xref: /linux/fs/btrfs/backref.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
28 /* Just an arbitrary number so we can be sure this happened */
29 #define BACKREF_FOUND_SHARED 6
30 
31 struct extent_inode_elem {
32 	u64 inum;
33 	u64 offset;
34 	struct extent_inode_elem *next;
35 };
36 
37 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
38 				struct btrfs_file_extent_item *fi,
39 				u64 extent_item_pos,
40 				struct extent_inode_elem **eie)
41 {
42 	u64 offset = 0;
43 	struct extent_inode_elem *e;
44 
45 	if (!btrfs_file_extent_compression(eb, fi) &&
46 	    !btrfs_file_extent_encryption(eb, fi) &&
47 	    !btrfs_file_extent_other_encoding(eb, fi)) {
48 		u64 data_offset;
49 		u64 data_len;
50 
51 		data_offset = btrfs_file_extent_offset(eb, fi);
52 		data_len = btrfs_file_extent_num_bytes(eb, fi);
53 
54 		if (extent_item_pos < data_offset ||
55 		    extent_item_pos >= data_offset + data_len)
56 			return 1;
57 		offset = extent_item_pos - data_offset;
58 	}
59 
60 	e = kmalloc(sizeof(*e), GFP_NOFS);
61 	if (!e)
62 		return -ENOMEM;
63 
64 	e->next = *eie;
65 	e->inum = key->objectid;
66 	e->offset = key->offset + offset;
67 	*eie = e;
68 
69 	return 0;
70 }
71 
72 static void free_inode_elem_list(struct extent_inode_elem *eie)
73 {
74 	struct extent_inode_elem *eie_next;
75 
76 	for (; eie; eie = eie_next) {
77 		eie_next = eie->next;
78 		kfree(eie);
79 	}
80 }
81 
82 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
83 				u64 extent_item_pos,
84 				struct extent_inode_elem **eie)
85 {
86 	u64 disk_byte;
87 	struct btrfs_key key;
88 	struct btrfs_file_extent_item *fi;
89 	int slot;
90 	int nritems;
91 	int extent_type;
92 	int ret;
93 
94 	/*
95 	 * from the shared data ref, we only have the leaf but we need
96 	 * the key. thus, we must look into all items and see that we
97 	 * find one (some) with a reference to our extent item.
98 	 */
99 	nritems = btrfs_header_nritems(eb);
100 	for (slot = 0; slot < nritems; ++slot) {
101 		btrfs_item_key_to_cpu(eb, &key, slot);
102 		if (key.type != BTRFS_EXTENT_DATA_KEY)
103 			continue;
104 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
105 		extent_type = btrfs_file_extent_type(eb, fi);
106 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
107 			continue;
108 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
109 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
110 		if (disk_byte != wanted_disk_byte)
111 			continue;
112 
113 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
114 		if (ret < 0)
115 			return ret;
116 	}
117 
118 	return 0;
119 }
120 
121 /*
122  * this structure records all encountered refs on the way up to the root
123  */
124 struct __prelim_ref {
125 	struct list_head list;
126 	u64 root_id;
127 	struct btrfs_key key_for_search;
128 	int level;
129 	int count;
130 	struct extent_inode_elem *inode_list;
131 	u64 parent;
132 	u64 wanted_disk_byte;
133 };
134 
135 static struct kmem_cache *btrfs_prelim_ref_cache;
136 
137 int __init btrfs_prelim_ref_init(void)
138 {
139 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
140 					sizeof(struct __prelim_ref),
141 					0,
142 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
143 					NULL);
144 	if (!btrfs_prelim_ref_cache)
145 		return -ENOMEM;
146 	return 0;
147 }
148 
149 void btrfs_prelim_ref_exit(void)
150 {
151 	kmem_cache_destroy(btrfs_prelim_ref_cache);
152 }
153 
154 /*
155  * the rules for all callers of this function are:
156  * - obtaining the parent is the goal
157  * - if you add a key, you must know that it is a correct key
158  * - if you cannot add the parent or a correct key, then we will look into the
159  *   block later to set a correct key
160  *
161  * delayed refs
162  * ============
163  *        backref type | shared | indirect | shared | indirect
164  * information         |   tree |     tree |   data |     data
165  * --------------------+--------+----------+--------+----------
166  *      parent logical |    y   |     -    |    -   |     -
167  *      key to resolve |    -   |     y    |    y   |     y
168  *  tree block logical |    -   |     -    |    -   |     -
169  *  root for resolving |    y   |     y    |    y   |     y
170  *
171  * - column 1:       we've the parent -> done
172  * - column 2, 3, 4: we use the key to find the parent
173  *
174  * on disk refs (inline or keyed)
175  * ==============================
176  *        backref type | shared | indirect | shared | indirect
177  * information         |   tree |     tree |   data |     data
178  * --------------------+--------+----------+--------+----------
179  *      parent logical |    y   |     -    |    y   |     -
180  *      key to resolve |    -   |     -    |    -   |     y
181  *  tree block logical |    y   |     y    |    y   |     y
182  *  root for resolving |    -   |     y    |    y   |     y
183  *
184  * - column 1, 3: we've the parent -> done
185  * - column 2:    we take the first key from the block to find the parent
186  *                (see __add_missing_keys)
187  * - column 4:    we use the key to find the parent
188  *
189  * additional information that's available but not required to find the parent
190  * block might help in merging entries to gain some speed.
