1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "extent-tree.h" 21 #include "relocation.h" 22 #include "tree-checker.h" 23 24 /* Just arbitrary numbers so we can be sure one of these happened. */ 25 #define BACKREF_FOUND_SHARED 6 26 #define BACKREF_FOUND_NOT_SHARED 7 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 u64 num_bytes; 32 struct extent_inode_elem *next; 33 }; 34 35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 36 const struct btrfs_key *key, 37 const struct extent_buffer *eb, 38 const struct btrfs_file_extent_item *fi, 39 struct extent_inode_elem **eie) 40 { 41 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi); 42 u64 offset = key->offset; 43 struct extent_inode_elem *e; 44 const u64 *root_ids; 45 int root_count; 46 bool cached; 47 48 if (!ctx->ignore_extent_item_pos && 49 !btrfs_file_extent_compression(eb, fi) && 50 !btrfs_file_extent_encryption(eb, fi) && 51 !btrfs_file_extent_other_encoding(eb, fi)) { 52 u64 data_offset; 53 54 data_offset = btrfs_file_extent_offset(eb, fi); 55 56 if (ctx->extent_item_pos < data_offset || 57 ctx->extent_item_pos >= data_offset + data_len) 58 return 1; 59 offset += ctx->extent_item_pos - data_offset; 60 } 61 62 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup) 63 goto add_inode_elem; 64 65 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids, 66 &root_count); 67 if (!cached) 68 goto add_inode_elem; 69 70 for (int i = 0; i < root_count; i++) { 71 int ret; 72 73 ret = ctx->indirect_ref_iterator(key->objectid, offset, 74 data_len, root_ids[i], 75 ctx->user_ctx); 76 if (ret) 77 return ret; 78 } 79 80 add_inode_elem: 81 e = kmalloc(sizeof(*e), GFP_NOFS); 82 if (!e) 83 return -ENOMEM; 84 85 e->next = *eie; 86 e->inum = key->objectid; 87 e->offset = offset; 88 e->num_bytes = data_len; 89 *eie = e; 90 91 return 0; 92 } 93 94 static void free_inode_elem_list(struct extent_inode_elem *eie) 95 { 96 struct extent_inode_elem *eie_next; 97 98 for (; eie; eie = eie_next) { 99 eie_next = eie->next; 100 kfree(eie); 101 } 102 } 103 104 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 105 const struct extent_buffer *eb, 106 struct extent_inode_elem **eie) 107 { 108 u64 disk_byte; 109 struct btrfs_key key; 110 struct btrfs_file_extent_item *fi; 111 int slot; 112 int nritems; 113 int extent_type; 114 int ret; 115 116 /* 117 * from the shared data ref, we only have the leaf but we need 118 * the key. thus, we must look into all items and see that we 119 * find one (some) with a reference to our extent item. 120 */ 121 nritems = btrfs_header_nritems(eb); 122 for (slot = 0; slot < nritems; ++slot) { 123 btrfs_item_key_to_cpu(eb, &key, slot); 124 if (key.type != BTRFS_EXTENT_DATA_KEY) 125 continue; 126 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 127 extent_type = btrfs_file_extent_type(eb, fi); 128 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 129 continue; 130 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 131 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 132 if (disk_byte != ctx->bytenr) 133 continue; 134 135 ret = check_extent_in_eb(ctx, &key, eb, fi, eie); 136 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 137 return ret; 138 } 139 140 return 0; 141 } 142 143 struct preftree { 144 struct rb_root_cached root; 145 unsigned int count; 146 }; 147 148 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 149 150 struct preftrees { 151 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 152 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 153 struct preftree indirect_missing_keys; 154 }; 155 156 /* 157 * Checks for a shared extent during backref search. 158 * 159 * The share_count tracks prelim_refs (direct and indirect) having a 160 * ref->count >0: 161 * - incremented when a ref->count transitions to >0 162 * - decremented when a ref->count transitions to <1 163 */ 164 struct share_check { 165 struct btrfs_backref_share_check_ctx *ctx; 166 struct btrfs_root *root; 167 u64 inum; 168 u64 data_bytenr; 169 u64 data_extent_gen; 170 /* 171 * Counts number of inodes that refer to an extent (different inodes in 172 * the same root or different roots) that we could find. The sharedness 173 * check typically stops once this counter gets greater than 1, so it 174 * may not reflect the total number of inodes. 175 */ 176 int share_count; 177 /* 178 * The number of times we found our inode refers to the data extent we 179 * are determining the sharedness. In other words, how many file extent 180 * items we could find for our inode that point to our target data 181 * extent. The value we get here after finishing the extent sharedness 182 * check may be smaller than reality, but if it ends up being greater 183 * than 1, then we know for sure the inode has multiple file extent 184 * items that point to our inode, and we can safely assume it's useful 185 * to cache the sharedness check result. 186 */ 187 int self_ref_count; 188 bool have_delayed_delete_refs; 189 }; 190 191 static inline int extent_is_shared(struct share_check *sc) 192 { 193 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 194 } 195 196 static struct kmem_cache *btrfs_prelim_ref_cache; 197 198 int __init btrfs_prelim_ref_init(void) 199 { 200 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 201 sizeof(struct prelim_ref), 0, 0, NULL); 202 if (!btrfs_prelim_ref_cache) 203 return -ENOMEM; 204 return 0; 205 } 206 207 void __cold btrfs_prelim_ref_exit(void) 208 { 209 kmem_cache_destroy(btrfs_prelim_ref_cache); 210 } 211 212 static void free_pref(struct prelim_ref *ref) 213 { 214 kmem_cache_free(btrfs_prelim_ref_cache, ref); 215 } 216 217 /* 218 * Return 0 when both refs are for the same block (and can be merged). 219 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 220 * indicates a 'higher' block. 221 */ 222 static int prelim_ref_compare(const struct prelim_ref *ref1, 223 const struct prelim_ref *ref2) 224 { 225 if (ref1->level < ref2->level) 226 return -1; 227 if (ref1->level > ref2->level) 228 return 1; 229 if (ref1->root_id < ref2->root_id) 230 return -1; 231 if (ref1->root_id > ref2->root_id) 232 return 1; 233 if (ref1->key_for_search.type < ref2->key_for_search.type) 234 return -1; 235 if (ref1->key_for_search.type > ref2->key_for_search.type) 236 return 1; 237 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 238 return -1; 239 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 240 return 1; 241 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 242 return -1; 243 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 244 return 1; 245 if (ref1->parent < ref2->parent) 246 return -1; 247 if (ref1->parent > ref2->parent) 248 return 1; 249 250 return 0; 251 } 252 253 static void update_share_count(struct share_check *sc, int oldcount, 254 int newcount, const struct prelim_ref *newref) 255 { 256 if ((!sc) || (oldcount == 0 && newcount < 1)) 257 return; 258 259 if (oldcount > 0 && newcount < 1) 260 sc->share_count--; 261 else if (oldcount < 1 && newcount > 0) 262 sc->share_count++; 263 264 if (newref->root_id == btrfs_root_id(sc->root) && 265 newref->wanted_disk_byte == sc->data_bytenr && 266 newref->key_for_search.objectid == sc->inum) 267 sc->self_ref_count += newref->count; 268 } 269 270 /* 271 * Add @newref to the @root rbtree, merging identical refs. 272 * 273 * Callers should assume that newref has been freed after calling. 274 */ 275 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 276 struct preftree *preftree, 277 struct prelim_ref *newref, 278 struct share_check *sc) 279 { 280 struct rb_root_cached *root; 281 struct rb_node **p; 282 struct rb_node *parent = NULL; 283 struct prelim_ref *ref; 284 int result; 285 bool leftmost = true; 286 287 root = &preftree->root; 288 p = &root->rb_root.rb_node; 289 290 while (*p) { 291 parent = *p; 292 ref = rb_entry(parent, struct prelim_ref, rbnode); 293 result = prelim_ref_compare(ref, newref); 294 if (result < 0) { 295 p = &(*p)->rb_left; 296 } else if (result > 0) { 297 p = &(*p)->rb_right; 298 leftmost = false; 299 } else { 300 /* Identical refs, merge them and free @newref */ 301 struct extent_inode_elem *eie = ref->inode_list; 302 303 while (eie && eie->next) 304 eie = eie->next; 305 306 if (!eie) 307 ref->inode_list = newref->inode_list; 308 else 309 eie->next = newref->inode_list; 310 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 311 preftree->count); 312 /* 313 * A delayed ref can have newref->count < 0. 314 * The ref->count is updated to follow any 315 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 316 */ 317 update_share_count(sc, ref->count, 318 ref->count + newref->count, newref); 319 ref->count += newref->count; 320 free_pref(newref); 321 return; 322 } 323 } 324 325 update_share_count(sc, 0, newref->count, newref); 326 preftree->count++; 327 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 328 rb_link_node(&newref->rbnode, parent, p); 329 rb_insert_color_cached(&newref->rbnode, root, leftmost); 330 } 331 332 /* 333 * Release the entire tree. We don't care about internal consistency so 334 * just free everything and then reset the tree root. 335 */ 336 static void prelim_release(struct preftree *preftree) 337 { 338 struct prelim_ref *ref, *next_ref; 339 340 rbtree_postorder_for_each_entry_safe(ref, next_ref, 341 &preftree->root.rb_root, rbnode) { 342 free_inode_elem_list(ref->inode_list); 343 free_pref(ref); 344 } 345 346 preftree->root = RB_ROOT_CACHED; 347 preftree->count = 0; 348 } 349 350 /* 351 * the rules for all callers of this function are: 352 * - obtaining the parent is the goal 353 * - if you add a key, you must know that it is a correct key 354 * - if you cannot add the parent or a correct key, then we will look into the 355 * block later to set a correct key 356 * 357 * delayed refs 358 * ============ 359 * backref type | shared | indirect | shared | indirect 360 * information | tree | tree | data | data 361 * --------------------+--------+----------+--------+---------- 362 * parent logical | y | - | - | - 363 * key to resolve | - | y | y | y 364 * tree block logical | - | - | - | - 365 * root for resolving | y | y | y | y 366 * 367 * - column 1: we've the parent -> done 368 * - column 2, 3, 4: we use the key to find the parent 369 * 370 * on disk refs (inline or keyed) 371 * ============================== 372 * backref type | shared | indirect | shared | indirect 373 * information | tree | tree | data | data 374 * --------------------+--------+----------+--------+---------- 375 * parent logical | y | - | y | - 376 * key to resolve | - | - | - | y 377 * tree block logical | y | y | y | y 378 * root for resolving | - | y | y | y 379 * 380 * - column 1, 3: we've the parent -> done 381 * - column 2: we take the first key from the block to find the parent 382 * (see add_missing_keys) 383 * - column 4: we use the key to find the parent 384 * 385 * additional information that's available but not required to find the parent 386 * block might help in merging entries to gain some speed. 387 */ 388 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 389 struct preftree *preftree, u64 root_id, 390 const struct btrfs_key *key, int level, u64 parent, 391 u64 wanted_disk_byte, int count, 392 struct share_check *sc, gfp_t gfp_mask) 393 { 394 struct prelim_ref *ref; 395 396 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 397 return 0; 398 399 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 400 if (!ref) 401 return -ENOMEM; 402 403 ref->root_id = root_id; 404 if (key) 405 ref->key_for_search = *key; 406 else 407 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 408 409 ref->inode_list = NULL; 410 ref->level = level; 411 ref->count = count; 412 ref->parent = parent; 413 ref->wanted_disk_byte = wanted_disk_byte; 414 prelim_ref_insert(fs_info, preftree, ref, sc); 415 return extent_is_shared(sc); 416 } 417 418 /* direct refs use root == 0, key == NULL */ 419 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 420 struct preftrees *preftrees, int level, u64 parent, 421 u64 wanted_disk_byte, int count, 422 struct share_check *sc, gfp_t gfp_mask) 423 { 424 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 425 parent, wanted_disk_byte, count, sc, gfp_mask); 426 } 427 428 /* indirect refs use parent == 0 */ 429 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 430 struct preftrees *preftrees, u64 root_id, 431 const struct btrfs_key *key, int level, 432 u64 wanted_disk_byte, int count, 433 struct share_check *sc, gfp_t gfp_mask) 434 { 435 struct preftree *tree = &preftrees->indirect; 436 437 if (!key) 438 tree = &preftrees->indirect_missing_keys; 439 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 440 wanted_disk_byte, count, sc, gfp_mask); 441 } 442 443 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 444 { 445 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 446 struct rb_node *parent = NULL; 447 struct prelim_ref *ref = NULL; 448 struct prelim_ref target = {}; 449 int result; 450 451 target.parent = bytenr; 452 453 while (*p) { 454 parent = *p; 455 ref = rb_entry(parent, struct prelim_ref, rbnode); 456 result = prelim_ref_compare(ref, &target); 457 458 if (result < 0) 459 p = &(*p)->rb_left; 460 else if (result > 0) 461 p = &(*p)->rb_right; 462 else 463 return 1; 464 } 465 return 0; 466 } 467 468 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx, 469 struct btrfs_root *root, struct btrfs_path *path, 470 struct ulist *parents, 471 struct preftrees *preftrees, struct prelim_ref *ref, 472 int level) 473 { 474 int ret = 0; 475 int slot; 476 struct extent_buffer *eb; 477 struct btrfs_key key; 478 struct btrfs_key *key_for_search = &ref->key_for_search; 479 struct btrfs_file_extent_item *fi; 480 struct extent_inode_elem *eie = NULL, *old = NULL; 481 u64 disk_byte; 482 u64 wanted_disk_byte = ref->wanted_disk_byte; 483 u64 count = 0; 484 u64 data_offset; 485 u8 type; 486 487 if (level != 0) { 488 eb = path->nodes[level]; 489 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 490 if (ret < 0) 491 return ret; 492 return 0; 493 } 494 495 /* 496 * 1. We normally enter this function with the path already pointing to 497 * the first item to check. But sometimes, we may enter it with 498 * slot == nritems. 