xref: /linux/fs/btrfs/backref.c (revision 4877fc92142f635be418d8c915eb48ef87681108)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "extent-tree.h"
21 #include "relocation.h"
22 #include "tree-checker.h"
23 
24 /* Just arbitrary numbers so we can be sure one of these happened. */
25 #define BACKREF_FOUND_SHARED     6
26 #define BACKREF_FOUND_NOT_SHARED 7
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	u64 num_bytes;
32 	struct extent_inode_elem *next;
33 };
34 
35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36 			      const struct btrfs_key *key,
37 			      const struct extent_buffer *eb,
38 			      const struct btrfs_file_extent_item *fi,
39 			      struct extent_inode_elem **eie)
40 {
41 	const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
42 	u64 offset = key->offset;
43 	struct extent_inode_elem *e;
44 	const u64 *root_ids;
45 	int root_count;
46 	bool cached;
47 
48 	if (!ctx->ignore_extent_item_pos &&
49 	    !btrfs_file_extent_compression(eb, fi) &&
50 	    !btrfs_file_extent_encryption(eb, fi) &&
51 	    !btrfs_file_extent_other_encoding(eb, fi)) {
52 		u64 data_offset;
53 
54 		data_offset = btrfs_file_extent_offset(eb, fi);
55 
56 		if (ctx->extent_item_pos < data_offset ||
57 		    ctx->extent_item_pos >= data_offset + data_len)
58 			return 1;
59 		offset += ctx->extent_item_pos - data_offset;
60 	}
61 
62 	if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
63 		goto add_inode_elem;
64 
65 	cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
66 				   &root_count);
67 	if (!cached)
68 		goto add_inode_elem;
69 
70 	for (int i = 0; i < root_count; i++) {
71 		int ret;
72 
73 		ret = ctx->indirect_ref_iterator(key->objectid, offset,
74 						 data_len, root_ids[i],
75 						 ctx->user_ctx);
76 		if (ret)
77 			return ret;
78 	}
79 
80 add_inode_elem:
81 	e = kmalloc(sizeof(*e), GFP_NOFS);
82 	if (!e)
83 		return -ENOMEM;
84 
85 	e->next = *eie;
86 	e->inum = key->objectid;
87 	e->offset = offset;
88 	e->num_bytes = data_len;
89 	*eie = e;
90 
91 	return 0;
92 }
93 
94 static void free_inode_elem_list(struct extent_inode_elem *eie)
95 {
96 	struct extent_inode_elem *eie_next;
97 
98 	for (; eie; eie = eie_next) {
99 		eie_next = eie->next;
100 		kfree(eie);
101 	}
102 }
103 
104 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
105 			     const struct extent_buffer *eb,
106 			     struct extent_inode_elem **eie)
107 {
108 	u64 disk_byte;
109 	struct btrfs_key key;
110 	struct btrfs_file_extent_item *fi;
111 	int slot;
112 	int nritems;
113 	int extent_type;
114 	int ret;
115 
116 	/*
117 	 * from the shared data ref, we only have the leaf but we need
118 	 * the key. thus, we must look into all items and see that we
119 	 * find one (some) with a reference to our extent item.
120 	 */
121 	nritems = btrfs_header_nritems(eb);
122 	for (slot = 0; slot < nritems; ++slot) {
123 		btrfs_item_key_to_cpu(eb, &key, slot);
124 		if (key.type != BTRFS_EXTENT_DATA_KEY)
125 			continue;
126 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
127 		extent_type = btrfs_file_extent_type(eb, fi);
128 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
129 			continue;
130 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
131 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
132 		if (disk_byte != ctx->bytenr)
133 			continue;
134 
135 		ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
136 		if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
137 			return ret;
138 	}
139 
140 	return 0;
141 }
142 
143 struct preftree {
144 	struct rb_root_cached root;
145 	unsigned int count;
146 };
147 
148 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
149 
150 struct preftrees {
151 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
152 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
153 	struct preftree indirect_missing_keys;
154 };
155 
156 /*
157  * Checks for a shared extent during backref search.
158  *
159  * The share_count tracks prelim_refs (direct and indirect) having a
160  * ref->count >0:
161  *  - incremented when a ref->count transitions to >0
162  *  - decremented when a ref->count transitions to <1
163  */
164 struct share_check {
165 	struct btrfs_backref_share_check_ctx *ctx;
166 	struct btrfs_root *root;
167 	u64 inum;
168 	u64 data_bytenr;
169 	u64 data_extent_gen;
170 	/*
171 	 * Counts number of inodes that refer to an extent (different inodes in
172 	 * the same root or different roots) that we could find. The sharedness
173 	 * check typically stops once this counter gets greater than 1, so it
174 	 * may not reflect the total number of inodes.
175 	 */
176 	int share_count;
177 	/*
178 	 * The number of times we found our inode refers to the data extent we
179 	 * are determining the sharedness. In other words, how many file extent
180 	 * items we could find for our inode that point to our target data
181 	 * extent. The value we get here after finishing the extent sharedness
182 	 * check may be smaller than reality, but if it ends up being greater
183 	 * than 1, then we know for sure the inode has multiple file extent
184 	 * items that point to our inode, and we can safely assume it's useful
185 	 * to cache the sharedness check result.
186 	 */
187 	int self_ref_count;
188 	bool have_delayed_delete_refs;
189 };
190 
191 static inline int extent_is_shared(struct share_check *sc)
192 {
193 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
194 }
195 
196 static struct kmem_cache *btrfs_prelim_ref_cache;
197 
198 int __init btrfs_prelim_ref_init(void)
199 {
200 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
201 					sizeof(struct prelim_ref),
202 					0,
203 					SLAB_MEM_SPREAD,
204 					NULL);
205 	if (!btrfs_prelim_ref_cache)
206 		return -ENOMEM;
207 	return 0;
208 }
209 
210 void __cold btrfs_prelim_ref_exit(void)
211 {
212 	kmem_cache_destroy(btrfs_prelim_ref_cache);
213 }
214 
215 static void free_pref(struct prelim_ref *ref)
216 {
217 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
218 }
219 
220 /*
221  * Return 0 when both refs are for the same block (and can be merged).
222  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
223  * indicates a 'higher' block.
224  */
225 static int prelim_ref_compare(struct prelim_ref *ref1,
226 			      struct prelim_ref *ref2)
227 {
228 	if (ref1->level < ref2->level)
229 		return -1;
230 	if (ref1->level > ref2->level)
231 		return 1;
232 	if (ref1->root_id < ref2->root_id)
233 		return -1;
234 	if (ref1->root_id > ref2->root_id)
235 		return 1;
236 	if (ref1->key_for_search.type < ref2->key_for_search.type)
237 		return -1;
238 	if (ref1->key_for_search.type > ref2->key_for_search.type)
239 		return 1;
240 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
241 		return -1;
242 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
243 		return 1;
244 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
245 		return -1;
246 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
247 		return 1;
248 	if (ref1->parent < ref2->parent)
249 		return -1;
250 	if (ref1->parent > ref2->parent)
251 		return 1;
252 
253 	return 0;
254 }
255 
256 static void update_share_count(struct share_check *sc, int oldcount,
257 			       int newcount, struct prelim_ref *newref)
258 {
259 	if ((!sc) || (oldcount == 0 && newcount < 1))
260 		return;
261 
262 	if (oldcount > 0 && newcount < 1)
263 		sc->share_count--;
264 	else if (oldcount < 1 && newcount > 0)
265 		sc->share_count++;
266 
267 	if (newref->root_id == sc->root->root_key.objectid &&
268 	    newref->wanted_disk_byte == sc->data_bytenr &&
269 	    newref->key_for_search.objectid == sc->inum)
270 		sc->self_ref_count += newref->count;
271 }
272 
273 /*
274  * Add @newref to the @root rbtree, merging identical refs.
275  *
276  * Callers should assume that newref has been freed after calling.
277  */
278 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
279 			      struct preftree *preftree,
280 			      struct prelim_ref *newref,
281 			      struct share_check *sc)
282 {
283 	struct rb_root_cached *root;
284 	struct rb_node **p;
285 	struct rb_node *parent = NULL;
286 	struct prelim_ref *ref;
287 	int result;
288 	bool leftmost = true;
289 
290 	root = &preftree->root;
291 	p = &root->rb_root.rb_node;
292 
293 	while (*p) {
294 		parent = *p;
295 		ref = rb_entry(parent, struct prelim_ref, rbnode);
296 		result = prelim_ref_compare(ref, newref);
297 		if (result < 0) {
298 			p = &(*p)->rb_left;
299 		} else if (result > 0) {
300 			p = &(*p)->rb_right;
301 			leftmost = false;
302 		} else {
303 			/* Identical refs, merge them and free @newref */
304 			struct extent_inode_elem *eie = ref->inode_list;
305 
306 			while (eie && eie->next)
307 				eie = eie->next;
308 
309 			if (!eie)
310 				ref->inode_list = newref->inode_list;
311 			else
312 				eie->next = newref->inode_list;
313 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
314 						     preftree->count);
315 			/*
316 			 * A delayed ref can have newref->count < 0.
317 			 * The ref->count is updated to follow any
318 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
319 			 */
320 			update_share_count(sc, ref->count,
321 					   ref->count + newref->count, newref);
322 			ref->count += newref->count;
323 			free_pref(newref);
324 			return;
325 		}
326 	}
327 
328 	update_share_count(sc, 0, newref->count, newref);
329 	preftree->count++;
330 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
331 	rb_link_node(&newref->rbnode, parent, p);
332 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
333 }
334 
335 /*
336  * Release the entire tree.  We don't care about internal consistency so
337  * just free everything and then reset the tree root.
338  */
339 static void prelim_release(struct preftree *preftree)
340 {
341 	struct prelim_ref *ref, *next_ref;
342 
343 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
344 					     &preftree->root.rb_root, rbnode) {
345 		free_inode_elem_list(ref->inode_list);
346 		free_pref(ref);
347 	}
348 
349 	preftree->root = RB_ROOT_CACHED;
350 	preftree->count = 0;
351 }
352 
353 /*
354  * the rules for all callers of this function are:
355  * - obtaining the parent is the goal
356  * - if you add a key, you must know that it is a correct key
357  * - if you cannot add the parent or a correct key, then we will look into the
358  *   block later to set a correct key
359  *
360  * delayed refs
361  * ============
362  *        backref type | shared | indirect | shared | indirect
363  * information         |   tree |     tree |   data |     data
364  * --------------------+--------+----------+--------+----------
365  *      parent logical |    y   |     -    |    -   |     -
366  *      key to resolve |    -   |     y    |    y   |     y
367  *  tree block logical |    -   |     -    |    -   |     -
368  *  root for resolving |    y   |     y    |    y   |     y
369  *
370  * - column 1:       we've the parent -> done
371  * - column 2, 3, 4: we use the key to find the parent
372  *
373  * on disk refs (inline or keyed)
374  * ==============================
375  *        backref type | shared | indirect | shared | indirect
376  * information         |   tree |     tree |   data |     data
377  * --------------------+--------+----------+--------+----------
378  *      parent logical |    y   |     -    |    y   |     -
379  *      key to resolve |    -   |     -    |    -   |     y
380  *  tree block logical |    y   |     y    |    y   |     y
381  *  root for resolving |    -   |     y    |    y   |     y
382  *
383  * - column 1, 3: we've the parent -> done
384  * - column 2:    we take the first key from the block to find the parent
385  *                (see add_missing_keys)
386  * - column 4:    we use the key to find the parent
387  *
388  * additional information that's available but not required to find the parent
389  * block might help in merging entries to gain some speed.
390  */
391 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
392 			  struct preftree *preftree, u64 root_id,
393 			  const struct btrfs_key *key, int level, u64 parent,
394 			  u64 wanted_disk_byte, int count,
395 			  struct share_check *sc, gfp_t gfp_mask)
396 {
397 	struct prelim_ref *ref;
398 
399 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
400 		return 0;
401 
402 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
403 	if (!ref)
404 		return -ENOMEM;
405 
406 	ref->root_id = root_id;
407 	if (key)
408 		ref->key_for_search = *key;
409 	else
410 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
411 
412 	ref->inode_list = NULL;
413 	ref->level = level;
414 	ref->count = count;
415 	ref->parent = parent;
416 	ref->wanted_disk_byte = wanted_disk_byte;
417 	prelim_ref_insert(fs_info, preftree, ref, sc);
418 	return extent_is_shared(sc);
419 }
420 
421 /* direct refs use root == 0, key == NULL */
422 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
423 			  struct preftrees *preftrees, int level, u64 parent,
424 			  u64 wanted_disk_byte, int count,
425 			  struct share_check *sc, gfp_t gfp_mask)
426 {
427 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
428 			      parent, wanted_disk_byte, count, sc, gfp_mask);
429 }
430 
431 /* indirect refs use parent == 0 */
432 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
433 			    struct preftrees *preftrees, u64 root_id,
434 			    const struct btrfs_key *key, int level,
435 			    u64 wanted_disk_byte, int count,
436 			    struct share_check *sc, gfp_t gfp_mask)
437 {
438 	struct preftree *tree = &preftrees->indirect;
439 
440 	if (!key)
441 		tree = &preftrees->indirect_missing_keys;
442 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
443 			      wanted_disk_byte, count, sc, gfp_mask);
444 }
445 
446 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
447 {
448 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
449 	struct rb_node *parent = NULL;
450 	struct prelim_ref *ref = NULL;
451 	struct prelim_ref target = {};
452 	int result;
453 
454 	target.parent = bytenr;
455 
456 	while (*p) {
457 		parent = *p;
458 		ref = rb_entry(parent, struct prelim_ref, rbnode);
459 		result = prelim_ref_compare(ref, &target);
460 
461 		if (result < 0)
462 			p = &(*p)->rb_left;
463 		else if (result > 0)
464 			p = &(*p)->rb_right;
465 		else
466 			return 1;
467 	}
468 	return 0;
469 }
470 
471 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
472 			   struct btrfs_root *root, struct btrfs_path *path,
473 			   struct ulist *parents,
474 			   struct preftrees *preftrees, struct prelim_ref *ref,
475 			   int level)
476 {
477 	int ret = 0;
478 	int slot;
479 	struct extent_buffer *eb;
480 	struct btrfs_key key;
481 	struct btrfs_key *key_for_search = &ref->key_for_search;
482 	struct btrfs_file_extent_item *fi;
483 	struct extent_inode_elem *eie = NULL, *old = NULL;
484 	u64 disk_byte;
485 	u64 wanted_disk_byte = ref->wanted_disk_byte;
486 	u64 count = 0;
487 	u64 data_offset;
488 	u8 type;
489 
490 	if (level != 0) {
491 		eb = path->nodes[level];
492 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
493 		if (ret < 0)
494 			return ret;
495 		return 0;
496 	}
497 
498 	/*
499 	 * 1. We normally enter this function with the path already pointing to
500 	 *    the first item to check. But sometimes, we may enter it with
501 	 *    slot == nritems.
