1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "backref.h" 23 #include "ulist.h" 24 #include "transaction.h" 25 #include "delayed-ref.h" 26 #include "locking.h" 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 struct extent_inode_elem *next; 32 }; 33 34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 35 struct btrfs_file_extent_item *fi, 36 u64 extent_item_pos, 37 struct extent_inode_elem **eie) 38 { 39 u64 data_offset; 40 u64 data_len; 41 struct extent_inode_elem *e; 42 43 data_offset = btrfs_file_extent_offset(eb, fi); 44 data_len = btrfs_file_extent_num_bytes(eb, fi); 45 46 if (extent_item_pos < data_offset || 47 extent_item_pos >= data_offset + data_len) 48 return 1; 49 50 e = kmalloc(sizeof(*e), GFP_NOFS); 51 if (!e) 52 return -ENOMEM; 53 54 e->next = *eie; 55 e->inum = key->objectid; 56 e->offset = key->offset + (extent_item_pos - data_offset); 57 *eie = e; 58 59 return 0; 60 } 61 62 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 63 u64 extent_item_pos, 64 struct extent_inode_elem **eie) 65 { 66 u64 disk_byte; 67 struct btrfs_key key; 68 struct btrfs_file_extent_item *fi; 69 int slot; 70 int nritems; 71 int extent_type; 72 int ret; 73 74 /* 75 * from the shared data ref, we only have the leaf but we need 76 * the key. thus, we must look into all items and see that we 77 * find one (some) with a reference to our extent item. 78 */ 79 nritems = btrfs_header_nritems(eb); 80 for (slot = 0; slot < nritems; ++slot) { 81 btrfs_item_key_to_cpu(eb, &key, slot); 82 if (key.type != BTRFS_EXTENT_DATA_KEY) 83 continue; 84 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 85 extent_type = btrfs_file_extent_type(eb, fi); 86 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 87 continue; 88 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 89 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 90 if (disk_byte != wanted_disk_byte) 91 continue; 92 93 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 94 if (ret < 0) 95 return ret; 96 } 97 98 return 0; 99 } 100 101 /* 102 * this structure records all encountered refs on the way up to the root 103 */ 104 struct __prelim_ref { 105 struct list_head list; 106 u64 root_id; 107 struct btrfs_key key_for_search; 108 int level; 109 int count; 110 struct extent_inode_elem *inode_list; 111 u64 parent; 112 u64 wanted_disk_byte; 113 }; 114 115 /* 116 * the rules for all callers of this function are: 117 * - obtaining the parent is the goal 118 * - if you add a key, you must know that it is a correct key 119 * - if you cannot add the parent or a correct key, then we will look into the 120 * block later to set a correct key 121 * 122 * delayed refs 123 * ============ 124 * backref type | shared | indirect | shared | indirect 125 * information | tree | tree | data | data 126 * --------------------+--------+----------+--------+---------- 127 * parent logical | y | - | - | - 128 * key to resolve | - | y | y | y 129 * tree block logical | - | - | - | - 130 * root for resolving | y | y | y | y 131 * 132 * - column 1: we've the parent -> done 133 * - column 2, 3, 4: we use the key to find the parent 134 * 135 * on disk refs (inline or keyed) 136 * ============================== 137 * backref type | shared | indirect | shared | indirect 138 * information | tree | tree | data | data 139 * --------------------+--------+----------+--------+---------- 140 * parent logical | y | - | y | - 141 * key to resolve | - | - | - | y 142 * tree block logical | y | y | y | y 143 * root for resolving | - | y | y | y 144 * 145 * - column 1, 3: we've the parent -> done 146 * - column 2: we take the first key from the block to find the parent 147 * (see __add_missing_keys) 148 * - column 4: we use the key to find the parent 149 * 150 * additional information that's available but not required to find the parent 151 * block might help in merging entries to gain some speed. 152 */ 153 154 static int __add_prelim_ref(struct list_head *head, u64 root_id, 155 struct btrfs_key *key, int level, 156 u64 parent, u64 wanted_disk_byte, int count) 157 { 158 struct __prelim_ref *ref; 159 160 /* in case we're adding delayed refs, we're holding the refs spinlock */ 161 ref = kmalloc(sizeof(*ref), GFP_ATOMIC); 162 if (!ref) 163 return -ENOMEM; 164 165 ref->root_id = root_id; 166 if (key) 167 ref->key_for_search = *key; 168 else 169 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 170 171 ref->inode_list = NULL; 172 ref->level = level; 173 ref->count = count; 174 ref->parent = parent; 175 ref->wanted_disk_byte = wanted_disk_byte; 176 list_add_tail(&ref->list, head); 177 178 return 0; 179 } 180 181 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 182 struct ulist *parents, int level, 183 struct btrfs_key *key_for_search, u64 time_seq, 184 u64 wanted_disk_byte, 185 const u64 *extent_item_pos) 186 { 187 int ret = 0; 188 int slot; 189 struct extent_buffer *eb; 190 struct btrfs_key key; 191 struct btrfs_file_extent_item *fi; 192 struct extent_inode_elem *eie = NULL; 193 u64 disk_byte; 194 195 if (level != 0) { 196 eb = path->nodes[level]; 197 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 198 if (ret < 0) 199 return ret; 200 return 0; 201 } 202 203 /* 204 * We normally enter this function with the path already pointing to 205 * the first item to check. But sometimes, we may enter it with 206 * slot==nritems. In that case, go to the next leaf before we continue. 