xref: /linux/fs/btrfs/backref.c (revision 127ef6274a682d8ce88fd9e6614c0b30c7f8ef34)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "backref.h"
22 #include "ulist.h"
23 #include "transaction.h"
24 #include "delayed-ref.h"
25 
26 /*
27  * this structure records all encountered refs on the way up to the root
28  */
29 struct __prelim_ref {
30 	struct list_head list;
31 	u64 root_id;
32 	struct btrfs_key key;
33 	int level;
34 	int count;
35 	u64 parent;
36 	u64 wanted_disk_byte;
37 };
38 
39 static int __add_prelim_ref(struct list_head *head, u64 root_id,
40 			    struct btrfs_key *key, int level, u64 parent,
41 			    u64 wanted_disk_byte, int count)
42 {
43 	struct __prelim_ref *ref;
44 
45 	/* in case we're adding delayed refs, we're holding the refs spinlock */
46 	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
47 	if (!ref)
48 		return -ENOMEM;
49 
50 	ref->root_id = root_id;
51 	if (key)
52 		ref->key = *key;
53 	else
54 		memset(&ref->key, 0, sizeof(ref->key));
55 
56 	ref->level = level;
57 	ref->count = count;
58 	ref->parent = parent;
59 	ref->wanted_disk_byte = wanted_disk_byte;
60 	list_add_tail(&ref->list, head);
61 
62 	return 0;
63 }
64 
65 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
66 				struct ulist *parents,
67 				struct extent_buffer *eb, int level,
68 				u64 wanted_objectid, u64 wanted_disk_byte)
69 {
70 	int ret;
71 	int slot;
72 	struct btrfs_file_extent_item *fi;
73 	struct btrfs_key key;
74 	u64 disk_byte;
75 
76 add_parent:
77 	ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
78 	if (ret < 0)
79 		return ret;
80 
81 	if (level != 0)
82 		return 0;
83 
84 	/*
85 	 * if the current leaf is full with EXTENT_DATA items, we must
86 	 * check the next one if that holds a reference as well.
87 	 * ref->count cannot be used to skip this check.
88 	 * repeat this until we don't find any additional EXTENT_DATA items.
89 	 */
90 	while (1) {
91 		ret = btrfs_next_leaf(root, path);
92 		if (ret < 0)
93 			return ret;
94 		if (ret)
95 			return 0;
96 
97 		eb = path->nodes[0];
98 		for (slot = 0; slot < btrfs_header_nritems(eb); ++slot) {
99 			btrfs_item_key_to_cpu(eb, &key, slot);
100 			if (key.objectid != wanted_objectid ||
101 			    key.type != BTRFS_EXTENT_DATA_KEY)
102 				return 0;
103 			fi = btrfs_item_ptr(eb, slot,
104 						struct btrfs_file_extent_item);
105 			disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
106 			if (disk_byte == wanted_disk_byte)
107 				goto add_parent;
108 		}
109 	}
110 
111 	return 0;
112 }
113 
114 /*
115  * resolve an indirect backref in the form (root_id, key, level)
116  * to a logical address
117  */
118 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
119 					int search_commit_root,
120 					struct __prelim_ref *ref,
121 					struct ulist *parents)
122 {
123 	struct btrfs_path *path;
124 	struct btrfs_root *root;
125 	struct btrfs_key root_key;
126 	struct btrfs_key key = {0};
127 	struct extent_buffer *eb;
128 	int ret = 0;
129 	int root_level;
130 	int level = ref->level;
131 
132 	path = btrfs_alloc_path();
133 	if (!path)
134 		return -ENOMEM;
135 	path->search_commit_root = !!search_commit_root;
136 
137 	root_key.objectid = ref->root_id;
138 	root_key.type = BTRFS_ROOT_ITEM_KEY;
139 	root_key.offset = (u64)-1;
140 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
141 	if (IS_ERR(root)) {
142 		ret = PTR_ERR(root);
143 		goto out;
144 	}
145 
146 	rcu_read_lock();
147 	root_level = btrfs_header_level(root->node);
148 	rcu_read_unlock();
149 
150 	if (root_level + 1 == level)
151 		goto out;
152 
153 	path->lowest_level = level;
154 	ret = btrfs_search_slot(NULL, root, &ref->key, path, 0, 0);
155 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
156 		 "%d for key (%llu %u %llu)\n",
157 		 (unsigned long long)ref->root_id, level, ref->count, ret,
158 		 (unsigned long long)ref->key.objectid, ref->key.type,
159 		 (unsigned long long)ref->key.offset);
160 	if (ret < 0)
161 		goto out;
162 
163 	eb = path->nodes[level];
164 	if (!eb) {
165 		WARN_ON(1);
166 		ret = 1;
167 		goto out;
168 	}
169 
170 	if (level == 0) {
171 		if (ret == 1 && path->slots[0] >= btrfs_header_nritems(eb)) {
172 			ret = btrfs_next_leaf(root, path);
173 			if (ret)
174 				goto out;
175 			eb = path->nodes[0];
176 		}
177 
178 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
179 	}
180 
181 	/* the last two parameters will only be used for level == 0 */
182 	ret = add_all_parents(root, path, parents, eb, level, key.objectid,
183 				ref->wanted_disk_byte);
184 out:
185 	btrfs_free_path(path);
186 	return ret;
187 }
188 
189 /*
190  * resolve all indirect backrefs from the list
191  */
192 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
193 				   int search_commit_root,
194 				   struct list_head *head)
195 {
196 	int err;
197 	int ret = 0;
198 	struct __prelim_ref *ref;
199 	struct __prelim_ref *ref_safe;
200 	struct __prelim_ref *new_ref;
201 	struct ulist *parents;
202 	struct ulist_node *node;
203 
204 	parents = ulist_alloc(GFP_NOFS);
205 	if (!parents)
206 		return -ENOMEM;
207 
208 	/*
209 	 * _safe allows us to insert directly after the current item without
210 	 * iterating over the newly inserted items.