502 	 * 2. We are searching for normal backref but bytenr of this leaf
503 	 *    matches shared data backref
504 	 * 3. The leaf owner is not equal to the root we are searching
505 	 *
506 	 * For these cases, go to the next leaf before we continue.
507 	 */
508 	eb = path->nodes[0];
509 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
510 	    is_shared_data_backref(preftrees, eb->start) ||
511 	    ref->root_id != btrfs_header_owner(eb)) {
512 		if (ctx->time_seq == BTRFS_SEQ_LAST)
513 			ret = btrfs_next_leaf(root, path);
514 		else
515 			ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
516 	}
517 
518 	while (!ret && count < ref->count) {
519 		eb = path->nodes[0];
520 		slot = path->slots[0];
521 
522 		btrfs_item_key_to_cpu(eb, &key, slot);
523 
524 		if (key.objectid != key_for_search->objectid ||
525 		    key.type != BTRFS_EXTENT_DATA_KEY)
526 			break;
527 
528 		/*
529 		 * We are searching for normal backref but bytenr of this leaf
530 		 * matches shared data backref, OR
531 		 * the leaf owner is not equal to the root we are searching for
532 		 */
533 		if (slot == 0 &&
534 		    (is_shared_data_backref(preftrees, eb->start) ||
535 		     ref->root_id != btrfs_header_owner(eb))) {
536 			if (ctx->time_seq == BTRFS_SEQ_LAST)
537 				ret = btrfs_next_leaf(root, path);
538 			else
539 				ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
540 			continue;
541 		}
542 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
543 		type = btrfs_file_extent_type(eb, fi);
544 		if (type == BTRFS_FILE_EXTENT_INLINE)
545 			goto next;
546 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
547 		data_offset = btrfs_file_extent_offset(eb, fi);
548 
549 		if (disk_byte == wanted_disk_byte) {
550 			eie = NULL;
551 			old = NULL;
552 			if (ref->key_for_search.offset == key.offset - data_offset)
553 				count++;
554 			else
555 				goto next;
556 			if (!ctx->skip_inode_ref_list) {
557 				ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
558 				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
559 				    ret < 0)
560 					break;
561 			}
562 			if (ret > 0)
563 				goto next;
564 			ret = ulist_add_merge_ptr(parents, eb->start,
565 						  eie, (void **)&old, GFP_NOFS);
566 			if (ret < 0)
567 				break;
568 			if (!ret && !ctx->skip_inode_ref_list) {
569 				while (old->next)
570 					old = old->next;
571 				old->next = eie;
572 			}
573 			eie = NULL;
574 		}
575 next:
576 		if (ctx->time_seq == BTRFS_SEQ_LAST)
577 			ret = btrfs_next_item(root, path);
578 		else
579 			ret = btrfs_next_old_item(root, path, ctx->time_seq);
580 	}
581 
582 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
583 		free_inode_elem_list(eie);
584 	else if (ret > 0)
585 		ret = 0;
586 
587 	return ret;
588 }
589 
590 /*
591  * resolve an indirect backref in the form (root_id, key, level)
592  * to a logical address
593  */
594 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
595 				struct btrfs_path *path,
596 				struct preftrees *preftrees,
597 				struct prelim_ref *ref, struct ulist *parents)
598 {
599 	struct btrfs_root *root;
600 	struct extent_buffer *eb;
601 	int ret = 0;
602 	int root_level;
603 	int level = ref->level;
604 	struct btrfs_key search_key = ref->key_for_search;
605 
606 	/*
607 	 * If we're search_commit_root we could possibly be holding locks on
608 	 * other tree nodes.  This happens when qgroups does backref walks when
609 	 * adding new delayed refs.  To deal with this we need to look in cache
610 	 * for the root, and if we don't find it then we need to search the
611 	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
612 	 * here.
613 	 */
614 	if (path->search_commit_root)
615 		root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
616 	else
617 		root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
618 	if (IS_ERR(root)) {
619 		ret = PTR_ERR(root);
620 		goto out_free;
621 	}
622 
623 	if (!path->search_commit_root &&
624 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
625 		ret = -ENOENT;
626 		goto out;
627 	}
628 
629 	if (btrfs_is_testing(ctx->fs_info)) {
630 		ret = -ENOENT;
631 		goto out;
632 	}
633 
634 	if (path->search_commit_root)
635 		root_level = btrfs_header_level(root->commit_root);
636 	else if (ctx->time_seq == BTRFS_SEQ_LAST)
637 		root_level = btrfs_header_level(root->node);
638 	else
639 		root_level = btrfs_old_root_level(root, ctx->time_seq);
640 
641 	if (root_level + 1 == level)
642 		goto out;
643 
644 	/*
645 	 * We can often find data backrefs with an offset that is too large
646 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
647 	 * subtracting a file's offset with the data offset of its
648 	 * corresponding extent data item. This can happen for example in the
649 	 * clone ioctl.
650 	 *
651 	 * So if we detect such case we set the search key's offset to zero to
652 	 * make sure we will find the matching file extent item at
653 	 * add_all_parents(), otherwise we will miss it because the offset
654 	 * taken form the backref is much larger then the offset of the file
655 	 * extent item. This can make us scan a very large number of file
656 	 * extent items, but at least it will not make us miss any.
657 	 *
658 	 * This is an ugly workaround for a behaviour that should have never
659 	 * existed, but it does and a fix for the clone ioctl would touch a lot
660 	 * of places, cause backwards incompatibility and would not fix the
661 	 * problem for extents cloned with older kernels.
662 	 */
663 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
664 	    search_key.offset >= LLONG_MAX)
665 		search_key.offset = 0;
666 	path->lowest_level = level;
667 	if (ctx->time_seq == BTRFS_SEQ_LAST)
668 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
669 	else
670 		ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
671 
672 	btrfs_debug(ctx->fs_info,
673 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
674 		 ref->root_id, level, ref->count, ret,
675 		 ref->key_for_search.objectid, ref->key_for_search.type,
676 		 ref->key_for_search.offset);
677 	if (ret < 0)
678 		goto out;
679 
680 	eb = path->nodes[level];
681 	while (!eb) {
682 		if (WARN_ON(!level)) {
683 			ret = 1;
684 			goto out;
685 		}
686 		level--;
687 		eb = path->nodes[level];
688 	}
689 
690 	ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
691 out:
692 	btrfs_put_root(root);
693 out_free:
694 	path->lowest_level = 0;
695 	btrfs_release_path(path);
696 	return ret;
697 }
698 
699 static struct extent_inode_elem *
700 unode_aux_to_inode_list(struct ulist_node *node)
701 {
702 	if (!node)
703 		return NULL;
704 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
705 }
706 
707 static void free_leaf_list(struct ulist *ulist)
708 {
709 	struct ulist_node *node;
710 	struct ulist_iterator uiter;
711 
712 	ULIST_ITER_INIT(&uiter);
713 	while ((node = ulist_next(ulist, &uiter)))
714 		free_inode_elem_list(unode_aux_to_inode_list(node));
715 
716 	ulist_free(ulist);
717 }
718 
719 /*
720  * We maintain three separate rbtrees: one for direct refs, one for
721  * indirect refs which have a key, and one for indirect refs which do not
722  * have a key. Each tree does merge on insertion.
723  *
724  * Once all of the references are located, we iterate over the tree of
725  * indirect refs with missing keys. An appropriate key is located and
726  * the ref is moved onto the tree for indirect refs. After all missing
727  * keys are thus located, we iterate over the indirect ref tree, resolve
728  * each reference, and then insert the resolved reference onto the
729  * direct tree (merging there too).
730  *
731  * New backrefs (i.e., for parent nodes) are added to the appropriate
732  * rbtree as they are encountered. The new backrefs are subsequently
733  * resolved as above.
734  */
735 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
736 				 struct btrfs_path *path,
737 				 struct preftrees *preftrees,
738 				 struct share_check *sc)
739 {
740 	int err;
741 	int ret = 0;
742 	struct ulist *parents;
743 	struct ulist_node *node;
744 	struct ulist_iterator uiter;
745 	struct rb_node *rnode;
746 
747 	parents = ulist_alloc(GFP_NOFS);
748 	if (!parents)
749 		return -ENOMEM;
750 
751 	/*
752 	 * We could trade memory usage for performance here by iterating
753 	 * the tree, allocating new refs for each insertion, and then
754 	 * freeing the entire indirect tree when we're done.  In some test
755 	 * cases, the tree can grow quite large (~200k objects).
756 	 */
757 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
758 		struct prelim_ref *ref;
759 
760 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
761 		if (WARN(ref->parent,
762 			 "BUG: direct ref found in indirect tree")) {
763 			ret = -EINVAL;
764 			goto out;
765 		}
766 
767 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
768 		preftrees->indirect.count--;
769 
770 		if (ref->count == 0) {
771 			free_pref(ref);
772 			continue;
773 		}
774 
775 		if (sc && ref->root_id != sc->root->root_key.objectid) {
776 			free_pref(ref);
777 			ret = BACKREF_FOUND_SHARED;
778 			goto out;
779 		}
780 		err = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
781 		/*
782 		 * we can only tolerate ENOENT,otherwise,we should catch error
783 		 * and return directly.
784 		 */
785 		if (err == -ENOENT) {
786 			prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
787 					  NULL);
788 			continue;
789 		} else if (err) {
790 			free_pref(ref);
791 			ret = err;
792 			goto out;
793 		}
794 
795 		/* we put the first parent into the ref at hand */
796 		ULIST_ITER_INIT(&uiter);
797 		node = ulist_next(parents, &uiter);
798 		ref->parent = node ? node->val : 0;
799 		ref->inode_list = unode_aux_to_inode_list(node);
800 
801 		/* Add a prelim_ref(s) for any other parent(s). */
802 		while ((node = ulist_next(parents, &uiter))) {
803 			struct prelim_ref *new_ref;
804 
805 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
806 						   GFP_NOFS);
807 			if (!new_ref) {
808 				free_pref(ref);
809 				ret = -ENOMEM;
810 				goto out;
811 			}
812 			memcpy(new_ref, ref, sizeof(*ref));
813 			new_ref->parent = node->val;
814 			new_ref->inode_list = unode_aux_to_inode_list(node);
815 			prelim_ref_insert(ctx->fs_info, &preftrees->direct,
816 					  new_ref, NULL);
817 		}
818 
819 		/*
820 		 * Now it's a direct ref, put it in the direct tree. We must
821 		 * do this last because the ref could be merged/freed here.
822 		 */
823 		prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
824 
825 		ulist_reinit(parents);
826 		cond_resched();
827 	}
828 out:
829 	/*
830 	 * We may have inode lists attached to refs in the parents ulist, so we
831 	 * must free them before freeing the ulist and its refs.
832 	 */
833 	free_leaf_list(parents);
834 	return ret;
835 }
836 
837 /*
838  * read tree blocks and add keys where required.
839  */
840 static int add_missing_keys(struct btrfs_fs_info *fs_info,
841 			    struct preftrees *preftrees, bool lock)
842 {
843 	struct prelim_ref *ref;
844 	struct extent_buffer *eb;
845 	struct preftree *tree = &preftrees->indirect_missing_keys;
846 	struct rb_node *node;
847 
848 	while ((node = rb_first_cached(&tree->root))) {
849 		struct btrfs_tree_parent_check check = { 0 };
850 
851 		ref = rb_entry(node, struct prelim_ref, rbnode);
852 		rb_erase_cached(node, &tree->root);
853 
854 		BUG_ON(ref->parent);	/* should not be a direct ref */
855 		BUG_ON(ref->key_for_search.type);
856 		BUG_ON(!ref->wanted_disk_byte);
857 
858 		check.level = ref->level - 1;
859 		check.owner_root = ref->root_id;
860 
861 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
862 		if (IS_ERR(eb)) {
863 			free_pref(ref);
864 			return PTR_ERR(eb);
865 		}
866 		if (!extent_buffer_uptodate(eb)) {
867 			free_pref(ref);
868 			free_extent_buffer(eb);
869 			return -EIO;
870 		}
871 
872 		if (lock)
873 			btrfs_tree_read_lock(eb);
874 		if (btrfs_header_level(eb) == 0)
875 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
876 		else
877 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
878 		if (lock)
879 			btrfs_tree_read_unlock(eb);
880 		free_extent_buffer(eb);
881 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
882 		cond_resched();
883 	}
884 	return 0;
885 }
886 
887 /*
888  * add all currently queued delayed refs from this head whose seq nr is
889  * smaller or equal that seq to the list
890  */
891 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
892 			    struct btrfs_delayed_ref_head *head, u64 seq,
893 			    struct preftrees *preftrees, struct share_check *sc)
894 {
895 	struct btrfs_delayed_ref_node *node;
896 	struct btrfs_key key;
897 	struct rb_node *n;
898 	int count;
899 	int ret = 0;
900 
901 	spin_lock(&head->lock);
902 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
903 		node = rb_entry(n, struct btrfs_delayed_ref_node,
904 				ref_node);
905 		if (node->seq > seq)
906 			continue;
907 
908 		switch (node->action) {
909 		case BTRFS_ADD_DELAYED_EXTENT:
910 		case BTRFS_UPDATE_DELAYED_HEAD:
911 			WARN_ON(1);
912 			continue;
913 		case BTRFS_ADD_DELAYED_REF:
914 			count = node->ref_mod;
915 			break;
916 		case BTRFS_DROP_DELAYED_REF:
917 			count = node->ref_mod * -1;
918 			break;
919 		default:
920 			BUG();
921 		}
922 		switch (node->type) {
923 		case BTRFS_TREE_BLOCK_REF_KEY: {
924 			/* NORMAL INDIRECT METADATA backref */
925 			struct btrfs_delayed_tree_ref *ref;
926 			struct btrfs_key *key_ptr = NULL;
927 
928 			if (head->extent_op && head->extent_op->update_key) {
929 				btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
930 				key_ptr = &key;
931 			}
932 
933 			ref = btrfs_delayed_node_to_tree_ref(node);
934 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
935 					       key_ptr, ref->level + 1,
936 					       node->bytenr, count, sc,
937 					       GFP_ATOMIC);
938 			break;
939 		}
940 		case BTRFS_SHARED_BLOCK_REF_KEY: {
941 			/* SHARED DIRECT METADATA backref */
942 			struct btrfs_delayed_tree_ref *ref;
943 
944 			ref = btrfs_delayed_node_to_tree_ref(node);
945 
946 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
947 					     ref->parent, node->bytenr, count,
948 					     sc, GFP_ATOMIC);
949 			break;
950 		}
951 		case BTRFS_EXTENT_DATA_REF_KEY: {
952 			/* NORMAL INDIRECT DATA backref */
953 			struct btrfs_delayed_data_ref *ref;
954 			ref = btrfs_delayed_node_to_data_ref(node);
955 
956 			key.objectid = ref->objectid;
957 			key.type = BTRFS_EXTENT_DATA_KEY;
958 			key.offset = ref->offset;
959 
960 			/*
961 			 * If we have a share check context and a reference for
962 			 * another inode, we can't exit immediately. This is
963 			 * because even if this is a BTRFS_ADD_DELAYED_REF
964 			 * reference we may find next a BTRFS_DROP_DELAYED_REF
965 			 * which cancels out this ADD reference.