207 */ 208 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) 209 ret = btrfs_next_old_leaf(root, path, time_seq); 210 211 while (!ret) { 212 eb = path->nodes[0]; 213 slot = path->slots[0]; 214 215 btrfs_item_key_to_cpu(eb, &key, slot); 216 217 if (key.objectid != key_for_search->objectid || 218 key.type != BTRFS_EXTENT_DATA_KEY) 219 break; 220 221 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 222 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 223 224 if (disk_byte == wanted_disk_byte) { 225 eie = NULL; 226 if (extent_item_pos) { 227 ret = check_extent_in_eb(&key, eb, fi, 228 *extent_item_pos, 229 &eie); 230 if (ret < 0) 231 break; 232 } 233 if (!ret) { 234 ret = ulist_add(parents, eb->start, 235 (uintptr_t)eie, GFP_NOFS); 236 if (ret < 0) 237 break; 238 if (!extent_item_pos) { 239 ret = btrfs_next_old_leaf(root, path, 240 time_seq); 241 continue; 242 } 243 } 244 } 245 ret = btrfs_next_old_item(root, path, time_seq); 246 } 247 248 if (ret > 0) 249 ret = 0; 250 return ret; 251 } 252 253 /* 254 * resolve an indirect backref in the form (root_id, key, level) 255 * to a logical address 256 */ 257 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 258 int search_commit_root, 259 u64 time_seq, 260 struct __prelim_ref *ref, 261 struct ulist *parents, 262 const u64 *extent_item_pos) 263 { 264 struct btrfs_path *path; 265 struct btrfs_root *root; 266 struct btrfs_key root_key; 267 struct extent_buffer *eb; 268 int ret = 0; 269 int root_level; 270 int level = ref->level; 271 272 path = btrfs_alloc_path(); 273 if (!path) 274 return -ENOMEM; 275 path->search_commit_root = !!search_commit_root; 276 277 root_key.objectid = ref->root_id; 278 root_key.type = BTRFS_ROOT_ITEM_KEY; 279 root_key.offset = (u64)-1; 280 root = btrfs_read_fs_root_no_name(fs_info, &root_key); 281 if (IS_ERR(root)) { 282 ret = PTR_ERR(root); 283 goto out; 284 } 285 286 rcu_read_lock(); 287 root_level = btrfs_header_level(root->node); 288 rcu_read_unlock(); 289 290 if (root_level + 1 == level) 291 goto out; 292 293 path->lowest_level = level; 294 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq); 295 pr_debug("search slot in root %llu (level %d, ref count %d) returned " 296 "%d for key (%llu %u %llu)\n", 297 (unsigned long long)ref->root_id, level, ref->count, ret, 298 (unsigned long long)ref->key_for_search.objectid, 299 ref->key_for_search.type, 300 (unsigned long long)ref->key_for_search.offset); 301 if (ret < 0) 302 goto out; 303 304 eb = path->nodes[level]; 305 while (!eb) { 306 if (!level) { 307 WARN_ON(1); 308 ret = 1; 309 goto out; 310 } 311 level--; 312 eb = path->nodes[level]; 313 } 314 315 ret = add_all_parents(root, path, parents, level, &ref->key_for_search, 316 time_seq, ref->wanted_disk_byte, 317 extent_item_pos); 318 out: 319 btrfs_free_path(path); 320 return ret; 321 } 322 323 /* 324 * resolve all indirect backrefs from the list 325 */ 326 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 327 int search_commit_root, u64 time_seq, 328 struct list_head *head, 329 const u64 *extent_item_pos) 330 { 331 int err; 332 int ret = 0; 333 struct __prelim_ref *ref; 334 struct __prelim_ref *ref_safe; 335 struct __prelim_ref *new_ref; 336 struct ulist *parents; 337 struct ulist_node *node; 338 struct ulist_iterator uiter; 339 340 parents = ulist_alloc(GFP_NOFS); 341 if (!parents) 342 return -ENOMEM; 343 344 /* 345 * _safe allows us to insert directly after the current item without 346 * iterating over the newly inserted items. 347 * we're also allowed to re-assign ref during iteration. 348 */ 349 list_for_each_entry_safe(ref, ref_safe, head, list) { 350 if (ref->parent) /* already direct */ 351 continue; 352 if (ref->count == 0) 353 continue; 354 err = __resolve_indirect_ref(fs_info, search_commit_root, 355 time_seq, ref, parents, 356 extent_item_pos); 357 if (err) { 358 if (ret == 0) 359 ret = err; 360 continue; 361 } 362 363 /* we put the first parent into the ref at hand */ 364 ULIST_ITER_INIT(&uiter); 365 node = ulist_next(parents, &uiter); 366 ref->parent = node ? node->val : 0; 367 ref->inode_list = node ? 368 (struct extent_inode_elem *)(uintptr_t)node->aux : 0; 369 370 /* additional parents require new refs being added here */ 371 while ((node = ulist_next(parents, &uiter))) { 372 new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS); 373 if (!new_ref) { 374 ret = -ENOMEM; 375 break; 376 } 377 memcpy(new_ref, ref, sizeof(*ref)); 378 new_ref->parent = node->val; 379 new_ref->inode_list = (struct extent_inode_elem *) 380 (uintptr_t)node->aux; 381 list_add(&new_ref->list, &ref->list); 382 } 383 ulist_reinit(parents); 384 } 385 386 ulist_free(parents); 387 return ret; 388 } 389 390 static inline int ref_for_same_block(struct __prelim_ref *ref1, 391 struct __prelim_ref *ref2) 392 { 393 if (ref1->level != ref2->level) 394 return 0; 395 if (ref1->root_id != ref2->root_id) 396 return 0; 397 if (ref1->key_for_search.type != ref2->key_for_search.type) 398 return 0; 399 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 400 return 0; 401 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 402 return 0; 403 if (ref1->parent != ref2->parent) 404 return 0; 405 406 return 1; 407 } 408 409 /* 410 * read tree blocks and add keys where required. 411 */ 412 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 413 struct list_head *head) 414 { 415 struct list_head *pos; 416 struct extent_buffer *eb; 417 418 list_for_each(pos, head) { 419 struct __prelim_ref *ref; 420 ref = list_entry(pos, struct __prelim_ref, list); 421 422 if (ref->parent) 423 continue; 424 if (ref->key_for_search.type) 425 continue; 426 BUG_ON(!ref->wanted_disk_byte); 427 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 428 fs_info->tree_root->leafsize, 0); 429 BUG_ON(!eb); 430 btrfs_tree_read_lock(eb); 431 if (btrfs_header_level(eb) == 0) 432 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 433 else 434 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 435 btrfs_tree_read_unlock(eb); 436 free_extent_buffer(eb); 437 } 438 return 0; 439 } 440 441 /* 442 * merge two lists of backrefs and adjust counts accordingly 443 * 444 * mode = 1: merge identical keys, if key is set 445 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 446 * additionally, we could even add a key range for the blocks we 447 * looked into to merge even more (-> replace unresolved refs by those 448 * having a parent). 