191  */
192 
193 static int __add_prelim_ref(struct list_head *head, u64 root_id,
194 			    struct btrfs_key *key, int level,
195 			    u64 parent, u64 wanted_disk_byte, int count,
196 			    gfp_t gfp_mask)
197 {
198 	struct __prelim_ref *ref;
199 
200 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
201 		return 0;
202 
203 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
204 	if (!ref)
205 		return -ENOMEM;
206 
207 	ref->root_id = root_id;
208 	if (key) {
209 		ref->key_for_search = *key;
210 		/*
211 		 * We can often find data backrefs with an offset that is too
212 		 * large (>= LLONG_MAX, maximum allowed file offset) due to
213 		 * underflows when subtracting a file's offset with the data
214 		 * offset of its corresponding extent data item. This can
215 		 * happen for example in the clone ioctl.
216 		 * So if we detect such case we set the search key's offset to
217 		 * zero to make sure we will find the matching file extent item
218 		 * at add_all_parents(), otherwise we will miss it because the
219 		 * offset taken form the backref is much larger then the offset
220 		 * of the file extent item. This can make us scan a very large
221 		 * number of file extent items, but at least it will not make
222 		 * us miss any.
223 		 * This is an ugly workaround for a behaviour that should have
224 		 * never existed, but it does and a fix for the clone ioctl
225 		 * would touch a lot of places, cause backwards incompatibility
226 		 * and would not fix the problem for extents cloned with older
227 		 * kernels.
228 		 */
229 		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
230 		    ref->key_for_search.offset >= LLONG_MAX)
231 			ref->key_for_search.offset = 0;
232 	} else {
233 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
234 	}
235 
236 	ref->inode_list = NULL;
237 	ref->level = level;
238 	ref->count = count;
239 	ref->parent = parent;
240 	ref->wanted_disk_byte = wanted_disk_byte;
241 	list_add_tail(&ref->list, head);
242 
243 	return 0;
244 }
245 
246 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
247 			   struct ulist *parents, struct __prelim_ref *ref,
248 			   int level, u64 time_seq, const u64 *extent_item_pos,
249 			   u64 total_refs)
250 {
251 	int ret = 0;
252 	int slot;
253 	struct extent_buffer *eb;
254 	struct btrfs_key key;
255 	struct btrfs_key *key_for_search = &ref->key_for_search;
256 	struct btrfs_file_extent_item *fi;
257 	struct extent_inode_elem *eie = NULL, *old = NULL;
258 	u64 disk_byte;
259 	u64 wanted_disk_byte = ref->wanted_disk_byte;
260 	u64 count = 0;
261 
262 	if (level != 0) {
263 		eb = path->nodes[level];
264 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
265 		if (ret < 0)
266 			return ret;
267 		return 0;
268 	}
269 
270 	/*
271 	 * We normally enter this function with the path already pointing to
272 	 * the first item to check. But sometimes, we may enter it with
273 	 * slot==nritems. In that case, go to the next leaf before we continue.