499 * 2. We are searching for normal backref but bytenr of this leaf 500 * matches shared data backref 501 * 3. The leaf owner is not equal to the root we are searching 502 * 503 * For these cases, go to the next leaf before we continue. 504 */ 505 eb = path->nodes[0]; 506 if (path->slots[0] >= btrfs_header_nritems(eb) || 507 is_shared_data_backref(preftrees, eb->start) || 508 ref->root_id != btrfs_header_owner(eb)) { 509 if (ctx->time_seq == BTRFS_SEQ_LAST) 510 ret = btrfs_next_leaf(root, path); 511 else 512 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 513 } 514 515 while (!ret && count < ref->count) { 516 eb = path->nodes[0]; 517 slot = path->slots[0]; 518 519 btrfs_item_key_to_cpu(eb, &key, slot); 520 521 if (key.objectid != key_for_search->objectid || 522 key.type != BTRFS_EXTENT_DATA_KEY) 523 break; 524 525 /* 526 * We are searching for normal backref but bytenr of this leaf 527 * matches shared data backref, OR 528 * the leaf owner is not equal to the root we are searching for 529 */ 530 if (slot == 0 && 531 (is_shared_data_backref(preftrees, eb->start) || 532 ref->root_id != btrfs_header_owner(eb))) { 533 if (ctx->time_seq == BTRFS_SEQ_LAST) 534 ret = btrfs_next_leaf(root, path); 535 else 536 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 537 continue; 538 } 539 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 540 type = btrfs_file_extent_type(eb, fi); 541 if (type == BTRFS_FILE_EXTENT_INLINE) 542 goto next; 543 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 544 data_offset = btrfs_file_extent_offset(eb, fi); 545 546 if (disk_byte == wanted_disk_byte) { 547 eie = NULL; 548 old = NULL; 549 if (ref->key_for_search.offset == key.offset - data_offset) 550 count++; 551 else 552 goto next; 553 if (!ctx->skip_inode_ref_list) { 554 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie); 555 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 556 ret < 0) 557 break; 558 } 559 if (ret > 0) 560 goto next; 561 ret = ulist_add_merge_ptr(parents, eb->start, 562 eie, (void **)&old, GFP_NOFS); 563 if (ret < 0) 564 break; 565 if (!ret && !ctx->skip_inode_ref_list) { 566 while (old->next) 567 old = old->next; 568 old->next = eie; 569 } 570 eie = NULL; 571 } 572 next: 573 if (ctx->time_seq == BTRFS_SEQ_LAST) 574 ret = btrfs_next_item(root, path); 575 else 576 ret = btrfs_next_old_item(root, path, ctx->time_seq); 577 } 578 579 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 580 free_inode_elem_list(eie); 581 else if (ret > 0) 582 ret = 0; 583 584 return ret; 585 } 586 587 /* 588 * resolve an indirect backref in the form (root_id, key, level) 589 * to a logical address 590 */ 591 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx, 592 struct btrfs_path *path, 593 struct preftrees *preftrees, 594 struct prelim_ref *ref, struct ulist *parents) 595 { 596 struct btrfs_root *root; 597 struct extent_buffer *eb; 598 int ret = 0; 599 int root_level; 600 int level = ref->level; 601 struct btrfs_key search_key = ref->key_for_search; 602 603 /* 604 * If we're search_commit_root we could possibly be holding locks on 605 * other tree nodes. This happens when qgroups does backref walks when 606 * adding new delayed refs. To deal with this we need to look in cache 607 * for the root, and if we don't find it then we need to search the 608 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 609 * here. 610 */ 611 if (path->search_commit_root) 612 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id); 613 else 614 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false); 615 if (IS_ERR(root)) { 616 ret = PTR_ERR(root); 617 goto out_free; 618 } 619 620 if (!path->search_commit_root && 621 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 622 ret = -ENOENT; 623 goto out; 624 } 625 626 if (btrfs_is_testing(ctx->fs_info)) { 627 ret = -ENOENT; 628 goto out; 629 } 630 631 if (path->search_commit_root) 632 root_level = btrfs_header_level(root->commit_root); 633 else if (ctx->time_seq == BTRFS_SEQ_LAST) 634 root_level = btrfs_header_level(root->node); 635 else 636 root_level = btrfs_old_root_level(root, ctx->time_seq); 637 638 if (root_level + 1 == level) 639 goto out; 640 641 /* 642 * We can often find data backrefs with an offset that is too large 643 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 644 * subtracting a file's offset with the data offset of its 645 * corresponding extent data item. This can happen for example in the 646 * clone ioctl. 647 * 648 * So if we detect such case we set the search key's offset to zero to 649 * make sure we will find the matching file extent item at 650 * add_all_parents(), otherwise we will miss it because the offset 651 * taken form the backref is much larger then the offset of the file 652 * extent item. This can make us scan a very large number of file 653 * extent items, but at least it will not make us miss any. 654 * 655 * This is an ugly workaround for a behaviour that should have never 656 * existed, but it does and a fix for the clone ioctl would touch a lot 657 * of places, cause backwards incompatibility and would not fix the 658 * problem for extents cloned with older kernels. 659 */ 660 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 661 search_key.offset >= LLONG_MAX) 662 search_key.offset = 0; 663 path->lowest_level = level; 664 if (ctx->time_seq == BTRFS_SEQ_LAST) 665 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 666 else 667 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq); 668 669 btrfs_debug(ctx->fs_info, 670 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 671 ref->root_id, level, ref->count, ret, 672 ref->key_for_search.objectid, ref->key_for_search.type, 673 ref->key_for_search.offset); 674 if (ret < 0) 675 goto out; 676 677 eb = path->nodes[level]; 678 while (!eb) { 679 if (WARN_ON(!level)) { 680 ret = 1; 681 goto out; 682 } 683 level--; 684 eb = path->nodes[level]; 685 } 686 687 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level); 688 out: 689 btrfs_put_root(root); 690 out_free: 691 path->lowest_level = 0; 692 btrfs_release_path(path); 693 return ret; 694 } 695 696 static struct extent_inode_elem * 697 unode_aux_to_inode_list(struct ulist_node *node) 698 { 699 if (!node) 700 return NULL; 701 return (struct extent_inode_elem *)(uintptr_t)node->aux; 702 } 703 704 static void free_leaf_list(struct ulist *ulist) 705 { 706 struct ulist_node *node; 707 struct ulist_iterator uiter; 708 709 ULIST_ITER_INIT(&uiter); 710 while ((node = ulist_next(ulist, &uiter))) 711 free_inode_elem_list(unode_aux_to_inode_list(node)); 712 713 ulist_free(ulist); 714 } 715 716 /* 717 * We maintain three separate rbtrees: one for direct refs, one for 718 * indirect refs which have a key, and one for indirect refs which do not 719 * have a key. Each tree does merge on insertion. 720 * 721 * Once all of the references are located, we iterate over the tree of 722 * indirect refs with missing keys. An appropriate key is located and 723 * the ref is moved onto the tree for indirect refs. After all missing 724 * keys are thus located, we iterate over the indirect ref tree, resolve 725 * each reference, and then insert the resolved reference onto the 726 * direct tree (merging there too). 727 * 728 * New backrefs (i.e., for parent nodes) are added to the appropriate 729 * rbtree as they are encountered. The new backrefs are subsequently 730 * resolved as above. 731 */ 732 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx, 733 struct btrfs_path *path, 734 struct preftrees *preftrees, 735 struct share_check *sc) 736 { 737 int err; 738 int ret = 0; 739 struct ulist *parents; 740 struct ulist_node *node; 741 struct ulist_iterator uiter; 742 struct rb_node *rnode; 743 744 parents = ulist_alloc(GFP_NOFS); 745 if (!parents) 746 return -ENOMEM; 747 748 /* 749 * We could trade memory usage for performance here by iterating 750 * the tree, allocating new refs for each insertion, and then 751 * freeing the entire indirect tree when we're done. In some test 752 * cases, the tree can grow quite large (~200k objects). 753 */ 754 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 755 struct prelim_ref *ref; 756 757 ref = rb_entry(rnode, struct prelim_ref, rbnode); 758 if (WARN(ref->parent, 759 "BUG: direct ref found in indirect tree")) { 760 ret = -EINVAL; 761 goto out; 762 } 763 764 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 765 preftrees->indirect.count--; 766 767 if (ref->count == 0) { 768 free_pref(ref); 769 continue; 770 } 771 772 if (sc && ref->root_id != btrfs_root_id(sc->root)) { 773 free_pref(ref); 774 ret = BACKREF_FOUND_SHARED; 775 goto out; 776 } 777 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents); 778 /* 779 * we can only tolerate ENOENT,otherwise,we should catch error 780 * and return directly. 781 */ 782 if (err == -ENOENT) { 783 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, 784 NULL); 785 continue; 786 } else if (err) { 787 free_pref(ref); 788 ret = err; 789 goto out; 790 } 791 792 /* we put the first parent into the ref at hand */ 793 ULIST_ITER_INIT(&uiter); 794 node = ulist_next(parents, &uiter); 795 ref->parent = node ? node->val : 0; 796 ref->inode_list = unode_aux_to_inode_list(node); 797 798 /* Add a prelim_ref(s) for any other parent(s). */ 799 while ((node = ulist_next(parents, &uiter))) { 800 struct prelim_ref *new_ref; 801 802 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 803 GFP_NOFS); 804 if (!new_ref) { 805 free_pref(ref); 806 ret = -ENOMEM; 807 goto out; 808 } 809 memcpy(new_ref, ref, sizeof(*ref)); 810 new_ref->parent = node->val; 811 new_ref->inode_list = unode_aux_to_inode_list(node); 812 prelim_ref_insert(ctx->fs_info, &preftrees->direct, 813 new_ref, NULL); 814 } 815 816 /* 817 * Now it's a direct ref, put it in the direct tree. We must 818 * do this last because the ref could be merged/freed here. 819 */ 820 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL); 821 822 ulist_reinit(parents); 823 cond_resched(); 824 } 825 out: 826 /* 827 * We may have inode lists attached to refs in the parents ulist, so we 828 * must free them before freeing the ulist and its refs. 829 */ 830 free_leaf_list(parents); 831 return ret; 832 } 833 834 /* 835 * read tree blocks and add keys where required. 836 */ 837 static int add_missing_keys(struct btrfs_fs_info *fs_info, 838 struct preftrees *preftrees, bool lock) 839 { 840 struct prelim_ref *ref; 841 struct extent_buffer *eb; 842 struct preftree *tree = &preftrees->indirect_missing_keys; 843 struct rb_node *node; 844 845 while ((node = rb_first_cached(&tree->root))) { 846 struct btrfs_tree_parent_check check = { 0 }; 847 848 ref = rb_entry(node, struct prelim_ref, rbnode); 849 rb_erase_cached(node, &tree->root); 850 851 BUG_ON(ref->parent); /* should not be a direct ref */ 852 BUG_ON(ref->key_for_search.type); 853 BUG_ON(!ref->wanted_disk_byte); 854 855 check.level = ref->level - 1; 856 check.owner_root = ref->root_id; 857 858 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check); 859 if (IS_ERR(eb)) { 860 free_pref(ref); 861 return PTR_ERR(eb); 862 } 863 if (!extent_buffer_uptodate(eb)) { 864 free_pref(ref); 865 free_extent_buffer(eb); 866 return -EIO; 867 } 868 869 if (lock) 870 btrfs_tree_read_lock(eb); 871 if (btrfs_header_level(eb) == 0) 872 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 873 else 874 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 875 if (lock) 876 btrfs_tree_read_unlock(eb); 877 free_extent_buffer(eb); 878 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 879 cond_resched(); 880 } 881 return 0; 882 } 883 884 /* 885 * add all currently queued delayed refs from this head whose seq nr is 886 * smaller or equal that seq to the list 887 */ 888 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 889 struct btrfs_delayed_ref_head *head, u64 seq, 890 struct preftrees *preftrees, struct share_check *sc) 891 { 892 struct btrfs_delayed_ref_node *node; 893 struct btrfs_key key; 894 struct rb_node *n; 895 int count; 896 int ret = 0; 897 898 spin_lock(&head->lock); 899 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 900 node = rb_entry(n, struct btrfs_delayed_ref_node, 901 ref_node); 902 if (node->seq > seq) 903 continue; 904 905 switch (node->action) { 906 case BTRFS_ADD_DELAYED_EXTENT: 907 case BTRFS_UPDATE_DELAYED_HEAD: 908 WARN_ON(1); 909 continue; 910 case BTRFS_ADD_DELAYED_REF: 911 count = node->ref_mod; 912 break; 913 case BTRFS_DROP_DELAYED_REF: 914 count = node->ref_mod * -1; 915 break; 916 default: 917 BUG(); 918 } 919 switch (node->type) { 920 case BTRFS_TREE_BLOCK_REF_KEY: { 921 /* NORMAL INDIRECT METADATA backref */ 922 struct btrfs_key *key_ptr = NULL; 923 /* The owner of a tree block ref is the level. */ 924 int level = btrfs_delayed_ref_owner(node); 925 926 if (head->extent_op && head->extent_op->update_key) { 927 btrfs_disk_key_to_cpu(&key, &head->extent_op->key); 928 key_ptr = &key; 929 } 930 931 ret = add_indirect_ref(fs_info, preftrees, node->ref_root, 932 key_ptr, level + 1, node->bytenr, 933 count, sc, GFP_ATOMIC); 934 break; 935 } 936 case BTRFS_SHARED_BLOCK_REF_KEY: { 937 /* 938 * SHARED DIRECT METADATA backref 939 * 940 * The owner of a tree block ref is the level. 941 */ 942 int level = btrfs_delayed_ref_owner(node); 943 944 ret = add_direct_ref(fs_info, preftrees, level + 1, 945 node->parent, node->bytenr, count, 946 sc, GFP_ATOMIC); 947 break; 948 } 949 case BTRFS_EXTENT_DATA_REF_KEY: { 950 /* NORMAL INDIRECT DATA backref */ 951 key.objectid = btrfs_delayed_ref_owner(node); 952 key.type = BTRFS_EXTENT_DATA_KEY; 953 key.offset = btrfs_delayed_ref_offset(node); 954 955 /* 956 * If we have a share check context and a reference for 957 * another inode, we can't exit immediately. This is 958 * because even if this is a BTRFS_ADD_DELAYED_REF 959 * reference we may find next a BTRFS_DROP_DELAYED_REF 960 * which cancels out this ADD reference. 