449 * mode = 2: merge identical parents 450 */ 451 static int __merge_refs(struct list_head *head, int mode) 452 { 453 struct list_head *pos1; 454 455 list_for_each(pos1, head) { 456 struct list_head *n2; 457 struct list_head *pos2; 458 struct __prelim_ref *ref1; 459 460 ref1 = list_entry(pos1, struct __prelim_ref, list); 461 462 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head; 463 pos2 = n2, n2 = pos2->next) { 464 struct __prelim_ref *ref2; 465 struct __prelim_ref *xchg; 466 467 ref2 = list_entry(pos2, struct __prelim_ref, list); 468 469 if (mode == 1) { 470 if (!ref_for_same_block(ref1, ref2)) 471 continue; 472 if (!ref1->parent && ref2->parent) { 473 xchg = ref1; 474 ref1 = ref2; 475 ref2 = xchg; 476 } 477 ref1->count += ref2->count; 478 } else { 479 if (ref1->parent != ref2->parent) 480 continue; 481 ref1->count += ref2->count; 482 } 483 list_del(&ref2->list); 484 kfree(ref2); 485 } 486 487 } 488 return 0; 489 } 490 491 /* 492 * add all currently queued delayed refs from this head whose seq nr is 493 * smaller or equal that seq to the list 494 */ 495 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 496 struct list_head *prefs) 497 { 498 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 499 struct rb_node *n = &head->node.rb_node; 500 struct btrfs_key key; 501 struct btrfs_key op_key = {0}; 502 int sgn; 503 int ret = 0; 504 505 if (extent_op && extent_op->update_key) 506 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 507 508 while ((n = rb_prev(n))) { 509 struct btrfs_delayed_ref_node *node; 510 node = rb_entry(n, struct btrfs_delayed_ref_node, 511 rb_node); 512 if (node->bytenr != head->node.bytenr) 513 break; 514 WARN_ON(node->is_head); 515 516 if (node->seq > seq) 517 continue; 518 519 switch (node->action) { 520 case BTRFS_ADD_DELAYED_EXTENT: 521 case BTRFS_UPDATE_DELAYED_HEAD: 522 WARN_ON(1); 523 continue; 524 case BTRFS_ADD_DELAYED_REF: 525 sgn = 1; 526 break; 527 case BTRFS_DROP_DELAYED_REF: 528 sgn = -1; 529 break; 530 default: 531 BUG_ON(1); 532 } 533 switch (node->type) { 534 case BTRFS_TREE_BLOCK_REF_KEY: { 535 struct btrfs_delayed_tree_ref *ref; 536 537 ref = btrfs_delayed_node_to_tree_ref(node); 538 ret = __add_prelim_ref(prefs, ref->root, &op_key, 539 ref->level + 1, 0, node->bytenr, 540 node->ref_mod * sgn); 541 break; 542 } 543 case BTRFS_SHARED_BLOCK_REF_KEY: { 544 struct btrfs_delayed_tree_ref *ref; 545 546 ref = btrfs_delayed_node_to_tree_ref(node); 547 ret = __add_prelim_ref(prefs, ref->root, NULL, 548 ref->level + 1, ref->parent, 549 node->bytenr, 550 node->ref_mod * sgn); 551 break; 552 } 553 case BTRFS_EXTENT_DATA_REF_KEY: { 554 struct btrfs_delayed_data_ref *ref; 555 ref = btrfs_delayed_node_to_data_ref(node); 556 557 key.objectid = ref->objectid; 558 key.type = BTRFS_EXTENT_DATA_KEY; 559 key.offset = ref->offset; 560 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 561 node->bytenr, 562 node->ref_mod * sgn); 563 break; 564 } 565 case BTRFS_SHARED_DATA_REF_KEY: { 566 struct btrfs_delayed_data_ref *ref; 567 568 ref = btrfs_delayed_node_to_data_ref(node); 569 570 key.objectid = ref->objectid; 571 key.type = BTRFS_EXTENT_DATA_KEY; 572 key.offset = ref->offset; 573 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 574 ref->parent, node->bytenr, 575 node->ref_mod * sgn); 576 break; 577 } 578 default: 579 WARN_ON(1); 580 } 581 BUG_ON(ret); 582 } 583 584 return 0; 585 } 586 587 /* 588 * add all inline backrefs for bytenr to the list 589 */ 590 static int __add_inline_refs(struct btrfs_fs_info *fs_info, 591 struct btrfs_path *path, u64 bytenr, 592 int *info_level, struct list_head *prefs) 593 { 594 int ret = 0; 595 int slot; 596 struct extent_buffer *leaf; 597 struct btrfs_key key; 598 unsigned long ptr; 599 unsigned long end; 600 struct btrfs_extent_item *ei; 601 u64 flags; 602 u64 item_size; 603 604 /* 605 * enumerate all inline refs 606 */ 607 leaf = path->nodes[0]; 608 slot = path->slots[0]; 609 610 item_size = btrfs_item_size_nr(leaf, slot); 611 BUG_ON(item_size < sizeof(*ei)); 612 613 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 614 flags = btrfs_extent_flags(leaf, ei); 615 616 ptr = (unsigned long)(ei + 1); 617 end = (unsigned long)ei + item_size; 618 619 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 620 struct btrfs_tree_block_info *info; 621 622 info = (struct btrfs_tree_block_info *)ptr; 623 *info_level = btrfs_tree_block_level(leaf, info); 624 ptr += sizeof(struct btrfs_tree_block_info); 625 BUG_ON(ptr > end); 626 } else { 627 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 628 } 629 630 while (ptr < end) { 631 struct btrfs_extent_inline_ref *iref; 632 u64 offset; 633 int type; 634 635 iref = (struct btrfs_extent_inline_ref *)ptr; 636 type = btrfs_extent_inline_ref_type(leaf, iref); 637 offset = btrfs_extent_inline_ref_offset(leaf, iref); 638 639 switch (type) { 640 case BTRFS_SHARED_BLOCK_REF_KEY: 641 ret = __add_prelim_ref(prefs, 0, NULL, 642 *info_level + 1, offset, 643 bytenr, 1); 644 break; 645 case BTRFS_SHARED_DATA_REF_KEY: { 646 struct btrfs_shared_data_ref *sdref; 647 int count; 648 649 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 650 count = btrfs_shared_data_ref_count(leaf, sdref); 651 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 652 bytenr, count); 653 break; 654 } 655 case BTRFS_TREE_BLOCK_REF_KEY: 656 ret = __add_prelim_ref(prefs, offset, NULL, 657 *info_level + 1, 0, 658 bytenr, 1); 659 break; 660 case BTRFS_EXTENT_DATA_REF_KEY: { 661 struct btrfs_extent_data_ref *dref; 662 int count; 663 u64 root; 664 665 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 666 count = btrfs_extent_data_ref_count(leaf, dref); 667 key.objectid = btrfs_extent_data_ref_objectid(leaf, 668 dref); 669 key.type = BTRFS_EXTENT_DATA_KEY; 670 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 671 root = btrfs_extent_data_ref_root(leaf, dref); 672 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 673 bytenr, count); 674 break; 675 } 676 default: 677 WARN_ON(1); 678 } 679 BUG_ON(ret); 680 ptr += btrfs_extent_inline_ref_size(type); 681 } 682 683 return 0; 684 } 685 686 /* 687 * add all non-inline backrefs for bytenr to the list 688 */ 689 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 690 struct btrfs_path *path, u64 bytenr, 691 int info_level, struct list_head *prefs) 692 { 693 struct btrfs_root *extent_root = fs_info->extent_root; 694 int ret; 695 int slot; 696 struct extent_buffer *leaf; 697 struct btrfs_key key; 698 699 while (1) { 700 ret = btrfs_next_item(extent_root, path); 701 if (ret < 0) 702 break; 703 if (ret) { 704 ret = 0; 705 break; 706 } 707 708 slot = path->slots[0]; 709 leaf = path->nodes[0]; 710 btrfs_item_key_to_cpu(leaf, &key, slot); 711 712 if (key.objectid != bytenr) 713 break; 714 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 715 continue; 716 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 717 break; 718 719 switch (key.type) { 720 case BTRFS_SHARED_BLOCK_REF_KEY: 721 ret = __add_prelim_ref(prefs, 