274 	 */
275 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
276 		if (time_seq == (u64)-1)
277 			ret = btrfs_next_leaf(root, path);
278 		else
279 			ret = btrfs_next_old_leaf(root, path, time_seq);
280 	}
281 
282 	while (!ret && count < total_refs) {
283 		eb = path->nodes[0];
284 		slot = path->slots[0];
285 
286 		btrfs_item_key_to_cpu(eb, &key, slot);
287 
288 		if (key.objectid != key_for_search->objectid ||
289 		    key.type != BTRFS_EXTENT_DATA_KEY)
290 			break;
291 
292 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
293 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
294 
295 		if (disk_byte == wanted_disk_byte) {
296 			eie = NULL;
297 			old = NULL;
298 			count++;
299 			if (extent_item_pos) {
300 				ret = check_extent_in_eb(&key, eb, fi,
301 						*extent_item_pos,
302 						&eie);
303 				if (ret < 0)
304 					break;
305 			}
306 			if (ret > 0)
307 				goto next;
308 			ret = ulist_add_merge_ptr(parents, eb->start,
309 						  eie, (void **)&old, GFP_NOFS);
310 			if (ret < 0)
311 				break;
312 			if (!ret && extent_item_pos) {
313 				while (old->next)
314 					old = old->next;
315 				old->next = eie;
316 			}
317 			eie = NULL;
318 		}
319 next:
320 		if (time_seq == (u64)-1)
321 			ret = btrfs_next_item(root, path);
322 		else
323 			ret = btrfs_next_old_item(root, path, time_seq);
324 	}
325 
326 	if (ret > 0)
327 		ret = 0;
328 	else if (ret < 0)
329 		free_inode_elem_list(eie);
330 	return ret;
331 }
332 
333 /*
334  * resolve an indirect backref in the form (root_id, key, level)
335  * to a logical address
336  */
337 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
338 				  struct btrfs_path *path, u64 time_seq,
339 				  struct __prelim_ref *ref,
340 				  struct ulist *parents,
341 				  const u64 *extent_item_pos, u64 total_refs)
342 {
343 	struct btrfs_root *root;
344 	struct btrfs_key root_key;
345 	struct extent_buffer *eb;
346 	int ret = 0;
347 	int root_level;
348 	int level = ref->level;
349 	int index;
350 
351 	root_key.objectid = ref->root_id;
352 	root_key.type = BTRFS_ROOT_ITEM_KEY;
353 	root_key.offset = (u64)-1;
354 
355 	index = srcu_read_lock(&fs_info->subvol_srcu);
356 
357 	root = btrfs_get_fs_root(fs_info, &root_key, false);
358 	if (IS_ERR(root)) {
359 		srcu_read_unlock(&fs_info->subvol_srcu, index);
360 		ret = PTR_ERR(root);
361 		goto out;
362 	}
363 
364 	if (btrfs_test_is_dummy_root(root)) {
365 		srcu_read_unlock(&fs_info->subvol_srcu, index);
366 		ret = -ENOENT;
367 		goto out;
368 	}
369 
370 	if (path->search_commit_root)
371 		root_level = btrfs_header_level(root->commit_root);
372 	else if (time_seq == (u64)-1)
373 		root_level = btrfs_header_level(root->node);
374 	else
375 		root_level = btrfs_old_root_level(root, time_seq);
376 
377 	if (root_level + 1 == level) {
378 		srcu_read_unlock(&fs_info->subvol_srcu, index);
379 		goto out;
380 	}
381 
382 	path->lowest_level = level;
383 	if (time_seq == (u64)-1)
384 		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
385 					0, 0);
386 	else
387 		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
388 					    time_seq);
389 
390 	/* root node has been locked, we can release @subvol_srcu safely here */
391 	srcu_read_unlock(&fs_info->subvol_srcu, index);
392 
393 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
394 		 "%d for key (%llu %u %llu)\n",
395 		 ref->root_id, level, ref->count, ret,
396 		 ref->key_for_search.objectid, ref->key_for_search.type,
397 		 ref->key_for_search.offset);
398 	if (ret < 0)
399 		goto out;
400 
401 	eb = path->nodes[level];
402 	while (!eb) {
403 		if (WARN_ON(!level)) {
404 			ret = 1;
405 			goto out;
406 		}
407 		level--;
408 		eb = path->nodes[level];
409 	}
410 
411 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
412 			      extent_item_pos, total_refs);
413 out:
414 	path->lowest_level = 0;
415 	btrfs_release_path(path);
416 	return ret;
417 }
418 
419 /*
420  * resolve all indirect backrefs from the list
421  */
422 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
423 				   struct btrfs_path *path, u64 time_seq,
424 				   struct list_head *head,
425 				   const u64 *extent_item_pos, u64 total_refs,
426 				   u64 root_objectid)
427 {
428 	int err;
429 	int ret = 0;
430 	struct __prelim_ref *ref;
431 	struct __prelim_ref *ref_safe;
432 	struct __prelim_ref *new_ref;
433 	struct ulist *parents;
434 	struct ulist_node *node;
435 	struct ulist_iterator uiter;
436 
437 	parents = ulist_alloc(GFP_NOFS);
438 	if (!parents)
439 		return -ENOMEM;
440 
441 	/*
442 	 * _safe allows us to insert directly after the current item without
443 	 * iterating over the newly inserted items.