961 * 962 * If this is a DROP reference and there was no previous 963 * ADD reference, then we need to signal that when we 964 * process references from the extent tree (through 965 * add_inline_refs() and add_keyed_refs()), we should 966 * not exit early if we find a reference for another 967 * inode, because one of the delayed DROP references 968 * may cancel that reference in the extent tree. 969 */ 970 if (sc && count < 0) 971 sc->have_delayed_delete_refs = true; 972 973 ret = add_indirect_ref(fs_info, preftrees, node->ref_root, 974 &key, 0, node->bytenr, count, sc, 975 GFP_ATOMIC); 976 break; 977 } 978 case BTRFS_SHARED_DATA_REF_KEY: { 979 /* SHARED DIRECT FULL backref */ 980 ret = add_direct_ref(fs_info, preftrees, 0, node->parent, 981 node->bytenr, count, sc, 982 GFP_ATOMIC); 983 break; 984 } 985 default: 986 WARN_ON(1); 987 } 988 /* 989 * We must ignore BACKREF_FOUND_SHARED until all delayed 990 * refs have been checked. 991 */ 992 if (ret && (ret != BACKREF_FOUND_SHARED)) 993 break; 994 } 995 if (!ret) 996 ret = extent_is_shared(sc); 997 998 spin_unlock(&head->lock); 999 return ret; 1000 } 1001 1002 /* 1003 * add all inline backrefs for bytenr to the list 1004 * 1005 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1006 */ 1007 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx, 1008 struct btrfs_path *path, 1009 int *info_level, struct preftrees *preftrees, 1010 struct share_check *sc) 1011 { 1012 int ret = 0; 1013 int slot; 1014 struct extent_buffer *leaf; 1015 struct btrfs_key key; 1016 struct btrfs_key found_key; 1017 unsigned long ptr; 1018 unsigned long end; 1019 struct btrfs_extent_item *ei; 1020 u64 flags; 1021 u64 item_size; 1022 1023 /* 1024 * enumerate all inline refs 1025 */ 1026 leaf = path->nodes[0]; 1027 slot = path->slots[0]; 1028 1029 item_size = btrfs_item_size(leaf, slot); 1030 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1031 1032 if (ctx->check_extent_item) { 1033 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx); 1034 if (ret) 1035 return ret; 1036 } 1037 1038 flags = btrfs_extent_flags(leaf, ei); 1039 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1040 1041 ptr = (unsigned long)(ei + 1); 1042 end = (unsigned long)ei + item_size; 1043 1044 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 1045 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1046 struct btrfs_tree_block_info *info; 1047 1048 info = (struct btrfs_tree_block_info *)ptr; 1049 *info_level = btrfs_tree_block_level(leaf, info); 1050 ptr += sizeof(struct btrfs_tree_block_info); 1051 BUG_ON(ptr > end); 1052 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1053 *info_level = found_key.offset; 1054 } else { 1055 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1056 } 1057 1058 while (ptr < end) { 1059 struct btrfs_extent_inline_ref *iref; 1060 u64 offset; 1061 int type; 1062 1063 iref = (struct btrfs_extent_inline_ref *)ptr; 1064 type = btrfs_get_extent_inline_ref_type(leaf, iref, 1065 BTRFS_REF_TYPE_ANY); 1066 if (type == BTRFS_REF_TYPE_INVALID) 1067 return -EUCLEAN; 1068 1069 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1070 1071 switch (type) { 1072 case BTRFS_SHARED_BLOCK_REF_KEY: 1073 ret = add_direct_ref(ctx->fs_info, preftrees, 1074 *info_level + 1, offset, 1075 ctx->bytenr, 1, NULL, GFP_NOFS); 1076 break; 1077 case BTRFS_SHARED_DATA_REF_KEY: { 1078 struct btrfs_shared_data_ref *sdref; 1079 int count; 1080 1081 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1082 count = btrfs_shared_data_ref_count(leaf, sdref); 1083 1084 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset, 1085 ctx->bytenr, count, sc, GFP_NOFS); 1086 break; 1087 } 1088 case BTRFS_TREE_BLOCK_REF_KEY: 1089 ret = add_indirect_ref(ctx->fs_info, preftrees, offset, 1090 NULL, *info_level + 1, 1091 ctx->bytenr, 1, NULL, GFP_NOFS); 1092 break; 1093 case BTRFS_EXTENT_DATA_REF_KEY: { 1094 struct btrfs_extent_data_ref *dref; 1095 int count; 1096 u64 root; 1097 1098 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1099 count = btrfs_extent_data_ref_count(leaf, dref); 1100 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1101 dref); 1102 key.type = BTRFS_EXTENT_DATA_KEY; 1103 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1104 1105 if (sc && key.objectid != sc->inum && 1106 !sc->have_delayed_delete_refs) { 1107 ret = BACKREF_FOUND_SHARED; 1108 break; 1109 } 1110 1111 root = btrfs_extent_data_ref_root(leaf, dref); 1112 1113 if (!ctx->skip_data_ref || 1114 !ctx->skip_data_ref(root, key.objectid, key.offset, 1115 ctx->user_ctx)) 1116 ret = add_indirect_ref(ctx->fs_info, preftrees, 1117 root, &key, 0, ctx->bytenr, 1118 count, sc, GFP_NOFS); 1119 break; 1120 } 1121 case BTRFS_EXTENT_OWNER_REF_KEY: 1122 ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA)); 1123 break; 1124 default: 1125 WARN_ON(1); 1126 } 1127 if (ret) 1128 return ret; 1129 ptr += btrfs_extent_inline_ref_size(type); 1130 } 1131 1132 return 0; 1133 } 1134 1135 /* 1136 * add all non-inline backrefs for bytenr to the list 1137 * 1138 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1139 */ 1140 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx, 1141 struct btrfs_root *extent_root, 1142 struct btrfs_path *path, 1143 int info_level, struct preftrees *preftrees, 1144 struct share_check *sc) 1145 { 1146 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1147 int ret; 1148 int slot; 1149 struct extent_buffer *leaf; 1150 struct btrfs_key key; 1151 1152 while (1) { 1153 ret = btrfs_next_item(extent_root, path); 1154 if (ret < 0) 1155 break; 1156 if (ret) { 1157 ret = 0; 1158 break; 1159 } 1160 1161 slot = path->slots[0]; 1162 leaf = path->nodes[0]; 1163 btrfs_item_key_to_cpu(leaf, &key, slot); 1164 1165 if (key.objectid != ctx->bytenr) 1166 break; 1167 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1168 continue; 1169 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1170 break; 1171 1172 switch (key.type) { 1173 case BTRFS_SHARED_BLOCK_REF_KEY: 1174 /* SHARED DIRECT METADATA backref */ 1175 ret = add_direct_ref(fs_info, preftrees, 1176 info_level + 1, key.offset, 1177 ctx->bytenr, 1, NULL, GFP_NOFS); 1178 break; 1179 case BTRFS_SHARED_DATA_REF_KEY: { 1180 /* SHARED DIRECT FULL backref */ 1181 struct btrfs_shared_data_ref *sdref; 1182 int count; 1183 1184 sdref = btrfs_item_ptr(leaf, slot, 1185 struct btrfs_shared_data_ref); 1186 count = btrfs_shared_data_ref_count(leaf, sdref); 1187 ret = add_direct_ref(fs_info, preftrees, 0, 1188 key.offset, ctx->bytenr, count, 1189 sc, GFP_NOFS); 1190 break; 1191 } 1192 case BTRFS_TREE_BLOCK_REF_KEY: 1193 /* NORMAL INDIRECT METADATA backref */ 1194 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1195 NULL, info_level + 1, ctx->bytenr, 1196 1, NULL, GFP_NOFS); 1197 break; 1198 case BTRFS_EXTENT_DATA_REF_KEY: { 1199 /* NORMAL INDIRECT DATA backref */ 1200 struct btrfs_extent_data_ref *dref; 1201 int count; 1202 u64 root; 1203 1204 dref = btrfs_item_ptr(leaf, slot, 1205 struct btrfs_extent_data_ref); 1206 count = btrfs_extent_data_ref_count(leaf, dref); 1207 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1208 dref); 1209 key.type = BTRFS_EXTENT_DATA_KEY; 1210 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1211 1212 if (sc && key.objectid != sc->inum && 1213 !sc->have_delayed_delete_refs) { 1214 ret = BACKREF_FOUND_SHARED; 1215 break; 1216 } 1217 1218 root = btrfs_extent_data_ref_root(leaf, dref); 1219 1220 if (!ctx->skip_data_ref || 1221 !ctx->skip_data_ref(root, key.objectid, key.offset, 1222 ctx->user_ctx)) 1223 ret = add_indirect_ref(fs_info, preftrees, root, 1224 &key, 0, ctx->bytenr, 1225 count, sc, GFP_NOFS); 1226 break; 1227 } 1228 default: 1229 WARN_ON(1); 1230 } 1231 if (ret) 1232 return ret; 1233 1234 } 1235 1236 return ret; 1237 } 1238 1239 /* 1240 * The caller has joined a transaction or is holding a read lock on the 1241 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1242 * snapshot field changing while updating or checking the cache. 1243 */ 1244 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1245 struct btrfs_root *root, 1246 u64 bytenr, int level, bool *is_shared) 1247 { 1248 const struct btrfs_fs_info *fs_info = root->fs_info; 1249 struct btrfs_backref_shared_cache_entry *entry; 1250 1251 if (!current->journal_info) 1252 lockdep_assert_held(&fs_info->commit_root_sem); 1253 1254 if (!ctx->use_path_cache) 1255 return false; 1256 1257 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1258 return false; 1259 1260 /* 1261 * Level -1 is used for the data extent, which is not reliable to cache 1262 * because its reference count can increase or decrease without us 1263 * realizing. We cache results only for extent buffers that lead from 1264 * the root node down to the leaf with the file extent item. 1265 */ 1266 ASSERT(level >= 0); 1267 1268 entry = &ctx->path_cache_entries[level]; 1269 1270 /* Unused cache entry or being used for some other extent buffer. */ 1271 if (entry->bytenr != bytenr) 1272 return false; 1273 1274 /* 1275 * We cached a false result, but the last snapshot generation of the 1276 * root changed, so we now have a snapshot. Don't trust the result. 1277 */ 1278 if (!entry->is_shared && 1279 entry->gen != btrfs_root_last_snapshot(&root->root_item)) 1280 return false; 1281 1282 /* 1283 * If we cached a true result and the last generation used for dropping 1284 * a root changed, we can not trust the result, because the dropped root 1285 * could be a snapshot sharing this extent buffer. 1286 */ 1287 if (entry->is_shared && 1288 entry->gen != btrfs_get_last_root_drop_gen(fs_info)) 1289 return false; 1290 1291 *is_shared = entry->is_shared; 1292 /* 1293 * If the node at this level is shared, than all nodes below are also 1294 * shared. Currently some of the nodes below may be marked as not shared 1295 * because we have just switched from one leaf to another, and switched 1296 * also other nodes above the leaf and below the current level, so mark 1297 * them as shared. 1298 */ 1299 if (*is_shared) { 1300 for (int i = 0; i < level; i++) { 1301 ctx->path_cache_entries[i].is_shared = true; 1302 ctx->path_cache_entries[i].gen = entry->gen; 1303 } 1304 } 1305 1306 return true; 1307 } 1308 1309 /* 1310 * The caller has joined a transaction or is holding a read lock on the 1311 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1312 * snapshot field changing while updating or checking the cache. 1313 */ 1314 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1315 struct btrfs_root *root, 1316 u64 bytenr, int level, bool is_shared) 1317 { 1318 const struct btrfs_fs_info *fs_info = root->fs_info; 1319 struct btrfs_backref_shared_cache_entry *entry; 1320 u64 gen; 1321 1322 if (!current->journal_info) 1323 lockdep_assert_held(&fs_info->commit_root_sem); 1324 1325 if (!ctx->use_path_cache) 1326 return; 1327 1328 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1329 return; 1330 1331 /* 1332 * Level -1 is used for the data extent, which is not reliable to cache 1333 * because its reference count can increase or decrease without us 1334 * realizing. We cache results only for extent buffers that lead from 1335 * the root node down to the leaf with the file extent item. 1336 */ 1337 ASSERT(level >= 0); 1338 1339 if (is_shared) 1340 gen = btrfs_get_last_root_drop_gen(fs_info); 1341 else 1342 gen = btrfs_root_last_snapshot(&root->root_item); 1343 1344 entry = &ctx->path_cache_entries[level]; 1345 entry->bytenr = bytenr; 1346 entry->is_shared = is_shared; 1347 entry->gen = gen; 1348 1349 /* 1350 * If we found an extent buffer is shared, set the cache result for all 1351 * extent buffers below it to true. As nodes in the path are COWed, 1352 * their sharedness is moved to their children, and if a leaf is COWed, 1353 * then the sharedness of a data extent becomes direct, the refcount of 1354 * data extent is increased in the extent item at the extent tree. 1355 */ 1356 if (is_shared) { 1357 for (int i = 0; i < level; i++) { 1358 entry = &ctx->path_cache_entries[i]; 1359 entry->is_shared = is_shared; 1360 entry->gen = gen; 1361 } 1362 } 1363 } 1364 1365 /* 1366 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1367 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1368 * indirect refs to their parent bytenr. 1369 * When roots are found, they're added to the roots list 1370 * 1371 * @ctx: Backref walking context object, must be not NULL. 1372 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a 1373 * shared extent is detected. 1374 * 1375 * Otherwise this returns 0 for success and <0 for an error. 1376 * 1377 * FIXME some caching might speed things up 1378 */ 1379 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx, 1380 struct share_check *sc) 1381 { 1382 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr); 1383 struct btrfs_key key; 1384 struct btrfs_path *path; 1385 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1386 struct btrfs_delayed_ref_head *head; 1387 int info_level = 0; 1388 int ret; 1389 struct prelim_ref *ref; 1390 struct rb_node *node; 1391 struct extent_inode_elem *eie = NULL; 1392 struct preftrees preftrees = { 1393 .direct = PREFTREE_INIT, 1394 .indirect = PREFTREE_INIT, 1395 .indirect_missing_keys = PREFTREE_INIT 1396 }; 1397 1398 /* Roots ulist is not needed when using a sharedness check context. */ 1399 if (sc) 1400 ASSERT(ctx->roots == NULL); 1401 1402 key.objectid = ctx->bytenr; 1403 key.offset = (u64)-1; 1404 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA)) 1405 key.type = BTRFS_METADATA_ITEM_KEY; 1406 else 1407 key.type = BTRFS_EXTENT_ITEM_KEY; 1408 1409 path = btrfs_alloc_path(); 1410 if (!path) 1411 return -ENOMEM; 1412 if (!ctx->trans) { 1413 path->search_commit_root = 1; 1414 path->skip_locking = 1; 1415 } 1416 1417 if (ctx->time_seq == BTRFS_SEQ_LAST) 1418 path->skip_locking = 1; 1419 1420 again: 1421 head = NULL; 1422 1423 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1424 if (ret < 0) 1425 goto out; 1426 if (ret == 0) { 1427 /* 1428 * Key with offset -1 found, there would have to exist an extent 1429 * item with such offset, but this is out of the valid range. 