0, NULL, 722 info_level + 1, key.offset, 723 bytenr, 1); 724 break; 725 case BTRFS_SHARED_DATA_REF_KEY: { 726 struct btrfs_shared_data_ref *sdref; 727 int count; 728 729 sdref = btrfs_item_ptr(leaf, slot, 730 struct btrfs_shared_data_ref); 731 count = btrfs_shared_data_ref_count(leaf, sdref); 732 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 733 bytenr, count); 734 break; 735 } 736 case BTRFS_TREE_BLOCK_REF_KEY: 737 ret = __add_prelim_ref(prefs, key.offset, NULL, 738 info_level + 1, 0, 739 bytenr, 1); 740 break; 741 case BTRFS_EXTENT_DATA_REF_KEY: { 742 struct btrfs_extent_data_ref *dref; 743 int count; 744 u64 root; 745 746 dref = btrfs_item_ptr(leaf, slot, 747 struct btrfs_extent_data_ref); 748 count = btrfs_extent_data_ref_count(leaf, dref); 749 key.objectid = btrfs_extent_data_ref_objectid(leaf, 750 dref); 751 key.type = BTRFS_EXTENT_DATA_KEY; 752 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 753 root = btrfs_extent_data_ref_root(leaf, dref); 754 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 755 bytenr, count); 756 break; 757 } 758 default: 759 WARN_ON(1); 760 } 761 BUG_ON(ret); 762 } 763 764 return ret; 765 } 766 767 /* 768 * this adds all existing backrefs (inline backrefs, backrefs and delayed 769 * refs) for the given bytenr to the refs list, merges duplicates and resolves 770 * indirect refs to their parent bytenr. 771 * When roots are found, they're added to the roots list 772 * 773 * FIXME some caching might speed things up 774 */ 775 static int find_parent_nodes(struct btrfs_trans_handle *trans, 776 struct btrfs_fs_info *fs_info, u64 bytenr, 777 u64 time_seq, struct ulist *refs, 778 struct ulist *roots, const u64 *extent_item_pos) 779 { 780 struct btrfs_key key; 781 struct btrfs_path *path; 782 struct btrfs_delayed_ref_root *delayed_refs = NULL; 783 struct btrfs_delayed_ref_head *head; 784 int info_level = 0; 785 int ret; 786 int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT); 787 struct list_head prefs_delayed; 788 struct list_head prefs; 789 struct __prelim_ref *ref; 790 791 INIT_LIST_HEAD(&prefs); 792 INIT_LIST_HEAD(&prefs_delayed); 793 794 key.objectid = bytenr; 795 key.type = BTRFS_EXTENT_ITEM_KEY; 796 key.offset = (u64)-1; 797 798 path = btrfs_alloc_path(); 799 if (!path) 800 return -ENOMEM; 801 path->search_commit_root = !!search_commit_root; 802 803 /* 804 * grab both a lock on the path and a lock on the delayed ref head. 805 * We need both to get a consistent picture of how the refs look 806 * at a specified point in time 807 */ 808 again: 809 head = NULL; 810 811 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 812 if (ret < 0) 813 goto out; 814 BUG_ON(ret == 0); 815 816 if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) { 817 /* 818 * look if there are updates for this ref queued and lock the 819 * head 820 */ 821 delayed_refs = &trans->transaction->delayed_refs; 822 spin_lock(&delayed_refs->lock); 823 head = btrfs_find_delayed_ref_head(trans, bytenr); 824 if (head) { 825 if (!mutex_trylock(&head->mutex)) { 826 atomic_inc(&head->node.refs); 827 spin_unlock(&delayed_refs->lock); 828 829 btrfs_release_path(path); 830 831 /* 832 * Mutex was contended, block until it's 833 * released and try again 834 */ 835 mutex_lock(&head->mutex); 836 mutex_unlock(&head->mutex); 837 btrfs_put_delayed_ref(&head->node); 838 goto again; 839 } 840 ret = __add_delayed_refs(head, time_seq, 841 &prefs_delayed); 842 mutex_unlock(&head->mutex); 843 if (ret) { 844 spin_unlock(&delayed_refs->lock); 845 goto out; 846 } 847 } 848 spin_unlock(&delayed_refs->lock); 849 } 850 851 if (path->slots[0]) { 852 struct extent_buffer *leaf; 853 int slot; 854 855 path->slots[0]--; 856 leaf = path->nodes[0]; 857 slot = path->slots[0]; 858 btrfs_item_key_to_cpu(leaf, &key, slot); 859 if (key.objectid == bytenr && 860 key.type == BTRFS_EXTENT_ITEM_KEY) { 861 ret = __add_inline_refs(fs_info, path, bytenr, 862 &info_level, &prefs); 863 if (ret) 864 goto out; 865 ret = __add_keyed_refs(fs_info, path, bytenr, 866 info_level, &prefs); 867 if (ret) 868 goto out; 869 } 870 } 871 btrfs_release_path(path); 872 873 list_splice_init(&prefs_delayed, &prefs); 874 875 ret = __add_missing_keys(fs_info, &prefs); 876 if (ret) 877 goto out; 878 879 ret = __merge_refs(&prefs, 1); 880 if (ret) 881 goto out; 882 883 ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq, 884 &prefs, extent_item_pos); 885 if (ret) 886 goto out; 887 888 ret = __merge_refs(&prefs, 2); 889 if (ret) 890 goto out; 891 892 while (!list_empty(&prefs)) { 893 ref = list_first_entry(&prefs, struct __prelim_ref, list); 894 list_del(&ref->list); 895 if (ref->count < 0) 896 WARN_ON(1); 897 if (ref->count && ref->root_id && ref->parent == 0) { 898 /* no parent == root of tree */ 899 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 900 BUG_ON(ret < 0); 901 } 902 if (ref->count && ref->parent) { 903 struct extent_inode_elem *eie = NULL; 904 if (extent_item_pos && !ref->inode_list) { 905 u32 bsz; 906 struct extent_buffer *eb; 907 bsz = btrfs_level_size(fs_info->extent_root, 908 info_level); 909 eb = read_tree_block(fs_info->extent_root, 910 ref->parent, bsz, 0); 911 BUG_ON(!eb); 912 ret = find_extent_in_eb(eb, bytenr, 913 *extent_item_pos, &eie); 914 ref->inode_list = eie; 915 free_extent_buffer(eb); 916 } 917 ret = ulist_add_merge(refs, ref->parent, 918 (uintptr_t)ref->inode_list, 919 (u64 *)&eie, GFP_NOFS); 920 if (!ret && extent_item_pos) { 921 /* 922 * we've recorded that parent, so we must extend 923 * its inode list here 924 */ 925 BUG_ON(!eie); 926 while (eie->next) 927 eie = eie->next; 928 eie->next = ref->inode_list; 929 } 930 BUG_ON(ret < 0); 931 } 932 kfree(ref); 933 } 934 935 out: 936 btrfs_free_path(path); 937 while (!list_empty(&prefs)) { 938 ref = list_first_entry(&prefs, struct __prelim_ref, list); 939 list_del(&ref->list); 940 kfree(ref); 941 } 942 while (!list_empty(&prefs_delayed)) { 943 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 944 list); 945 list_del(&ref->list); 946 kfree(ref); 947 } 948 949 return ret; 950 } 951 952 static void free_leaf_list(struct ulist *blocks) 953 { 954 struct ulist_node *node = NULL; 955 struct extent_inode_elem *eie; 956 struct extent_inode_elem *eie_next; 957 struct ulist_iterator uiter; 958 959 