444 	 * we're also allowed to re-assign ref during iteration.
445 	 */
446 	list_for_each_entry_safe(ref, ref_safe, head, list) {
447 		if (ref->parent)	/* already direct */
448 			continue;
449 		if (ref->count == 0)
450 			continue;
451 		if (root_objectid && ref->root_id != root_objectid) {
452 			ret = BACKREF_FOUND_SHARED;
453 			goto out;
454 		}
455 		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
456 					     parents, extent_item_pos,
457 					     total_refs);
458 		/*
459 		 * we can only tolerate ENOENT,otherwise,we should catch error
460 		 * and return directly.
461 		 */
462 		if (err == -ENOENT) {
463 			continue;
464 		} else if (err) {
465 			ret = err;
466 			goto out;
467 		}
468 
469 		/* we put the first parent into the ref at hand */
470 		ULIST_ITER_INIT(&uiter);
471 		node = ulist_next(parents, &uiter);
472 		ref->parent = node ? node->val : 0;
473 		ref->inode_list = node ?
474 			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
475 
476 		/* additional parents require new refs being added here */
477 		while ((node = ulist_next(parents, &uiter))) {
478 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
479 						   GFP_NOFS);
480 			if (!new_ref) {
481 				ret = -ENOMEM;
482 				goto out;
483 			}
484 			memcpy(new_ref, ref, sizeof(*ref));
485 			new_ref->parent = node->val;
486 			new_ref->inode_list = (struct extent_inode_elem *)
487 							(uintptr_t)node->aux;
488 			list_add(&new_ref->list, &ref->list);
489 		}
490 		ulist_reinit(parents);
491 	}
492 out:
493 	ulist_free(parents);
494 	return ret;
495 }
496 
497 static inline int ref_for_same_block(struct __prelim_ref *ref1,
498 				     struct __prelim_ref *ref2)
499 {
500 	if (ref1->level != ref2->level)
501 		return 0;
502 	if (ref1->root_id != ref2->root_id)
503 		return 0;
504 	if (ref1->key_for_search.type != ref2->key_for_search.type)
505 		return 0;
506 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
507 		return 0;
508 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
509 		return 0;
510 	if (ref1->parent != ref2->parent)
511 		return 0;
512 
513 	return 1;
514 }
515 
516 /*
517  * read tree blocks and add keys where required.
518  */
519 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
520 			      struct list_head *head)
521 {
522 	struct __prelim_ref *ref;
523 	struct extent_buffer *eb;
524 
525 	list_for_each_entry(ref, head, list) {
526 		if (ref->parent)
527 			continue;
528 		if (ref->key_for_search.type)
529 			continue;
530 		BUG_ON(!ref->wanted_disk_byte);
531 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
532 				     0);
533 		if (IS_ERR(eb)) {
534 			return PTR_ERR(eb);
535 		} else if (!extent_buffer_uptodate(eb)) {
536 			free_extent_buffer(eb);
537 			return -EIO;
538 		}
539 		btrfs_tree_read_lock(eb);
540 		if (btrfs_header_level(eb) == 0)
541 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
542 		else
543 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
544 		btrfs_tree_read_unlock(eb);
545 		free_extent_buffer(eb);
546 	}
547 	return 0;
548 }
549 
550 /*
551  * merge backrefs and adjust counts accordingly
552  *
553  * mode = 1: merge identical keys, if key is set
554  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
555  *           additionally, we could even add a key range for the blocks we
556  *           looked into to merge even more (-> replace unresolved refs by those
557  *           having a parent).