966 			 *
967 			 * If this is a DROP reference and there was no previous
968 			 * ADD reference, then we need to signal that when we
969 			 * process references from the extent tree (through
970 			 * add_inline_refs() and add_keyed_refs()), we should
971 			 * not exit early if we find a reference for another
972 			 * inode, because one of the delayed DROP references
973 			 * may cancel that reference in the extent tree.
974 			 */
975 			if (sc && count < 0)
976 				sc->have_delayed_delete_refs = true;
977 
978 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
979 					       &key, 0, node->bytenr, count, sc,
980 					       GFP_ATOMIC);
981 			break;
982 		}
983 		case BTRFS_SHARED_DATA_REF_KEY: {
984 			/* SHARED DIRECT FULL backref */
985 			struct btrfs_delayed_data_ref *ref;
986 
987 			ref = btrfs_delayed_node_to_data_ref(node);
988 
989 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
990 					     node->bytenr, count, sc,
991 					     GFP_ATOMIC);
992 			break;
993 		}
994 		default:
995 			WARN_ON(1);
996 		}
997 		/*
998 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
999 		 * refs have been checked.
1000 		 */
1001 		if (ret && (ret != BACKREF_FOUND_SHARED))
1002 			break;
1003 	}
1004 	if (!ret)
1005 		ret = extent_is_shared(sc);
1006 
1007 	spin_unlock(&head->lock);
1008 	return ret;
1009 }
1010 
1011 /*
1012  * add all inline backrefs for bytenr to the list
1013  *
1014  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1015  */
1016 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1017 			   struct btrfs_path *path,
1018 			   int *info_level, struct preftrees *preftrees,
1019 			   struct share_check *sc)
1020 {
1021 	int ret = 0;
1022 	int slot;
1023 	struct extent_buffer *leaf;
1024 	struct btrfs_key key;
1025 	struct btrfs_key found_key;
1026 	unsigned long ptr;
1027 	unsigned long end;
1028 	struct btrfs_extent_item *ei;
1029 	u64 flags;
1030 	u64 item_size;
1031 
1032 	/*
1033 	 * enumerate all inline refs
1034 	 */
1035 	leaf = path->nodes[0];
1036 	slot = path->slots[0];
1037 
1038 	item_size = btrfs_item_size(leaf, slot);
1039 	BUG_ON(item_size < sizeof(*ei));
1040 
1041 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1042 
1043 	if (ctx->check_extent_item) {
1044 		ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1045 		if (ret)
1046 			return ret;
1047 	}
1048 
1049 	flags = btrfs_extent_flags(leaf, ei);
1050 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
1051 
1052 	ptr = (unsigned long)(ei + 1);
1053 	end = (unsigned long)ei + item_size;
1054 
1055 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1056 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1057 		struct btrfs_tree_block_info *info;
1058 
1059 		info = (struct btrfs_tree_block_info *)ptr;
1060 		*info_level = btrfs_tree_block_level(leaf, info);
1061 		ptr += sizeof(struct btrfs_tree_block_info);
1062 		BUG_ON(ptr > end);
1063 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1064 		*info_level = found_key.offset;
1065 	} else {
1066 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1067 	}
1068 
1069 	while (ptr < end) {
1070 		struct btrfs_extent_inline_ref *iref;
1071 		u64 offset;
1072 		int type;
1073 
1074 		iref = (struct btrfs_extent_inline_ref *)ptr;
1075 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
1076 							BTRFS_REF_TYPE_ANY);
1077 		if (type == BTRFS_REF_TYPE_INVALID)
1078 			return -EUCLEAN;
1079 
1080 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1081 
1082 		switch (type) {
1083 		case BTRFS_SHARED_BLOCK_REF_KEY:
1084 			ret = add_direct_ref(ctx->fs_info, preftrees,
1085 					     *info_level + 1, offset,
1086 					     ctx->bytenr, 1, NULL, GFP_NOFS);
1087 			break;
1088 		case BTRFS_SHARED_DATA_REF_KEY: {
1089 			struct btrfs_shared_data_ref *sdref;
1090 			int count;
1091 
1092 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1093 			count = btrfs_shared_data_ref_count(leaf, sdref);
1094 
1095 			ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1096 					     ctx->bytenr, count, sc, GFP_NOFS);
1097 			break;
1098 		}
1099 		case BTRFS_TREE_BLOCK_REF_KEY:
1100 			ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
1101 					       NULL, *info_level + 1,
1102 					       ctx->bytenr, 1, NULL, GFP_NOFS);
1103 			break;
1104 		case BTRFS_EXTENT_DATA_REF_KEY: {
1105 			struct btrfs_extent_data_ref *dref;
1106 			int count;
1107 			u64 root;
1108 
1109 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1110 			count = btrfs_extent_data_ref_count(leaf, dref);
1111 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1112 								      dref);
1113 			key.type = BTRFS_EXTENT_DATA_KEY;
1114 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1115 
1116 			if (sc && key.objectid != sc->inum &&
1117 			    !sc->have_delayed_delete_refs) {
1118 				ret = BACKREF_FOUND_SHARED;
1119 				break;
1120 			}
1121 
1122 			root = btrfs_extent_data_ref_root(leaf, dref);
1123 
1124 			if (!ctx->skip_data_ref ||
1125 			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1126 						ctx->user_ctx))
1127 				ret = add_indirect_ref(ctx->fs_info, preftrees,
1128 						       root, &key, 0, ctx->bytenr,
1129 						       count, sc, GFP_NOFS);
1130 			break;
1131 		}
1132 		case BTRFS_EXTENT_OWNER_REF_KEY:
1133 			ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA));
1134 			break;
1135 		default:
1136 			WARN_ON(1);
1137 		}
1138 		if (ret)
1139 			return ret;
1140 		ptr += btrfs_extent_inline_ref_size(type);
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 /*
1147  * add all non-inline backrefs for bytenr to the list
1148  *
1149  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1150  */
1151 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1152 			  struct btrfs_root *extent_root,
1153 			  struct btrfs_path *path,
1154 			  int info_level, struct preftrees *preftrees,
1155 			  struct share_check *sc)
1156 {
1157 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1158 	int ret;
1159 	int slot;
1160 	struct extent_buffer *leaf;
1161 	struct btrfs_key key;
1162 
1163 	while (1) {
1164 		ret = btrfs_next_item(extent_root, path);
1165 		if (ret < 0)
1166 			break;
1167 		if (ret) {
1168 			ret = 0;
1169 			break;
1170 		}
1171 
1172 		slot = path->slots[0];
1173 		leaf = path->nodes[0];
1174 		btrfs_item_key_to_cpu(leaf, &key, slot);
1175 
1176 		if (key.objectid != ctx->bytenr)
1177 			break;
1178 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1179 			continue;
1180 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1181 			break;
1182 
1183 		switch (key.type) {
1184 		case BTRFS_SHARED_BLOCK_REF_KEY:
1185 			/* SHARED DIRECT METADATA backref */
1186 			ret = add_direct_ref(fs_info, preftrees,
1187 					     info_level + 1, key.offset,
1188 					     ctx->bytenr, 1, NULL, GFP_NOFS);
1189 			break;
1190 		case BTRFS_SHARED_DATA_REF_KEY: {
1191 			/* SHARED DIRECT FULL backref */
1192 			struct btrfs_shared_data_ref *sdref;
1193 			int count;
1194 
1195 			sdref = btrfs_item_ptr(leaf, slot,
1196 					      struct btrfs_shared_data_ref);
1197 			count = btrfs_shared_data_ref_count(leaf, sdref);
1198 			ret = add_direct_ref(fs_info, preftrees, 0,
1199 					     key.offset, ctx->bytenr, count,
1200 					     sc, GFP_NOFS);
1201 			break;
1202 		}
1203 		case BTRFS_TREE_BLOCK_REF_KEY:
1204 			/* NORMAL INDIRECT METADATA backref */
1205 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1206 					       NULL, info_level + 1, ctx->bytenr,
1207 					       1, NULL, GFP_NOFS);
1208 			break;
1209 		case BTRFS_EXTENT_DATA_REF_KEY: {
1210 			/* NORMAL INDIRECT DATA backref */
1211 			struct btrfs_extent_data_ref *dref;
1212 			int count;
1213 			u64 root;
1214 
1215 			dref = btrfs_item_ptr(leaf, slot,
1216 					      struct btrfs_extent_data_ref);
1217 			count = btrfs_extent_data_ref_count(leaf, dref);
1218 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1219 								      dref);
1220 			key.type = BTRFS_EXTENT_DATA_KEY;
1221 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1222 
1223 			if (sc && key.objectid != sc->inum &&
1224 			    !sc->have_delayed_delete_refs) {
1225 				ret = BACKREF_FOUND_SHARED;
1226 				break;
1227 			}
1228 
1229 			root = btrfs_extent_data_ref_root(leaf, dref);
1230 
1231 			if (!ctx->skip_data_ref ||
1232 			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1233 						ctx->user_ctx))
1234 				ret = add_indirect_ref(fs_info, preftrees, root,
1235 						       &key, 0, ctx->bytenr,
1236 						       count, sc, GFP_NOFS);
1237 			break;
1238 		}
1239 		default:
1240 			WARN_ON(1);
1241 		}
1242 		if (ret)
1243 			return ret;
1244 
1245 	}
1246 
1247 	return ret;
1248 }
1249 
1250 /*
1251  * The caller has joined a transaction or is holding a read lock on the
1252  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1253  * snapshot field changing while updating or checking the cache.
1254  */
1255 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1256 					struct btrfs_root *root,
1257 					u64 bytenr, int level, bool *is_shared)
1258 {
1259 	const struct btrfs_fs_info *fs_info = root->fs_info;
1260 	struct btrfs_backref_shared_cache_entry *entry;
1261 
1262 	if (!current->journal_info)
1263 		lockdep_assert_held(&fs_info->commit_root_sem);
1264 
1265 	if (!ctx->use_path_cache)
1266 		return false;
1267 
1268 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1269 		return false;
1270 
1271 	/*
1272 	 * Level -1 is used for the data extent, which is not reliable to cache
1273 	 * because its reference count can increase or decrease without us
1274 	 * realizing. We cache results only for extent buffers that lead from
1275 	 * the root node down to the leaf with the file extent item.
1276 	 */
1277 	ASSERT(level >= 0);
1278 
1279 	entry = &ctx->path_cache_entries[level];
1280 
1281 	/* Unused cache entry or being used for some other extent buffer. */
1282 	if (entry->bytenr != bytenr)
1283 		return false;
1284 
1285 	/*
1286 	 * We cached a false result, but the last snapshot generation of the
1287 	 * root changed, so we now have a snapshot. Don't trust the result.
1288 	 */
1289 	if (!entry->is_shared &&
1290 	    entry->gen != btrfs_root_last_snapshot(&root->root_item))
1291 		return false;
1292 
1293 	/*
1294 	 * If we cached a true result and the last generation used for dropping
1295 	 * a root changed, we can not trust the result, because the dropped root
1296 	 * could be a snapshot sharing this extent buffer.
1297 	 */
1298 	if (entry->is_shared &&
1299 	    entry->gen != btrfs_get_last_root_drop_gen(fs_info))
1300 		return false;
1301 
1302 	*is_shared = entry->is_shared;
1303 	/*
1304 	 * If the node at this level is shared, than all nodes below are also
1305 	 * shared. Currently some of the nodes below may be marked as not shared
1306 	 * because we have just switched from one leaf to another, and switched
1307 	 * also other nodes above the leaf and below the current level, so mark
1308 	 * them as shared.
1309 	 */
1310 	if (*is_shared) {
1311 		for (int i = 0; i < level; i++) {
1312 			ctx->path_cache_entries[i].is_shared = true;
1313 			ctx->path_cache_entries[i].gen = entry->gen;
1314 		}
1315 	}
1316 
1317 	return true;
1318 }
1319 
1320 /*
1321  * The caller has joined a transaction or is holding a read lock on the
1322  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1323  * snapshot field changing while updating or checking the cache.
1324  */
1325 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1326 				       struct btrfs_root *root,
1327 				       u64 bytenr, int level, bool is_shared)
1328 {
1329 	const struct btrfs_fs_info *fs_info = root->fs_info;
1330 	struct btrfs_backref_shared_cache_entry *entry;
1331 	u64 gen;
1332 
1333 	if (!current->journal_info)
1334 		lockdep_assert_held(&fs_info->commit_root_sem);
1335 
1336 	if (!ctx->use_path_cache)
1337 		return;
1338 
1339 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1340 		return;
1341 
1342 	/*
1343 	 * Level -1 is used for the data extent, which is not reliable to cache
1344 	 * because its reference count can increase or decrease without us
1345 	 * realizing. We cache results only for extent buffers that lead from
1346 	 * the root node down to the leaf with the file extent item.
1347 	 */
1348 	ASSERT(level >= 0);
1349 
1350 	if (is_shared)
1351 		gen = btrfs_get_last_root_drop_gen(fs_info);
1352 	else
1353 		gen = btrfs_root_last_snapshot(&root->root_item);
1354 
1355 	entry = &ctx->path_cache_entries[level];
1356 	entry->bytenr = bytenr;
1357 	entry->is_shared = is_shared;
1358 	entry->gen = gen;
1359 
1360 	/*
1361 	 * If we found an extent buffer is shared, set the cache result for all
1362 	 * extent buffers below it to true. As nodes in the path are COWed,
1363 	 * their sharedness is moved to their children, and if a leaf is COWed,
1364 	 * then the sharedness of a data extent becomes direct, the refcount of
1365 	 * data extent is increased in the extent item at the extent tree.
1366 	 */
1367 	if (is_shared) {
1368 		for (int i = 0; i < level; i++) {
1369 			entry = &ctx->path_cache_entries[i];
1370 			entry->is_shared = is_shared;
1371 			entry->gen = gen;
1372 		}
1373 	}
1374 }
1375 
1376 /*
1377  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1378  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1379  * indirect refs to their parent bytenr.
1380  * When roots are found, they're added to the roots list
1381  *
1382  * @ctx:     Backref walking context object, must be not NULL.
1383  * @sc:      If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1384  *           shared extent is detected.
1385  *
1386  * Otherwise this returns 0 for success and <0 for an error.