1430 */ 1431 ret = -EUCLEAN; 1432 goto out; 1433 } 1434 1435 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) && 1436 ctx->time_seq != BTRFS_SEQ_LAST) { 1437 /* 1438 * We have a specific time_seq we care about and trans which 1439 * means we have the path lock, we need to grab the ref head and 1440 * lock it so we have a consistent view of the refs at the given 1441 * time. 1442 */ 1443 delayed_refs = &ctx->trans->transaction->delayed_refs; 1444 spin_lock(&delayed_refs->lock); 1445 head = btrfs_find_delayed_ref_head(ctx->fs_info, delayed_refs, 1446 ctx->bytenr); 1447 if (head) { 1448 if (!mutex_trylock(&head->mutex)) { 1449 refcount_inc(&head->refs); 1450 spin_unlock(&delayed_refs->lock); 1451 1452 btrfs_release_path(path); 1453 1454 /* 1455 * Mutex was contended, block until it's 1456 * released and try again 1457 */ 1458 mutex_lock(&head->mutex); 1459 mutex_unlock(&head->mutex); 1460 btrfs_put_delayed_ref_head(head); 1461 goto again; 1462 } 1463 spin_unlock(&delayed_refs->lock); 1464 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq, 1465 &preftrees, sc); 1466 mutex_unlock(&head->mutex); 1467 if (ret) 1468 goto out; 1469 } else { 1470 spin_unlock(&delayed_refs->lock); 1471 } 1472 } 1473 1474 if (path->slots[0]) { 1475 struct extent_buffer *leaf; 1476 int slot; 1477 1478 path->slots[0]--; 1479 leaf = path->nodes[0]; 1480 slot = path->slots[0]; 1481 btrfs_item_key_to_cpu(leaf, &key, slot); 1482 if (key.objectid == ctx->bytenr && 1483 (key.type == BTRFS_EXTENT_ITEM_KEY || 1484 key.type == BTRFS_METADATA_ITEM_KEY)) { 1485 ret = add_inline_refs(ctx, path, &info_level, 1486 &preftrees, sc); 1487 if (ret) 1488 goto out; 1489 ret = add_keyed_refs(ctx, root, path, info_level, 1490 &preftrees, sc); 1491 if (ret) 1492 goto out; 1493 } 1494 } 1495 1496 /* 1497 * If we have a share context and we reached here, it means the extent 1498 * is not directly shared (no multiple reference items for it), 1499 * otherwise we would have exited earlier with a return value of 1500 * BACKREF_FOUND_SHARED after processing delayed references or while 1501 * processing inline or keyed references from the extent tree. 1502 * The extent may however be indirectly shared through shared subtrees 1503 * as a result from creating snapshots, so we determine below what is 1504 * its parent node, in case we are dealing with a metadata extent, or 1505 * what's the leaf (or leaves), from a fs tree, that has a file extent 1506 * item pointing to it in case we are dealing with a data extent. 1507 */ 1508 ASSERT(extent_is_shared(sc) == 0); 1509 1510 /* 1511 * If we are here for a data extent and we have a share_check structure 1512 * it means the data extent is not directly shared (does not have 1513 * multiple reference items), so we have to check if a path in the fs 1514 * tree (going from the root node down to the leaf that has the file 1515 * extent item pointing to the data extent) is shared, that is, if any 1516 * of the extent buffers in the path is referenced by other trees. 1517 */ 1518 if (sc && ctx->bytenr == sc->data_bytenr) { 1519 /* 1520 * If our data extent is from a generation more recent than the 1521 * last generation used to snapshot the root, then we know that 1522 * it can not be shared through subtrees, so we can skip 1523 * resolving indirect references, there's no point in 1524 * determining the extent buffers for the path from the fs tree 1525 * root node down to the leaf that has the file extent item that 1526 * points to the data extent. 1527 */ 1528 if (sc->data_extent_gen > 1529 btrfs_root_last_snapshot(&sc->root->root_item)) { 1530 ret = BACKREF_FOUND_NOT_SHARED; 1531 goto out; 1532 } 1533 1534 /* 1535 * If we are only determining if a data extent is shared or not 1536 * and the corresponding file extent item is located in the same 1537 * leaf as the previous file extent item, we can skip resolving 1538 * indirect references for a data extent, since the fs tree path 1539 * is the same (same leaf, so same path). We skip as long as the 1540 * cached result for the leaf is valid and only if there's only 1541 * one file extent item pointing to the data extent, because in 1542 * the case of multiple file extent items, they may be located 1543 * in different leaves and therefore we have multiple paths. 1544 */ 1545 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr && 1546 sc->self_ref_count == 1) { 1547 bool cached; 1548 bool is_shared; 1549 1550 cached = lookup_backref_shared_cache(sc->ctx, sc->root, 1551 sc->ctx->curr_leaf_bytenr, 1552 0, &is_shared); 1553 if (cached) { 1554 if (is_shared) 1555 ret = BACKREF_FOUND_SHARED; 1556 else 1557 ret = BACKREF_FOUND_NOT_SHARED; 1558 goto out; 1559 } 1560 } 1561 } 1562 1563 btrfs_release_path(path); 1564 1565 ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0); 1566 if (ret) 1567 goto out; 1568 1569 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1570 1571 ret = resolve_indirect_refs(ctx, path, &preftrees, sc); 1572 if (ret) 1573 goto out; 1574 1575 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1576 1577 /* 1578 * This walks the tree of merged and resolved refs. Tree blocks are 1579 * read in as needed. Unique entries are added to the ulist, and 1580 * the list of found roots is updated. 1581 * 1582 * We release the entire tree in one go before returning. 1583 */ 1584 node = rb_first_cached(&preftrees.direct.root); 1585 while (node) { 1586 ref = rb_entry(node, struct prelim_ref, rbnode); 1587 node = rb_next(&ref->rbnode); 1588 /* 1589 * ref->count < 0 can happen here if there are delayed 1590 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1591 * prelim_ref_insert() relies on this when merging 1592 * identical refs to keep the overall count correct. 1593 * prelim_ref_insert() will merge only those refs 1594 * which compare identically. Any refs having 1595 * e.g. different offsets would not be merged, 1596 * and would retain their original ref->count < 0. 1597 */ 1598 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) { 1599 /* no parent == root of tree */ 1600 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS); 1601 if (ret < 0) 1602 goto out; 1603 } 1604 if (ref->count && ref->parent) { 1605 if (!ctx->skip_inode_ref_list && !ref->inode_list && 1606 ref->level == 0) { 1607 struct btrfs_tree_parent_check check = { 0 }; 1608 struct extent_buffer *eb; 1609 1610 check.level = ref->level; 1611 1612 eb = read_tree_block(ctx->fs_info, ref->parent, 1613 &check); 1614 if (IS_ERR(eb)) { 1615 ret = PTR_ERR(eb); 1616 goto out; 1617 } 1618 if (!extent_buffer_uptodate(eb)) { 1619 free_extent_buffer(eb); 1620 ret = -EIO; 1621 goto out; 1622 } 1623 1624 if (!path->skip_locking) 1625 btrfs_tree_read_lock(eb); 1626 ret = find_extent_in_eb(ctx, eb, &eie); 1627 if (!path->skip_locking) 1628 btrfs_tree_read_unlock(eb); 1629 free_extent_buffer(eb); 1630 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1631 ret < 0) 1632 goto out; 1633 ref->inode_list = eie; 1634 /* 1635 * We transferred the list ownership to the ref, 1636 * so set to NULL to avoid a double free in case 1637 * an error happens after this. 1638 */ 1639 eie = NULL; 1640 } 1641 ret = ulist_add_merge_ptr(ctx->refs, ref->parent, 1642 ref->inode_list, 1643 (void **)&eie, GFP_NOFS); 1644 if (ret < 0) 1645 goto out; 1646 if (!ret && !ctx->skip_inode_ref_list) { 1647 /* 1648 * We've recorded that parent, so we must extend 1649 * its inode list here. 1650 * 1651 * However if there was corruption we may not 1652 * have found an eie, return an error in this 1653 * case. 1654 */ 1655 ASSERT(eie); 1656 if (!eie) { 1657 ret = -EUCLEAN; 1658 goto out; 1659 } 1660 while (eie->next) 1661 eie = eie->next; 1662 eie->next = ref->inode_list; 1663 } 1664 eie = NULL; 1665 /* 1666 * We have transferred the inode list ownership from 1667 * this ref to the ref we added to the 'refs' ulist. 1668 * So set this ref's inode list to NULL to avoid 1669 * use-after-free when our caller uses it or double 1670 * frees in case an error happens before we return. 1671 */ 1672 ref->inode_list = NULL; 1673 } 1674 cond_resched(); 1675 } 1676 1677 out: 1678 btrfs_free_path(path); 1679 1680 prelim_release(&preftrees.direct); 1681 prelim_release(&preftrees.indirect); 1682 prelim_release(&preftrees.indirect_missing_keys); 1683 1684 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 1685 free_inode_elem_list(eie); 1686 return ret; 1687 } 1688 1689 /* 1690 * Finds all leaves with a reference to the specified combination of 1691 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are 1692 * added to the ulist at @ctx->refs, and that ulist is allocated by this 1693 * function. The caller should free the ulist with free_leaf_list() if 1694 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is 1695 * enough. 1696 * 1697 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated. 1698 */ 1699 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx) 1700 { 1701 int ret; 1702 1703 ASSERT(ctx->refs == NULL); 1704 1705 ctx->refs = ulist_alloc(GFP_NOFS); 1706 if (!ctx->refs) 1707 return -ENOMEM; 1708 1709 ret = find_parent_nodes(ctx, NULL); 1710 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1711 (ret < 0 && ret != -ENOENT)) { 1712 free_leaf_list(ctx->refs); 1713 ctx->refs = NULL; 1714 return ret; 1715 } 1716 1717 return 0; 1718 } 1719 1720 /* 1721 * Walk all backrefs for a given extent to find all roots that reference this 1722 * extent. Walking a backref means finding all extents that reference this 1723 * extent and in turn walk the backrefs of those, too. Naturally this is a 1724 * recursive process, but here it is implemented in an iterative fashion: We 1725 * find all referencing extents for the extent in question and put them on a 1726 * list. In turn, we find all referencing extents for those, further appending 1727 * to the list. The way we iterate the list allows adding more elements after 1728 * the current while iterating. The process stops when we reach the end of the 1729 * list. 1730 * 1731 * Found roots are added to @ctx->roots, which is allocated by this function if 1732 * it points to NULL, in which case the caller is responsible for freeing it 1733 * after it's not needed anymore. 1734 * This function requires @ctx->refs to be NULL, as it uses it for allocating a 1735 * ulist to do temporary work, and frees it before returning. 1736 * 1737 * Returns 0 on success, < 0 on error. 1738 */ 1739 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx) 1740 { 1741 const u64 orig_bytenr = ctx->bytenr; 1742 const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list; 1743 bool roots_ulist_allocated = false; 1744 struct ulist_iterator uiter; 1745 int ret = 0; 1746 1747 ASSERT(ctx->refs == NULL); 1748 1749 ctx->refs = ulist_alloc(GFP_NOFS); 1750 if (!ctx->refs) 1751 return -ENOMEM; 1752 1753 if (!ctx->roots) { 1754 ctx->roots = ulist_alloc(GFP_NOFS); 1755 if (!ctx->roots) { 1756 ulist_free(ctx->refs); 1757 ctx->refs = NULL; 1758 return -ENOMEM; 1759 } 1760 roots_ulist_allocated = true; 1761 } 1762 1763 ctx->skip_inode_ref_list = true; 1764 1765 ULIST_ITER_INIT(&uiter); 1766 while (1) { 1767 struct ulist_node *node; 1768 1769 ret = find_parent_nodes(ctx, NULL); 1770 if (ret < 0 && ret != -ENOENT) { 1771 if (roots_ulist_allocated) { 1772 ulist_free(ctx->roots); 1773 ctx->roots = NULL; 1774 } 1775 break; 1776 } 1777 ret = 0; 1778 node = ulist_next(ctx->refs, &uiter); 1779 if (!node) 1780 break; 1781 ctx->bytenr = node->val; 1782 cond_resched(); 1783 } 1784 1785 ulist_free(ctx->refs); 1786 ctx->refs = NULL; 1787 ctx->bytenr = orig_bytenr; 1788 ctx->skip_inode_ref_list = orig_skip_inode_ref_list; 1789 1790 return ret; 1791 } 1792 1793 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, 1794 bool skip_commit_root_sem) 1795 { 1796 int ret; 1797 1798 if (!ctx->trans && !skip_commit_root_sem) 1799 down_read(&ctx->fs_info->commit_root_sem); 1800 ret = btrfs_find_all_roots_safe(ctx); 1801 if (!ctx->trans && !skip_commit_root_sem) 1802 up_read(&ctx->fs_info->commit_root_sem); 1803 return ret; 1804 } 1805 1806 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void) 1807 { 1808 struct btrfs_backref_share_check_ctx *ctx; 1809 1810 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1811 if (!ctx) 1812 return NULL; 1813 1814 ulist_init(&ctx->refs); 1815 1816 return ctx; 1817 } 1818 1819 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx) 1820 { 1821 if (!ctx) 1822 return; 1823 1824 ulist_release(&ctx->refs); 1825 kfree(ctx); 1826 } 1827 1828 /* 1829 * Check if a data extent is shared or not. 1830 * 1831 * @inode: The inode whose extent we are checking. 1832 * @bytenr: Logical bytenr of the extent we are checking. 1833 * @extent_gen: Generation of the extent (file extent item) or 0 if it is 1834 * not known. 1835 * @ctx: A backref sharedness check context. 1836 * 1837 * btrfs_is_data_extent_shared uses the backref walking code but will short 1838 * circuit as soon as it finds a root or inode that doesn't match the 1839 * one passed in. This provides a significant performance benefit for 1840 * callers (such as fiemap) which want to know whether the extent is 1841 * shared but do not need a ref count. 1842 * 1843 * This attempts to attach to the running transaction in order to account for 1844 * delayed refs, but continues on even when no running transaction exists. 