211 	 * we're also allowed to re-assign ref during iteration.
212 	 */
213 	list_for_each_entry_safe(ref, ref_safe, head, list) {
214 		if (ref->parent)	/* already direct */
215 			continue;
216 		if (ref->count == 0)
217 			continue;
218 		err = __resolve_indirect_ref(fs_info, search_commit_root,
219 					     ref, parents);
220 		if (err) {
221 			if (ret == 0)
222 				ret = err;
223 			continue;
224 		}
225 
226 		/* we put the first parent into the ref at hand */
227 		node = ulist_next(parents, NULL);
228 		ref->parent = node ? node->val : 0;
229 
230 		/* additional parents require new refs being added here */
231 		while ((node = ulist_next(parents, node))) {
232 			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
233 			if (!new_ref) {
234 				ret = -ENOMEM;
235 				break;
236 			}
237 			memcpy(new_ref, ref, sizeof(*ref));
238 			new_ref->parent = node->val;
239 			list_add(&new_ref->list, &ref->list);
240 		}
241 		ulist_reinit(parents);
242 	}
243 
244 	ulist_free(parents);
245 	return ret;
246 }
247 
248 /*
249  * merge two lists of backrefs and adjust counts accordingly
250  *
251  * mode = 1: merge identical keys, if key is set
252  * mode = 2: merge identical parents
253  */
254 static int __merge_refs(struct list_head *head, int mode)
255 {
256 	struct list_head *pos1;
257 
258 	list_for_each(pos1, head) {
259 		struct list_head *n2;
260 		struct list_head *pos2;
261 		struct __prelim_ref *ref1;
262 
263 		ref1 = list_entry(pos1, struct __prelim_ref, list);
264 
265 		if (mode == 1 && ref1->key.type == 0)
266 			continue;
267 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
268 		     pos2 = n2, n2 = pos2->next) {
269 			struct __prelim_ref *ref2;
270 
271 			ref2 = list_entry(pos2, struct __prelim_ref, list);
272 
273 			if (mode == 1) {
274 				if (memcmp(&ref1->key, &ref2->key,
275 					   sizeof(ref1->key)) ||
276 				    ref1->level != ref2->level ||
277 				    ref1->root_id != ref2->root_id)
278 					continue;
279 				ref1->count += ref2->count;
280 			} else {
281 				if (ref1->parent != ref2->parent)
282 					continue;
283 				ref1->count += ref2->count;
284 			}
285 			list_del(&ref2->list);
286 			kfree(ref2);
287 		}
288 
289 	}
290 	return 0;
291 }
292 
293 /*
294  * add all currently queued delayed refs from this head whose seq nr is
295  * smaller or equal that seq to the list
296  */
297 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
298 			      struct btrfs_key *info_key,
299 			      struct list_head *prefs)
300 {
301 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
302 	struct rb_node *n = &head->node.rb_node;
303 	int sgn;
304 	int ret = 0;
305 
306 	if (extent_op && extent_op->update_key)
307 		btrfs_disk_key_to_cpu(info_key, &extent_op->key);
308 
309 	while ((n = rb_prev(n))) {
310 		struct btrfs_delayed_ref_node *node;
311 		node = rb_entry(n, struct btrfs_delayed_ref_node,
312 				rb_node);
313 		if (node->bytenr != head->node.bytenr)
314 			break;
315 		WARN_ON(node->is_head);
316 
317 		if (node->seq > seq)
318 			continue;
319 
320 		switch (node->action) {
321 		case BTRFS_ADD_DELAYED_EXTENT:
322 		case BTRFS_UPDATE_DELAYED_HEAD:
323 			WARN_ON(1);
324 			continue;
325 		case BTRFS_ADD_DELAYED_REF:
326 			sgn = 1;
327 			break;
328 		case BTRFS_DROP_DELAYED_REF:
329 			sgn = -1;
330 			break;
331 		default:
332 			BUG_ON(1);
333 		}
334 		switch (node->type) {
335 		case BTRFS_TREE_BLOCK_REF_KEY: {
336 			struct btrfs_delayed_tree_ref *ref;
337 
338 			ref = btrfs_delayed_node_to_tree_ref(node);
339 			ret = __add_prelim_ref(prefs, ref->root, info_key,
340 					       ref->level + 1, 0, node->bytenr,
341 					       node->ref_mod * sgn);
342 			break;
343 		}
344 		case BTRFS_SHARED_BLOCK_REF_KEY: {
345 			struct btrfs_delayed_tree_ref *ref;
346 
347 			ref = btrfs_delayed_node_to_tree_ref(node);
348 			ret = __add_prelim_ref(prefs, ref->root, info_key,
349 					       ref->level + 1, ref->parent,
350 					       node->bytenr,
351 					       node->ref_mod * sgn);
352 			break;
353 		}
354 		case BTRFS_EXTENT_DATA_REF_KEY: {
355 			struct btrfs_delayed_data_ref *ref;
356 			struct btrfs_key key;
357 
358 			ref = btrfs_delayed_node_to_data_ref(node);
359 
360 			key.objectid = ref->objectid;
361 			key.type = BTRFS_EXTENT_DATA_KEY;
362 			key.offset = ref->offset;
363 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
364 					       node->bytenr,
365 					       node->ref_mod * sgn);
366 			break;
367 		}
368 		case BTRFS_SHARED_DATA_REF_KEY: {
369 			struct btrfs_delayed_data_ref *ref;
370 			struct btrfs_key key;
371 
372 			ref = btrfs_delayed_node_to_data_ref(node);
373 
374 			key.objectid = ref->objectid;
375 			key.type = BTRFS_EXTENT_DATA_KEY;
376 			key.offset = ref->offset;
377 			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
378 					       ref->parent, node->bytenr,
379 					       node->ref_mod * sgn);
380 			break;
381 		}
382 		default:
383 			WARN_ON(1);
384 		}
385 		BUG_ON(ret);
386 	}
387 
388 	return 0;
389 }
390 
391 /*
392  * add all inline backrefs for bytenr to the list
393  */
394 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
395 			     struct btrfs_path *path, u64 bytenr,
396 			     struct btrfs_key *info_key, int *info_level,
397 			     struct list_head *prefs)
398 {
399 	int ret = 0;