1387  *
1388  * FIXME some caching might speed things up
1389  */
1390 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1391 			     struct share_check *sc)
1392 {
1393 	struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
1394 	struct btrfs_key key;
1395 	struct btrfs_path *path;
1396 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1397 	struct btrfs_delayed_ref_head *head;
1398 	int info_level = 0;
1399 	int ret;
1400 	struct prelim_ref *ref;
1401 	struct rb_node *node;
1402 	struct extent_inode_elem *eie = NULL;
1403 	struct preftrees preftrees = {
1404 		.direct = PREFTREE_INIT,
1405 		.indirect = PREFTREE_INIT,
1406 		.indirect_missing_keys = PREFTREE_INIT
1407 	};
1408 
1409 	/* Roots ulist is not needed when using a sharedness check context. */
1410 	if (sc)
1411 		ASSERT(ctx->roots == NULL);
1412 
1413 	key.objectid = ctx->bytenr;
1414 	key.offset = (u64)-1;
1415 	if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1416 		key.type = BTRFS_METADATA_ITEM_KEY;
1417 	else
1418 		key.type = BTRFS_EXTENT_ITEM_KEY;
1419 
1420 	path = btrfs_alloc_path();
1421 	if (!path)
1422 		return -ENOMEM;
1423 	if (!ctx->trans) {
1424 		path->search_commit_root = 1;
1425 		path->skip_locking = 1;
1426 	}
1427 
1428 	if (ctx->time_seq == BTRFS_SEQ_LAST)
1429 		path->skip_locking = 1;
1430 
1431 again:
1432 	head = NULL;
1433 
1434 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1435 	if (ret < 0)
1436 		goto out;
1437 	if (ret == 0) {
1438 		/* This shouldn't happen, indicates a bug or fs corruption. */
1439 		ASSERT(ret != 0);
1440 		ret = -EUCLEAN;
1441 		goto out;
1442 	}
1443 
1444 	if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1445 	    ctx->time_seq != BTRFS_SEQ_LAST) {
1446 		/*
1447 		 * We have a specific time_seq we care about and trans which
1448 		 * means we have the path lock, we need to grab the ref head and
1449 		 * lock it so we have a consistent view of the refs at the given
1450 		 * time.
1451 		 */
1452 		delayed_refs = &ctx->trans->transaction->delayed_refs;
1453 		spin_lock(&delayed_refs->lock);
1454 		head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr);
1455 		if (head) {
1456 			if (!mutex_trylock(&head->mutex)) {
1457 				refcount_inc(&head->refs);
1458 				spin_unlock(&delayed_refs->lock);
1459 
1460 				btrfs_release_path(path);
1461 
1462 				/*
1463 				 * Mutex was contended, block until it's
1464 				 * released and try again
1465 				 */
1466 				mutex_lock(&head->mutex);
1467 				mutex_unlock(&head->mutex);
1468 				btrfs_put_delayed_ref_head(head);
1469 				goto again;
1470 			}
1471 			spin_unlock(&delayed_refs->lock);
1472 			ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
1473 					       &preftrees, sc);
1474 			mutex_unlock(&head->mutex);
1475 			if (ret)
1476 				goto out;
1477 		} else {
1478 			spin_unlock(&delayed_refs->lock);
1479 		}
1480 	}
1481 
1482 	if (path->slots[0]) {
1483 		struct extent_buffer *leaf;
1484 		int slot;
1485 
1486 		path->slots[0]--;
1487 		leaf = path->nodes[0];
1488 		slot = path->slots[0];
1489 		btrfs_item_key_to_cpu(leaf, &key, slot);
1490 		if (key.objectid == ctx->bytenr &&
1491 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1492 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1493 			ret = add_inline_refs(ctx, path, &info_level,
1494 					      &preftrees, sc);
1495 			if (ret)
1496 				goto out;
1497 			ret = add_keyed_refs(ctx, root, path, info_level,
1498 					     &preftrees, sc);
1499 			if (ret)
1500 				goto out;
1501 		}
1502 	}
1503 
1504 	/*
1505 	 * If we have a share context and we reached here, it means the extent
1506 	 * is not directly shared (no multiple reference items for it),
1507 	 * otherwise we would have exited earlier with a return value of
1508 	 * BACKREF_FOUND_SHARED after processing delayed references or while
1509 	 * processing inline or keyed references from the extent tree.
1510 	 * The extent may however be indirectly shared through shared subtrees
1511 	 * as a result from creating snapshots, so we determine below what is
1512 	 * its parent node, in case we are dealing with a metadata extent, or
1513 	 * what's the leaf (or leaves), from a fs tree, that has a file extent
1514 	 * item pointing to it in case we are dealing with a data extent.
1515 	 */
1516 	ASSERT(extent_is_shared(sc) == 0);
1517 
1518 	/*
1519 	 * If we are here for a data extent and we have a share_check structure
1520 	 * it means the data extent is not directly shared (does not have
1521 	 * multiple reference items), so we have to check if a path in the fs
1522 	 * tree (going from the root node down to the leaf that has the file
1523 	 * extent item pointing to the data extent) is shared, that is, if any
1524 	 * of the extent buffers in the path is referenced by other trees.
1525 	 */
1526 	if (sc && ctx->bytenr == sc->data_bytenr) {
1527 		/*
1528 		 * If our data extent is from a generation more recent than the
1529 		 * last generation used to snapshot the root, then we know that
1530 		 * it can not be shared through subtrees, so we can skip
1531 		 * resolving indirect references, there's no point in
1532 		 * determining the extent buffers for the path from the fs tree
1533 		 * root node down to the leaf that has the file extent item that
1534 		 * points to the data extent.
1535 		 */
1536 		if (sc->data_extent_gen >
1537 		    btrfs_root_last_snapshot(&sc->root->root_item)) {
1538 			ret = BACKREF_FOUND_NOT_SHARED;
1539 			goto out;
1540 		}
1541 
1542 		/*
1543 		 * If we are only determining if a data extent is shared or not
1544 		 * and the corresponding file extent item is located in the same
1545 		 * leaf as the previous file extent item, we can skip resolving
1546 		 * indirect references for a data extent, since the fs tree path
1547 		 * is the same (same leaf, so same path). We skip as long as the
1548 		 * cached result for the leaf is valid and only if there's only
1549 		 * one file extent item pointing to the data extent, because in
1550 		 * the case of multiple file extent items, they may be located
1551 		 * in different leaves and therefore we have multiple paths.
1552 		 */
1553 		if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1554 		    sc->self_ref_count == 1) {
1555 			bool cached;
1556 			bool is_shared;
1557 
1558 			cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1559 						     sc->ctx->curr_leaf_bytenr,
1560 						     0, &is_shared);
1561 			if (cached) {
1562 				if (is_shared)
1563 					ret = BACKREF_FOUND_SHARED;
1564 				else
1565 					ret = BACKREF_FOUND_NOT_SHARED;
1566 				goto out;
1567 			}
1568 		}
1569 	}
1570 
1571 	btrfs_release_path(path);
1572 
1573 	ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0);
1574 	if (ret)
1575 		goto out;
1576 
1577 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1578 
1579 	ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
1580 	if (ret)
1581 		goto out;
1582 
1583 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1584 
1585 	/*
1586 	 * This walks the tree of merged and resolved refs. Tree blocks are
1587 	 * read in as needed. Unique entries are added to the ulist, and
1588 	 * the list of found roots is updated.
1589 	 *
1590 	 * We release the entire tree in one go before returning.
1591 	 */
1592 	node = rb_first_cached(&preftrees.direct.root);
1593 	while (node) {
1594 		ref = rb_entry(node, struct prelim_ref, rbnode);
1595 		node = rb_next(&ref->rbnode);
1596 		/*
1597 		 * ref->count < 0 can happen here if there are delayed
1598 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1599 		 * prelim_ref_insert() relies on this when merging
1600 		 * identical refs to keep the overall count correct.
1601 		 * prelim_ref_insert() will merge only those refs
1602 		 * which compare identically.  Any refs having
1603 		 * e.g. different offsets would not be merged,
1604 		 * and would retain their original ref->count < 0.
1605 		 */
1606 		if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1607 			/* no parent == root of tree */
1608 			ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
1609 			if (ret < 0)
1610 				goto out;
1611 		}
1612 		if (ref->count && ref->parent) {
1613 			if (!ctx->skip_inode_ref_list && !ref->inode_list &&
1614 			    ref->level == 0) {
1615 				struct btrfs_tree_parent_check check = { 0 };
1616 				struct extent_buffer *eb;
1617 
1618 				check.level = ref->level;
1619 
1620 				eb = read_tree_block(ctx->fs_info, ref->parent,
1621 						     &check);
1622 				if (IS_ERR(eb)) {
1623 					ret = PTR_ERR(eb);
1624 					goto out;
1625 				}
1626 				if (!extent_buffer_uptodate(eb)) {
1627 					free_extent_buffer(eb);
1628 					ret = -EIO;
1629 					goto out;
1630 				}
1631 
1632 				if (!path->skip_locking)
1633 					btrfs_tree_read_lock(eb);
1634 				ret = find_extent_in_eb(ctx, eb, &eie);
1635 				if (!path->skip_locking)
1636 					btrfs_tree_read_unlock(eb);
1637 				free_extent_buffer(eb);
1638 				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1639 				    ret < 0)
1640 					goto out;
1641 				ref->inode_list = eie;
1642 				/*
1643 				 * We transferred the list ownership to the ref,
1644 				 * so set to NULL to avoid a double free in case
1645 				 * an error happens after this.
1646 				 */
1647 				eie = NULL;
1648 			}
1649 			ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
1650 						  ref->inode_list,
1651 						  (void **)&eie, GFP_NOFS);
1652 			if (ret < 0)
1653 				goto out;
1654 			if (!ret && !ctx->skip_inode_ref_list) {
1655 				/*
1656 				 * We've recorded that parent, so we must extend
1657 				 * its inode list here.
1658 				 *
1659 				 * However if there was corruption we may not
1660 				 * have found an eie, return an error in this
1661 				 * case.
1662 				 */
1663 				ASSERT(eie);
1664 				if (!eie) {
1665 					ret = -EUCLEAN;
1666 					goto out;
1667 				}
1668 				while (eie->next)
1669 					eie = eie->next;
1670 				eie->next = ref->inode_list;
1671 			}
1672 			eie = NULL;
1673 			/*
1674 			 * We have transferred the inode list ownership from
1675 			 * this ref to the ref we added to the 'refs' ulist.
1676 			 * So set this ref's inode list to NULL to avoid
1677 			 * use-after-free when our caller uses it or double
1678 			 * frees in case an error happens before we return.
1679 			 */
1680 			ref->inode_list = NULL;
1681 		}
1682 		cond_resched();
1683 	}
1684 
1685 out:
1686 	btrfs_free_path(path);
1687 
1688 	prelim_release(&preftrees.direct);
1689 	prelim_release(&preftrees.indirect);
1690 	prelim_release(&preftrees.indirect_missing_keys);
1691 
1692 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1693 		free_inode_elem_list(eie);
1694 	return ret;
1695 }
1696 
1697 /*
1698  * Finds all leaves with a reference to the specified combination of
1699  * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1700  * added to the ulist at @ctx->refs, and that ulist is allocated by this
1701  * function. The caller should free the ulist with free_leaf_list() if
1702  * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is
1703  * enough.
1704  *
1705  * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1706  */
1707 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1708 {
1709 	int ret;
1710 
1711 	ASSERT(ctx->refs == NULL);
1712 
1713 	ctx->refs = ulist_alloc(GFP_NOFS);
1714 	if (!ctx->refs)
1715 		return -ENOMEM;
1716 
1717 	ret = find_parent_nodes(ctx, NULL);
1718 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1719 	    (ret < 0 && ret != -ENOENT)) {
1720 		free_leaf_list(ctx->refs);
1721 		ctx->refs = NULL;
1722 		return ret;
1723 	}
1724 
1725 	return 0;
1726 }
1727 
1728 /*
1729  * Walk all backrefs for a given extent to find all roots that reference this
1730  * extent. Walking a backref means finding all extents that reference this
1731  * extent and in turn walk the backrefs of those, too. Naturally this is a
1732  * recursive process, but here it is implemented in an iterative fashion: We
1733  * find all referencing extents for the extent in question and put them on a
1734  * list. In turn, we find all referencing extents for those, further appending
1735  * to the list. The way we iterate the list allows adding more elements after
1736  * the current while iterating. The process stops when we reach the end of the
1737  * list.
1738  *
1739  * Found roots are added to @ctx->roots, which is allocated by this function if
1740  * it points to NULL, in which case the caller is responsible for freeing it
1741  * after it's not needed anymore.
1742  * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1743  * ulist to do temporary work, and frees it before returning.
1744  *
1745  * Returns 0 on success, < 0 on error.
1746  */
1747 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1748 {
1749 	const u64 orig_bytenr = ctx->bytenr;
1750 	const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list;
1751 	bool roots_ulist_allocated = false;
1752 	struct ulist_iterator uiter;
1753 	int ret = 0;
1754 
1755 	ASSERT(ctx->refs == NULL);
1756 
1757 	ctx->refs = ulist_alloc(GFP_NOFS);
1758 	if (!ctx->refs)
1759 		return -ENOMEM;
1760 
1761 	if (!ctx->roots) {
1762 		ctx->roots = ulist_alloc(GFP_NOFS);
1763 		if (!ctx->roots) {
1764 			ulist_free(ctx->refs);
1765 			ctx->refs = NULL;
1766 			return -ENOMEM;
1767 		}
1768 		roots_ulist_allocated = true;
1769 	}
1770 
1771 	ctx->skip_inode_ref_list = true;
1772 
1773 	ULIST_ITER_INIT(&uiter);
1774 	while (1) {
1775 		struct ulist_node *node;
1776 
1777 		ret = find_parent_nodes(ctx, NULL);
1778 		if (ret < 0 && ret != -ENOENT) {
1779 			if (roots_ulist_allocated) {
1780 				ulist_free(ctx->roots);
1781 				ctx->roots = NULL;
1782 			}
1783 			break;
1784 		}
1785 		ret = 0;
1786 		node = ulist_next(ctx->refs, &uiter);
1787 		if (!node)
1788 			break;
1789 		ctx->bytenr = node->val;
1790 		cond_resched();
1791 	}
1792 
1793 	ulist_free(ctx->refs);
1794 	ctx->refs = NULL;
1795 	ctx->bytenr = orig_bytenr;
1796 	ctx->skip_inode_ref_list = orig_skip_inode_ref_list;
1797 
1798 	return ret;
1799 }
1800 
1801 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1802 			 bool skip_commit_root_sem)
1803 {
1804 	int ret;
1805 
1806 	if (!ctx->trans && !skip_commit_root_sem)
1807 		down_read(&ctx->fs_info->commit_root_sem);
1808 	ret = btrfs_find_all_roots_safe(ctx);
1809 	if (!ctx->trans && !skip_commit_root_sem)
1810 		up_read(&ctx->fs_info->commit_root_sem);
1811 	return ret;
1812 }
1813 
1814 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1815 {
1816 	struct btrfs_backref_share_check_ctx *ctx;
1817 
1818 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1819 	if (!ctx)
1820 		return NULL;
1821 
1822 	ulist_init(&ctx->refs);
1823 
1824 	return ctx;
1825 }
1826 
1827 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1828 {
1829 	if (!ctx)
1830 		return;
1831 
1832 	ulist_release(&ctx->refs);
1833 	kfree(ctx);
1834 }
1835 
1836 /*
1837  * Check if a data extent is shared or not.
1838  *
1839  * @inode:       The inode whose extent we are checking.