1845 * 1846 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1847 */ 1848 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, 1849 u64 extent_gen, 1850 struct btrfs_backref_share_check_ctx *ctx) 1851 { 1852 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 1853 struct btrfs_root *root = inode->root; 1854 struct btrfs_fs_info *fs_info = root->fs_info; 1855 struct btrfs_trans_handle *trans; 1856 struct ulist_iterator uiter; 1857 struct ulist_node *node; 1858 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1859 int ret = 0; 1860 struct share_check shared = { 1861 .ctx = ctx, 1862 .root = root, 1863 .inum = btrfs_ino(inode), 1864 .data_bytenr = bytenr, 1865 .data_extent_gen = extent_gen, 1866 .share_count = 0, 1867 .self_ref_count = 0, 1868 .have_delayed_delete_refs = false, 1869 }; 1870 int level; 1871 bool leaf_cached; 1872 bool leaf_is_shared; 1873 1874 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) { 1875 if (ctx->prev_extents_cache[i].bytenr == bytenr) 1876 return ctx->prev_extents_cache[i].is_shared; 1877 } 1878 1879 ulist_init(&ctx->refs); 1880 1881 trans = btrfs_join_transaction_nostart(root); 1882 if (IS_ERR(trans)) { 1883 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1884 ret = PTR_ERR(trans); 1885 goto out; 1886 } 1887 trans = NULL; 1888 down_read(&fs_info->commit_root_sem); 1889 } else { 1890 btrfs_get_tree_mod_seq(fs_info, &elem); 1891 walk_ctx.time_seq = elem.seq; 1892 } 1893 1894 ctx->use_path_cache = true; 1895 1896 /* 1897 * We may have previously determined that the current leaf is shared. 1898 * If it is, then we have a data extent that is shared due to a shared 1899 * subtree (caused by snapshotting) and we don't need to check for data 1900 * backrefs. If the leaf is not shared, then we must do backref walking 1901 * to determine if the data extent is shared through reflinks. 1902 */ 1903 leaf_cached = lookup_backref_shared_cache(ctx, root, 1904 ctx->curr_leaf_bytenr, 0, 1905 &leaf_is_shared); 1906 if (leaf_cached && leaf_is_shared) { 1907 ret = 1; 1908 goto out_trans; 1909 } 1910 1911 walk_ctx.skip_inode_ref_list = true; 1912 walk_ctx.trans = trans; 1913 walk_ctx.fs_info = fs_info; 1914 walk_ctx.refs = &ctx->refs; 1915 1916 /* -1 means we are in the bytenr of the data extent. */ 1917 level = -1; 1918 ULIST_ITER_INIT(&uiter); 1919 while (1) { 1920 const unsigned long prev_ref_count = ctx->refs.nnodes; 1921 1922 walk_ctx.bytenr = bytenr; 1923 ret = find_parent_nodes(&walk_ctx, &shared); 1924 if (ret == BACKREF_FOUND_SHARED || 1925 ret == BACKREF_FOUND_NOT_SHARED) { 1926 /* If shared must return 1, otherwise return 0. */ 1927 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0; 1928 if (level >= 0) 1929 store_backref_shared_cache(ctx, root, bytenr, 1930 level, ret == 1); 1931 break; 1932 } 1933 if (ret < 0 && ret != -ENOENT) 1934 break; 1935 ret = 0; 1936 1937 /* 1938 * More than one extent buffer (bytenr) may have been added to 1939 * the ctx->refs ulist, in which case we have to check multiple 1940 * tree paths in case the first one is not shared, so we can not 1941 * use the path cache which is made for a single path. Multiple 1942 * extent buffers at the current level happen when: 1943 * 1944 * 1) level -1, the data extent: If our data extent was not 1945 * directly shared (without multiple reference items), then 1946 * it might have a single reference item with a count > 1 for 1947 * the same offset, which means there are 2 (or more) file 1948 * extent items that point to the data extent - this happens 1949 * when a file extent item needs to be split and then one 1950 * item gets moved to another leaf due to a b+tree leaf split 1951 * when inserting some item. In this case the file extent 1952 * items may be located in different leaves and therefore 1953 * some of the leaves may be referenced through shared 1954 * subtrees while others are not. Since our extent buffer 1955 * cache only works for a single path (by far the most common 1956 * case and simpler to deal with), we can not use it if we 1957 * have multiple leaves (which implies multiple paths). 1958 * 1959 * 2) level >= 0, a tree node/leaf: We can have a mix of direct 1960 * and indirect references on a b+tree node/leaf, so we have 1961 * to check multiple paths, and the extent buffer (the 1962 * current bytenr) may be shared or not. One example is 1963 * during relocation as we may get a shared tree block ref 1964 * (direct ref) and a non-shared tree block ref (indirect 1965 * ref) for the same node/leaf. 1966 */ 1967 if ((ctx->refs.nnodes - prev_ref_count) > 1) 1968 ctx->use_path_cache = false; 1969 1970 if (level >= 0) 1971 store_backref_shared_cache(ctx, root, bytenr, 1972 level, false); 1973 node = ulist_next(&ctx->refs, &uiter); 1974 if (!node) 1975 break; 1976 bytenr = node->val; 1977 if (ctx->use_path_cache) { 1978 bool is_shared; 1979 bool cached; 1980 1981 level++; 1982 cached = lookup_backref_shared_cache(ctx, root, bytenr, 1983 level, &is_shared); 1984 if (cached) { 1985 ret = (is_shared ? 1 : 0); 1986 break; 1987 } 1988 } 1989 shared.share_count = 0; 1990 shared.have_delayed_delete_refs = false; 1991 cond_resched(); 1992 } 1993 1994 /* 1995 * If the path cache is disabled, then it means at some tree level we 1996 * got multiple parents due to a mix of direct and indirect backrefs or 1997 * multiple leaves with file extent items pointing to the same data 1998 * extent. We have to invalidate the cache and cache only the sharedness 1999 * result for the levels where we got only one node/reference. 2000 */ 2001 if (!ctx->use_path_cache) { 2002 int i = 0; 2003 2004 level--; 2005 if (ret >= 0 && level >= 0) { 2006 bytenr = ctx->path_cache_entries[level].bytenr; 2007 ctx->use_path_cache = true; 2008 store_backref_shared_cache(ctx, root, bytenr, level, ret); 2009 i = level + 1; 2010 } 2011 2012 for ( ; i < BTRFS_MAX_LEVEL; i++) 2013 ctx->path_cache_entries[i].bytenr = 0; 2014 } 2015 2016 /* 2017 * Cache the sharedness result for the data extent if we know our inode 2018 * has more than 1 file extent item that refers to the data extent. 2019 */ 2020 if (ret >= 0 && shared.self_ref_count > 1) { 2021 int slot = ctx->prev_extents_cache_slot; 2022 2023 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr; 2024 ctx->prev_extents_cache[slot].is_shared = (ret == 1); 2025 2026 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; 2027 ctx->prev_extents_cache_slot = slot; 2028 } 2029 2030 out_trans: 2031 if (trans) { 2032 btrfs_put_tree_mod_seq(fs_info, &elem); 2033 btrfs_end_transaction(trans); 2034 } else { 2035 up_read(&fs_info->commit_root_sem); 2036 } 2037 out: 2038 ulist_release(&ctx->refs); 2039 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr; 2040 2041 return ret; 2042 } 2043 2044 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 2045 u64 start_off, struct btrfs_path *path, 2046 struct btrfs_inode_extref **ret_extref, 2047 u64 *found_off) 2048 { 2049 int ret, slot; 2050 struct btrfs_key key; 2051 struct btrfs_key found_key; 2052 struct btrfs_inode_extref *extref; 2053 const struct extent_buffer *leaf; 2054 unsigned long ptr; 2055 2056 key.objectid = inode_objectid; 2057 key.type = BTRFS_INODE_EXTREF_KEY; 2058 key.offset = start_off; 2059 2060 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2061 if (ret < 0) 2062 return ret; 2063 2064 while (1) { 2065 leaf = path->nodes[0]; 2066 slot = path->slots[0]; 2067 if (slot >= btrfs_header_nritems(leaf)) { 2068 /* 2069 * If the item at offset is not found, 2070 * btrfs_search_slot will point us to the slot 2071 * where it should be inserted. In our case 2072 * that will be the slot directly before the 2073 * next INODE_REF_KEY_V2 item. In the case 2074 * that we're pointing to the last slot in a 2075 * leaf, we must move one leaf over. 2076 */ 2077 ret = btrfs_next_leaf(root, path); 2078 if (ret) { 2079 if (ret >= 1) 2080 ret = -ENOENT; 2081 break; 2082 } 2083 continue; 2084 } 2085 2086 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2087 2088 /* 2089 * Check that we're still looking at an extended ref key for 2090 * this particular objectid. If we have different 2091 * objectid or type then there are no more to be found 2092 * in the tree and we can exit. 2093 */ 2094 ret = -ENOENT; 2095 if (found_key.objectid != inode_objectid) 2096 break; 2097 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 2098 break; 2099 2100 ret = 0; 2101 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 2102 extref = (struct btrfs_inode_extref *)ptr; 2103 *ret_extref = extref; 2104 if (found_off) 2105 *found_off = found_key.offset; 2106 break; 2107 } 2108 2109 return ret; 2110 } 2111 2112 /* 2113 * this iterates to turn a name (from iref/extref) into a full filesystem path. 2114 * Elements of the path are separated by '/' and the path is guaranteed to be 2115 * 0-terminated. the path is only given within the current file system. 2116 * Therefore, it never starts with a '/'. the caller is responsible to provide 2117 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 2118 * the start point of the resulting string is returned. this pointer is within 2119 * dest, normally. 2120 * in case the path buffer would overflow, the pointer is decremented further 2121 * as if output was written to the buffer, though no more output is actually 2122 * generated. that way, the caller can determine how much space would be 2123 * required for the path to fit into the buffer. in that case, the returned 2124 * value will be smaller than dest. callers must check this! 2125 */ 2126 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 2127 u32 name_len, unsigned long name_off, 2128 struct extent_buffer *eb_in, u64 parent, 2129 char *dest, u32 size) 2130 { 2131 int slot; 2132 u64 next_inum; 2133 int ret; 2134 s64 bytes_left = ((s64)size) - 1; 2135 struct extent_buffer *eb = eb_in; 2136 struct btrfs_key found_key; 2137 struct btrfs_inode_ref *iref; 2138 2139 if (bytes_left >= 0) 2140 dest[bytes_left] = '\0'; 2141 2142 while (1) { 2143 bytes_left -= name_len; 2144 if (bytes_left >= 0) 2145 read_extent_buffer(eb, dest + bytes_left, 2146 name_off, name_len); 2147 if (eb != eb_in) { 2148 if (!path->skip_locking) 2149 btrfs_tree_read_unlock(eb); 2150 free_extent_buffer(eb); 2151 } 2152 ret = btrfs_find_item(fs_root, path, parent, 0, 2153 BTRFS_INODE_REF_KEY, &found_key); 2154 if (ret > 0) 2155 ret = -ENOENT; 2156 if (ret) 2157 break; 2158 2159 next_inum = found_key.offset; 2160 2161 /* regular exit ahead */ 2162 if (parent == next_inum) 2163 break; 2164 2165 slot = path->slots[0]; 2166 eb = path->nodes[0]; 2167 /* make sure we can use eb after releasing the path */ 2168 if (eb != eb_in) { 2169 path->nodes[0] = NULL; 2170 path->locks[0] = 0; 2171 } 2172 btrfs_release_path(path); 2173 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2174 2175 name_len = btrfs_inode_ref_name_len(eb, iref); 2176 name_off = (unsigned long)(iref + 1); 2177 2178 parent = next_inum; 2179 --bytes_left; 2180 if (bytes_left >= 0) 2181 dest[bytes_left] = '/'; 2182 } 2183 2184 btrfs_release_path(path); 2185 2186 if (ret) 2187 return ERR_PTR(ret); 2188 2189 return dest + bytes_left; 2190 } 2191 2192 /* 2193 * this makes the path point to (logical EXTENT_ITEM *) 2194 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 2195 * tree blocks and <0 on error. 2196 */ 2197 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 2198 struct btrfs_path *path, struct btrfs_key *found_key, 2199 u64 *flags_ret) 2200 { 2201 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 2202 int ret; 2203 u64 flags; 2204 u64 size = 0; 2205 u32 item_size; 2206 const struct extent_buffer *eb; 2207 struct btrfs_extent_item *ei; 2208 struct btrfs_key key; 2209 2210 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2211 key.type = BTRFS_METADATA_ITEM_KEY; 2212 else 2213 key.type = BTRFS_EXTENT_ITEM_KEY; 2214 key.objectid = logical; 2215 key.offset = (u64)-1; 2216 2217 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2218 if (ret < 0) 2219 return ret; 2220 if (ret == 0) { 2221 /* 2222 * Key with offset -1 found, there would have to exist an extent 2223 * item with such offset, but this is out of the valid range. 2224 */ 2225 return -EUCLEAN; 2226 } 2227 2228 ret = btrfs_previous_extent_item(extent_root, path, 0); 2229 if (ret) { 2230 if (ret > 0) 2231 ret = -ENOENT; 2232 return ret; 2233 } 2234 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 2235 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 2236 size = fs_info->nodesize; 2237 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 2238 size = found_key->offset; 2239 2240 if (found_key->objectid > logical || 2241 found_key->objectid + size <= logical) { 2242 btrfs_debug(fs_info, 2243 "logical %llu is not within any extent", logical); 2244 return -ENOENT; 2245 } 2246 2247 eb = path->nodes[0]; 2248 item_size = btrfs_item_size(eb, path->slots[0]); 2249 2250 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 2251 flags = btrfs_extent_flags(eb, ei); 2252 2253 btrfs_debug(fs_info, 2254 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 2255 logical, logical - found_key->objectid, found_key->objectid, 2256 found_key->offset, flags, item_size); 2257 2258 WARN_ON(!flags_ret); 2259 if (flags_ret) { 2260 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2261 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 2262 else if (flags & BTRFS_EXTENT_FLAG_DATA) 2263 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 2264 else 2265 BUG(); 2266 return 0; 2267 } 2268 2269 return -EIO; 2270 } 2271 2272 /* 2273 * helper function to iterate extent inline refs. ptr must point to a 0 value 2274 * for the first call and may be modified. it is used to track state. 2275 * if more refs exist, 0 is returned and the next call to 2276 * get_extent_inline_ref must pass the modified ptr parameter to get the 2277 * next ref. after the last ref was processed, 1 is returned. 2278 * returns <0 on error 2279 */ 2280 static int get_extent_inline_ref(unsigned long *ptr, 2281 const struct extent_buffer *eb, 2282 const struct btrfs_key *key, 2283 const struct btrfs_extent_item *ei, 2284 u32 item_size, 2285 struct btrfs_extent_inline_ref **out_eiref, 2286 int *out_type) 2287 { 2288 unsigned long end; 2289 u64 flags; 2290 struct btrfs_tree_block_info *info; 2291 2292 if (!