ULIST_ITER_INIT(&uiter); 960 while ((node = ulist_next(blocks, &uiter))) { 961 if (!node->aux) 962 continue; 963 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 964 for (; eie; eie = eie_next) { 965 eie_next = eie->next; 966 kfree(eie); 967 } 968 node->aux = 0; 969 } 970 971 ulist_free(blocks); 972 } 973 974 /* 975 * Finds all leafs with a reference to the specified combination of bytenr and 976 * offset. key_list_head will point to a list of corresponding keys (caller must 977 * free each list element). The leafs will be stored in the leafs ulist, which 978 * must be freed with ulist_free. 979 * 980 * returns 0 on success, <0 on error 981 */ 982 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 983 struct btrfs_fs_info *fs_info, u64 bytenr, 984 u64 time_seq, struct ulist **leafs, 985 const u64 *extent_item_pos) 986 { 987 struct ulist *tmp; 988 int ret; 989 990 tmp = ulist_alloc(GFP_NOFS); 991 if (!tmp) 992 return -ENOMEM; 993 *leafs = ulist_alloc(GFP_NOFS); 994 if (!*leafs) { 995 ulist_free(tmp); 996 return -ENOMEM; 997 } 998 999 ret = find_parent_nodes(trans, fs_info, bytenr, 1000 time_seq, *leafs, tmp, extent_item_pos); 1001 ulist_free(tmp); 1002 1003 if (ret < 0 && ret != -ENOENT) { 1004 free_leaf_list(*leafs); 1005 return ret; 1006 } 1007 1008 return 0; 1009 } 1010 1011 /* 1012 * walk all backrefs for a given extent to find all roots that reference this 1013 * extent. Walking a backref means finding all extents that reference this 1014 * extent and in turn walk the backrefs of those, too. Naturally this is a 1015 * recursive process, but here it is implemented in an iterative fashion: We 1016 * find all referencing extents for the extent in question and put them on a 1017 * list. In turn, we find all referencing extents for those, further appending 1018 * to the list. The way we iterate the list allows adding more elements after 1019 * the current while iterating. The process stops when we reach the end of the 1020 * list. Found roots are added to the roots list. 1021 * 1022 * returns 0 on success, < 0 on error. 1023 */ 1024 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1025 struct btrfs_fs_info *fs_info, u64 bytenr, 1026 u64 time_seq, struct ulist **roots) 1027 { 1028 struct ulist *tmp; 1029 struct ulist_node *node = NULL; 1030 struct ulist_iterator uiter; 1031 int ret; 1032 1033 tmp = ulist_alloc(GFP_NOFS); 1034 if (!tmp) 1035 return -ENOMEM; 1036 *roots = ulist_alloc(GFP_NOFS); 1037 if (!*roots) { 1038 ulist_free(tmp); 1039 return -ENOMEM; 1040 } 1041 1042 ULIST_ITER_INIT(&uiter); 1043 while (1) { 1044 ret = find_parent_nodes(trans, fs_info, bytenr, 1045 time_seq, tmp, *roots, NULL); 1046 if (ret < 0 && ret != -ENOENT) { 1047 ulist_free(tmp); 1048 ulist_free(*roots); 1049 return ret; 1050 } 1051 node = ulist_next(tmp, &uiter); 1052 if (!node) 1053 break; 1054 bytenr = node->val; 1055 } 1056 1057 ulist_free(tmp); 1058 return 0; 1059 } 1060 1061 1062 static int __inode_info(u64 inum, u64 ioff, u8 key_type, 1063 struct btrfs_root *fs_root, struct btrfs_path *path, 1064 struct btrfs_key *found_key) 1065 { 1066 int ret; 1067 struct btrfs_key key; 1068 struct extent_buffer *eb; 1069 1070 key.type = key_type; 1071 key.objectid = inum; 1072 key.offset = ioff; 1073 1074 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1075 if (ret < 0) 1076 return ret; 1077 1078 eb = path->nodes[0]; 1079 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1080 ret = btrfs_next_leaf(fs_root, path); 1081 if (ret) 1082 return ret; 1083 eb = path->nodes[0]; 1084 } 1085 1086 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1087 if (found_key->type != key.type || found_key->objectid != key.objectid) 1088 return 1; 1089 1090 return 0; 1091 } 1092 1093 /* 1094 * this makes the path point to (inum INODE_ITEM ioff) 1095 */ 1096 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1097 struct btrfs_path *path) 1098 { 1099 struct btrfs_key key; 1100 return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path, 1101 &key); 1102 } 1103 1104 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1105 struct btrfs_path *path, 1106 struct btrfs_key *found_key) 1107 { 1108 return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path, 1109 found_key); 1110 } 1111 1112 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1113 u64 start_off, struct btrfs_path *path, 1114 struct btrfs_inode_extref **ret_extref, 1115 u64 *found_off) 1116 { 1117 int ret, slot; 1118 struct btrfs_key key; 1119 struct btrfs_key found_key; 1120 struct btrfs_inode_extref *extref; 1121 struct extent_buffer *leaf; 1122 unsigned long ptr; 1123 1124 key.objectid = inode_objectid; 1125 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY); 1126 key.offset = start_off; 1127 1128 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1129 if (ret < 0) 1130 return ret; 1131 1132 while (1) { 1133 leaf = path->nodes[0]; 1134 slot = path->slots[0]; 1135 if (slot >= btrfs_header_nritems(leaf)) { 1136 /* 1137 * If the item at offset is not found, 1138 * btrfs_search_slot will point us to the slot 1139 * where it should be inserted. In our case 1140 * that will be the slot directly before the 1141 * next INODE_REF_KEY_V2 item. In the case 1142 * that we're pointing to the last slot in a 1143 * leaf, we must move one leaf over. 1144 */ 1145 ret = btrfs_next_leaf(root, path); 1146 if (ret) { 1147 if (ret >= 1) 1148 ret = -ENOENT; 1149 break; 1150 } 1151 continue; 1152 } 1153 1154 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1155 1156 /* 1157 * Check that we're still looking at an extended ref key for 1158 * this particular objectid. If we have different 1159 * objectid or type then there are no more to be found 1160 * in the tree and we can exit. 1161 */ 1162 ret = -ENOENT; 1163 if (found_key.objectid != inode_objectid) 1164 break; 1165 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY) 1166 break; 1167 1168 ret = 0; 1169 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1170 extref = (struct btrfs_inode_extref *)ptr; 1171 *ret_extref = extref; 1172 if (found_off) 1173 *found_off = found_key.offset; 1174 break; 1175 } 1176 1177 return ret; 1178 } 1179 1180 static char *ref_to_path(struct btrfs_root *fs_root, 1181 struct btrfs_path *path, 1182 u32 name_len, unsigned