400 	int slot;
401 	struct extent_buffer *leaf;
402 	struct btrfs_key key;
403 	unsigned long ptr;
404 	unsigned long end;
405 	struct btrfs_extent_item *ei;
406 	u64 flags;
407 	u64 item_size;
408 
409 	/*
410 	 * enumerate all inline refs
411 	 */
412 	leaf = path->nodes[0];
413 	slot = path->slots[0] - 1;
414 
415 	item_size = btrfs_item_size_nr(leaf, slot);
416 	BUG_ON(item_size < sizeof(*ei));
417 
418 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
419 	flags = btrfs_extent_flags(leaf, ei);
420 
421 	ptr = (unsigned long)(ei + 1);
422 	end = (unsigned long)ei + item_size;
423 
424 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
425 		struct btrfs_tree_block_info *info;
426 		struct btrfs_disk_key disk_key;
427 
428 		info = (struct btrfs_tree_block_info *)ptr;
429 		*info_level = btrfs_tree_block_level(leaf, info);
430 		btrfs_tree_block_key(leaf, info, &disk_key);
431 		btrfs_disk_key_to_cpu(info_key, &disk_key);
432 		ptr += sizeof(struct btrfs_tree_block_info);
433 		BUG_ON(ptr > end);
434 	} else {
435 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
436 	}
437 
438 	while (ptr < end) {
439 		struct btrfs_extent_inline_ref *iref;
440 		u64 offset;
441 		int type;
442 
443 		iref = (struct btrfs_extent_inline_ref *)ptr;
444 		type = btrfs_extent_inline_ref_type(leaf, iref);
445 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
446 
447 		switch (type) {
448 		case BTRFS_SHARED_BLOCK_REF_KEY:
449 			ret = __add_prelim_ref(prefs, 0, info_key,
450 						*info_level + 1, offset,
451 						bytenr, 1);
452 			break;
453 		case BTRFS_SHARED_DATA_REF_KEY: {
454 			struct btrfs_shared_data_ref *sdref;
455 			int count;
456 
457 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
458 			count = btrfs_shared_data_ref_count(leaf, sdref);
459 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
460 					       bytenr, count);
461 			break;
462 		}
463 		case BTRFS_TREE_BLOCK_REF_KEY:
464 			ret = __add_prelim_ref(prefs, offset, info_key,
465 					       *info_level + 1, 0, bytenr, 1);
466 			break;
467 		case BTRFS_EXTENT_DATA_REF_KEY: {
468 			struct btrfs_extent_data_ref *dref;
469 			int count;
470 			u64 root;
471 
472 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
473 			count = btrfs_extent_data_ref_count(leaf, dref);
474 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
475 								      dref);
476 			key.type = BTRFS_EXTENT_DATA_KEY;
477 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
478 			root = btrfs_extent_data_ref_root(leaf, dref);
479 			ret = __add_prelim_ref(prefs, root, &key, 0, 0, bytenr,
480 						count);
481 			break;
482 		}
483 		default:
484 			WARN_ON(1);
485 		}
486 		BUG_ON(ret);
487 		ptr += btrfs_extent_inline_ref_size(type);
488 	}
489 
490 	return 0;
491 }
492 
493 /*
494  * add all non-inline backrefs for bytenr to the list
495  */
496 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
497 			    struct btrfs_path *path, u64 bytenr,
498 			    struct btrfs_key *info_key, int info_level,
499 			    struct list_head *prefs)
500 {
501 	struct btrfs_root *extent_root = fs_info->extent_root;
502 	int ret;
503 	int slot;
504 	struct extent_buffer *leaf;
505 	struct btrfs_key key;
506 
507 	while (1) {
508 		ret = btrfs_next_item(extent_root, path);
509 		if (ret < 0)
510 			break;
511 		if (ret) {
512 			ret = 0;
513 			break;
514 		}
515 
516 		slot = path->slots[0];
517 		leaf = path->nodes[0];
518 		btrfs_item_key_to_cpu(leaf, &key, slot);
519 
520 		if (key.objectid != bytenr)
521 			break;
522 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
523 			continue;
524 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
525 			break;
526 
527 		switch (key.type) {
528 		case BTRFS_SHARED_BLOCK_REF_KEY:
529 			ret = __add_prelim_ref(prefs, 0, info_key,
530 						info_level + 1, key.offset,
531 						bytenr, 1);
532 			break;
533 		case BTRFS_SHARED_DATA_REF_KEY: {
534 			struct btrfs_shared_data_ref *sdref;
535 			int count;
536 
537 			sdref = btrfs_item_ptr(leaf, slot,
538 					      struct btrfs_shared_data_ref);
539 			count = btrfs_shared_data_ref_count(leaf, sdref);
540 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
541 						bytenr, count);
542 			break;
543 		}
544 		case BTRFS_TREE_BLOCK_REF_KEY:
545 			ret = __add_prelim_ref(prefs, key.offset, info_key,
546 						info_level + 1, 0, bytenr, 1);
547 			break;
548 		case BTRFS_EXTENT_DATA_REF_KEY: {
549 			struct btrfs_extent_data_ref *dref;
550 			int count;
551 			u64 root;
552 
553 			dref = btrfs_item_ptr(leaf, slot,
554 					      struct btrfs_extent_data_ref);
555 			count = btrfs_extent_data_ref_count(leaf, dref);
556 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
557 								      dref);
558 			key.type = BTRFS_EXTENT_DATA_KEY;
559 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
560 			root = btrfs_extent_data_ref_root(leaf, dref);
561 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
562 						bytenr, count);
563 			break;
564 		}
565 		default:
566 			WARN_ON(1);
567 		}
568 		BUG_ON(ret);
569 	}
570 
571 	return ret;
572 }
573 
574 /*
575  * this adds all existing backrefs (inline backrefs, backrefs and delayed
576  * refs) for the given bytenr to the refs list, merges duplicates and resolves
577  * indirect refs to their parent bytenr.