1840  * @bytenr:      Logical bytenr of the extent we are checking.
1841  * @extent_gen:  Generation of the extent (file extent item) or 0 if it is
1842  *               not known.
1843  * @ctx:         A backref sharedness check context.
1844  *
1845  * btrfs_is_data_extent_shared uses the backref walking code but will short
1846  * circuit as soon as it finds a root or inode that doesn't match the
1847  * one passed in. This provides a significant performance benefit for
1848  * callers (such as fiemap) which want to know whether the extent is
1849  * shared but do not need a ref count.
1850  *
1851  * This attempts to attach to the running transaction in order to account for
1852  * delayed refs, but continues on even when no running transaction exists.
1853  *
1854  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1855  */
1856 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1857 				u64 extent_gen,
1858 				struct btrfs_backref_share_check_ctx *ctx)
1859 {
1860 	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1861 	struct btrfs_root *root = inode->root;
1862 	struct btrfs_fs_info *fs_info = root->fs_info;
1863 	struct btrfs_trans_handle *trans;
1864 	struct ulist_iterator uiter;
1865 	struct ulist_node *node;
1866 	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1867 	int ret = 0;
1868 	struct share_check shared = {
1869 		.ctx = ctx,
1870 		.root = root,
1871 		.inum = btrfs_ino(inode),
1872 		.data_bytenr = bytenr,
1873 		.data_extent_gen = extent_gen,
1874 		.share_count = 0,
1875 		.self_ref_count = 0,
1876 		.have_delayed_delete_refs = false,
1877 	};
1878 	int level;
1879 	bool leaf_cached;
1880 	bool leaf_is_shared;
1881 
1882 	for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1883 		if (ctx->prev_extents_cache[i].bytenr == bytenr)
1884 			return ctx->prev_extents_cache[i].is_shared;
1885 	}
1886 
1887 	ulist_init(&ctx->refs);
1888 
1889 	trans = btrfs_join_transaction_nostart(root);
1890 	if (IS_ERR(trans)) {
1891 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1892 			ret = PTR_ERR(trans);
1893 			goto out;
1894 		}
1895 		trans = NULL;
1896 		down_read(&fs_info->commit_root_sem);
1897 	} else {
1898 		btrfs_get_tree_mod_seq(fs_info, &elem);
1899 		walk_ctx.time_seq = elem.seq;
1900 	}
1901 
1902 	ctx->use_path_cache = true;
1903 
1904 	/*
1905 	 * We may have previously determined that the current leaf is shared.
1906 	 * If it is, then we have a data extent that is shared due to a shared
1907 	 * subtree (caused by snapshotting) and we don't need to check for data
1908 	 * backrefs. If the leaf is not shared, then we must do backref walking
1909 	 * to determine if the data extent is shared through reflinks.
1910 	 */
1911 	leaf_cached = lookup_backref_shared_cache(ctx, root,
1912 						  ctx->curr_leaf_bytenr, 0,
1913 						  &leaf_is_shared);
1914 	if (leaf_cached && leaf_is_shared) {
1915 		ret = 1;
1916 		goto out_trans;
1917 	}
1918 
1919 	walk_ctx.skip_inode_ref_list = true;
1920 	walk_ctx.trans = trans;
1921 	walk_ctx.fs_info = fs_info;
1922 	walk_ctx.refs = &ctx->refs;
1923 
1924 	/* -1 means we are in the bytenr of the data extent. */
1925 	level = -1;
1926 	ULIST_ITER_INIT(&uiter);
1927 	while (1) {
1928 		const unsigned long prev_ref_count = ctx->refs.nnodes;
1929 
1930 		walk_ctx.bytenr = bytenr;
1931 		ret = find_parent_nodes(&walk_ctx, &shared);
1932 		if (ret == BACKREF_FOUND_SHARED ||
1933 		    ret == BACKREF_FOUND_NOT_SHARED) {
1934 			/* If shared must return 1, otherwise return 0. */
1935 			ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1936 			if (level >= 0)
1937 				store_backref_shared_cache(ctx, root, bytenr,
1938 							   level, ret == 1);
1939 			break;
1940 		}
1941 		if (ret < 0 && ret != -ENOENT)
1942 			break;
1943 		ret = 0;
1944 
1945 		/*
1946 		 * More than one extent buffer (bytenr) may have been added to
1947 		 * the ctx->refs ulist, in which case we have to check multiple
1948 		 * tree paths in case the first one is not shared, so we can not
1949 		 * use the path cache which is made for a single path. Multiple
1950 		 * extent buffers at the current level happen when:
1951 		 *
1952 		 * 1) level -1, the data extent: If our data extent was not
1953 		 *    directly shared (without multiple reference items), then
1954 		 *    it might have a single reference item with a count > 1 for
1955 		 *    the same offset, which means there are 2 (or more) file
1956 		 *    extent items that point to the data extent - this happens
1957 		 *    when a file extent item needs to be split and then one
1958 		 *    item gets moved to another leaf due to a b+tree leaf split
1959 		 *    when inserting some item. In this case the file extent
1960 		 *    items may be located in different leaves and therefore
1961 		 *    some of the leaves may be referenced through shared
1962 		 *    subtrees while others are not. Since our extent buffer
1963 		 *    cache only works for a single path (by far the most common
1964 		 *    case and simpler to deal with), we can not use it if we
1965 		 *    have multiple leaves (which implies multiple paths).
1966 		 *
1967 		 * 2) level >= 0, a tree node/leaf: We can have a mix of direct
1968 		 *    and indirect references on a b+tree node/leaf, so we have
1969 		 *    to check multiple paths, and the extent buffer (the
1970 		 *    current bytenr) may be shared or not. One example is
1971 		 *    during relocation as we may get a shared tree block ref
1972 		 *    (direct ref) and a non-shared tree block ref (indirect
1973 		 *    ref) for the same node/leaf.
1974 		 */
1975 		if ((ctx->refs.nnodes - prev_ref_count) > 1)
1976 			ctx->use_path_cache = false;
1977 
1978 		if (level >= 0)
1979 			store_backref_shared_cache(ctx, root, bytenr,
1980 						   level, false);
1981 		node = ulist_next(&ctx->refs, &uiter);
1982 		if (!node)
1983 			break;
1984 		bytenr = node->val;
1985 		if (ctx->use_path_cache) {
1986 			bool is_shared;
1987 			bool cached;
1988 
1989 			level++;
1990 			cached = lookup_backref_shared_cache(ctx, root, bytenr,
1991 							     level, &is_shared);
1992 			if (cached) {
1993 				ret = (is_shared ? 1 : 0);
1994 				break;
1995 			}
1996 		}
1997 		shared.share_count = 0;
1998 		shared.have_delayed_delete_refs = false;
1999 		cond_resched();
2000 	}
2001 
2002 	/*
2003 	 * If the path cache is disabled, then it means at some tree level we
2004 	 * got multiple parents due to a mix of direct and indirect backrefs or
2005 	 * multiple leaves with file extent items pointing to the same data
2006 	 * extent. We have to invalidate the cache and cache only the sharedness
2007 	 * result for the levels where we got only one node/reference.
2008 	 */
2009 	if (!ctx->use_path_cache) {
2010 		int i = 0;
2011 
2012 		level--;
2013 		if (ret >= 0 && level >= 0) {
2014 			bytenr = ctx->path_cache_entries[level].bytenr;
2015 			ctx->use_path_cache = true;
2016 			store_backref_shared_cache(ctx, root, bytenr, level, ret);
2017 			i = level + 1;
2018 		}
2019 
2020 		for ( ; i < BTRFS_MAX_LEVEL; i++)
2021 			ctx->path_cache_entries[i].bytenr = 0;
2022 	}
2023 
2024 	/*
2025 	 * Cache the sharedness result for the data extent if we know our inode
2026 	 * has more than 1 file extent item that refers to the data extent.
2027 	 */
2028 	if (ret >= 0 && shared.self_ref_count > 1) {
2029 		int slot = ctx->prev_extents_cache_slot;
2030 
2031 		ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2032 		ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2033 
2034 		slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2035 		ctx->prev_extents_cache_slot = slot;
2036 	}
2037 
2038 out_trans:
2039 	if (trans) {
2040 		btrfs_put_tree_mod_seq(fs_info, &elem);
2041 		btrfs_end_transaction(trans);
2042 	} else {
2043 		up_read(&fs_info->commit_root_sem);
2044 	}
2045 out:
2046 	ulist_release(&ctx->refs);
2047 	ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2048 
2049 	return ret;
2050 }
2051 
2052 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2053 			  u64 start_off, struct btrfs_path *path,
2054 			  struct btrfs_inode_extref **ret_extref,
2055 			  u64 *found_off)
2056 {
2057 	int ret, slot;
2058 	struct btrfs_key key;
2059 	struct btrfs_key found_key;
2060 	struct btrfs_inode_extref *extref;
2061 	const struct extent_buffer *leaf;
2062 	unsigned long ptr;
2063 
2064 	key.objectid = inode_objectid;
2065 	key.type = BTRFS_INODE_EXTREF_KEY;
2066 	key.offset = start_off;
2067 
2068 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2069 	if (ret < 0)
2070 		return ret;
2071 
2072 	while (1) {
2073 		leaf = path->nodes[0];
2074 		slot = path->slots[0];
2075 		if (slot >= btrfs_header_nritems(leaf)) {
2076 			/*
2077 			 * If the item at offset is not found,
2078 			 * btrfs_search_slot will point us to the slot
2079 			 * where it should be inserted. In our case
2080 			 * that will be the slot directly before the
2081 			 * next INODE_REF_KEY_V2 item. In the case
2082 			 * that we're pointing to the last slot in a
2083 			 * leaf, we must move one leaf over.
2084 			 */
2085 			ret = btrfs_next_leaf(root, path);
2086 			if (ret) {
2087 				if (ret >= 1)
2088 					ret = -ENOENT;
2089 				break;
2090 			}
2091 			continue;
2092 		}
2093 
2094 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2095 
2096 		/*
2097 		 * Check that we're still looking at an extended ref key for
2098 		 * this particular objectid. If we have different
2099 		 * objectid or type then there are no more to be found
2100 		 * in the tree and we can exit.
2101 		 */
2102 		ret = -ENOENT;
2103 		if (found_key.objectid != inode_objectid)
2104 			break;
2105 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2106 			break;
2107 
2108 		ret = 0;
2109 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2110 		extref = (struct btrfs_inode_extref *)ptr;
2111 		*ret_extref = extref;
2112 		if (found_off)
2113 			*found_off = found_key.offset;
2114 		break;
2115 	}
2116 
2117 	return ret;
2118 }
2119 
2120 /*
2121  * this iterates to turn a name (from iref/extref) into a full filesystem path.
2122  * Elements of the path are separated by '/' and the path is guaranteed to be
2123  * 0-terminated. the path is only given within the current file system.
2124  * Therefore, it never starts with a '/'. the caller is responsible to provide
2125  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2126  * the start point of the resulting string is returned. this pointer is within
2127  * dest, normally.
2128  * in case the path buffer would overflow, the pointer is decremented further
2129  * as if output was written to the buffer, though no more output is actually
2130  * generated. that way, the caller can determine how much space would be
2131  * required for the path to fit into the buffer. in that case, the returned
2132  * value will be smaller than dest. callers must check this!
2133  */
2134 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2135 			u32 name_len, unsigned long name_off,
2136 			struct extent_buffer *eb_in, u64 parent,
2137 			char *dest, u32 size)
2138 {
2139 	int slot;
2140 	u64 next_inum;
2141 	int ret;
2142 	s64 bytes_left = ((s64)size) - 1;
2143 	struct extent_buffer *eb = eb_in;
2144 	struct btrfs_key found_key;
2145 	struct btrfs_inode_ref *iref;
2146 
2147 	if (bytes_left >= 0)
2148 		dest[bytes_left] = '\0';
2149 
2150 	while (1) {
2151 		bytes_left -= name_len;
2152 		if (bytes_left >= 0)
2153 			read_extent_buffer(eb, dest + bytes_left,
2154 					   name_off, name_len);
2155 		if (eb != eb_in) {
2156 			if (!path->skip_locking)
2157 				btrfs_tree_read_unlock(eb);
2158 			free_extent_buffer(eb);
2159 		}
2160 		ret = btrfs_find_item(fs_root, path, parent, 0,
2161 				BTRFS_INODE_REF_KEY, &found_key);
2162 		if (ret > 0)
2163 			ret = -ENOENT;
2164 		if (ret)
2165 			break;
2166 
2167 		next_inum = found_key.offset;
2168 
2169 		/* regular exit ahead */
2170 		if (parent == next_inum)
2171 			break;
2172 
2173 		slot = path->slots[0];
2174 		eb = path->nodes[0];
2175 		/* make sure we can use eb after releasing the path */
2176 		if (eb != eb_in) {
2177 			path->nodes[0] = NULL;
2178 			path->locks[0] = 0;
2179 		}
2180 		btrfs_release_path(path);
2181 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2182 
2183 		name_len = btrfs_inode_ref_name_len(eb, iref);
2184 		name_off = (unsigned long)(iref + 1);
2185 
2186 		parent = next_inum;
2187 		--bytes_left;
2188 		if (bytes_left >= 0)
2189 			dest[bytes_left] = '/';
2190 	}
2191 
2192 	btrfs_release_path(path);
2193 
2194 	if (ret)
2195 		return ERR_PTR(ret);
2196 
2197 	return dest + bytes_left;
2198 }
2199 
2200 /*
2201  * this makes the path point to (logical EXTENT_ITEM *)
2202  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2203  * tree blocks and <0 on error.
2204  */
2205 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2206 			struct btrfs_path *path, struct btrfs_key *found_key,
2207 			u64 *flags_ret)
2208 {
2209 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
2210 	int ret;
2211 	u64 flags;
2212 	u64 size = 0;
2213 	u32 item_size;
2214 	const struct extent_buffer *eb;
2215 	struct btrfs_extent_item *ei;
2216 	struct btrfs_key key;
2217 
2218 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2219 		key.type = BTRFS_METADATA_ITEM_KEY;
2220 	else
2221 		key.type = BTRFS_EXTENT_ITEM_KEY;
2222 	key.objectid = logical;
2223 	key.offset = (u64)-1;
2224 
2225 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2226 	if (ret < 0)
2227 		return ret;
2228 
2229 	ret = btrfs_previous_extent_item(extent_root, path, 0);
2230 	if (ret) {
2231 		if (ret > 0)
2232 			ret = -ENOENT;
2233 		return ret;
2234 	}
2235 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
2236 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2237 		size = fs_info->nodesize;
2238 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2239 		size = found_key->offset;
2240 
2241 	if (found_key->objectid > logical ||
2242 	    found_key->objectid + size <= logical) {
2243 		btrfs_debug(fs_info,
2244 			"logical %llu is not within any extent", logical);
2245 		return -ENOENT;
2246 	}
2247 
2248 	eb = path->nodes[0];
2249 	item_size = btrfs_item_size(eb, path->slots[0]);
2250 	BUG_ON(item_size < sizeof(*ei));
2251 
2252 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2253 	flags = btrfs_extent_flags(eb, ei);
2254 
2255 	btrfs_debug(fs_info,
2256 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2257 		 logical, logical - found_key->objectid, found_key->objectid,
2258 		 found_key->offset, flags, item_size);
2259 
2260 	WARN_ON(!flags_ret);
2261 	if (flags_ret) {
2262 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2263 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2264 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
2265 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
2266 		else
2267 			BUG();
2268 		return 0;
2269 	}
2270 
2271 	return -EIO;
2272 }
2273 
2274 /*
2275  * helper function to iterate extent inline refs. ptr must point to a 0 value
2276  * for the first call and may be modified. it is used to track state.