long name_off, 1183 struct extent_buffer *eb_in, u64 parent, 1184 char *dest, u32 size) 1185 { 1186 int slot; 1187 u64 next_inum; 1188 int ret; 1189 s64 bytes_left = size - 1; 1190 struct extent_buffer *eb = eb_in; 1191 struct btrfs_key found_key; 1192 int leave_spinning = path->leave_spinning; 1193 struct btrfs_inode_ref *iref; 1194 1195 if (bytes_left >= 0) 1196 dest[bytes_left] = '\0'; 1197 1198 path->leave_spinning = 1; 1199 while (1) { 1200 bytes_left -= name_len; 1201 if (bytes_left >= 0) 1202 read_extent_buffer(eb, dest + bytes_left, 1203 name_off, name_len); 1204 if (eb != eb_in) { 1205 btrfs_tree_read_unlock_blocking(eb); 1206 free_extent_buffer(eb); 1207 } 1208 ret = inode_ref_info(parent, 0, fs_root, path, &found_key); 1209 if (ret > 0) 1210 ret = -ENOENT; 1211 if (ret) 1212 break; 1213 1214 next_inum = found_key.offset; 1215 1216 /* regular exit ahead */ 1217 if (parent == next_inum) 1218 break; 1219 1220 slot = path->slots[0]; 1221 eb = path->nodes[0]; 1222 /* make sure we can use eb after releasing the path */ 1223 if (eb != eb_in) { 1224 atomic_inc(&eb->refs); 1225 btrfs_tree_read_lock(eb); 1226 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1227 } 1228 btrfs_release_path(path); 1229 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1230 1231 name_len = btrfs_inode_ref_name_len(eb, iref); 1232 name_off = (unsigned long)(iref + 1); 1233 1234 parent = next_inum; 1235 --bytes_left; 1236 if (bytes_left >= 0) 1237 dest[bytes_left] = '/'; 1238 } 1239 1240 btrfs_release_path(path); 1241 path->leave_spinning = leave_spinning; 1242 1243 if (ret) 1244 return ERR_PTR(ret); 1245 1246 return dest + bytes_left; 1247 } 1248 1249 /* 1250 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements 1251 * of the path are separated by '/' and the path is guaranteed to be 1252 * 0-terminated. the path is only given within the current file system. 1253 * Therefore, it never starts with a '/'. the caller is responsible to provide 1254 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1255 * the start point of the resulting string is returned. this pointer is within 1256 * dest, normally. 1257 * in case the path buffer would overflow, the pointer is decremented further 1258 * as if output was written to the buffer, though no more output is actually 1259 * generated. that way, the caller can determine how much space would be 1260 * required for the path to fit into the buffer. in that case, the returned 1261 * value will be smaller than dest. callers must check this! 1262 */ 1263 char *btrfs_iref_to_path(struct btrfs_root *fs_root, 1264 struct btrfs_path *path, 1265 struct btrfs_inode_ref *iref, 1266 struct extent_buffer *eb_in, u64 parent, 1267 char *dest, u32 size) 1268 { 1269 return ref_to_path(fs_root, path, 1270 btrfs_inode_ref_name_len(eb_in, iref), 1271 (unsigned long)(iref + 1), 1272 eb_in, parent, dest, size); 1273 } 1274 1275 /* 1276 * this makes the path point to (logical EXTENT_ITEM *) 1277 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1278 * tree blocks and <0 on error. 1279 */ 1280 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1281 struct btrfs_path *path, struct btrfs_key *found_key, 1282 u64 *flags_ret) 1283 { 1284 int ret; 1285 u64 flags; 1286 u32 item_size; 1287 struct extent_buffer *eb; 1288 struct btrfs_extent_item *ei; 1289 struct btrfs_key key; 1290 1291 key.type = BTRFS_EXTENT_ITEM_KEY; 1292 key.objectid = logical; 1293 key.offset = (u64)-1; 1294 1295 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1296 if (ret < 0) 1297 return ret; 1298 ret = btrfs_previous_item(fs_info->extent_root, path, 1299 0, BTRFS_EXTENT_ITEM_KEY); 1300 if (ret < 0) 1301 return ret; 1302 1303 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1304 if (found_key->type != BTRFS_EXTENT_ITEM_KEY || 1305 found_key->objectid > logical || 1306 found_key->objectid + found_key->offset <= logical) { 1307 pr_debug("logical %llu is not within any extent\n", 1308 (unsigned long long)logical); 1309 return -ENOENT; 1310 } 1311 1312 eb = path->nodes[0]; 1313 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1314 BUG_ON(item_size < sizeof(*ei)); 1315 1316 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1317 flags = btrfs_extent_flags(eb, ei); 1318 1319 pr_debug("logical %llu is at position %llu within the extent (%llu " 1320 "EXTENT_ITEM %llu) flags %#llx size %u\n", 1321 (unsigned long long)logical, 1322 (unsigned long long)(logical - found_key->objectid), 1323 (unsigned long long)found_key->objectid, 1324 (unsigned long long)found_key->offset, 1325 (unsigned long long)flags, item_size); 1326 1327 WARN_ON(!flags_ret); 1328 if (flags_ret) { 1329 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1330 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1331 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1332 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1333 else 1334 BUG_ON(1); 1335 return 0; 1336 } 1337 1338 return -EIO; 1339 } 1340 1341 /* 1342 * helper function to iterate extent inline refs. ptr must point to a 0 value 1343 * for the first call and may be modified. it is used to track state. 1344 * if more refs exist, 0 is returned and the next call to 1345 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1346 * next ref. after the last ref was processed, 1 is returned. 1347 * returns <0 on error 1348 */ 1349 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1350 struct btrfs_extent_item *ei, u32 item_size, 1351 struct btrfs_extent_inline_ref **out_eiref, 1352 int *out_type) 1353 { 1354 unsigned long end; 1355 u64 flags; 1356 struct btrfs_tree_block_info *info; 1357 1358 if (!*ptr) { 1359 /* first call */ 1360 flags = btrfs_extent_flags(eb, ei); 1361 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1362 info = (struct btrfs_tree_block_info *)(ei + 1); 1363 *out_eiref = 1364 (struct btrfs_extent_inline_ref *)(info + 1); 1365 } else { 1366 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1367 } 1368 *ptr = (unsigned long)*out_eiref; 1369 if ((void *)*ptr >= (void *)ei + item_size) 1370 return -ENOENT; 1371 } 1372 1373 end = (unsigned long)ei + item_size; 1374 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr; 1375 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1376 1377 *ptr += btrfs_extent_inline_ref_size(*out_type); 1378 WARN_ON(*ptr > end); 1379 if (*ptr == end) 1380 return 1; /* last */ 1381 1382 return 0; 1383 } 1384 1385 /* 1386 * reads the tree block backref for an extent. tree level and root are returned 1387 * through out_level and out_root. ptr must point to a 0 value for the first 1388 * call and may be modified (see __get_extent_inline_ref comment). 