578  * When roots are found, they're added to the roots list
579  *
580  * FIXME some caching might speed things up
581  */
582 static int find_parent_nodes(struct btrfs_trans_handle *trans,
583 			     struct btrfs_fs_info *fs_info, u64 bytenr,
584 			     u64 seq, struct ulist *refs, struct ulist *roots)
585 {
586 	struct btrfs_key key;
587 	struct btrfs_path *path;
588 	struct btrfs_key info_key = { 0 };
589 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
590 	struct btrfs_delayed_ref_head *head;
591 	int info_level = 0;
592 	int ret;
593 	int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
594 	struct list_head prefs_delayed;
595 	struct list_head prefs;
596 	struct __prelim_ref *ref;
597 
598 	INIT_LIST_HEAD(&prefs);
599 	INIT_LIST_HEAD(&prefs_delayed);
600 
601 	key.objectid = bytenr;
602 	key.type = BTRFS_EXTENT_ITEM_KEY;
603 	key.offset = (u64)-1;
604 
605 	path = btrfs_alloc_path();
606 	if (!path)
607 		return -ENOMEM;
608 	path->search_commit_root = !!search_commit_root;
609 
610 	/*
611 	 * grab both a lock on the path and a lock on the delayed ref head.
612 	 * We need both to get a consistent picture of how the refs look
613 	 * at a specified point in time
614 	 */
615 again:
616 	head = NULL;
617 
618 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
619 	if (ret < 0)
620 		goto out;
621 	BUG_ON(ret == 0);
622 
623 	if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
624 		/*
625 		 * look if there are updates for this ref queued and lock the
626 		 * head
627 		 */
628 		delayed_refs = &trans->transaction->delayed_refs;
629 		spin_lock(&delayed_refs->lock);
630 		head = btrfs_find_delayed_ref_head(trans, bytenr);
631 		if (head) {
632 			if (!mutex_trylock(&head->mutex)) {
633 				atomic_inc(&head->node.refs);
634 				spin_unlock(&delayed_refs->lock);
635 
636 				btrfs_release_path(path);
637 
638 				/*
639 				 * Mutex was contended, block until it's
640 				 * released and try again
641 				 */
642 				mutex_lock(&head->mutex);
643 				mutex_unlock(&head->mutex);
644 				btrfs_put_delayed_ref(&head->node);
645 				goto again;
646 			}
647 			ret = __add_delayed_refs(head, seq, &info_key,
648 						 &prefs_delayed);
649 			if (ret) {
650 				spin_unlock(&delayed_refs->lock);
651 				goto out;
652 			}
653 		}
654 		spin_unlock(&delayed_refs->lock);
655 	}
656 
657 	if (path->slots[0]) {
658 		struct extent_buffer *leaf;
659 		int slot;
660 
661 		leaf = path->nodes[0];
662 		slot = path->slots[0] - 1;
663 		btrfs_item_key_to_cpu(leaf, &key, slot);
664 		if (key.objectid == bytenr &&
665 		    key.type == BTRFS_EXTENT_ITEM_KEY) {
666 			ret = __add_inline_refs(fs_info, path, bytenr,
667 						&info_key, &info_level, &prefs);
668 			if (ret)
669 				goto out;
670 			ret = __add_keyed_refs(fs_info, path, bytenr, &info_key,
671 					       info_level, &prefs);
672 			if (ret)
673 				goto out;
674 		}
675 	}
676 	btrfs_release_path(path);
677 
678 	/*
679 	 * when adding the delayed refs above, the info_key might not have
680 	 * been known yet. Go over the list and replace the missing keys
681 	 */
682 	list_for_each_entry(ref, &prefs_delayed, list) {
683 		if ((ref->key.offset | ref->key.type | ref->key.objectid) == 0)
684 			memcpy(&ref->key, &info_key, sizeof(ref->key));
685 	}
686 	list_splice_init(&prefs_delayed, &prefs);
687 
688 	ret = __merge_refs(&prefs, 1);
689 	if (ret)
690 		goto out;
691 
692 	ret = __resolve_indirect_refs(fs_info, search_commit_root, &prefs);
693 	if (ret)
694 		goto out;
695 
696 	ret = __merge_refs(&prefs, 2);
697 	if (ret)
698 		goto out;
699 
700 	while (!list_empty(&prefs)) {
701 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
702 		list_del(&ref->list);
703 		if (ref->count < 0)
704 			WARN_ON(1);
705 		if (ref->count && ref->root_id && ref->parent == 0) {
706 			/* no parent == root of tree */
707 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
708 			BUG_ON(ret < 0);
709 		}
710 		if (ref->count && ref->parent) {
711 			ret = ulist_add(refs, ref->parent, 0, GFP_NOFS);
712 			BUG_ON(ret < 0);
713 		}
714 		kfree(ref);
715 	}
716 
717 out:
718 	if (head)
719 		mutex_unlock(&head->mutex);
720 	btrfs_free_path(path);
721 	while (!list_empty(&prefs)) {
722 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
723 		list_del(&ref->list);
724 		kfree(ref);
725 	}
726 	while (!list_empty(&prefs_delayed)) {
727 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
728 				       list);
729 		list_del(&ref->list);
730 		kfree(ref);
731 	}
732 
733 	return ret;
734 }
735 
736 /*
737  * Finds all leafs with a reference to the specified combination of bytenr and
738  * offset. key_list_head will point to a list of corresponding keys (caller must
739  * free each list element). The leafs will be stored in the leafs ulist, which
740  * must be freed with ulist_free.