2277  * if more refs exist, 0 is returned and the next call to
2278  * get_extent_inline_ref must pass the modified ptr parameter to get the
2279  * next ref. after the last ref was processed, 1 is returned.
2280  * returns <0 on error
2281  */
2282 static int get_extent_inline_ref(unsigned long *ptr,
2283 				 const struct extent_buffer *eb,
2284 				 const struct btrfs_key *key,
2285 				 const struct btrfs_extent_item *ei,
2286 				 u32 item_size,
2287 				 struct btrfs_extent_inline_ref **out_eiref,
2288 				 int *out_type)
2289 {
2290 	unsigned long end;
2291 	u64 flags;
2292 	struct btrfs_tree_block_info *info;
2293 
2294 	if (!*ptr) {
2295 		/* first call */
2296 		flags = btrfs_extent_flags(eb, ei);
2297 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2298 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
2299 				/* a skinny metadata extent */
2300 				*out_eiref =
2301 				     (struct btrfs_extent_inline_ref *)(ei + 1);
2302 			} else {
2303 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2304 				info = (struct btrfs_tree_block_info *)(ei + 1);
2305 				*out_eiref =
2306 				   (struct btrfs_extent_inline_ref *)(info + 1);
2307 			}
2308 		} else {
2309 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2310 		}
2311 		*ptr = (unsigned long)*out_eiref;
2312 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2313 			return -ENOENT;
2314 	}
2315 
2316 	end = (unsigned long)ei + item_size;
2317 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2318 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2319 						     BTRFS_REF_TYPE_ANY);
2320 	if (*out_type == BTRFS_REF_TYPE_INVALID)
2321 		return -EUCLEAN;
2322 
2323 	*ptr += btrfs_extent_inline_ref_size(*out_type);
2324 	WARN_ON(*ptr > end);
2325 	if (*ptr == end)
2326 		return 1; /* last */
2327 
2328 	return 0;
2329 }
2330 
2331 /*
2332  * reads the tree block backref for an extent. tree level and root are returned
2333  * through out_level and out_root. ptr must point to a 0 value for the first
2334  * call and may be modified (see get_extent_inline_ref comment).
2335  * returns 0 if data was provided, 1 if there was no more data to provide or
2336  * <0 on error.
2337  */
2338 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2339 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
2340 			    u32 item_size, u64 *out_root, u8 *out_level)
2341 {
2342 	int ret;
2343 	int type;
2344 	struct btrfs_extent_inline_ref *eiref;
2345 
2346 	if (*ptr == (unsigned long)-1)
2347 		return 1;
2348 
2349 	while (1) {
2350 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2351 					      &eiref, &type);
2352 		if (ret < 0)
2353 			return ret;
2354 
2355 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2356 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
2357 			break;
2358 
2359 		if (ret == 1)
2360 			return 1;
2361 	}
2362 
2363 	/* we can treat both ref types equally here */
2364 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2365 
2366 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2367 		struct btrfs_tree_block_info *info;
2368 
2369 		info = (struct btrfs_tree_block_info *)(ei + 1);
2370 		*out_level = btrfs_tree_block_level(eb, info);
2371 	} else {
2372 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2373 		*out_level = (u8)key->offset;
2374 	}
2375 
2376 	if (ret == 1)
2377 		*ptr = (unsigned long)-1;
2378 
2379 	return 0;
2380 }
2381 
2382 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2383 			     struct extent_inode_elem *inode_list,
2384 			     u64 root, u64 extent_item_objectid,
2385 			     iterate_extent_inodes_t *iterate, void *ctx)
2386 {
2387 	struct extent_inode_elem *eie;
2388 	int ret = 0;
2389 
2390 	for (eie = inode_list; eie; eie = eie->next) {
2391 		btrfs_debug(fs_info,
2392 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2393 			    extent_item_objectid, eie->inum,
2394 			    eie->offset, root);
2395 		ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2396 		if (ret) {
2397 			btrfs_debug(fs_info,
2398 				    "stopping iteration for %llu due to ret=%d",
2399 				    extent_item_objectid, ret);
2400 			break;
2401 		}
2402 	}
2403 
2404 	return ret;
2405 }
2406 
2407 /*
2408  * calls iterate() for every inode that references the extent identified by
2409  * the given parameters.
2410  * when the iterator function returns a non-zero value, iteration stops.
2411  */
2412 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2413 			  bool search_commit_root,
2414 			  iterate_extent_inodes_t *iterate, void *user_ctx)
2415 {
2416 	int ret;
2417 	struct ulist *refs;
2418 	struct ulist_node *ref_node;
2419 	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2420 	struct ulist_iterator ref_uiter;
2421 
2422 	btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2423 		    ctx->bytenr);
2424 
2425 	ASSERT(ctx->trans == NULL);
2426 	ASSERT(ctx->roots == NULL);
2427 
2428 	if (!search_commit_root) {
2429 		struct btrfs_trans_handle *trans;
2430 
2431 		trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
2432 		if (IS_ERR(trans)) {
2433 			if (PTR_ERR(trans) != -ENOENT &&
2434 			    PTR_ERR(trans) != -EROFS)
2435 				return PTR_ERR(trans);
2436 			trans = NULL;
2437 		}
2438 		ctx->trans = trans;
2439 	}
2440 
2441 	if (ctx->trans) {
2442 		btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2443 		ctx->time_seq = seq_elem.seq;
2444 	} else {
2445 		down_read(&ctx->fs_info->commit_root_sem);
2446 	}
2447 
2448 	ret = btrfs_find_all_leafs(ctx);
2449 	if (ret)
2450 		goto out;
2451 	refs = ctx->refs;
2452 	ctx->refs = NULL;
2453 
2454 	ULIST_ITER_INIT(&ref_uiter);
2455 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2456 		const u64 leaf_bytenr = ref_node->val;
2457 		struct ulist_node *root_node;
2458 		struct ulist_iterator root_uiter;
2459 		struct extent_inode_elem *inode_list;
2460 
2461 		inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2462 
2463 		if (ctx->cache_lookup) {
2464 			const u64 *root_ids;
2465 			int root_count;
2466 			bool cached;
2467 
2468 			cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2469 						   &root_ids, &root_count);
2470 			if (cached) {
2471 				for (int i = 0; i < root_count; i++) {
2472 					ret = iterate_leaf_refs(ctx->fs_info,
2473 								inode_list,
2474 								root_ids[i],
2475 								leaf_bytenr,
2476 								iterate,
2477 								user_ctx);
2478 					if (ret)
2479 						break;
2480 				}
2481 				continue;
2482 			}
2483 		}
2484 
2485 		if (!ctx->roots) {
2486 			ctx->roots = ulist_alloc(GFP_NOFS);
2487 			if (!ctx->roots) {
2488 				ret = -ENOMEM;
2489 				break;
2490 			}
2491 		}
2492 
2493 		ctx->bytenr = leaf_bytenr;
2494 		ret = btrfs_find_all_roots_safe(ctx);
2495 		if (ret)
2496 			break;
2497 
2498 		if (ctx->cache_store)
2499 			ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2500 
2501 		ULIST_ITER_INIT(&root_uiter);
2502 		while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2503 			btrfs_debug(ctx->fs_info,
2504 				    "root %llu references leaf %llu, data list %#llx",
2505 				    root_node->val, ref_node->val,
2506 				    ref_node->aux);
2507 			ret = iterate_leaf_refs(ctx->fs_info, inode_list,
2508 						root_node->val, ctx->bytenr,
2509 						iterate, user_ctx);
2510 		}
2511 		ulist_reinit(ctx->roots);
2512 	}
2513 
2514 	free_leaf_list(refs);
2515 out:
2516 	if (ctx->trans) {
2517 		btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2518 		btrfs_end_transaction(ctx->trans);
2519 		ctx->trans = NULL;
2520 	} else {
2521 		up_read(&ctx->fs_info->commit_root_sem);
2522 	}
2523 
2524 	ulist_free(ctx->roots);
2525 	ctx->roots = NULL;
2526 
2527 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2528 		ret = 0;
2529 
2530 	return ret;
2531 }
2532 
2533 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2534 {
2535 	struct btrfs_data_container *inodes = ctx;
2536 	const size_t c = 3 * sizeof(u64);
2537 
2538 	if (inodes->bytes_left >= c) {
2539 		inodes->bytes_left -= c;
2540 		inodes->val[inodes->elem_cnt] = inum;
2541 		inodes->val[inodes->elem_cnt + 1] = offset;
2542 		inodes->val[inodes->elem_cnt + 2] = root;
2543 		inodes->elem_cnt += 3;
2544 	} else {
2545 		inodes->bytes_missing += c - inodes->bytes_left;
2546 		inodes->bytes_left = 0;
2547 		inodes->elem_missed += 3;
2548 	}
2549 
2550 	return 0;
2551 }
2552 
2553 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2554 				struct btrfs_path *path,
2555 				void *ctx, bool ignore_offset)
2556 {
2557 	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2558 	int ret;
2559 	u64 flags = 0;
2560 	struct btrfs_key found_key;
2561 	int search_commit_root = path->search_commit_root;
2562 
2563 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2564 	btrfs_release_path(path);
2565 	if (ret < 0)
2566 		return ret;
2567 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2568 		return -EINVAL;
2569 
2570 	walk_ctx.bytenr = found_key.objectid;
2571 	if (ignore_offset)
2572 		walk_ctx.ignore_extent_item_pos = true;
2573 	else
2574 		walk_ctx.extent_item_pos = logical - found_key.objectid;
2575 	walk_ctx.fs_info = fs_info;
2576 
2577 	return iterate_extent_inodes(&walk_ctx, search_commit_root,
2578 				     build_ino_list, ctx);
2579 }
2580 
2581 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2582 			 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2583 
2584 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2585 {
2586 	int ret = 0;
2587 	int slot;
2588 	u32 cur;
2589 	u32 len;
2590 	u32 name_len;
2591 	u64 parent = 0;
2592 	int found = 0;
2593 	struct btrfs_root *fs_root = ipath->fs_root;
2594 	struct btrfs_path *path = ipath->btrfs_path;
2595 	struct extent_buffer *eb;
2596 	struct btrfs_inode_ref *iref;
2597 	struct btrfs_key found_key;
2598 
2599 	while (!ret) {
2600 		ret = btrfs_find_item(fs_root, path, inum,
2601 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2602 				&found_key);
2603 
2604 		if (ret < 0)
2605 			break;
2606 		if (ret) {
2607 			ret = found ? 0 : -ENOENT;
2608 			break;
2609 		}
2610 		++found;
2611 
2612 		parent = found_key.offset;
2613 		slot = path->slots[0];
2614 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2615 		if (!eb) {
2616 			ret = -ENOMEM;
2617 			break;
2618 		}
2619 		btrfs_release_path(path);
2620 
2621 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2622 
2623 		for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2624 			name_len = btrfs_inode_ref_name_len(eb, iref);
2625 			/* path must be released before calling iterate()! */
2626 			btrfs_debug(fs_root->fs_info,
2627 				"following ref at offset %u for inode %llu in tree %llu",
2628 				cur, found_key.objectid,
2629 				fs_root->root_key.objectid);
2630 			ret = inode_to_path(parent, name_len,
2631 				      (unsigned long)(iref + 1), eb, ipath);
2632 			if (ret)
2633 				break;
2634 			len = sizeof(*iref) + name_len;
2635 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2636 		}
2637 		free_extent_buffer(eb);
2638 	}
2639 
2640 	btrfs_release_path(path);
2641 
2642 	return ret;
2643 }
2644 
2645 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2646 {
2647 	int ret;
2648 	int slot;
2649 	u64 offset = 0;
2650 	u64 parent;
2651 	int found = 0;
2652 	struct btrfs_root *fs_root = ipath->fs_root;
2653 	struct btrfs_path *path = ipath->btrfs_path;
2654 	struct extent_buffer *eb;
2655 	struct btrfs_inode_extref *extref;
2656 	u32 item_size;
2657 	u32 cur_offset;
2658 	unsigned long ptr;
2659 
2660 	while (1) {
2661 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2662 					    &offset);
2663 		if (ret < 0)
2664 			break;
2665 		if (ret) {
2666 			ret = found ? 0 : -ENOENT;
2667 			break;
2668 		}
2669 		++found;
2670 
2671 		slot = path->slots[0];
2672 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2673 		if (!eb) {
2674 			ret = -ENOMEM;
2675 			break;
2676 		}
2677 		btrfs_release_path(path);
2678 
2679 		item_size = btrfs_item_size(eb, slot);
2680 		ptr = btrfs_item_ptr_offset(eb, slot);
2681 		cur_offset = 0;
2682 
2683 		while (cur_offset < item_size) {
2684 			u32 name_len;
2685 
2686 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2687 			parent = btrfs_inode_extref_parent(eb, extref);
2688 			name_len = btrfs_inode_extref_name_len(eb, extref);
2689 			ret = inode_to_path(parent, name_len,
2690 				      (unsigned long)&extref->name, eb, ipath);
2691 			if (ret)
2692 				break;
2693 
2694 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2695 			cur_offset += sizeof(*extref);
2696 		}
2697 		free_extent_buffer(eb);
2698 
2699 		offset++;
2700 	}
2701 
2702 	btrfs_release_path(path);
2703 
2704 	return ret;
2705 }
2706 
2707 /*
2708  * returns 0 if the path could be dumped (probably truncated)
2709  * returns <0 in case of an error
2710  */
2711 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2712 			 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2713 {
2714 	char *fspath;
2715 	char *fspath_min;
2716 	int i = ipath->fspath->elem_cnt;
2717 	const int s_ptr = sizeof(char *);
2718 	u32 bytes_left;
2719 
2720 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2721 					ipath->fspath->bytes_left - s_ptr : 0;
2722 
2723 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2724 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2725 				   name_off, eb, inum, fspath_min, bytes_left);
2726 	if (IS_ERR(fspath))
2727 		return PTR_ERR(fspath);
2728 
2729 	if (fspath > fspath_min) {
2730 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2731 		++ipath->fspath->elem_cnt;
2732 		ipath->fspath->bytes_left = fspath - fspath_min;
2733 	} else {
2734 		++ipath->fspath->elem_missed;
2735 		ipath->fspath->bytes_missing += fspath_min - fspath;
2736 		ipath->fspath->bytes_left = 0;
2737 	}
2738 
2739 	return 0;
2740 }
2741 
2742 /*
2743  * this dumps all file system paths to the inode into the ipath struct, provided
2744  * is has been created large enough. each path is zero-terminated and accessed
2745  * from ipath->fspath->val[i].