*ptr) { 2293 /* first call */ 2294 flags = btrfs_extent_flags(eb, ei); 2295 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2296 if (key->type == BTRFS_METADATA_ITEM_KEY) { 2297 /* a skinny metadata extent */ 2298 *out_eiref = 2299 (struct btrfs_extent_inline_ref *)(ei + 1); 2300 } else { 2301 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 2302 info = (struct btrfs_tree_block_info *)(ei + 1); 2303 *out_eiref = 2304 (struct btrfs_extent_inline_ref *)(info + 1); 2305 } 2306 } else { 2307 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 2308 } 2309 *ptr = (unsigned long)*out_eiref; 2310 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 2311 return -ENOENT; 2312 } 2313 2314 end = (unsigned long)ei + item_size; 2315 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 2316 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 2317 BTRFS_REF_TYPE_ANY); 2318 if (*out_type == BTRFS_REF_TYPE_INVALID) 2319 return -EUCLEAN; 2320 2321 *ptr += btrfs_extent_inline_ref_size(*out_type); 2322 WARN_ON(*ptr > end); 2323 if (*ptr == end) 2324 return 1; /* last */ 2325 2326 return 0; 2327 } 2328 2329 /* 2330 * reads the tree block backref for an extent. tree level and root are returned 2331 * through out_level and out_root. ptr must point to a 0 value for the first 2332 * call and may be modified (see get_extent_inline_ref comment). 2333 * returns 0 if data was provided, 1 if there was no more data to provide or 2334 * <0 on error. 2335 */ 2336 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 2337 struct btrfs_key *key, struct btrfs_extent_item *ei, 2338 u32 item_size, u64 *out_root, u8 *out_level) 2339 { 2340 int ret; 2341 int type; 2342 struct btrfs_extent_inline_ref *eiref; 2343 2344 if (*ptr == (unsigned long)-1) 2345 return 1; 2346 2347 while (1) { 2348 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 2349 &eiref, &type); 2350 if (ret < 0) 2351 return ret; 2352 2353 if (type == BTRFS_TREE_BLOCK_REF_KEY || 2354 type == BTRFS_SHARED_BLOCK_REF_KEY) 2355 break; 2356 2357 if (ret == 1) 2358 return 1; 2359 } 2360 2361 /* we can treat both ref types equally here */ 2362 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 2363 2364 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 2365 struct btrfs_tree_block_info *info; 2366 2367 info = (struct btrfs_tree_block_info *)(ei + 1); 2368 *out_level = btrfs_tree_block_level(eb, info); 2369 } else { 2370 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 2371 *out_level = (u8)key->offset; 2372 } 2373 2374 if (ret == 1) 2375 *ptr = (unsigned long)-1; 2376 2377 return 0; 2378 } 2379 2380 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 2381 struct extent_inode_elem *inode_list, 2382 u64 root, u64 extent_item_objectid, 2383 iterate_extent_inodes_t *iterate, void *ctx) 2384 { 2385 struct extent_inode_elem *eie; 2386 int ret = 0; 2387 2388 for (eie = inode_list; eie; eie = eie->next) { 2389 btrfs_debug(fs_info, 2390 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 2391 extent_item_objectid, eie->inum, 2392 eie->offset, root); 2393 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx); 2394 if (ret) { 2395 btrfs_debug(fs_info, 2396 "stopping iteration for %llu due to ret=%d", 2397 extent_item_objectid, ret); 2398 break; 2399 } 2400 } 2401 2402 return ret; 2403 } 2404 2405 /* 2406 * calls iterate() for every inode that references the extent identified by 2407 * the given parameters. 2408 * when the iterator function returns a non-zero value, iteration stops. 2409 */ 2410 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, 2411 bool search_commit_root, 2412 iterate_extent_inodes_t *iterate, void *user_ctx) 2413 { 2414 int ret; 2415 struct ulist *refs; 2416 struct ulist_node *ref_node; 2417 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 2418 struct ulist_iterator ref_uiter; 2419 2420 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu", 2421 ctx->bytenr); 2422 2423 ASSERT(ctx->trans == NULL); 2424 ASSERT(ctx->roots == NULL); 2425 2426 if (!search_commit_root) { 2427 struct btrfs_trans_handle *trans; 2428 2429 trans = btrfs_attach_transaction(ctx->fs_info->tree_root); 2430 if (IS_ERR(trans)) { 2431 if (PTR_ERR(trans) != -ENOENT && 2432 PTR_ERR(trans) != -EROFS) 2433 return PTR_ERR(trans); 2434 trans = NULL; 2435 } 2436 ctx->trans = trans; 2437 } 2438 2439 if (ctx->trans) { 2440 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem); 2441 ctx->time_seq = seq_elem.seq; 2442 } else { 2443 down_read(&ctx->fs_info->commit_root_sem); 2444 } 2445 2446 ret = btrfs_find_all_leafs(ctx); 2447 if (ret) 2448 goto out; 2449 refs = ctx->refs; 2450 ctx->refs = NULL; 2451 2452 ULIST_ITER_INIT(&ref_uiter); 2453 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2454 const u64 leaf_bytenr = ref_node->val; 2455 struct ulist_node *root_node; 2456 struct ulist_iterator root_uiter; 2457 struct extent_inode_elem *inode_list; 2458 2459 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux; 2460 2461 if (ctx->cache_lookup) { 2462 const u64 *root_ids; 2463 int root_count; 2464 bool cached; 2465 2466 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx, 2467 &root_ids, &root_count); 2468 if (cached) { 2469 for (int i = 0; i < root_count; i++) { 2470 ret = iterate_leaf_refs(ctx->fs_info, 2471 inode_list, 2472 root_ids[i], 2473 leaf_bytenr, 2474 iterate, 2475 user_ctx); 2476 if (ret) 2477 break; 2478 } 2479 continue; 2480 } 2481 } 2482 2483 if (!ctx->roots) { 2484 ctx->roots = ulist_alloc(GFP_NOFS); 2485 if (!ctx->roots) { 2486 ret = -ENOMEM; 2487 break; 2488 } 2489 } 2490 2491 ctx->bytenr = leaf_bytenr; 2492 ret = btrfs_find_all_roots_safe(ctx); 2493 if (ret) 2494 break; 2495 2496 if (ctx->cache_store) 2497 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx); 2498 2499 ULIST_ITER_INIT(&root_uiter); 2500 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) { 2501 btrfs_debug(ctx->fs_info, 2502 "root %llu references leaf %llu, data list %#llx", 2503 root_node->val, ref_node->val, 2504 ref_node->aux); 2505 ret = iterate_leaf_refs(ctx->fs_info, inode_list, 2506 root_node->val, ctx->bytenr, 2507 iterate, user_ctx); 2508 } 2509 ulist_reinit(ctx->roots); 2510 } 2511 2512 free_leaf_list(refs); 2513 out: 2514 if (ctx->trans) { 2515 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem); 2516 btrfs_end_transaction(ctx->trans); 2517 ctx->trans = NULL; 2518 } else { 2519 up_read(&ctx->fs_info->commit_root_sem); 2520 } 2521 2522 ulist_free(ctx->roots); 2523 ctx->roots = NULL; 2524 2525 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP) 2526 ret = 0; 2527 2528 return ret; 2529 } 2530 2531 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx) 2532 { 2533 struct btrfs_data_container *inodes = ctx; 2534 const size_t c = 3 * sizeof(u64); 2535 2536 if (inodes->bytes_left >= c) { 2537 inodes->bytes_left -= c; 2538 inodes->val[inodes->elem_cnt] = inum; 2539 inodes->val[inodes->elem_cnt + 1] = offset; 2540 inodes->val[inodes->elem_cnt + 2] = root; 2541 inodes->elem_cnt += 3; 2542 } else { 2543 inodes->bytes_missing += c - inodes->bytes_left; 2544 inodes->bytes_left = 0; 2545 inodes->elem_missed += 3; 2546 } 2547 2548 return 0; 2549 } 2550 2551 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2552 struct btrfs_path *path, 2553 void *ctx, bool ignore_offset) 2554 { 2555 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 2556 int ret; 2557 u64 flags = 0; 2558 struct btrfs_key found_key; 2559 int search_commit_root = path->search_commit_root; 2560 2561 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2562 btrfs_release_path(path); 2563 if (ret < 0) 2564 return ret; 2565 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2566 return -EINVAL; 2567 2568 walk_ctx.bytenr = found_key.objectid; 2569 if (ignore_offset) 2570 walk_ctx.ignore_extent_item_pos = true; 2571 else 2572 walk_ctx.extent_item_pos = logical - found_key.objectid; 2573 walk_ctx.fs_info = fs_info; 2574 2575 return iterate_extent_inodes(&walk_ctx, search_commit_root, 2576 build_ino_list, ctx); 2577 } 2578 2579 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2580 struct extent_buffer *eb, struct inode_fs_paths *ipath); 2581 2582 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath) 2583 { 2584 int ret = 0; 2585 int slot; 2586 u32 cur; 2587 u32 len; 2588 u32 name_len; 2589 u64 parent = 0; 2590 int found = 0; 2591 struct btrfs_root *fs_root = ipath->fs_root; 2592 struct btrfs_path *path = ipath->btrfs_path; 2593 struct extent_buffer *eb; 2594 struct btrfs_inode_ref *iref; 2595 struct btrfs_key found_key; 2596 2597 while (!ret) { 2598 ret = btrfs_find_item(fs_root, path, inum, 2599 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2600 &found_key); 2601 2602 if (ret < 0) 2603 break; 2604 if (ret) { 2605 ret = found ? 0 : -ENOENT; 2606 break; 2607 } 2608 ++found; 2609 2610 parent = found_key.offset; 2611 slot = path->slots[0]; 2612 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2613 if (!eb) { 2614 ret = -ENOMEM; 2615 break; 2616 } 2617 btrfs_release_path(path); 2618 2619 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2620 2621 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2622 name_len = btrfs_inode_ref_name_len(eb, iref); 2623 /* path must be released before calling iterate()! */ 2624 btrfs_debug(fs_root->fs_info, 2625 "following ref at offset %u for inode %llu in tree %llu", 2626 cur, found_key.objectid, 2627 btrfs_root_id(fs_root)); 2628 ret = inode_to_path(parent, name_len, 2629 (unsigned long)(iref + 1), eb, ipath); 2630 if (ret) 2631 break; 2632 len = sizeof(*iref) + name_len; 2633 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2634 } 2635 free_extent_buffer(eb); 2636 } 2637 2638 btrfs_release_path(path); 2639 2640 return ret; 2641 } 2642 2643 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath) 2644 { 2645 int ret; 2646 int slot; 2647 u64 offset = 0; 2648 u64 parent; 2649 int found = 0; 2650 struct btrfs_root *fs_root = ipath->fs_root; 2651 struct btrfs_path *path = ipath->btrfs_path; 2652 struct extent_buffer *eb; 2653 struct btrfs_inode_extref *extref; 2654 u32 item_size; 2655 u32 cur_offset; 2656 unsigned long ptr; 2657 2658 while (1) { 2659 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2660 &offset); 2661 if (ret < 0) 2662 break; 2663 if (ret) { 2664 ret = found ? 0 : -ENOENT; 2665 break; 2666 } 2667 ++found; 2668 2669 slot = path->slots[0]; 2670 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2671 if (!eb) { 2672 ret = -ENOMEM; 2673 break; 2674 } 2675 btrfs_release_path(path); 2676 2677 item_size = btrfs_item_size(eb, slot); 2678 ptr = btrfs_item_ptr_offset(eb, slot); 2679 cur_offset = 0; 2680 2681 while (cur_offset < item_size) { 2682 u32 name_len; 2683 2684 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2685 parent = btrfs_inode_extref_parent(eb, extref); 2686 name_len = btrfs_inode_extref_name_len(eb, extref); 2687 ret = inode_to_path(parent, name_len, 2688 (unsigned long)&extref->name, eb, ipath); 2689 if (ret) 2690 break; 2691 2692 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2693 cur_offset += sizeof(*extref); 2694 } 2695 free_extent_buffer(eb); 2696 2697 offset++; 2698 } 2699 2700 btrfs_release_path(path); 2701 2702 return ret; 2703 } 2704 2705 /* 2706 * returns 0 if the path could be dumped (probably truncated) 2707 * returns <0 in case of an error 2708 */ 2709 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2710 struct extent_buffer *eb, struct inode_fs_paths *ipath) 2711 { 2712 char *fspath; 2713 char *fspath_min; 2714 int i = ipath->fspath->elem_cnt; 2715 const int s_ptr = sizeof(char *); 2716 u32 bytes_left; 2717 2718 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2719 ipath->fspath->bytes_left - s_ptr : 0; 2720 2721 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2722 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2723 name_off, eb, inum, fspath_min, bytes_left); 2724 if (IS_ERR(fspath)) 2725 return PTR_ERR(fspath); 2726 2727 if (fspath > fspath_min) { 2728 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2729 ++ipath->fspath->elem_cnt; 2730 ipath->fspath->bytes_left = fspath - fspath_min; 2731 } else { 2732 ++ipath->fspath->elem_missed; 2733 ipath->fspath->bytes_missing += fspath_min - fspath; 2734 ipath->fspath->bytes_left = 0; 2735 } 2736 2737 return 0; 2738 } 2739 2740 /* 2741 * this dumps all file system paths to the inode into the ipath struct, provided 2742 * is has been created large enough. each path is zero-terminated and accessed 2743 * from ipath->fspath->val[i]. 2744 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2745 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2746 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2747 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2748 * have been needed to return all paths. 2749 */ 2750 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2751 { 2752 int ret; 2753 int found_refs = 0; 2754 2755 ret = iterate_inode_refs(inum, ipath); 2756 if (!ret) 2757 ++found_refs; 2758 else if (ret != -ENOENT) 2759 return ret; 2760 2761 ret = iterate_inode_extrefs(inum, ipath); 2762 if (ret == -ENOENT && found_refs) 2763 return 0; 2764 2765 return ret; 2766 } 2767 2768 struct btrfs_data_container *init_data_container(u32 total_bytes) 2769 { 2770 struct btrfs_data_container *data; 2771 size_t alloc_bytes; 2772 2773 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2774 data = kvzalloc(alloc_bytes, GFP_KERNEL); 2775 if (!data) 2776 return ERR_PTR(-ENOMEM); 2777 2778 if (total_bytes >= sizeof(*data)) 2779 data->bytes_left = total_bytes - sizeof(*data); 2780 else 2781 data->bytes_missing = sizeof(*data) - total_bytes; 2782 2783 return data; 2784 } 2785 2786 /* 2787 * allocates space to return multiple file system paths for an inode. 2788 * total_bytes to allocate are passed, note that space usable for actual path 2789 * information will be total_bytes - sizeof(struct inode_fs_paths). 