741  *
742  * returns 0 on success, <0 on error
743  */
744 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
745 				struct btrfs_fs_info *fs_info, u64 bytenr,
746 				u64 num_bytes, u64 seq, struct ulist **leafs)
747 {
748 	struct ulist *tmp;
749 	int ret;
750 
751 	tmp = ulist_alloc(GFP_NOFS);
752 	if (!tmp)
753 		return -ENOMEM;
754 	*leafs = ulist_alloc(GFP_NOFS);
755 	if (!*leafs) {
756 		ulist_free(tmp);
757 		return -ENOMEM;
758 	}
759 
760 	ret = find_parent_nodes(trans, fs_info, bytenr, seq, *leafs, tmp);
761 	ulist_free(tmp);
762 
763 	if (ret < 0 && ret != -ENOENT) {
764 		ulist_free(*leafs);
765 		return ret;
766 	}
767 
768 	return 0;
769 }
770 
771 /*
772  * walk all backrefs for a given extent to find all roots that reference this
773  * extent. Walking a backref means finding all extents that reference this
774  * extent and in turn walk the backrefs of those, too. Naturally this is a
775  * recursive process, but here it is implemented in an iterative fashion: We
776  * find all referencing extents for the extent in question and put them on a
777  * list. In turn, we find all referencing extents for those, further appending
778  * to the list. The way we iterate the list allows adding more elements after
779  * the current while iterating. The process stops when we reach the end of the
780  * list. Found roots are added to the roots list.
781  *
782  * returns 0 on success, < 0 on error.
783  */
784 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
785 				struct btrfs_fs_info *fs_info, u64 bytenr,
786 				u64 num_bytes, u64 seq, struct ulist **roots)
787 {
788 	struct ulist *tmp;
789 	struct ulist_node *node = NULL;
790 	int ret;
791 
792 	tmp = ulist_alloc(GFP_NOFS);
793 	if (!tmp)
794 		return -ENOMEM;
795 	*roots = ulist_alloc(GFP_NOFS);
796 	if (!*roots) {
797 		ulist_free(tmp);
798 		return -ENOMEM;
799 	}
800 
801 	while (1) {
802 		ret = find_parent_nodes(trans, fs_info, bytenr, seq,
803 					tmp, *roots);
804 		if (ret < 0 && ret != -ENOENT) {
805 			ulist_free(tmp);
806 			ulist_free(*roots);
807 			return ret;
808 		}
809 		node = ulist_next(tmp, node);
810 		if (!node)
811 			break;
812 		bytenr = node->val;
813 	}
814 
815 	ulist_free(tmp);
816 	return 0;
817 }
818 
819 
820 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
821 			struct btrfs_root *fs_root, struct btrfs_path *path,
822 			struct btrfs_key *found_key)
823 {
824 	int ret;
825 	struct btrfs_key key;
826 	struct extent_buffer *eb;
827 
828 	key.type = key_type;
829 	key.objectid = inum;
830 	key.offset = ioff;
831 
832 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
833 	if (ret < 0)
834 		return ret;
835 
836 	eb = path->nodes[0];
837 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
838 		ret = btrfs_next_leaf(fs_root, path);
839 		if (ret)
840 			return ret;
841 		eb = path->nodes[0];
842 	}
843 
844 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
845 	if (found_key->type != key.type || found_key->objectid != key.objectid)
846 		return 1;
847 
848 	return 0;
849 }
850 
851 /*
852  * this makes the path point to (inum INODE_ITEM ioff)
853  */
854 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
855 			struct btrfs_path *path)
856 {
857 	struct btrfs_key key;
858 	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
859 				&key);
860 }
861 
862 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
863 				struct btrfs_path *path,
864 				struct btrfs_key *found_key)
865 {
866 	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
867 				found_key);
868 }
869 
870 /*
871  * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
872  * of the path are separated by '/' and the path is guaranteed to be
873  * 0-terminated. the path is only given within the current file system.
874  * Therefore, it never starts with a '/'. the caller is responsible to provide
875  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
876  * the start point of the resulting string is returned. this pointer is within
877  * dest, normally.
878  * in case the path buffer would overflow, the pointer is decremented further
879  * as if output was written to the buffer, though no more output is actually
880  * generated. that way, the caller can determine how much space would be
881  * required for the path to fit into the buffer. in that case, the returned
882  * value will be smaller than dest. callers must check this!