1389 * returns 0 if data was provided, 1 if there was no more data to provide or 1390 * <0 on error. 1391 */ 1392 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1393 struct btrfs_extent_item *ei, u32 item_size, 1394 u64 *out_root, u8 *out_level) 1395 { 1396 int ret; 1397 int type; 1398 struct btrfs_tree_block_info *info; 1399 struct btrfs_extent_inline_ref *eiref; 1400 1401 if (*ptr == (unsigned long)-1) 1402 return 1; 1403 1404 while (1) { 1405 ret = __get_extent_inline_ref(ptr, eb, ei, item_size, 1406 &eiref, &type); 1407 if (ret < 0) 1408 return ret; 1409 1410 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1411 type == BTRFS_SHARED_BLOCK_REF_KEY) 1412 break; 1413 1414 if (ret == 1) 1415 return 1; 1416 } 1417 1418 /* we can treat both ref types equally here */ 1419 info = (struct btrfs_tree_block_info *)(ei + 1); 1420 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1421 *out_level = btrfs_tree_block_level(eb, info); 1422 1423 if (ret == 1) 1424 *ptr = (unsigned long)-1; 1425 1426 return 0; 1427 } 1428 1429 static int iterate_leaf_refs(struct extent_inode_elem *inode_list, 1430 u64 root, u64 extent_item_objectid, 1431 iterate_extent_inodes_t *iterate, void *ctx) 1432 { 1433 struct extent_inode_elem *eie; 1434 int ret = 0; 1435 1436 for (eie = inode_list; eie; eie = eie->next) { 1437 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " 1438 "root %llu\n", extent_item_objectid, 1439 eie->inum, eie->offset, root); 1440 ret = iterate(eie->inum, eie->offset, root, ctx); 1441 if (ret) { 1442 pr_debug("stopping iteration for %llu due to ret=%d\n", 1443 extent_item_objectid, ret); 1444 break; 1445 } 1446 } 1447 1448 return ret; 1449 } 1450 1451 /* 1452 * calls iterate() for every inode that references the extent identified by 1453 * the given parameters. 1454 * when the iterator function returns a non-zero value, iteration stops. 1455 */ 1456 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1457 u64 extent_item_objectid, u64 extent_item_pos, 1458 int search_commit_root, 1459 iterate_extent_inodes_t *iterate, void *ctx) 1460 { 1461 int ret; 1462 struct list_head data_refs = LIST_HEAD_INIT(data_refs); 1463 struct list_head shared_refs = LIST_HEAD_INIT(shared_refs); 1464 struct btrfs_trans_handle *trans; 1465 struct ulist *refs = NULL; 1466 struct ulist *roots = NULL; 1467 struct ulist_node *ref_node = NULL; 1468 struct ulist_node *root_node = NULL; 1469 struct seq_list tree_mod_seq_elem = {}; 1470 struct ulist_iterator ref_uiter; 1471 struct ulist_iterator root_uiter; 1472 1473 pr_debug("resolving all inodes for extent %llu\n", 1474 extent_item_objectid); 1475 1476 if (search_commit_root) { 1477 trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT; 1478 } else { 1479 trans = btrfs_join_transaction(fs_info->extent_root); 1480 if (IS_ERR(trans)) 1481 return PTR_ERR(trans); 1482 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1483 } 1484 1485 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1486 tree_mod_seq_elem.seq, &refs, 1487 &extent_item_pos); 1488 if (ret) 1489 goto out; 1490 1491 ULIST_ITER_INIT(&ref_uiter); 1492 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1493 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, 1494 tree_mod_seq_elem.seq, &roots); 1495 if (ret) 1496 break; 1497 ULIST_ITER_INIT(&root_uiter); 1498 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1499 pr_debug("root %llu references leaf %llu, data list " 1500 "%#llx\n", root_node->val, ref_node->val, 1501 (long long)ref_node->aux); 1502 ret = iterate_leaf_refs((struct extent_inode_elem *) 1503 (uintptr_t)ref_node->aux, 1504 root_node->val, 1505 extent_item_objectid, 1506 iterate, ctx); 1507 } 1508 ulist_free(roots); 1509 roots = NULL; 1510 } 1511 1512 free_leaf_list(refs); 1513 ulist_free(roots); 1514 out: 1515 if (!search_commit_root) { 1516 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1517 btrfs_end_transaction(trans, fs_info->extent_root); 1518 } 1519 1520 return ret; 1521 } 1522 1523 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1524 struct btrfs_path *path, 1525 iterate_extent_inodes_t *iterate, void *ctx) 1526 { 1527 int ret; 1528 u64 extent_item_pos; 1529 u64 flags = 0; 1530 struct btrfs_key found_key; 1531 int search_commit_root = path->search_commit_root; 1532 1533 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1534 btrfs_release_path(path); 1535 if (ret < 0) 1536 return ret; 1537 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1538 return -EINVAL; 1539 1540 extent_item_pos = logical - found_key.objectid; 1541 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1542 extent_item_pos, search_commit_root, 1543 iterate, ctx); 1544 1545 return ret; 1546 } 1547 1548 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1549 struct extent_buffer *eb, void *ctx); 1550 1551 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1552 struct btrfs_path *path, 1553 iterate_irefs_t *iterate, void *ctx) 1554 { 1555 int ret = 0; 1556 int slot; 1557 u32 cur; 1558 u32 len; 1559 u32 name_len; 1560 u64 parent = 0; 1561 int found = 0; 1562 struct extent_buffer *eb; 1563 struct btrfs_item *item; 1564 struct btrfs_inode_ref *iref; 1565 struct btrfs_key found_key; 1566 1567 while (!ret) { 1568 path->leave_spinning = 1; 1569 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, 1570 &found_key); 1571 if (ret < 0) 1572 break; 1573 if (ret) { 1574 ret = found ? 