seq, struct ulist **roots) 1531 { 1532 struct ulist *tmp; 1533 struct ulist_node *node = NULL; 1534 struct ulist_iterator uiter; 1535 int ret; 1536 1537 tmp = ulist_alloc(GFP_NOFS); 1538 if (!tmp) 1539 return -ENOMEM; 1540 *roots = ulist_alloc(GFP_NOFS); 1541 if (!*roots) { 1542 ulist_free(tmp); 1543 return -ENOMEM; 1544 } 1545 1546 ULIST_ITER_INIT(&uiter); 1547 while (1) { 1548 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1549 tmp, *roots, NULL, 0, 0, 0); 1550 if (ret < 0 && ret != -ENOENT) { 1551 ulist_free(tmp); 1552 ulist_free(*roots); 1553 return ret; 1554 } 1555 node = ulist_next(tmp, &uiter); 1556 if (!node) 1557 break; 1558 bytenr = node->val; 1559 cond_resched(); 1560 } 1561 1562 ulist_free(tmp); 1563 return 0; 1564 } 1565 1566 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1567 struct btrfs_fs_info *fs_info, u64 bytenr, 1568 u64 time_seq, struct ulist **roots) 1569 { 1570 int ret; 1571 1572 if (!trans) 1573 down_read(&fs_info->commit_root_sem); 1574 ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots); 1575 if (!trans) 1576 up_read(&fs_info->commit_root_sem); 1577 return ret; 1578 } 1579 1580 /** 1581 * btrfs_check_shared - tell us whether an extent is shared 1582 * 1583 * @trans: optional trans handle 1584 * 1585 * btrfs_check_shared uses the backref walking code but will short 1586 * circuit as soon as it finds a root or inode that doesn't match the 1587 * one passed in. This provides a significant performance benefit for 1588 * callers (such as fiemap) which want to know whether the extent is 1589 * shared but do not need a ref count. 1590 * 1591 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1592 */ 1593 int btrfs_check_shared(struct btrfs_trans_handle *trans, 1594 struct btrfs_fs_info *fs_info, u64 root_objectid, 1595 u64 inum, u64 bytenr) 1596 { 1597 struct ulist *tmp = NULL; 1598 struct ulist *roots = NULL; 1599 struct ulist_iterator uiter; 1600 struct ulist_node *node; 1601 struct seq_list elem = SEQ_LIST_INIT(elem); 1602 int ret = 0; 1603 1604 tmp = ulist_alloc(GFP_NOFS); 1605 roots = ulist_alloc(GFP_NOFS); 1606 if (!tmp || !roots) { 1607 ulist_free(tmp); 1608 ulist_free(roots); 1609 return -ENOMEM; 1610 } 1611 1612 if (trans) 1613 btrfs_get_tree_mod_seq(fs_info, &elem); 1614 else 1615 down_read(&fs_info->commit_root_sem); 1616 ULIST_ITER_INIT(&uiter); 1617 while (1) { 1618 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1619 roots, NULL, root_objectid, inum, 1); 1620 if (ret == BACKREF_FOUND_SHARED) { 1621 /* this is the only condition under which we return 1 */ 1622 ret = 1; 1623 break; 1624 } 1625 if (ret < 0 && ret != -ENOENT) 1626 break; 1627 ret = 0; 1628 node = ulist_next(tmp, &uiter); 1629 if (!node) 1630 break; 1631 bytenr = node->val; 1632 cond_resched(); 1633 } 1634 if (trans) 1635 btrfs_put_tree_mod_seq(fs_info, &elem); 1636 else 1637 up_read(&fs_info->commit_root_sem); 1638 ulist_free(tmp); 1639 ulist_free(roots); 1640 return ret; 1641 } 1642 1643 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1644 u64 start_off, struct btrfs_path *path, 1645 struct btrfs_inode_extref **ret_extref, 1646 u64 *found_off) 1647 { 1648 int ret, slot; 1649 struct btrfs_key key; 1650 struct btrfs_key found_key; 1651 struct btrfs_inode_extref *extref; 1652 struct extent_buffer *leaf; 1653 unsigned long ptr; 1654 1655 key.objectid = inode_objectid; 1656 key.type = BTRFS_INODE_EXTREF_KEY; 1657 key.offset = start_off; 1658 1659 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1660 if (ret < 0) 1661 return ret; 1662 1663 while (1) { 1664 leaf = path->nodes[0]; 1665 slot = path->slots[0]; 1666 if (slot >= btrfs_header_nritems(leaf)) { 1667 /* 1668 * If the item at offset is not found, 1669 * btrfs_search_slot will point us to the slot 1670 * where it should be inserted. In our case 1671 * that will be the slot directly before the 1672 * next INODE_REF_KEY_V2 item. In the case 1673 * that we're pointing to the last slot in a 1674 * leaf, we must move one leaf