883  */
884 static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
885 				struct btrfs_inode_ref *iref,
886 				struct extent_buffer *eb_in, u64 parent,
887 				char *dest, u32 size)
888 {
889 	u32 len;
890 	int slot;
891 	u64 next_inum;
892 	int ret;
893 	s64 bytes_left = size - 1;
894 	struct extent_buffer *eb = eb_in;
895 	struct btrfs_key found_key;
896 
897 	if (bytes_left >= 0)
898 		dest[bytes_left] = '\0';
899 
900 	while (1) {
901 		len = btrfs_inode_ref_name_len(eb, iref);
902 		bytes_left -= len;
903 		if (bytes_left >= 0)
904 			read_extent_buffer(eb, dest + bytes_left,
905 						(unsigned long)(iref + 1), len);
906 		if (eb != eb_in)
907 			free_extent_buffer(eb);
908 		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
909 		if (ret > 0)
910 			ret = -ENOENT;
911 		if (ret)
912 			break;
913 		next_inum = found_key.offset;
914 
915 		/* regular exit ahead */
916 		if (parent == next_inum)
917 			break;
918 
919 		slot = path->slots[0];
920 		eb = path->nodes[0];
921 		/* make sure we can use eb after releasing the path */
922 		if (eb != eb_in)
923 			atomic_inc(&eb->refs);
924 		btrfs_release_path(path);
925 
926 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
927 		parent = next_inum;
928 		--bytes_left;
929 		if (bytes_left >= 0)
930 			dest[bytes_left] = '/';
931 	}
932 
933 	btrfs_release_path(path);
934 
935 	if (ret)
936 		return ERR_PTR(ret);
937 
938 	return dest + bytes_left;
939 }
940 
941 /*
942  * this makes the path point to (logical EXTENT_ITEM *)
943  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
944  * tree blocks and <0 on error.
945  */
946 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
947 			struct btrfs_path *path, struct btrfs_key *found_key)
948 {
949 	int ret;
950 	u64 flags;
951 	u32 item_size;
952 	struct extent_buffer *eb;
953 	struct btrfs_extent_item *ei;
954 	struct btrfs_key key;
955 
956 	key.type = BTRFS_EXTENT_ITEM_KEY;
957 	key.objectid = logical;
958 	key.offset = (u64)-1;
959 
960 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
961 	if (ret < 0)
962 		return ret;
963 	ret = btrfs_previous_item(fs_info->extent_root, path,
964 					0, BTRFS_EXTENT_ITEM_KEY);
965 	if (ret < 0)
966 		return ret;
967 
968 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
969 	if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
970 	    found_key->objectid > logical ||
971 	    found_key->objectid + found_key->offset <= logical) {
972 		pr_debug("logical %llu is not within any extent\n",
973 			 (unsigned long long)logical);
974 		return -ENOENT;
975 	}
976 
977 	eb = path->nodes[0];
978 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
979 	BUG_ON(item_size < sizeof(*ei));
980 
981 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
982 	flags = btrfs_extent_flags(eb, ei);
983 
984 	pr_debug("logical %llu is at position %llu within the extent (%llu "
985 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
986 		 (unsigned long long)logical,
987 		 (unsigned long long)(logical - found_key->objectid),
988 		 (unsigned long long)found_key->objectid,
989 		 (unsigned long long)found_key->offset,
990 		 (unsigned long long)flags, item_size);
991 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
992 		return BTRFS_EXTENT_FLAG_TREE_BLOCK;
993 	if (flags & BTRFS_EXTENT_FLAG_DATA)
994 		return BTRFS_EXTENT_FLAG_DATA;
995 
996 	return -EIO;
997 }
998 
999 /*
1000  * helper function to iterate extent inline refs. ptr must point to a 0 value
1001  * for the first call and may be modified. it is used to track state.
1002  * if more refs exist, 0 is returned and the next call to
1003  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1004  * next ref. after the last ref was processed, 1 is returned.
1005  * returns <0 on error
1006  */
1007 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1008 				struct btrfs_extent_item *ei, u32 item_size,
1009 				struct btrfs_extent_inline_ref **out_eiref,
1010 				int *out_type)
1011 {
1012 	unsigned long end;
1013 	u64 flags;
1014 	struct btrfs_tree_block_info *info;
1015 
1016 	if (!*ptr) {
1017 		/* first call */
1018 		flags = btrfs_extent_flags(eb, ei);
1019 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1020 			info = (struct btrfs_tree_block_info *)(ei + 1);
1021 			*out_eiref =
1022 				(struct btrfs_extent_inline_ref *)(info + 1);
1023 		} else {
1024 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1025 		}
1026 		*ptr = (unsigned long)*out_eiref;
1027 		if ((void *)*ptr >= (void *)ei + item_size)
1028 			return -ENOENT;
1029 	}
1030 
1031 	end = (unsigned long)ei + item_size;
1032 	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1033 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1034 
1035 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1036 	WARN_ON(*ptr > end);
1037 	if (*ptr == end)
1038 		return 1; /* last */
1039 
1040 	return 0;
1041 }
1042 
1043 /*
1044  * reads the tree block backref for an extent. tree level and root are returned
1045  * through out_level and out_root. ptr must point to a 0 value for the first
1046  * call and may be modified (see __get_extent_inline_ref comment).
1047  * returns 0 if data was provided, 1 if there was no more data to provide or
1048  * <0 on error.