0 : -ENOENT; 1575 break; 1576 } 1577 ++found; 1578 1579 parent = found_key.offset; 1580 slot = path->slots[0]; 1581 eb = path->nodes[0]; 1582 /* make sure we can use eb after releasing the path */ 1583 atomic_inc(&eb->refs); 1584 btrfs_tree_read_lock(eb); 1585 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1586 btrfs_release_path(path); 1587 1588 item = btrfs_item_nr(eb, slot); 1589 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1590 1591 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 1592 name_len = btrfs_inode_ref_name_len(eb, iref); 1593 /* path must be released before calling iterate()! */ 1594 pr_debug("following ref at offset %u for inode %llu in " 1595 "tree %llu\n", cur, 1596 (unsigned long long)found_key.objectid, 1597 (unsigned long long)fs_root->objectid); 1598 ret = iterate(parent, name_len, 1599 (unsigned long)(iref + 1), eb, ctx); 1600 if (ret) 1601 break; 1602 len = sizeof(*iref) + name_len; 1603 iref = (struct btrfs_inode_ref *)((char *)iref + len); 1604 } 1605 btrfs_tree_read_unlock_blocking(eb); 1606 free_extent_buffer(eb); 1607 } 1608 1609 btrfs_release_path(path); 1610 1611 return ret; 1612 } 1613 1614 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 1615 struct btrfs_path *path, 1616 iterate_irefs_t *iterate, void *ctx) 1617 { 1618 int ret; 1619 int slot; 1620 u64 offset = 0; 1621 u64 parent; 1622 int found = 0; 1623 struct extent_buffer *eb; 1624 struct btrfs_inode_extref *extref; 1625 struct extent_buffer *leaf; 1626 u32 item_size; 1627 u32 cur_offset; 1628 unsigned long ptr; 1629 1630 while (1) { 1631 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 1632 &offset); 1633 if (ret < 0) 1634 break; 1635 if (ret) { 1636 ret = found ? 0 : -ENOENT; 1637 break; 1638 } 1639 ++found; 1640 1641 slot = path->slots[0]; 1642 eb = path->nodes[0]; 1643 /* make sure we can use eb after releasing the path */ 1644 atomic_inc(&eb->refs); 1645 1646 btrfs_tree_read_lock(eb); 1647 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1648 btrfs_release_path(path); 1649 1650 leaf = path->nodes[0]; 1651 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1652 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1653 cur_offset = 0; 1654 1655 while (cur_offset < item_size) { 1656 u32 name_len; 1657 1658 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 1659 parent = btrfs_inode_extref_parent(eb, extref); 1660 name_len = btrfs_inode_extref_name_len(eb, extref); 1661 ret = iterate(parent, name_len, 1662 (unsigned long)&extref->name, eb, ctx); 1663 if (ret) 1664 break; 1665 1666 cur_offset += btrfs_inode_extref_name_len(leaf, extref); 1667 cur_offset += sizeof(*extref); 1668 } 1669 btrfs_tree_read_unlock_blocking(eb); 1670 free_extent_buffer(eb); 1671 1672 offset++; 1673 } 1674 1675 btrfs_release_path(path); 1676 1677 return ret; 1678 } 1679 1680 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 1681 struct btrfs_path *path, iterate_irefs_t *iterate, 1682 void *ctx) 1683 { 1684 int ret; 1685 int found_refs = 0; 1686 1687 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 1688 if (!ret) 1689 ++found_refs; 1690 else if (ret != -ENOENT) 1691 return ret; 1692 1693 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 1694 if (ret == -ENOENT && found_refs) 1695 return 0; 1696 1697 return ret; 1698 } 1699 1700 /* 1701 * returns 0 if the path could be dumped (probably truncated) 1702 * returns <0 in case of an error 1703 */ 1704 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 1705 struct extent_buffer *eb, void *ctx) 1706 { 1707 struct inode_fs_paths *ipath = ctx; 1708 char *fspath; 1709 char *fspath_min; 1710 int i = ipath->fspath->elem_cnt; 1711 const int s_ptr = sizeof(char *); 1712 u32 bytes_left; 1713 1714 bytes_left = ipath->fspath->bytes_left > s_ptr ? 1715 ipath->fspath->bytes_left - s_ptr : 0; 1716 1717 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 1718 fspath = ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 1719 name_off, eb, inum, fspath_min, 1720 bytes_left); 1721 if (IS_ERR(fspath)) 1722 return PTR_ERR(fspath); 1723 1724 if (fspath > fspath_min) { 1725 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 1726 ++ipath->fspath->elem_cnt; 1727 ipath->fspath->bytes_left = fspath - fspath_min; 1728 } else { 1729 ++ipath->fspath->elem_missed; 1730 ipath->fspath->bytes_missing += fspath_min - fspath; 1731 ipath->fspath->bytes_left = 0; 1732 } 1733 1734 return 0; 1735 } 1736 1737 /* 1738 * this dumps all file system paths to the inode into the ipath struct, provided 1739 * is has been created large enough. each path is zero-terminated and accessed 1740 * from ipath->fspath->val[i]. 1741 * when it returns, there are ipath->fspath->elem_cnt number of paths available 1742 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 1743 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, 1744 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 1745 * have been needed to return all paths. 1746 */ 1747 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 1748 { 1749 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 1750 inode_to_path, ipath); 1751 } 1752 1753 struct btrfs_data_container *init_data_container(u32 total_bytes) 1754 { 1755 struct btrfs_data_container *data; 1756 size_t alloc_bytes; 1757 1758 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 1759 data = vmalloc(alloc_bytes); 1760 if (!data) 1761 return ERR_PTR(-ENOMEM); 1762 1763 if (total_bytes >= sizeof(*data)) { 1764 data->bytes_left = total_bytes - sizeof(*data); 1765 data->bytes_missing = 0; 1766 } else { 1767 data->bytes_missing = sizeof(*data) - total_bytes; 1768 data->bytes_left = 0; 1769 } 1770 1771 data->elem_cnt = 0; 1772 data->elem_missed = 0; 1773 1774 return data; 1775 } 1776 1777 /* 1778 * allocates space to return multiple file system paths for an inode. 1779 * total_bytes to allocate are passed, note that space usable for actual path 1780 * information will be total_bytes - sizeof(struct inode_fs_paths). 1781 * the returned pointer must be freed with free_ipath() in the end. 1782 */ 1783 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 1784 struct btrfs_path *path) 1785 { 1786 struct inode_fs_paths *ifp; 1787 struct btrfs_data_container *fspath; 1788 1789 fspath = init_data_container(total_bytes); 1790 if (IS_ERR(fspath)) 1791 return (void *)fspath; 1792 1793 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 1794 if (!ifp) { 1795 kfree(fspath); 1796 return ERR_PTR(-ENOMEM); 1797 } 1798 1799 ifp->btrfs_path = path; 1800 ifp->fspath = fspath; 1801 ifp->fs_root = fs_root; 1802 1803 return ifp; 1804 } 1805 1806 void free_ipath(struct inode_fs_paths *ipath) 1807 { 1808 if (!ipath) 1809 return; 1810 vfree(ipath->fspath); 1811 kfree(ipath); 1812 } 1813