over. 1675 */ 1676 ret = btrfs_next_leaf(root, path); 1677 if (ret) { 1678 if (ret >= 1) 1679 ret = -ENOENT; 1680 break; 1681 } 1682 continue; 1683 } 1684 1685 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1686 1687 /* 1688 * Check that we're still looking at an extended ref key for 1689 * this particular objectid. If we have different 1690 * objectid or type then there are no more to be found 1691 * in the tree and we can exit. 1692 */ 1693 ret = -ENOENT; 1694 if (found_key.objectid != inode_objectid) 1695 break; 1696 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1697 break; 1698 1699 ret = 0; 1700 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1701 extref = (struct btrfs_inode_extref *)ptr; 1702 *ret_extref = extref; 1703 if (found_off) 1704 *found_off = found_key.offset; 1705 break; 1706 } 1707 1708 return ret; 1709 } 1710 1711 /* 1712 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1713 * Elements of the path are separated by '/' and the path is guaranteed to be 1714 * 0-terminated. the path is only given within the current file system. 1715 * Therefore, it never starts with a '/'. the caller is responsible to provide 1716 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1717 * the start point of the resulting string is returned. this pointer is within 1718 * dest, normally. 1719 * in case the path buffer would overflow, the pointer is decremented further 1720 * as if output was written to the buffer, though no more output is actually 1721 * generated. that way, the caller can determine how much space would be 1722 * required for the path to fit into the buffer. in that case, the returned 1723 * value will be smaller than dest. callers must check this! 1724 */ 1725 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1726 u32 name_len, unsigned long name_off, 1727 struct extent_buffer *eb_in, u64 parent, 1728 char *dest, u32 size) 1729 { 1730 int slot; 1731 u64 next_inum; 1732 int ret; 1733 s64 bytes_left = ((s64)size) - 1; 1734 struct extent_buffer *eb = eb_in; 1735 struct btrfs_key found_key; 1736 int leave_spinning = path->leave_spinning; 1737 struct btrfs_inode_ref *iref; 1738 1739 if (bytes_left >= 0) 1740 dest[bytes_left] = '\0'; 1741 1742 path->leave_spinning = 1; 1743 while (1) { 1744 bytes_left -= name_len; 1745 if (bytes_left >= 0) 1746 read_extent_buffer(eb, dest + bytes_left, 1747 name_off, name_len); 1748 if (eb != eb_in) { 1749 if (!path->skip_locking) 1750 btrfs_tree_read_unlock_blocking(eb); 1751 free_extent_buffer(eb); 1752 } 1753 ret = btrfs_find_item(fs_root, path, parent, 0, 1754 BTRFS_INODE_REF_KEY, &found_key); 1755 if (ret > 0) 1756 ret = -ENOENT; 1757 if (ret) 1758 break; 1759 1760 next_inum = found_key.offset; 1761 1762 /* regular exit ahead */ 1763 if (parent == next_inum) 1764 break; 1765 1766 slot = path->slots[0]; 1767 eb = path->nodes[0]; 1768 /* make sure we can use eb after releasing the path */ 1769 if (eb != eb_in) { 1770 if (!path->skip_locking) 1771 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1772 path->nodes[0] = NULL; 1773 path->locks[0] = 0; 1774 } 1775 btrfs_release_path(path); 1776 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1777 1778 name_len = btrfs_inode_ref_name_len(eb, iref); 1779 name_off = (unsigned long)(iref + 1); 1780 1781 parent = next_inum; 1782 --bytes_left; 1783 if (bytes_left >= 0) 1784 dest[bytes_left] = '/'; 1785 } 1786 1787 btrfs_release_path(path); 1788 path->leave_spinning = leave_spinning; 1789 1790 if (ret) 1791 return ERR_PTR(ret); 1792 1793 return dest + bytes_left; 1794 } 1795 1796 /* 1797 * this makes the path point to (logical EXTENT_ITEM *) 1798 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1799 * tree blocks and <0 on error. 