1049  */
1050 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1051 				struct btrfs_extent_item *ei, u32 item_size,
1052 				u64 *out_root, u8 *out_level)
1053 {
1054 	int ret;
1055 	int type;
1056 	struct btrfs_tree_block_info *info;
1057 	struct btrfs_extent_inline_ref *eiref;
1058 
1059 	if (*ptr == (unsigned long)-1)
1060 		return 1;
1061 
1062 	while (1) {
1063 		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1064 						&eiref, &type);
1065 		if (ret < 0)
1066 			return ret;
1067 
1068 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1069 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1070 			break;
1071 
1072 		if (ret == 1)
1073 			return 1;
1074 	}
1075 
1076 	/* we can treat both ref types equally here */
1077 	info = (struct btrfs_tree_block_info *)(ei + 1);
1078 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1079 	*out_level = btrfs_tree_block_level(eb, info);
1080 
1081 	if (ret == 1)
1082 		*ptr = (unsigned long)-1;
1083 
1084 	return 0;
1085 }
1086 
1087 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, u64 logical,
1088 				u64 orig_extent_item_objectid,
1089 				u64 extent_item_pos, u64 root,
1090 				iterate_extent_inodes_t *iterate, void *ctx)
1091 {
1092 	u64 disk_byte;
1093 	struct btrfs_key key;
1094 	struct btrfs_file_extent_item *fi;
1095 	struct extent_buffer *eb;
1096 	int slot;
1097 	int nritems;
1098 	int ret = 0;
1099 	int extent_type;
1100 	u64 data_offset;
1101 	u64 data_len;
1102 
1103 	eb = read_tree_block(fs_info->tree_root, logical,
1104 				fs_info->tree_root->leafsize, 0);
1105 	if (!eb)
1106 		return -EIO;
1107 
1108 	/*
1109 	 * from the shared data ref, we only have the leaf but we need
1110 	 * the key. thus, we must look into all items and see that we
1111 	 * find one (some) with a reference to our extent item.
1112 	 */
1113 	nritems = btrfs_header_nritems(eb);
1114 	for (slot = 0; slot < nritems; ++slot) {
1115 		btrfs_item_key_to_cpu(eb, &key, slot);
1116 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1117 			continue;
1118 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
1119 		extent_type = btrfs_file_extent_type(eb, fi);
1120 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1121 			continue;
1122 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
1123 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1124 		if (disk_byte != orig_extent_item_objectid)
1125 			continue;
1126 
1127 		data_offset = btrfs_file_extent_offset(eb, fi);
1128 		data_len = btrfs_file_extent_num_bytes(eb, fi);
1129 
1130 		if (extent_item_pos < data_offset ||
1131 		    extent_item_pos >= data_offset + data_len)
1132 			continue;
1133 
1134 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1135 				"root %llu\n", orig_extent_item_objectid,
1136 				key.objectid, key.offset, root);
1137 		ret = iterate(key.objectid,
1138 				key.offset + (extent_item_pos - data_offset),
1139 				root, ctx);
1140 		if (ret) {
1141 			pr_debug("stopping iteration because ret=%d\n", ret);
1142 			break;
1143 		}
1144 	}
1145 
1146 	free_extent_buffer(eb);
1147 
1148 	return ret;
1149 }
1150 
1151 /*
1152  * calls iterate() for every inode that references the extent identified by
1153  * the given parameters.
1154  * when the iterator function returns a non-zero value, iteration stops.
1155  */
1156 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1157 				u64 extent_item_objectid, u64 extent_item_pos,
1158 				int search_commit_root,
1159 				iterate_extent_inodes_t *iterate, void *ctx)
1160 {
1161 	int ret;
1162 	struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1163 	struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
1164 	struct btrfs_trans_handle *trans;
1165 	struct ulist *refs = NULL;
1166 	struct ulist *roots = NULL;
1167 	struct ulist_node *ref_node = NULL;
1168 	struct ulist_node *root_node = NULL;
1169 	struct seq_list seq_elem;
1170 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1171 
1172 	pr_debug("resolving all inodes for extent %llu\n",
1173 			extent_item_objectid);
1174 
1175 	if (search_commit_root) {
1176 		trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1177 	} else {
1178 		trans = btrfs_join_transaction(fs_info->extent_root);
1179 		if (IS_ERR(trans))
1180 			return PTR_ERR(trans);
1181 
1182 		delayed_refs = &trans->transaction->delayed_refs;
1183 		spin_lock(&delayed_refs->lock);
1184 		btrfs_get_delayed_seq(delayed_refs, &seq_elem);
1185 		spin_unlock(&delayed_refs->lock);
1186 	}
1187 
1188 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1189 				   extent_item_pos, seq_elem.seq,
1190 				   &refs);
1191 
1192 	if (ret)
1193 		goto out;
1194 
1195 	while (!ret && (ref_node = ulist_next(refs, ref_node))) {
1196 		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, -1,
1197 						seq_elem.seq, &roots);
1198 		if (ret)
1199 			break;
1200 		while (!ret && (root_node = ulist_next(roots, root_node))) {
1201 			pr_debug("root %llu references leaf %llu\n",
1202 					root_node->val, ref_node->val);
1203 			ret = iterate_leaf_refs(fs_info, ref_node->val,
1204 						extent_item_objectid,
1205 						extent_item_pos, root_node->val,
1206 						iterate, ctx);
1207 		}
1208 	}
1209 
1210 	ulist_free(refs);
1211 	ulist_free(roots);
1212 out:
1213 	if (!search_commit_root) {
1214 		btrfs_put_delayed_seq(delayed_refs, &seq_elem);
1215 		btrfs_end_transaction(trans, fs_info->extent_root);
1216 	}
1217 
1218 	return ret;
1219 }
1220 
1221 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1222 				struct btrfs_path *path,
1223 				iterate_extent_inodes_t *iterate, void *ctx)
1224 {
1225 	int ret;
1226 	u64 extent_item_pos;
1227 	struct btrfs_key found_key;
1228 	int search_commit_root = path->search_commit_root;
1229 
1230 	ret = extent_from_logical(fs_info, logical, path,