2790 * the returned pointer must be freed with free_ipath() in the end. 2791 */ 2792 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2793 struct btrfs_path *path) 2794 { 2795 struct inode_fs_paths *ifp; 2796 struct btrfs_data_container *fspath; 2797 2798 fspath = init_data_container(total_bytes); 2799 if (IS_ERR(fspath)) 2800 return ERR_CAST(fspath); 2801 2802 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2803 if (!ifp) { 2804 kvfree(fspath); 2805 return ERR_PTR(-ENOMEM); 2806 } 2807 2808 ifp->btrfs_path = path; 2809 ifp->fspath = fspath; 2810 ifp->fs_root = fs_root; 2811 2812 return ifp; 2813 } 2814 2815 void free_ipath(struct inode_fs_paths *ipath) 2816 { 2817 if (!ipath) 2818 return; 2819 kvfree(ipath->fspath); 2820 kfree(ipath); 2821 } 2822 2823 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info) 2824 { 2825 struct btrfs_backref_iter *ret; 2826 2827 ret = kzalloc(sizeof(*ret), GFP_NOFS); 2828 if (!ret) 2829 return NULL; 2830 2831 ret->path = btrfs_alloc_path(); 2832 if (!ret->path) { 2833 kfree(ret); 2834 return NULL; 2835 } 2836 2837 /* Current backref iterator only supports iteration in commit root */ 2838 ret->path->search_commit_root = 1; 2839 ret->path->skip_locking = 1; 2840 ret->fs_info = fs_info; 2841 2842 return ret; 2843 } 2844 2845 static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter) 2846 { 2847 iter->bytenr = 0; 2848 iter->item_ptr = 0; 2849 iter->cur_ptr = 0; 2850 iter->end_ptr = 0; 2851 btrfs_release_path(iter->path); 2852 memset(&iter->cur_key, 0, sizeof(iter->cur_key)); 2853 } 2854 2855 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2856 { 2857 struct btrfs_fs_info *fs_info = iter->fs_info; 2858 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2859 struct btrfs_path *path = iter->path; 2860 struct btrfs_extent_item *ei; 2861 struct btrfs_key key; 2862 int ret; 2863 2864 key.objectid = bytenr; 2865 key.type = BTRFS_METADATA_ITEM_KEY; 2866 key.offset = (u64)-1; 2867 iter->bytenr = bytenr; 2868 2869 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2870 if (ret < 0) 2871 return ret; 2872 if (ret == 0) { 2873 /* 2874 * Key with offset -1 found, there would have to exist an extent 2875 * item with such offset, but this is out of the valid range. 2876 */ 2877 ret = -EUCLEAN; 2878 goto release; 2879 } 2880 if (path->slots[0] == 0) { 2881 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2882 ret = -EUCLEAN; 2883 goto release; 2884 } 2885 path->slots[0]--; 2886 2887 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2888 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2889 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2890 ret = -ENOENT; 2891 goto release; 2892 } 2893 memcpy(&iter->cur_key, &key, sizeof(key)); 2894 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2895 path->slots[0]); 2896 iter->end_ptr = (u32)(iter->item_ptr + 2897 btrfs_item_size(path->nodes[0], path->slots[0])); 2898 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2899 struct btrfs_extent_item); 2900 2901 /* 2902 * Only support iteration on tree backref yet. 2903 * 2904 * This is an extra precaution for non skinny-metadata, where 2905 * EXTENT_ITEM is also used for tree blocks, that we can only use 2906 * extent flags to determine if it's a tree block. 2907 */ 2908 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2909 ret = -ENOTSUPP; 2910 goto release; 2911 } 2912 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2913 2914 /* If there is no inline backref, go search for keyed backref */ 2915 if (iter->cur_ptr >= iter->end_ptr) { 2916 ret = btrfs_next_item(extent_root, path); 2917 2918 /* No inline nor keyed ref */ 2919 if (ret > 0) { 2920 ret = -ENOENT; 2921 goto release; 2922 } 2923 if (ret < 0) 2924 goto release; 2925 2926 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2927 path->slots[0]); 2928 if (iter->cur_key.objectid != bytenr || 2929 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2930 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2931 ret = -ENOENT; 2932 goto release; 2933 } 2934 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2935 path->slots[0]); 2936 iter->item_ptr = iter->cur_ptr; 2937 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2938 path->nodes[0], path->slots[0])); 2939 } 2940 2941 return 0; 2942 release: 2943 btrfs_backref_iter_release(iter); 2944 return ret; 2945 } 2946 2947 static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter) 2948 { 2949 if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY || 2950 iter->cur_key.type == BTRFS_METADATA_ITEM_KEY) 2951 return true; 2952 return false; 2953 } 2954 2955 /* 2956 * Go to the next backref item of current bytenr, can be either inlined or 2957 * keyed. 2958 * 2959 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2960 * 2961 * Return 0 if we get next backref without problem. 2962 * Return >0 if there is no extra backref for this bytenr. 2963 * Return <0 if there is something wrong happened. 2964 */ 2965 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2966 { 2967 struct extent_buffer *eb = iter->path->nodes[0]; 2968 struct btrfs_root *extent_root; 2969 struct btrfs_path *path = iter->path; 2970 struct btrfs_extent_inline_ref *iref; 2971 int ret; 2972 u32 size; 2973 2974 if (btrfs_backref_iter_is_inline_ref(iter)) { 2975 /* We're still inside the inline refs */ 2976 ASSERT(iter->cur_ptr < iter->end_ptr); 2977 2978 if (btrfs_backref_has_tree_block_info(iter)) { 2979 /* First tree block info */ 2980 size = sizeof(struct btrfs_tree_block_info); 2981 } else { 2982 /* Use inline ref type to determine the size */ 2983 int type; 2984 2985 iref = (struct btrfs_extent_inline_ref *) 2986 ((unsigned long)iter->cur_ptr); 2987 type = btrfs_extent_inline_ref_type(eb, iref); 2988 2989 size = btrfs_extent_inline_ref_size(type); 2990 } 2991 iter->cur_ptr += size; 2992 if (iter->cur_ptr < iter->end_ptr) 2993 return 0; 2994 2995 /* All inline items iterated, fall through */ 2996 } 2997 2998 /* We're at keyed items, there is no inline item, go to the next one */ 2999 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); 3000 ret = btrfs_next_item(extent_root, iter->path); 3001 if (ret) 3002 return ret; 3003 3004 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 3005 if (iter->cur_key.objectid != iter->bytenr || 3006 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 3007 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 3008 return 1; 3009 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 3010 path->slots[0]); 3011 iter->cur_ptr = iter->item_ptr; 3012 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 3013 path->slots[0]); 3014 return 0; 3015 } 3016 3017 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 3018 struct btrfs_backref_cache *cache, bool is_reloc) 3019 { 3020 int i; 3021 3022 cache->rb_root = RB_ROOT; 3023 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 3024 INIT_LIST_HEAD(&cache->pending[i]); 3025 INIT_LIST_HEAD(&cache->changed); 3026 INIT_LIST_HEAD(&cache->detached); 3027 INIT_LIST_HEAD(&cache->leaves); 3028 INIT_LIST_HEAD(&cache->pending_edge); 3029 INIT_LIST_HEAD(&cache->useless_node); 3030 cache->fs_info = fs_info; 3031 cache->is_reloc = is_reloc; 3032 } 3033 3034 struct btrfs_backref_node *btrfs_backref_alloc_node( 3035 struct btrfs_backref_cache *cache, u64 bytenr, int level) 3036 { 3037 struct btrfs_backref_node *node; 3038 3039 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 3040 node = kzalloc(sizeof(*node), GFP_NOFS); 3041 if (!node) 3042 return node; 3043 3044 INIT_LIST_HEAD(&node->list); 3045 INIT_LIST_HEAD(&node->upper); 3046 INIT_LIST_HEAD(&node->lower); 3047 RB_CLEAR_NODE(&node->rb_node); 3048 cache->nr_nodes++; 3049 node->level = level; 3050 node->bytenr = bytenr; 3051 3052 return node; 3053 } 3054 3055 void btrfs_backref_free_node(struct btrfs_backref_cache *cache, 3056 struct btrfs_backref_node *node) 3057 { 3058 if (node) { 3059 ASSERT(list_empty(&node->list)); 3060 ASSERT(list_empty(&node->lower)); 3061 ASSERT(node->eb == NULL); 3062 cache->nr_nodes--; 3063 btrfs_put_root(node->root); 3064 kfree(node); 3065 } 3066 } 3067 3068 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 3069 struct btrfs_backref_cache *cache) 3070 { 3071 struct btrfs_backref_edge *edge; 3072 3073 edge = kzalloc(sizeof(*edge), GFP_NOFS); 3074 if (edge) 3075 cache->nr_edges++; 3076 return edge; 3077 } 3078 3079 void btrfs_backref_free_edge(struct btrfs_backref_cache *cache, 3080 struct btrfs_backref_edge *edge) 3081 { 3082 if (edge) { 3083 cache->nr_edges--; 3084 kfree(edge); 3085 } 3086 } 3087 3088 void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node) 3089 { 3090 if (node->locked) { 3091 btrfs_tree_unlock(node->eb); 3092 node->locked = 0; 3093 } 3094 } 3095 3096 void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node) 3097 { 3098 if (node->eb) { 3099 btrfs_backref_unlock_node_buffer(node); 3100 free_extent_buffer(node->eb); 3101 node->eb = NULL; 3102 } 3103 } 3104 3105 /* 3106 * Drop the backref node from cache without cleaning up its children 3107 * edges. 3108 * 3109 * This can only be called on node without parent edges. 3110 * The children edges are still kept as is. 3111 */ 3112 void btrfs_backref_drop_node(struct btrfs_backref_cache *tree, 3113 struct btrfs_backref_node *node) 3114 { 3115 ASSERT(list_empty(&node->upper)); 3116 3117 btrfs_backref_drop_node_buffer(node); 3118 list_del_init(&node->list); 3119 list_del_init(&node->lower); 3120 if (!RB_EMPTY_NODE(&node->rb_node)) 3121 rb_erase(&node->rb_node, &tree->rb_root); 3122 btrfs_backref_free_node(tree, node); 3123 } 3124 3125 /* 3126 * Drop the backref node from cache, also cleaning up all its 3127 * upper edges and any uncached nodes in the path. 3128 * 3129 * This cleanup happens bottom up, thus the node should either 3130 * be the lowest node in the cache or a detached node. 3131 */ 3132 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 3133 struct btrfs_backref_node *node) 3134 { 3135 struct btrfs_backref_node *upper; 3136 struct btrfs_backref_edge *edge; 3137 3138 if (!node) 3139 return; 3140 3141 BUG_ON(!node->lowest && !node->detached); 3142 while (!list_empty(&node->upper)) { 3143 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 3144 list[LOWER]); 3145 upper = edge->node[UPPER]; 3146 list_del(&edge->list[LOWER]); 3147 list_del(&edge->list[UPPER]); 3148 btrfs_backref_free_edge(cache, edge); 3149 3150 /* 3151 * Add the node to leaf node list if no other child block 3152 * cached. 3153 */ 3154 if (list_empty(&upper->lower)) { 3155 list_add_tail(&upper->lower, &cache->leaves); 3156 upper->lowest = 1; 3157 } 3158 } 3159 3160 btrfs_backref_drop_node(cache, node); 3161 } 3162 3163 /* 3164 * Release all nodes/edges from current cache 3165 */ 3166 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 3167 { 3168 struct btrfs_backref_node *node; 3169 int i; 3170 3171 while (!list_empty(&cache->detached)) { 3172 node = list_entry(cache->detached.next, 3173 struct btrfs_backref_node, list); 3174 btrfs_backref_cleanup_node(cache, node); 3175 } 3176 3177 while (!list_empty(&cache->leaves)) { 3178 node = list_entry(cache->leaves.next, 3179 struct btrfs_backref_node, lower); 3180 btrfs_backref_cleanup_node(cache, node); 3181 } 3182 3183 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 3184 while (!list_empty(&cache->pending[i])) { 3185 node = list_first_entry(&cache->pending[i], 3186 struct btrfs_backref_node, 3187 list); 3188 btrfs_backref_cleanup_node(cache, node); 3189 } 3190 } 3191 ASSERT(list_empty(&cache->pending_edge)); 3192 ASSERT(list_empty(&cache->useless_node)); 3193 ASSERT(list_empty(&cache->changed)); 3194 ASSERT(list_empty(&cache->detached)); 3195 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 3196 ASSERT(!cache->nr_nodes); 3197 ASSERT(!cache->nr_edges); 3198 } 3199 3200 void btrfs_backref_link_edge(struct btrfs_backref_edge *edge, 3201 struct btrfs_backref_node *lower, 3202 struct btrfs_backref_node *upper, 3203 int link_which) 3204 { 3205 ASSERT(upper && lower && upper->level == lower->level + 1); 3206 edge->node[LOWER] = lower; 3207 edge->node[UPPER] = upper; 3208 if (link_which & LINK_LOWER) 3209 list_add_tail(&edge->list[LOWER], &lower->upper); 3210 if (link_which & LINK_UPPER) 3211 list_add_tail(&edge->list[UPPER], &upper->lower); 3212 } 3213 /* 3214 * Handle direct tree backref 3215 * 3216 * Direct tree backref means, the backref item shows its parent bytenr 3217 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 3218 * 3219 * @ref_key: The converted backref key. 3220 * For keyed backref, it's the item key. 3221 * For inlined backref, objectid is the bytenr, 3222 * type is btrfs_inline_ref_type, offset is 3223 * btrfs_inline_ref_offset. 3224 */ 3225 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 3226 struct btrfs_key *ref_key, 3227 struct btrfs_backref_node *cur) 3228 { 3229 struct btrfs_backref_edge *edge; 3230 struct btrfs_backref_node *upper; 3231 struct rb_node *rb_node; 3232 3233 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 3234 3235 /* Only reloc root uses backref pointing to itself */ 3236 if (ref_key->objectid == ref_key->offset) { 3237 struct btrfs_root *root; 3238 3239 cur->is_reloc_root = 1; 3240 /* Only reloc backref cache cares about a specific root */ 3241 if (cache->is_reloc) { 3242 root = find_reloc_root(cache->fs_info, cur->bytenr); 3243 if (!root) 3244 return -ENOENT; 3245 cur->root = root; 3246 } else { 3247 /* 3248 * For generic purpose backref cache, reloc root node 3249 * is useless. 3250 */ 3251 list_add(&cur->list, &cache->useless_node); 3252 } 3253 return 0; 3254 } 3255 3256 edge = btrfs_backref_alloc_edge(cache); 3257 if (!edge) 3258 return -ENOMEM; 3259 3260 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 3261 if (!rb_node) { 3262 /* Parent node not yet cached */ 3263 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 3264 cur->level + 1); 3265 if (!upper) { 3266 btrfs_backref_free_edge(cache, edge); 3267 return -ENOMEM; 3268 } 3269 3270 /* 3271 * Backrefs for the upper level block isn't cached, add the 3272 * block to pending list 3273 */ 3274 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3275 } else { 3276 /* Parent node already cached */ 3277 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 3278 ASSERT(upper->checked); 3279 INIT_LIST_HEAD(&edge->list[UPPER]); 3280 } 3281 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 3282 return 0; 3283 } 3284 3285 /* 3286 * Handle indirect tree backref 3287 * 3288 * Indirect tree backref means, we only know which tree the node belongs to. 3289 * We still need to do a tree search to find out the parents. This is for 3290 * TREE_BLOCK_REF backref (keyed or inlined). 