1800 */ 1801 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1802 struct btrfs_path *path, struct btrfs_key *found_key, 1803 u64 *flags_ret) 1804 { 1805 int ret; 1806 u64 flags; 1807 u64 size = 0; 1808 u32 item_size; 1809 struct extent_buffer *eb; 1810 struct btrfs_extent_item *ei; 1811 struct btrfs_key key; 1812 1813 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1814 key.type = BTRFS_METADATA_ITEM_KEY; 1815 else 1816 key.type = BTRFS_EXTENT_ITEM_KEY; 1817 key.objectid = logical; 1818 key.offset = (u64)-1; 1819 1820 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1821 if (ret < 0) 1822 return ret; 1823 1824 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1825 if (ret) { 1826 if (ret > 0) 1827 ret = -ENOENT; 1828 return ret; 1829 } 1830 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1831 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1832 size = fs_info->extent_root->nodesize; 1833 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1834 size = found_key->offset; 1835 1836 if (found_key->objectid > logical || 1837 found_key->objectid + size <= logical) { 1838 btrfs_debug(fs_info, 1839 "logical %llu is not within any extent", logical); 1840 return -ENOENT; 1841 } 1842 1843 eb = path->nodes[0]; 1844 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1845 BUG_ON(item_size < sizeof(*ei)); 1846 1847 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1848 flags = btrfs_extent_flags(eb, ei); 1849 1850 btrfs_debug(fs_info, 1851 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1852 logical, logical - found_key->objectid, found_key->objectid, 1853 found_key->offset, flags, item_size); 1854 1855 WARN_ON(!flags_ret); 1856 if (flags_ret) { 1857 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1858 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1859 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1860 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1861 else 1862 BUG_ON(1); 1863 return 0; 1864 } 1865 1866 return -EIO; 1867 } 1868 1869 /* 1870 * helper function to iterate extent inline refs. ptr must point to a 0 value 1871 * for the first call and may be modified. it is used to track state. 1872 * if more refs exist, 0 is returned and the next call to 1873 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1874 * next ref. after the last ref was processed, 1 is returned. 1875 * returns <0 on error 1876 */ 1877 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1878 struct btrfs_key *key, 1879 struct btrfs_extent_item *ei, u32 item_size, 1880 struct btrfs_extent_inline_ref **out_eiref, 1881 int *out_type) 1882 { 1883 unsigned long end; 1884 u64 flags; 1885 struct btrfs_tree_block_info *info; 1886 1887 if (!*ptr) { 1888 /* first call */ 1889 flags = btrfs_extent_flags(eb, ei); 1890 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1891 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1892 /* a skinny metadata extent */ 1893 *out_eiref = 1894 (struct btrfs_extent_inline_ref *)(ei + 1); 1895 } else { 1896 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1897 info = (struct btrfs_tree_block_info *)(ei + 1); 1898 *out_eiref = 1899 (struct btrfs_extent_inline_ref *)(info + 1); 1900 } 1901 } else { 1902 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1903 } 1904 *ptr = (unsigned long)*out_eiref; 1905 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1906 return -ENOENT; 1907 } 1908 1909 end = (unsigned long)ei + item_size; 1910 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1911 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1912 1913 *ptr += btrfs_extent_inline_ref_size(*out_type); 1914 WARN_ON(*ptr > end); 1915 if (*ptr == end) 1916 return 1; /* last */ 1917 1918 return 0; 1919 } 1920 1921 /* 1922 * reads the tree block backref for an extent. tree level and root are returned 1923 * through out_level and out_root. ptr must point to a 0 value for the first 1924 * call and may be modified (see __get_extent_inline_ref comment). 1925 * returns 0 if data was provided, 1 if there was no more data to provide or 1926 * <0 on error. 