1231 					&found_key);
1232 	btrfs_release_path(path);
1233 	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1234 		ret = -EINVAL;
1235 	if (ret < 0)
1236 		return ret;
1237 
1238 	extent_item_pos = logical - found_key.objectid;
1239 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1240 					extent_item_pos, search_commit_root,
1241 					iterate, ctx);
1242 
1243 	return ret;
1244 }
1245 
1246 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1247 				struct btrfs_path *path,
1248 				iterate_irefs_t *iterate, void *ctx)
1249 {
1250 	int ret;
1251 	int slot;
1252 	u32 cur;
1253 	u32 len;
1254 	u32 name_len;
1255 	u64 parent = 0;
1256 	int found = 0;
1257 	struct extent_buffer *eb;
1258 	struct btrfs_item *item;
1259 	struct btrfs_inode_ref *iref;
1260 	struct btrfs_key found_key;
1261 
1262 	while (1) {
1263 		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1264 					&found_key);
1265 		if (ret < 0)
1266 			break;
1267 		if (ret) {
1268 			ret = found ? 0 : -ENOENT;
1269 			break;
1270 		}
1271 		++found;
1272 
1273 		parent = found_key.offset;
1274 		slot = path->slots[0];
1275 		eb = path->nodes[0];
1276 		/* make sure we can use eb after releasing the path */
1277 		atomic_inc(&eb->refs);
1278 		btrfs_release_path(path);
1279 
1280 		item = btrfs_item_nr(eb, slot);
1281 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1282 
1283 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1284 			name_len = btrfs_inode_ref_name_len(eb, iref);
1285 			/* path must be released before calling iterate()! */
1286 			pr_debug("following ref at offset %u for inode %llu in "
1287 				 "tree %llu\n", cur,
1288 				 (unsigned long long)found_key.objectid,
1289 				 (unsigned long long)fs_root->objectid);
1290 			ret = iterate(parent, iref, eb, ctx);
1291 			if (ret) {
1292 				free_extent_buffer(eb);
1293 				break;
1294 			}
1295 			len = sizeof(*iref) + name_len;
1296 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1297 		}
1298 		free_extent_buffer(eb);
1299 	}
1300 
1301 	btrfs_release_path(path);
1302 
1303 	return ret;
1304 }
1305 
1306 /*
1307  * returns 0 if the path could be dumped (probably truncated)
1308  * returns <0 in case of an error
1309  */
1310 static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
1311 				struct extent_buffer *eb, void *ctx)
1312 {
1313 	struct inode_fs_paths *ipath = ctx;
1314 	char *fspath;
1315 	char *fspath_min;
1316 	int i = ipath->fspath->elem_cnt;
1317 	const int s_ptr = sizeof(char *);
1318 	u32 bytes_left;
1319 
1320 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1321 					ipath->fspath->bytes_left - s_ptr : 0;
1322 
1323 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1324 	fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
1325 				inum, fspath_min, bytes_left);
1326 	if (IS_ERR(fspath))
1327 		return PTR_ERR(fspath);
1328 
1329 	if (fspath > fspath_min) {
1330 		pr_debug("path resolved: %s\n", fspath);
1331 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1332 		++ipath->fspath->elem_cnt;
1333 		ipath->fspath->bytes_left = fspath - fspath_min;
1334 	} else {
1335 		pr_debug("missed path, not enough space. missing bytes: %lu, "
1336 			 "constructed so far: %s\n",
1337 			 (unsigned long)(fspath_min - fspath), fspath_min);
1338 		++ipath->fspath->elem_missed;
1339 		ipath->fspath->bytes_missing += fspath_min - fspath;
1340 		ipath->fspath->bytes_left = 0;
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 /*
1347  * this dumps all file system paths to the inode into the ipath struct, provided
1348  * is has been created large enough. each path is zero-terminated and accessed
1349  * from ipath->fspath->val[i].
1350  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1351  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1352  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1353  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1354  * have been needed to return all paths.
1355  */
1356 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1357 {
1358 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1359 				inode_to_path, ipath);
1360 }
1361 
1362 struct btrfs_data_container *init_data_container(u32 total_bytes)
1363 {
1364 	struct btrfs_data_container *data;
1365 	size_t alloc_bytes;
1366 
1367 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1368 	data = kmalloc(alloc_bytes, GFP_NOFS);
1369 	if (!data)
1370 		return ERR_PTR(-ENOMEM);
1371 
1372 	if (total_bytes >= sizeof(*data)) {
1373 		data->bytes_left = total_bytes - sizeof(*data);
1374 		data->bytes_missing = 0;
1375 	} else {
1376 		data->bytes_missing = sizeof(*data) - total_bytes;
1377 		data->bytes_left = 0;
1378 	}
1379 
1380 	data->elem_cnt = 0;
1381 	data->elem_missed = 0;
1382 
1383 	return data;
1384 }
1385 
1386 /*
1387  * allocates space to return multiple file system paths for an inode.
1388  * total_bytes to allocate are passed, note that space usable for actual path
1389  * information will be total_bytes - sizeof(struct inode_fs_paths).
1390  * the returned pointer must be freed with free_ipath() in the end.
1391  */
1392 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1393 					struct btrfs_path *path)
1394 {
1395 	struct inode_fs_paths *ifp;
1396 	struct btrfs_data_container *fspath;
1397 
1398 	fspath = init_data_container(total_bytes);
1399 	if (IS_ERR(fspath))
1400 		return (void *)fspath;
1401 
1402 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1403 	if (!ifp) {
1404 		kfree(fspath);
1405 		return ERR_PTR(-ENOMEM);
1406 	}
1407 
1408 	ifp->btrfs_path = path;
1409 	ifp->fspath = fspath;
1410 	ifp->fs_root = fs_root;
1411 
1412 	return ifp;
1413 }
1414 
1415 void free_ipath(struct inode_fs_paths *ipath)
1416 {
1417 	kfree(ipath->fspath);
1418 	kfree(ipath);
1419 }
1420