2746  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2747  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2748  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2749  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2750  * have been needed to return all paths.
2751  */
2752 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2753 {
2754 	int ret;
2755 	int found_refs = 0;
2756 
2757 	ret = iterate_inode_refs(inum, ipath);
2758 	if (!ret)
2759 		++found_refs;
2760 	else if (ret != -ENOENT)
2761 		return ret;
2762 
2763 	ret = iterate_inode_extrefs(inum, ipath);
2764 	if (ret == -ENOENT && found_refs)
2765 		return 0;
2766 
2767 	return ret;
2768 }
2769 
2770 struct btrfs_data_container *init_data_container(u32 total_bytes)
2771 {
2772 	struct btrfs_data_container *data;
2773 	size_t alloc_bytes;
2774 
2775 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2776 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2777 	if (!data)
2778 		return ERR_PTR(-ENOMEM);
2779 
2780 	if (total_bytes >= sizeof(*data)) {
2781 		data->bytes_left = total_bytes - sizeof(*data);
2782 		data->bytes_missing = 0;
2783 	} else {
2784 		data->bytes_missing = sizeof(*data) - total_bytes;
2785 		data->bytes_left = 0;
2786 	}
2787 
2788 	data->elem_cnt = 0;
2789 	data->elem_missed = 0;
2790 
2791 	return data;
2792 }
2793 
2794 /*
2795  * allocates space to return multiple file system paths for an inode.
2796  * total_bytes to allocate are passed, note that space usable for actual path
2797  * information will be total_bytes - sizeof(struct inode_fs_paths).
2798  * the returned pointer must be freed with free_ipath() in the end.
2799  */
2800 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2801 					struct btrfs_path *path)
2802 {
2803 	struct inode_fs_paths *ifp;
2804 	struct btrfs_data_container *fspath;
2805 
2806 	fspath = init_data_container(total_bytes);
2807 	if (IS_ERR(fspath))
2808 		return ERR_CAST(fspath);
2809 
2810 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2811 	if (!ifp) {
2812 		kvfree(fspath);
2813 		return ERR_PTR(-ENOMEM);
2814 	}
2815 
2816 	ifp->btrfs_path = path;
2817 	ifp->fspath = fspath;
2818 	ifp->fs_root = fs_root;
2819 
2820 	return ifp;
2821 }
2822 
2823 void free_ipath(struct inode_fs_paths *ipath)
2824 {
2825 	if (!ipath)
2826 		return;
2827 	kvfree(ipath->fspath);
2828 	kfree(ipath);
2829 }
2830 
2831 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2832 {
2833 	struct btrfs_backref_iter *ret;
2834 
2835 	ret = kzalloc(sizeof(*ret), GFP_NOFS);
2836 	if (!ret)
2837 		return NULL;
2838 
2839 	ret->path = btrfs_alloc_path();
2840 	if (!ret->path) {
2841 		kfree(ret);
2842 		return NULL;
2843 	}
2844 
2845 	/* Current backref iterator only supports iteration in commit root */
2846 	ret->path->search_commit_root = 1;
2847 	ret->path->skip_locking = 1;
2848 	ret->fs_info = fs_info;
2849 
2850 	return ret;
2851 }
2852 
2853 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2854 {
2855 	struct btrfs_fs_info *fs_info = iter->fs_info;
2856 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2857 	struct btrfs_path *path = iter->path;
2858 	struct btrfs_extent_item *ei;
2859 	struct btrfs_key key;
2860 	int ret;
2861 
2862 	key.objectid = bytenr;
2863 	key.type = BTRFS_METADATA_ITEM_KEY;
2864 	key.offset = (u64)-1;
2865 	iter->bytenr = bytenr;
2866 
2867 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2868 	if (ret < 0)
2869 		return ret;
2870 	if (ret == 0) {
2871 		ret = -EUCLEAN;
2872 		goto release;
2873 	}
2874 	if (path->slots[0] == 0) {
2875 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2876 		ret = -EUCLEAN;
2877 		goto release;
2878 	}
2879 	path->slots[0]--;
2880 
2881 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2882 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2883 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2884 		ret = -ENOENT;
2885 		goto release;
2886 	}
2887 	memcpy(&iter->cur_key, &key, sizeof(key));
2888 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2889 						    path->slots[0]);
2890 	iter->end_ptr = (u32)(iter->item_ptr +
2891 			btrfs_item_size(path->nodes[0], path->slots[0]));
2892 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2893 			    struct btrfs_extent_item);
2894 
2895 	/*
2896 	 * Only support iteration on tree backref yet.
2897 	 *
2898 	 * This is an extra precaution for non skinny-metadata, where
2899 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2900 	 * extent flags to determine if it's a tree block.
2901 	 */
2902 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2903 		ret = -ENOTSUPP;
2904 		goto release;
2905 	}
2906 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2907 
2908 	/* If there is no inline backref, go search for keyed backref */
2909 	if (iter->cur_ptr >= iter->end_ptr) {
2910 		ret = btrfs_next_item(extent_root, path);
2911 
2912 		/* No inline nor keyed ref */
2913 		if (ret > 0) {
2914 			ret = -ENOENT;
2915 			goto release;
2916 		}
2917 		if (ret < 0)
2918 			goto release;
2919 
2920 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2921 				path->slots[0]);
2922 		if (iter->cur_key.objectid != bytenr ||
2923 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2924 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2925 			ret = -ENOENT;
2926 			goto release;
2927 		}
2928 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2929 							   path->slots[0]);
2930 		iter->item_ptr = iter->cur_ptr;
2931 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2932 				      path->nodes[0], path->slots[0]));
2933 	}
2934 
2935 	return 0;
2936 release:
2937 	btrfs_backref_iter_release(iter);
2938 	return ret;
2939 }
2940 
2941 /*
2942  * Go to the next backref item of current bytenr, can be either inlined or
2943  * keyed.
2944  *
2945  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2946  *
2947  * Return 0 if we get next backref without problem.
2948  * Return >0 if there is no extra backref for this bytenr.
2949  * Return <0 if there is something wrong happened.
2950  */
2951 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2952 {
2953 	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2954 	struct btrfs_root *extent_root;
2955 	struct btrfs_path *path = iter->path;
2956 	struct btrfs_extent_inline_ref *iref;
2957 	int ret;
2958 	u32 size;
2959 
2960 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2961 		/* We're still inside the inline refs */
2962 		ASSERT(iter->cur_ptr < iter->end_ptr);
2963 
2964 		if (btrfs_backref_has_tree_block_info(iter)) {
2965 			/* First tree block info */
2966 			size = sizeof(struct btrfs_tree_block_info);
2967 		} else {
2968 			/* Use inline ref type to determine the size */
2969 			int type;
2970 
2971 			iref = (struct btrfs_extent_inline_ref *)
2972 				((unsigned long)iter->cur_ptr);
2973 			type = btrfs_extent_inline_ref_type(eb, iref);
2974 
2975 			size = btrfs_extent_inline_ref_size(type);
2976 		}
2977 		iter->cur_ptr += size;
2978 		if (iter->cur_ptr < iter->end_ptr)
2979 			return 0;
2980 
2981 		/* All inline items iterated, fall through */
2982 	}
2983 
2984 	/* We're at keyed items, there is no inline item, go to the next one */
2985 	extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2986 	ret = btrfs_next_item(extent_root, iter->path);
2987 	if (ret)
2988 		return ret;
2989 
2990 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2991 	if (iter->cur_key.objectid != iter->bytenr ||
2992 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2993 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2994 		return 1;
2995 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2996 					path->slots[0]);
2997 	iter->cur_ptr = iter->item_ptr;
2998 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
2999 						path->slots[0]);
3000 	return 0;
3001 }
3002 
3003 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
3004 			      struct btrfs_backref_cache *cache, bool is_reloc)
3005 {
3006 	int i;
3007 
3008 	cache->rb_root = RB_ROOT;
3009 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3010 		INIT_LIST_HEAD(&cache->pending[i]);
3011 	INIT_LIST_HEAD(&cache->changed);
3012 	INIT_LIST_HEAD(&cache->detached);
3013 	INIT_LIST_HEAD(&cache->leaves);
3014 	INIT_LIST_HEAD(&cache->pending_edge);
3015 	INIT_LIST_HEAD(&cache->useless_node);
3016 	cache->fs_info = fs_info;
3017 	cache->is_reloc = is_reloc;
3018 }
3019 
3020 struct btrfs_backref_node *btrfs_backref_alloc_node(
3021 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
3022 {
3023 	struct btrfs_backref_node *node;
3024 
3025 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3026 	node = kzalloc(sizeof(*node), GFP_NOFS);
3027 	if (!node)
3028 		return node;
3029 
3030 	INIT_LIST_HEAD(&node->list);
3031 	INIT_LIST_HEAD(&node->upper);
3032 	INIT_LIST_HEAD(&node->lower);
3033 	RB_CLEAR_NODE(&node->rb_node);
3034 	cache->nr_nodes++;
3035 	node->level = level;
3036 	node->bytenr = bytenr;
3037 
3038 	return node;
3039 }
3040 
3041 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3042 		struct btrfs_backref_cache *cache)
3043 {
3044 	struct btrfs_backref_edge *edge;
3045 
3046 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
3047 	if (edge)
3048 		cache->nr_edges++;
3049 	return edge;
3050 }
3051 
3052 /*
3053  * Drop the backref node from cache, also cleaning up all its
3054  * upper edges and any uncached nodes in the path.
3055  *
3056  * This cleanup happens bottom up, thus the node should either
3057  * be the lowest node in the cache or a detached node.
3058  */
3059 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3060 				struct btrfs_backref_node *node)
3061 {
3062 	struct btrfs_backref_node *upper;
3063 	struct btrfs_backref_edge *edge;
3064 
3065 	if (!node)
3066 		return;
3067 
3068 	BUG_ON(!node->lowest && !node->detached);
3069 	while (!list_empty(&node->upper)) {
3070 		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
3071 				  list[LOWER]);
3072 		upper = edge->node[UPPER];
3073 		list_del(&edge->list[LOWER]);
3074 		list_del(&edge->list[UPPER]);
3075 		btrfs_backref_free_edge(cache, edge);
3076 
3077 		/*
3078 		 * Add the node to leaf node list if no other child block
3079 		 * cached.
3080 		 */
3081 		if (list_empty(&upper->lower)) {
3082 			list_add_tail(&upper->lower, &cache->leaves);
3083 			upper->lowest = 1;
3084 		}
3085 	}
3086 
3087 	btrfs_backref_drop_node(cache, node);
3088 }
3089 
3090 /*
3091  * Release all nodes/edges from current cache
3092  */
3093 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3094 {
3095 	struct btrfs_backref_node *node;
3096 	int i;
3097 
3098 	while (!list_empty(&cache->detached)) {
3099 		node = list_entry(cache->detached.next,
3100 				  struct btrfs_backref_node, list);
3101 		btrfs_backref_cleanup_node(cache, node);
3102 	}
3103 
3104 	while (!list_empty(&cache->leaves)) {
3105 		node = list_entry(cache->leaves.next,
3106 				  struct btrfs_backref_node, lower);
3107 		btrfs_backref_cleanup_node(cache, node);
3108 	}
3109 
3110 	cache->last_trans = 0;
3111 
3112 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3113 		ASSERT(list_empty(&cache->pending[i]));
3114 	ASSERT(list_empty(&cache->pending_edge));
3115 	ASSERT(list_empty(&cache->useless_node));
3116 	ASSERT(list_empty(&cache->changed));
3117 	ASSERT(list_empty(&cache->detached));
3118 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
3119 	ASSERT(!cache->nr_nodes);
3120 	ASSERT(!cache->nr_edges);
3121 }
3122 
3123 /*
3124  * Handle direct tree backref
3125  *
3126  * Direct tree backref means, the backref item shows its parent bytenr
3127  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3128  *
3129  * @ref_key:	The converted backref key.
3130  *		For keyed backref, it's the item key.
3131  *		For inlined backref, objectid is the bytenr,
3132  *		type is btrfs_inline_ref_type, offset is
3133  *		btrfs_inline_ref_offset.
3134  */
3135 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3136 				      struct btrfs_key *ref_key,
3137 				      struct btrfs_backref_node *cur)
3138 {
3139 	struct btrfs_backref_edge *edge;
3140 	struct btrfs_backref_node *upper;
3141 	struct rb_node *rb_node;
3142 
3143 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3144 
3145 	/* Only reloc root uses backref pointing to itself */
3146 	if (ref_key->objectid == ref_key->offset) {
3147 		struct btrfs_root *root;
3148 
3149 		cur->is_reloc_root = 1;
3150 		/* Only reloc backref cache cares about a specific root */
3151 		if (cache->is_reloc) {
3152 			root = find_reloc_root(cache->fs_info, cur->bytenr);
3153 			if (!root)
3154 				return -ENOENT;
3155 			cur->root = root;
3156 		} else {
3157 			/*
3158 			 * For generic purpose backref cache, reloc root node
3159 			 * is useless.
3160 			 */
3161 			list_add(&cur->list, &cache->useless_node);
3162 		}
3163 		return 0;
3164 	}
3165 
3166 	edge = btrfs_backref_alloc_edge(cache);
3167 	if (!edge)
3168 		return -ENOMEM;
3169 
3170 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3171 	if (!rb_node) {
3172 		/* Parent node not yet cached */
3173 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3174 					   cur->level + 1);
3175 		if (!upper) {
3176 			btrfs_backref_free_edge(cache, edge);
3177 			return -ENOMEM;
3178 		}
3179 
3180 		/*
3181 		 *  Backrefs for the upper level block isn't cached, add the
3182 		 *  block to pending list
3183 		 */
3184 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3185 	} else {
3186 		/* Parent node already cached */
3187 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3188 		ASSERT(upper->checked);
3189 		INIT_LIST_HEAD(&edge->list[UPPER]);
3190 	}
3191 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
3192 	return 0;
3193 }
3194 
3195 /*
3196  * Handle indirect tree backref
3197  *
3198  * Indirect tree backref means, we only know which tree the node belongs to.
3199  * We still need to do a tree search to find out the parents. This is for
3200  * TREE_BLOCK_REF backref (keyed or inlined).
3201  *
3202  * @trans:	Transaction handle.
3203  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
3204  * @tree_key:	The first key of this tree block.
3205  * @path:	A clean (released) path, to avoid allocating path every time
3206  *		the function get called.