3291 * 3292 * @trans: Transaction handle. 3293 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 3294 * @tree_key: The first key of this tree block. 3295 * @path: A clean (released) path, to avoid allocating path every time 3296 * the function get called. 3297 */ 3298 static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans, 3299 struct btrfs_backref_cache *cache, 3300 struct btrfs_path *path, 3301 struct btrfs_key *ref_key, 3302 struct btrfs_key *tree_key, 3303 struct btrfs_backref_node *cur) 3304 { 3305 struct btrfs_fs_info *fs_info = cache->fs_info; 3306 struct btrfs_backref_node *upper; 3307 struct btrfs_backref_node *lower; 3308 struct btrfs_backref_edge *edge; 3309 struct extent_buffer *eb; 3310 struct btrfs_root *root; 3311 struct rb_node *rb_node; 3312 int level; 3313 bool need_check = true; 3314 int ret; 3315 3316 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 3317 if (IS_ERR(root)) 3318 return PTR_ERR(root); 3319 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3320 cur->cowonly = 1; 3321 3322 if (btrfs_root_level(&root->root_item) == cur->level) { 3323 /* Tree root */ 3324 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 3325 /* 3326 * For reloc backref cache, we may ignore reloc root. But for 3327 * general purpose backref cache, we can't rely on 3328 * btrfs_should_ignore_reloc_root() as it may conflict with 3329 * current running relocation and lead to missing root. 3330 * 3331 * For general purpose backref cache, reloc root detection is 3332 * completely relying on direct backref (key->offset is parent 3333 * bytenr), thus only do such check for reloc cache. 3334 */ 3335 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 3336 btrfs_put_root(root); 3337 list_add(&cur->list, &cache->useless_node); 3338 } else { 3339 cur->root = root; 3340 } 3341 return 0; 3342 } 3343 3344 level = cur->level + 1; 3345 3346 /* Search the tree to find parent blocks referring to the block */ 3347 path->search_commit_root = 1; 3348 path->skip_locking = 1; 3349 path->lowest_level = level; 3350 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 3351 path->lowest_level = 0; 3352 if (ret < 0) { 3353 btrfs_put_root(root); 3354 return ret; 3355 } 3356 if (ret > 0 && path->slots[level] > 0) 3357 path->slots[level]--; 3358 3359 eb = path->nodes[level]; 3360 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 3361 btrfs_err(fs_info, 3362 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 3363 cur->bytenr, level - 1, btrfs_root_id(root), 3364 tree_key->objectid, tree_key->type, tree_key->offset); 3365 btrfs_put_root(root); 3366 ret = -ENOENT; 3367 goto out; 3368 } 3369 lower = cur; 3370 3371 /* Add all nodes and edges in the path */ 3372 for (; level < BTRFS_MAX_LEVEL; level++) { 3373 if (!path->nodes[level]) { 3374 ASSERT(btrfs_root_bytenr(&root->root_item) == 3375 lower->bytenr); 3376 /* Same as previous should_ignore_reloc_root() call */ 3377 if (btrfs_should_ignore_reloc_root(root) && 3378 cache->is_reloc) { 3379 btrfs_put_root(root); 3380 list_add(&lower->list, &cache->useless_node); 3381 } else { 3382 lower->root = root; 3383 } 3384 break; 3385 } 3386 3387 edge = btrfs_backref_alloc_edge(cache); 3388 if (!edge) { 3389 btrfs_put_root(root); 3390 ret = -ENOMEM; 3391 goto out; 3392 } 3393 3394 eb = path->nodes[level]; 3395 rb_node = rb_simple_search(&cache->rb_root, eb->start); 3396 if (!rb_node) { 3397 upper = btrfs_backref_alloc_node(cache, eb->start, 3398 lower->level + 1); 3399 if (!upper) { 3400 btrfs_put_root(root); 3401 btrfs_backref_free_edge(cache, edge); 3402 ret = -ENOMEM; 3403 goto out; 3404 } 3405 upper->owner = btrfs_header_owner(eb); 3406 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3407 upper->cowonly = 1; 3408 3409 /* 3410 * If we know the block isn't shared we can avoid 3411 * checking its backrefs. 3412 */ 3413 if (btrfs_block_can_be_shared(trans, root, eb)) 3414 upper->checked = 0; 3415 else 3416 upper->checked = 1; 3417 3418 /* 3419 * Add the block to pending list if we need to check its 3420 * backrefs, we only do this once while walking up a 3421 * tree as we will catch anything else later on. 3422 */ 3423 if (!upper->checked && need_check) { 3424 need_check = false; 3425 list_add_tail(&edge->list[UPPER], 3426 &cache->pending_edge); 3427 } else { 3428 if (upper->checked) 3429 need_check = true; 3430 INIT_LIST_HEAD(&edge->list[UPPER]); 3431 } 3432 } else { 3433 upper = rb_entry(rb_node, struct btrfs_backref_node, 3434 rb_node); 3435 ASSERT(upper->checked); 3436 INIT_LIST_HEAD(&edge->list[UPPER]); 3437 if (!upper->owner) 3438 upper->owner = btrfs_header_owner(eb); 3439 } 3440 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 3441 3442 if (rb_node) { 3443 btrfs_put_root(root); 3444 break; 3445 } 3446 lower = upper; 3447 upper = NULL; 3448 } 3449 out: 3450 btrfs_release_path(path); 3451 return ret; 3452 } 3453 3454 /* 3455 * Add backref node @cur into @cache. 3456 * 3457 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 3458 * links aren't yet bi-directional. Needs to finish such links. 3459 * Use btrfs_backref_finish_upper_links() to finish such linkage. 3460 * 3461 * @trans: Transaction handle. 3462 * @path: Released path for indirect tree backref lookup 3463 * @iter: Released backref iter for extent tree search 3464 * @node_key: The first key of the tree block 3465 */ 3466 int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans, 3467 struct btrfs_backref_cache *cache, 3468 struct btrfs_path *path, 3469 struct btrfs_backref_iter *iter, 3470 struct btrfs_key *node_key, 3471 struct btrfs_backref_node *cur) 3472 { 3473 struct btrfs_backref_edge *edge; 3474 struct btrfs_backref_node *exist; 3475 int ret; 3476 3477 ret = btrfs_backref_iter_start(iter, cur->bytenr); 3478 if (ret < 0) 3479 return ret; 3480 /* 3481 * We skip the first btrfs_tree_block_info, as we don't use the key 3482 * stored in it, but fetch it from the tree block 3483 */ 3484 if (btrfs_backref_has_tree_block_info(iter)) { 3485 ret = btrfs_backref_iter_next(iter); 3486 if (ret < 0) 3487 goto out; 3488 /* No extra backref? This means the tree block is corrupted */ 3489 if (ret > 0) { 3490 ret = -EUCLEAN; 3491 goto out; 3492 } 3493 } 3494 WARN_ON(cur->checked); 3495 if (!list_empty(&cur->upper)) { 3496 /* 3497 * The backref was added previously when processing backref of 3498 * type BTRFS_TREE_BLOCK_REF_KEY 3499 */ 3500 ASSERT(list_is_singular(&cur->upper)); 3501 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 3502 list[LOWER]); 3503 ASSERT(list_empty(&edge->list[UPPER])); 3504 exist = edge->node[UPPER]; 3505 /* 3506 * Add the upper level block to pending list if we need check 3507 * its backrefs 3508 */ 3509 if (!exist->checked) 3510 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3511 } else { 3512 exist = NULL; 3513 } 3514 3515 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 3516 struct extent_buffer *eb; 3517 struct btrfs_key key; 3518 int type; 3519 3520 cond_resched(); 3521 eb = iter->path->nodes[0]; 3522 3523 key.objectid = iter->bytenr; 3524 if (btrfs_backref_iter_is_inline_ref(iter)) { 3525 struct btrfs_extent_inline_ref *iref; 3526 3527 /* Update key for inline backref */ 3528 iref = (struct btrfs_extent_inline_ref *) 3529 ((unsigned long)iter->cur_ptr); 3530 type = btrfs_get_extent_inline_ref_type(eb, iref, 3531 BTRFS_REF_TYPE_BLOCK); 3532 if (type == BTRFS_REF_TYPE_INVALID) { 3533 ret = -EUCLEAN; 3534 goto out; 3535 } 3536 key.type = type; 3537 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3538 } else { 3539 key.type = iter->cur_key.type; 3540 key.offset = iter->cur_key.offset; 3541 } 3542 3543 /* 3544 * Parent node found and matches current inline ref, no need to 3545 * rebuild this node for this inline ref 3546 */ 3547 if (exist && 3548 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 3549 exist->owner == key.offset) || 3550 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 3551 exist->bytenr == key.offset))) { 3552 exist = NULL; 3553 continue; 3554 } 3555 3556 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 3557 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 3558 ret = handle_direct_tree_backref(cache, &key, cur); 3559 if (ret < 0) 3560 goto out; 3561 } else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) { 3562 /* 3563 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref 3564 * offset means the root objectid. We need to search 3565 * the tree to get its parent bytenr. 3566 */ 3567 ret = handle_indirect_tree_backref(trans, cache, path, 3568 &key, node_key, cur); 3569 if (ret < 0) 3570 goto out; 3571 } 3572 /* 3573 * Unrecognized tree backref items (if it can pass tree-checker) 3574 * would be ignored. 3575 */ 3576 } 3577 ret = 0; 3578 cur->checked = 1; 3579 WARN_ON(exist); 3580 out: 3581 btrfs_backref_iter_release(iter); 3582 return ret; 3583 } 3584 3585 /* 3586 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 3587 */ 3588 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 3589 struct btrfs_backref_node *start) 3590 { 3591 struct list_head *useless_node = &cache->useless_node; 3592 struct btrfs_backref_edge *edge; 3593 struct rb_node *rb_node; 3594 LIST_HEAD(pending_edge); 3595 3596 ASSERT(start->checked); 3597 3598 /* Insert this node to cache if it's not COW-only */ 3599 if (!start->cowonly) { 3600 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 3601 &start->rb_node); 3602 if (rb_node) 3603 btrfs_backref_panic(cache->fs_info, start->bytenr, 3604 -EEXIST); 3605 list_add_tail(&start->lower, &cache->leaves); 3606 } 3607 3608 /* 3609 * Use breadth first search to iterate all related edges. 3610 * 3611 * The starting points are all the edges of this node 3612 */ 3613 list_for_each_entry(edge, &start->upper, list[LOWER]) 3614 list_add_tail(&edge->list[UPPER], &pending_edge); 3615 3616 while (!list_empty(&pending_edge)) { 3617 struct btrfs_backref_node *upper; 3618 struct btrfs_backref_node *lower; 3619 3620 edge = list_first_entry(&pending_edge, 3621 struct btrfs_backref_edge, list[UPPER]); 3622 list_del_init(&edge->list[UPPER]); 3623 upper = edge->node[UPPER]; 3624 lower = edge->node[LOWER]; 3625 3626 /* Parent is detached, no need to keep any edges */ 3627 if (upper->detached) { 3628 list_del(&edge->list[LOWER]); 3629 btrfs_backref_free_edge(cache, edge); 3630 3631 /* Lower node is orphan, queue for cleanup */ 3632 if (list_empty(&lower->upper)) 3633 list_add(&lower->list, useless_node); 3634 continue; 3635 } 3636 3637 /* 3638 * All new nodes added in current build_backref_tree() haven't 3639 * been linked to the cache rb tree. 3640 * So if we have upper->rb_node populated, this means a cache 3641 * hit. We only need to link the edge, as @upper and all its 3642 * parents have already been linked. 3643 */ 3644 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3645 if (upper->lowest) { 3646 list_del_init(&upper->lower); 3647 upper->lowest = 0; 3648 } 3649 3650 list_add_tail(&edge->list[UPPER], &upper->lower); 3651 continue; 3652 } 3653 3654 /* Sanity check, we shouldn't have any unchecked nodes */ 3655 if (!upper->checked) { 3656 ASSERT(0); 3657 return -EUCLEAN; 3658 } 3659 3660 /* Sanity check, COW-only node has non-COW-only parent */ 3661 if (start->cowonly != upper->cowonly) { 3662 ASSERT(0); 3663 return -EUCLEAN; 3664 } 3665 3666 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3667 if (!upper->cowonly) { 3668 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3669 &upper->rb_node); 3670 if (rb_node) { 3671 btrfs_backref_panic(cache->fs_info, 3672 upper->bytenr, -EEXIST); 3673 return -EUCLEAN; 3674 } 3675 } 3676 3677 list_add_tail(&edge->list[UPPER], &upper->lower); 3678 3679 /* 3680 * Also queue all the parent edges of this uncached node 3681 * to finish the upper linkage 3682 */ 3683 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3684 list_add_tail(&edge->list[UPPER], &pending_edge); 3685 } 3686 return 0; 3687 } 3688 3689 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3690 struct btrfs_backref_node *node) 3691 { 3692 struct btrfs_backref_node *lower; 3693 struct btrfs_backref_node *upper; 3694 struct btrfs_backref_edge *edge; 3695 3696 while (!list_empty(&cache->useless_node)) { 3697 lower = list_first_entry(&cache->useless_node, 3698 struct btrfs_backref_node, list); 3699 list_del_init(&lower->list); 3700 } 3701 while (!list_empty(&cache->pending_edge)) { 3702 edge = list_first_entry(&cache->pending_edge, 3703 struct btrfs_backref_edge, list[UPPER]); 3704 list_del(&edge->list[UPPER]); 3705 list_del(&edge->list[LOWER]); 3706 lower = edge->node[LOWER]; 3707 upper = edge->node[UPPER]; 3708 btrfs_backref_free_edge(cache, edge); 3709 3710 /* 3711 * Lower is no longer linked to any upper backref nodes and 3712 * isn't in the cache, we can free it ourselves. 3713 */ 3714 if (list_empty(&lower->upper) && 3715 RB_EMPTY_NODE(&lower->rb_node)) 3716 list_add(&lower->list, &cache->useless_node); 3717 3718 if (!RB_EMPTY_NODE(&upper->rb_node)) 3719 continue; 3720 3721 /* Add this guy's upper edges to the list to process */ 3722 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3723 list_add_tail(&edge->list[UPPER], 3724 &cache->pending_edge); 3725 if (list_empty(&upper->upper)) 3726 list_add(&upper->list, &cache->useless_node); 3727 } 3728 3729 while (!list_empty(&cache->useless_node)) { 3730 lower = list_first_entry(&cache->useless_node, 3731 struct btrfs_backref_node, list); 3732 list_del_init(&lower->list); 3733 if (lower == node) 3734 node = NULL; 3735 btrfs_backref_drop_node(cache, lower); 3736 } 3737 3738 btrfs_backref_cleanup_node(cache, node); 3739 ASSERT(list_empty(&cache->useless_node) && 3740 list_empty(&cache->pending_edge)); 3741 } 3742