1927 */ 1928 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1929 struct btrfs_key *key, struct btrfs_extent_item *ei, 1930 u32 item_size, u64 *out_root, u8 *out_level) 1931 { 1932 int ret; 1933 int type; 1934 struct btrfs_extent_inline_ref *eiref; 1935 1936 if (*ptr == (unsigned long)-1) 1937 return 1; 1938 1939 while (1) { 1940 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size, 1941 &eiref, &type); 1942 if (ret < 0) 1943 return ret; 1944 1945 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1946 type == BTRFS_SHARED_BLOCK_REF_KEY) 1947 break; 1948 1949 if (ret == 1) 1950 return 1; 1951 } 1952 1953 /* we can treat both ref types equally here */ 1954 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1955 1956 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1957 struct btrfs_tree_block_info *info; 1958 1959 info = (struct btrfs_tree_block_info *)(ei + 1); 1960 *out_level = btrfs_tree_block_level(eb, info); 1961 } else { 1962 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1963 *out_level = (u8)key->offset; 1964 } 1965 1966 if (ret == 1) 1967 *ptr = (unsigned long)-1; 1968 1969 return 0; 1970 } 1971 1972 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1973 struct extent_inode_elem *inode_list, 1974 u64 root, u64 extent_item_objectid, 1975 iterate_extent_inodes_t *iterate, void *ctx) 1976 { 1977 struct extent_inode_elem *eie; 1978 int ret = 0; 1979 1980 for (eie = inode_list; eie; eie = eie->next) { 1981 btrfs_debug(fs_info, 1982 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1983 extent_item_objectid, eie->inum, 1984 eie->offset, root); 1985 ret = iterate(eie->inum, eie->offset, root, ctx); 1986 if (ret) { 1987 btrfs_debug(fs_info, 1988 "stopping iteration for %llu due to ret=%d", 1989 extent_item_objectid, ret); 1990 break; 1991 } 1992 } 1993 1994 return ret; 1995 } 1996 1997 /* 1998 * calls iterate() for every inode that references the extent identified by 1999 * the given parameters. 2000 * when the iterator function returns a non-zero value, iteration stops. 2001 */ 2002 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 2003 u64 extent_item_objectid, u64 extent_item_pos, 2004 int search_commit_root, 2005 iterate_extent_inodes_t *iterate, void *ctx) 2006 { 2007 int ret; 2008 struct btrfs_trans_handle *trans = NULL; 2009 struct ulist *refs = NULL; 2010 struct ulist *roots = NULL; 2011 struct ulist_node *ref_node = NULL; 2012 struct ulist_node *root_node = NULL; 2013 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 2014 struct ulist_iterator ref_uiter; 2015 struct ulist_iterator root_uiter; 2016 2017 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 2018 extent_item_objectid); 2019 2020 if (!search_commit_root) { 2021 trans = btrfs_join_transaction(fs_info->extent_root); 2022 if (IS_ERR(trans)) 2023 return PTR_ERR(trans); 2024 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 2025 } else { 2026 down_read(&fs_info->commit_root_sem); 2027 } 2028 2029 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 2030 tree_mod_seq_elem.seq, &refs, 2031 &extent_item_pos); 2032 if (ret) 2033 goto out; 2034 2035 ULIST_ITER_INIT(&ref_uiter); 2036 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2037 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val, 2038 tree_mod_seq_elem.seq, &roots); 2039 if (ret) 2040 break; 2041 ULIST_ITER_INIT(&root_uiter); 2042 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 2043 btrfs_debug(fs_info, 2044 "root %llu references leaf %llu, data list %#llx", 2045 root_node->val, ref_node->val, 2046 ref_node->aux); 2047 ret = iterate_leaf_refs(fs_info, 2048 (struct extent_inode_elem *) 2049 (uintptr_t)ref_node->aux, 2050 root_node->val, 2051 extent_item_objectid, 2052 iterate, ctx); 2053 } 2054 ulist_free(roots); 2055 } 2056 2057 free_leaf_list(refs); 2058 out: 2059 if (!search_commit_root) { 2060 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 2061 btrfs_end_transaction(trans, fs_info->extent_root); 2062 } else { 2063 up_read(&fs_info->commit_root_sem); 2064 } 2065 2066 return ret; 2067 } 2068 2069 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2070 struct btrfs_path *path, 2071 iterate_extent_inodes_t *iterate, void *ctx) 2072 { 2073 int ret; 2074 u64 extent_item_pos; 2075 u64 flags = 0; 2076 struct btrfs_key found_key; 2077 int search_commit_root = path->search_commit_root; 2078 2079 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2080 btrfs_release_path(path); 2081 if (ret < 0) 2082 return ret; 2083 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2084 return -EINVAL; 2085 2086 extent_item_pos = logical - found_key.objectid; 2087 ret = iterate_extent_inodes(fs_info, found_key.objectid, 2088 extent_item_pos, search_commit_root, 2089 iterate, ctx); 2090 2091 return ret; 2092 } 2093 2094 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 2095 struct extent_buffer *eb, void *ctx); 2096 2097 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 2098 struct btrfs_path *path, 2099 iterate_irefs_t *iterate, void *ctx) 2100 { 2101 int ret = 0; 2102 int slot; 2103 u32 cur; 2104 u32 len; 2105 u32 name_len; 2106 u64 parent = 0; 2107 int found = 0; 2108 struct extent_buffer *eb; 2109 struct btrfs_item *item; 2110 struct btrfs_inode_ref *iref; 2111 struct btrfs_key found_key; 2112 2113 while (!ret) { 2114 ret = btrfs_find_item(fs_root, path, inum, 2115 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2116 &found_key); 2117 2118 if (ret < 0) 2119 break; 2120 if (ret) { 2121 ret = found ? 0 : -ENOENT; 2122 break; 2123 } 2124 ++found; 2125 2126 parent = found_key.offset; 2127 slot = path->slots[0]; 2128 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2129 if (!eb) { 2130 ret = -ENOMEM; 2131 break; 2132 } 2133 extent_buffer_get(eb); 2134 btrfs_tree_read_lock(eb); 2135 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 2136 btrfs_release_path(path); 2137 2138 item = btrfs_item_nr(slot); 2139 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2140 2141 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2142 name_len = btrfs_inode_ref_name_len(eb, iref); 2143 /* path must be released before calling iterate()! */ 2144 btrfs_debug(fs_root->fs_info, 2145 "following ref at offset %u for inode %llu in tree %llu", 2146 cur, found_key.objectid, fs_root->objectid); 2147 ret = iterate(parent, name_len, 2148 (unsigned long)(iref + 1), eb, ctx); 2149 if (ret) 2150 break; 2151 len = sizeof(*iref) + name_len; 2152 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2153 } 2154 btrfs_tree_read_unlock_blocking(eb); 2155 free_extent_buffer(eb); 2156 } 2157 2158 btrfs_release_path(path); 2159 2160 return ret; 2161 } 2162 2163 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2164 struct btrfs_path *path, 2165 iterate_irefs_t *iterate, void *ctx) 2166 { 2167 int ret; 2168 int slot; 2169 u64 offset = 0; 2170 u64 parent; 2171 int found = 0; 2172 struct extent_buffer *eb; 2173 struct btrfs_inode_extref *extref; 2174 u32 item_size; 2175 u32 cur_offset; 2176 unsigned long ptr; 2177 2178 while (1) { 2179 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2180 &offset); 2181 if (ret < 0) 2182 break; 2183 if (ret) { 2184 ret = found ? 0 : -ENOENT; 2185 break; 2186 } 2187 ++found; 2188 2189 slot = path->slots[0]; 2190 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2191 if (!eb) { 2192 ret = -ENOMEM; 2193 break; 2194 } 2195 extent_buffer_get(eb); 2196 2197 btrfs_tree_read_lock(eb); 2198 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 2199 btrfs_release_path(path); 2200 2201 item_size = btrfs_item_size_nr(eb, slot); 2202 ptr = btrfs_item_ptr_offset(eb, slot); 2203 cur_offset = 0; 2204 2205 while (cur_offset < item_size) { 2206 u32 name_len; 2207 2208 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2209 parent = btrfs_inode_extref_parent(eb, extref); 2210 name_len = btrfs_inode_extref_name_len(eb, extref); 2211 ret = iterate(parent, name_len, 2212 (unsigned long)&extref->name, eb, ctx); 2213 if (ret) 2214 break; 2215 2216 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2217 cur_offset += sizeof(*extref); 2218 } 2219 btrfs_tree_read_unlock_blocking(eb); 