3207  */
3208 static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans,
3209 					struct btrfs_backref_cache *cache,
3210 					struct btrfs_path *path,
3211 					struct btrfs_key *ref_key,
3212 					struct btrfs_key *tree_key,
3213 					struct btrfs_backref_node *cur)
3214 {
3215 	struct btrfs_fs_info *fs_info = cache->fs_info;
3216 	struct btrfs_backref_node *upper;
3217 	struct btrfs_backref_node *lower;
3218 	struct btrfs_backref_edge *edge;
3219 	struct extent_buffer *eb;
3220 	struct btrfs_root *root;
3221 	struct rb_node *rb_node;
3222 	int level;
3223 	bool need_check = true;
3224 	int ret;
3225 
3226 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
3227 	if (IS_ERR(root))
3228 		return PTR_ERR(root);
3229 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3230 		cur->cowonly = 1;
3231 
3232 	if (btrfs_root_level(&root->root_item) == cur->level) {
3233 		/* Tree root */
3234 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3235 		/*
3236 		 * For reloc backref cache, we may ignore reloc root.  But for
3237 		 * general purpose backref cache, we can't rely on
3238 		 * btrfs_should_ignore_reloc_root() as it may conflict with
3239 		 * current running relocation and lead to missing root.
3240 		 *
3241 		 * For general purpose backref cache, reloc root detection is
3242 		 * completely relying on direct backref (key->offset is parent
3243 		 * bytenr), thus only do such check for reloc cache.
3244 		 */
3245 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3246 			btrfs_put_root(root);
3247 			list_add(&cur->list, &cache->useless_node);
3248 		} else {
3249 			cur->root = root;
3250 		}
3251 		return 0;
3252 	}
3253 
3254 	level = cur->level + 1;
3255 
3256 	/* Search the tree to find parent blocks referring to the block */
3257 	path->search_commit_root = 1;
3258 	path->skip_locking = 1;
3259 	path->lowest_level = level;
3260 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3261 	path->lowest_level = 0;
3262 	if (ret < 0) {
3263 		btrfs_put_root(root);
3264 		return ret;
3265 	}
3266 	if (ret > 0 && path->slots[level] > 0)
3267 		path->slots[level]--;
3268 
3269 	eb = path->nodes[level];
3270 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3271 		btrfs_err(fs_info,
3272 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
3273 			  cur->bytenr, level - 1, root->root_key.objectid,
3274 			  tree_key->objectid, tree_key->type, tree_key->offset);
3275 		btrfs_put_root(root);
3276 		ret = -ENOENT;
3277 		goto out;
3278 	}
3279 	lower = cur;
3280 
3281 	/* Add all nodes and edges in the path */
3282 	for (; level < BTRFS_MAX_LEVEL; level++) {
3283 		if (!path->nodes[level]) {
3284 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
3285 			       lower->bytenr);
3286 			/* Same as previous should_ignore_reloc_root() call */
3287 			if (btrfs_should_ignore_reloc_root(root) &&
3288 			    cache->is_reloc) {
3289 				btrfs_put_root(root);
3290 				list_add(&lower->list, &cache->useless_node);
3291 			} else {
3292 				lower->root = root;
3293 			}
3294 			break;
3295 		}
3296 
3297 		edge = btrfs_backref_alloc_edge(cache);
3298 		if (!edge) {
3299 			btrfs_put_root(root);
3300 			ret = -ENOMEM;
3301 			goto out;
3302 		}
3303 
3304 		eb = path->nodes[level];
3305 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
3306 		if (!rb_node) {
3307 			upper = btrfs_backref_alloc_node(cache, eb->start,
3308 							 lower->level + 1);
3309 			if (!upper) {
3310 				btrfs_put_root(root);
3311 				btrfs_backref_free_edge(cache, edge);
3312 				ret = -ENOMEM;
3313 				goto out;
3314 			}
3315 			upper->owner = btrfs_header_owner(eb);
3316 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3317 				upper->cowonly = 1;
3318 
3319 			/*
3320 			 * If we know the block isn't shared we can avoid
3321 			 * checking its backrefs.
3322 			 */
3323 			if (btrfs_block_can_be_shared(trans, root, eb))
3324 				upper->checked = 0;
3325 			else
3326 				upper->checked = 1;
3327 
3328 			/*
3329 			 * Add the block to pending list if we need to check its
3330 			 * backrefs, we only do this once while walking up a
3331 			 * tree as we will catch anything else later on.
3332 			 */
3333 			if (!upper->checked && need_check) {
3334 				need_check = false;
3335 				list_add_tail(&edge->list[UPPER],
3336 					      &cache->pending_edge);
3337 			} else {
3338 				if (upper->checked)
3339 					need_check = true;
3340 				INIT_LIST_HEAD(&edge->list[UPPER]);
3341 			}
3342 		} else {
3343 			upper = rb_entry(rb_node, struct btrfs_backref_node,
3344 					 rb_node);
3345 			ASSERT(upper->checked);
3346 			INIT_LIST_HEAD(&edge->list[UPPER]);
3347 			if (!upper->owner)
3348 				upper->owner = btrfs_header_owner(eb);
3349 		}
3350 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3351 
3352 		if (rb_node) {
3353 			btrfs_put_root(root);
3354 			break;
3355 		}
3356 		lower = upper;
3357 		upper = NULL;
3358 	}
3359 out:
3360 	btrfs_release_path(path);
3361 	return ret;
3362 }
3363 
3364 /*
3365  * Add backref node @cur into @cache.
3366  *
3367  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3368  *	 links aren't yet bi-directional. Needs to finish such links.
3369  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
3370  *
3371  * @trans:	Transaction handle.
3372  * @path:	Released path for indirect tree backref lookup
3373  * @iter:	Released backref iter for extent tree search
3374  * @node_key:	The first key of the tree block
3375  */
3376 int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
3377 				struct btrfs_backref_cache *cache,
3378 				struct btrfs_path *path,
3379 				struct btrfs_backref_iter *iter,
3380 				struct btrfs_key *node_key,
3381 				struct btrfs_backref_node *cur)
3382 {
3383 	struct btrfs_backref_edge *edge;
3384 	struct btrfs_backref_node *exist;
3385 	int ret;
3386 
3387 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
3388 	if (ret < 0)
3389 		return ret;
3390 	/*
3391 	 * We skip the first btrfs_tree_block_info, as we don't use the key
3392 	 * stored in it, but fetch it from the tree block
3393 	 */
3394 	if (btrfs_backref_has_tree_block_info(iter)) {
3395 		ret = btrfs_backref_iter_next(iter);
3396 		if (ret < 0)
3397 			goto out;
3398 		/* No extra backref? This means the tree block is corrupted */
3399 		if (ret > 0) {
3400 			ret = -EUCLEAN;
3401 			goto out;
3402 		}
3403 	}
3404 	WARN_ON(cur->checked);
3405 	if (!list_empty(&cur->upper)) {
3406 		/*
3407 		 * The backref was added previously when processing backref of
3408 		 * type BTRFS_TREE_BLOCK_REF_KEY
3409 		 */
3410 		ASSERT(list_is_singular(&cur->upper));
3411 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3412 				  list[LOWER]);
3413 		ASSERT(list_empty(&edge->list[UPPER]));
3414 		exist = edge->node[UPPER];
3415 		/*
3416 		 * Add the upper level block to pending list if we need check
3417 		 * its backrefs
3418 		 */
3419 		if (!exist->checked)
3420 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3421 	} else {
3422 		exist = NULL;
3423 	}
3424 
3425 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3426 		struct extent_buffer *eb;
3427 		struct btrfs_key key;
3428 		int type;
3429 
3430 		cond_resched();
3431 		eb = btrfs_backref_get_eb(iter);
3432 
3433 		key.objectid = iter->bytenr;
3434 		if (btrfs_backref_iter_is_inline_ref(iter)) {
3435 			struct btrfs_extent_inline_ref *iref;
3436 
3437 			/* Update key for inline backref */
3438 			iref = (struct btrfs_extent_inline_ref *)
3439 				((unsigned long)iter->cur_ptr);
3440 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3441 							BTRFS_REF_TYPE_BLOCK);
3442 			if (type == BTRFS_REF_TYPE_INVALID) {
3443 				ret = -EUCLEAN;
3444 				goto out;
3445 			}
3446 			key.type = type;
3447 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3448 		} else {
3449 			key.type = iter->cur_key.type;
3450 			key.offset = iter->cur_key.offset;
3451 		}
3452 
3453 		/*
3454 		 * Parent node found and matches current inline ref, no need to
3455 		 * rebuild this node for this inline ref
3456 		 */
3457 		if (exist &&
3458 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3459 		      exist->owner == key.offset) ||
3460 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3461 		      exist->bytenr == key.offset))) {
3462 			exist = NULL;
3463 			continue;
3464 		}
3465 
3466 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3467 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3468 			ret = handle_direct_tree_backref(cache, &key, cur);
3469 			if (ret < 0)
3470 				goto out;
3471 		} else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) {
3472 			/*
3473 			 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref
3474 			 * offset means the root objectid. We need to search
3475 			 * the tree to get its parent bytenr.
3476 			 */
3477 			ret = handle_indirect_tree_backref(trans, cache, path,
3478 							   &key, node_key, cur);
3479 			if (ret < 0)
3480 				goto out;
3481 		}
3482 		/*
3483 		 * Unrecognized tree backref items (if it can pass tree-checker)
3484 		 * would be ignored.
3485 		 */
3486 	}
3487 	ret = 0;
3488 	cur->checked = 1;
3489 	WARN_ON(exist);
3490 out:
3491 	btrfs_backref_iter_release(iter);
3492 	return ret;
3493 }
3494 
3495 /*
3496  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3497  */
3498 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3499 				     struct btrfs_backref_node *start)
3500 {
3501 	struct list_head *useless_node = &cache->useless_node;
3502 	struct btrfs_backref_edge *edge;
3503 	struct rb_node *rb_node;
3504 	LIST_HEAD(pending_edge);
3505 
3506 	ASSERT(start->checked);
3507 
3508 	/* Insert this node to cache if it's not COW-only */
3509 	if (!start->cowonly) {
3510 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3511 					   &start->rb_node);
3512 		if (rb_node)
3513 			btrfs_backref_panic(cache->fs_info, start->bytenr,
3514 					    -EEXIST);
3515 		list_add_tail(&start->lower, &cache->leaves);
3516 	}
3517 
3518 	/*
3519 	 * Use breadth first search to iterate all related edges.
3520 	 *
3521 	 * The starting points are all the edges of this node
3522 	 */
3523 	list_for_each_entry(edge, &start->upper, list[LOWER])
3524 		list_add_tail(&edge->list[UPPER], &pending_edge);
3525 
3526 	while (!list_empty(&pending_edge)) {
3527 		struct btrfs_backref_node *upper;
3528 		struct btrfs_backref_node *lower;
3529 
3530 		edge = list_first_entry(&pending_edge,
3531 				struct btrfs_backref_edge, list[UPPER]);
3532 		list_del_init(&edge->list[UPPER]);
3533 		upper = edge->node[UPPER];
3534 		lower = edge->node[LOWER];
3535 
3536 		/* Parent is detached, no need to keep any edges */
3537 		if (upper->detached) {
3538 			list_del(&edge->list[LOWER]);
3539 			btrfs_backref_free_edge(cache, edge);
3540 
3541 			/* Lower node is orphan, queue for cleanup */
3542 			if (list_empty(&lower->upper))
3543 				list_add(&lower->list, useless_node);
3544 			continue;
3545 		}
3546 
3547 		/*
3548 		 * All new nodes added in current build_backref_tree() haven't
3549 		 * been linked to the cache rb tree.
3550 		 * So if we have upper->rb_node populated, this means a cache
3551 		 * hit. We only need to link the edge, as @upper and all its
3552 		 * parents have already been linked.
3553 		 */
3554 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3555 			if (upper->lowest) {
3556 				list_del_init(&upper->lower);
3557 				upper->lowest = 0;
3558 			}
3559 
3560 			list_add_tail(&edge->list[UPPER], &upper->lower);
3561 			continue;
3562 		}
3563 
3564 		/* Sanity check, we shouldn't have any unchecked nodes */
3565 		if (!upper->checked) {
3566 			ASSERT(0);
3567 			return -EUCLEAN;
3568 		}
3569 
3570 		/* Sanity check, COW-only node has non-COW-only parent */
3571 		if (start->cowonly != upper->cowonly) {
3572 			ASSERT(0);
3573 			return -EUCLEAN;
3574 		}
3575 
3576 		/* Only cache non-COW-only (subvolume trees) tree blocks */
3577 		if (!upper->cowonly) {
3578 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3579 						   &upper->rb_node);
3580 			if (rb_node) {
3581 				btrfs_backref_panic(cache->fs_info,
3582 						upper->bytenr, -EEXIST);
3583 				return -EUCLEAN;
3584 			}
3585 		}
3586 
3587 		list_add_tail(&edge->list[UPPER], &upper->lower);
3588 
3589 		/*
3590 		 * Also queue all the parent edges of this uncached node
3591 		 * to finish the upper linkage
3592 		 */
3593 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3594 			list_add_tail(&edge->list[UPPER], &pending_edge);
3595 	}
3596 	return 0;
3597 }
3598 
3599 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3600 				 struct btrfs_backref_node *node)
3601 {
3602 	struct btrfs_backref_node *lower;
3603 	struct btrfs_backref_node *upper;
3604 	struct btrfs_backref_edge *edge;
3605 
3606 	while (!list_empty(&cache->useless_node)) {
3607 		lower = list_first_entry(&cache->useless_node,
3608 				   struct btrfs_backref_node, list);
3609 		list_del_init(&lower->list);
3610 	}
3611 	while (!list_empty(&cache->pending_edge)) {
3612 		edge = list_first_entry(&cache->pending_edge,
3613 				struct btrfs_backref_edge, list[UPPER]);
3614 		list_del(&edge->list[UPPER]);
3615 		list_del(&edge->list[LOWER]);
3616 		lower = edge->node[LOWER];
3617 		upper = edge->node[UPPER];
3618 		btrfs_backref_free_edge(cache, edge);
3619 
3620 		/*
3621 		 * Lower is no longer linked to any upper backref nodes and
3622 		 * isn't in the cache, we can free it ourselves.
3623 		 */
3624 		if (list_empty(&lower->upper) &&
3625 		    RB_EMPTY_NODE(&lower->rb_node))
3626 			list_add(&lower->list, &cache->useless_node);
3627 
3628 		if (!RB_EMPTY_NODE(&upper->rb_node))
3629 			continue;
3630 
3631 		/* Add this guy's upper edges to the list to process */
3632 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3633 			list_add_tail(&edge->list[UPPER],
3634 				      &cache->pending_edge);
3635 		if (list_empty(&upper->upper))
3636 			list_add(&upper->list, &cache->useless_node);
3637 	}
3638 
3639 	while (!list_empty(&cache->useless_node)) {
3640 		lower = list_first_entry(&cache->useless_node,
3641 				   struct btrfs_backref_node, list);
3642 		list_del_init(&lower->list);
3643 		if (lower == node)
3644 			node = NULL;
3645 		btrfs_backref_drop_node(cache, lower);
3646 	}
3647 
3648 	btrfs_backref_cleanup_node(cache, node);
3649 	ASSERT(list_empty(&cache->useless_node) &&
3650 	       list_empty(&cache->pending_edge));
3651 }
3652