2220 free_extent_buffer(eb); 2221 2222 offset++; 2223 } 2224 2225 btrfs_release_path(path); 2226 2227 return ret; 2228 } 2229 2230 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2231 struct btrfs_path *path, iterate_irefs_t *iterate, 2232 void *ctx) 2233 { 2234 int ret; 2235 int found_refs = 0; 2236 2237 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2238 if (!ret) 2239 ++found_refs; 2240 else if (ret != -ENOENT) 2241 return ret; 2242 2243 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2244 if (ret == -ENOENT && found_refs) 2245 return 0; 2246 2247 return ret; 2248 } 2249 2250 /* 2251 * returns 0 if the path could be dumped (probably truncated) 2252 * returns <0 in case of an error 2253 */ 2254 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2255 struct extent_buffer *eb, void *ctx) 2256 { 2257 struct inode_fs_paths *ipath = ctx; 2258 char *fspath; 2259 char *fspath_min; 2260 int i = ipath->fspath->elem_cnt; 2261 const int s_ptr = sizeof(char *); 2262 u32 bytes_left; 2263 2264 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2265 ipath->fspath->bytes_left - s_ptr : 0; 2266 2267 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2268 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2269 name_off, eb, inum, fspath_min, bytes_left); 2270 if (IS_ERR(fspath)) 2271 return PTR_ERR(fspath); 2272 2273 if (fspath > fspath_min) { 2274 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2275 ++ipath->fspath->elem_cnt; 2276 ipath->fspath->bytes_left = fspath - fspath_min; 2277 } else { 2278 ++ipath->fspath->elem_missed; 2279 ipath->fspath->bytes_missing += fspath_min - fspath; 2280 ipath->fspath->bytes_left = 0; 2281 } 2282 2283 return 0; 2284 } 2285 2286 /* 2287 * this dumps all file system paths to the inode into the ipath struct, provided 2288 * is has been created large enough. each path is zero-terminated and accessed 2289 * from ipath->fspath->val[i]. 2290 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2291 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2292 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2293 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2294 * have been needed to return all paths. 2295 */ 2296 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2297 { 2298 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2299 inode_to_path, ipath); 2300 } 2301 2302 struct btrfs_data_container *init_data_container(u32 total_bytes) 2303 { 2304 struct btrfs_data_container *data; 2305 size_t alloc_bytes; 2306 2307 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2308 data = vmalloc(alloc_bytes); 2309 if (!data) 2310 return ERR_PTR(-ENOMEM); 2311 2312 if (total_bytes >= sizeof(*data)) { 2313 data->bytes_left = total_bytes - sizeof(*data); 2314 data->bytes_missing = 0; 2315 } else { 2316 data->bytes_missing = sizeof(*data) - total_bytes; 2317 data->bytes_left = 0; 2318 } 2319 2320 data->elem_cnt = 0; 2321 data->elem_missed = 0; 2322 2323 return data; 2324 } 2325 2326 /* 2327 * allocates space to return multiple file system paths for an inode. 2328 * total_bytes to allocate are passed, note that space usable for actual path 2329 * information will be total_bytes - sizeof(struct inode_fs_paths). 2330 * the returned pointer must be freed with free_ipath() in the end. 2331 */ 2332 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2333 struct btrfs_path *path) 2334 { 2335 struct inode_fs_paths *ifp; 2336 struct btrfs_data_container *fspath; 2337 2338 fspath = init_data_container(total_bytes); 2339 if (IS_ERR(fspath)) 2340 return (void *)fspath; 2341 2342 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 2343 if (!ifp) { 2344 vfree(fspath); 2345 return ERR_PTR(-ENOMEM); 2346 } 2347 2348 ifp->btrfs_path = path; 2349 ifp->fspath = fspath; 2350 ifp->fs_root = fs_root; 2351 2352 return ifp; 2353 } 2354 2355 void free_ipath(struct inode_fs_paths *ipath) 2356 { 2357 if (!ipath) 2358 return; 2359 vfree(ipath->fspath); 2360 kfree(ipath); 2361 } 2362