558  * mode = 2: merge identical parents
559  */
560 static void __merge_refs(struct list_head *head, int mode)
561 {
562 	struct __prelim_ref *pos1;
563 
564 	list_for_each_entry(pos1, head, list) {
565 		struct __prelim_ref *pos2 = pos1, *tmp;
566 
567 		list_for_each_entry_safe_continue(pos2, tmp, head, list) {
568 			struct __prelim_ref *ref1 = pos1, *ref2 = pos2;
569 			struct extent_inode_elem *eie;
570 
571 			if (!ref_for_same_block(ref1, ref2))
572 				continue;
573 			if (mode == 1) {
574 				if (!ref1->parent && ref2->parent)
575 					swap(ref1, ref2);
576 			} else {
577 				if (ref1->parent != ref2->parent)
578 					continue;
579 			}
580 
581 			eie = ref1->inode_list;
582 			while (eie && eie->next)
583 				eie = eie->next;
584 			if (eie)
585 				eie->next = ref2->inode_list;
586 			else
587 				ref1->inode_list = ref2->inode_list;
588 			ref1->count += ref2->count;
589 
590 			list_del(&ref2->list);
591 			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
592 		}
593 
594 	}
595 }
596 
597 /*
598  * add all currently queued delayed refs from this head whose seq nr is
599  * smaller or equal that seq to the list
600  */
601 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
602 			      struct list_head *prefs, u64 *total_refs,
603 			      u64 inum)
604 {
605 	struct btrfs_delayed_ref_node *node;
606 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
607 	struct btrfs_key key;
608 	struct btrfs_key op_key = {0};
609 	int sgn;
610 	int ret = 0;
611 
612 	if (extent_op && extent_op->update_key)
613 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
614 
615 	spin_lock(&head->lock);
616 	list_for_each_entry(node, &head->ref_list, list) {
617 		if (node->seq > seq)
618 			continue;
619 
620 		switch (node->action) {
621 		case BTRFS_ADD_DELAYED_EXTENT:
622 		case BTRFS_UPDATE_DELAYED_HEAD:
623 			WARN_ON(1);
624 			continue;
625 		case BTRFS_ADD_DELAYED_REF:
626 			sgn = 1;
627 			break;
628 		case BTRFS_DROP_DELAYED_REF:
629 			sgn = -1;
630 			break;
631 		default:
632 			BUG_ON(1);
633 		}
634 		*total_refs += (node->ref_mod * sgn);
635 		switch (node->type) {
636 		case BTRFS_TREE_BLOCK_REF_KEY: {
637 			struct btrfs_delayed_tree_ref *ref;
638 
639 			ref = btrfs_delayed_node_to_tree_ref(node);
640 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
641 					       ref->level + 1, 0, node->bytenr,
642 					       node->ref_mod * sgn, GFP_ATOMIC);
643 			break;
644 		}
645 		case BTRFS_SHARED_BLOCK_REF_KEY: {
646 			struct btrfs_delayed_tree_ref *ref;
647 
648 			ref = btrfs_delayed_node_to_tree_ref(node);
649 			ret = __add_prelim_ref(prefs, 0, NULL,
650 					       ref->level + 1, ref->parent,
651 					       node->bytenr,
652 					       node->ref_mod * sgn, GFP_ATOMIC);
653 			break;
654 		}
655 		case BTRFS_EXTENT_DATA_REF_KEY: {
656 			struct btrfs_delayed_data_ref *ref;
657 			ref = btrfs_delayed_node_to_data_ref(node);
658 
659 			key.objectid = ref->objectid;
660 			key.type = BTRFS_EXTENT_DATA_KEY;
661 			key.offset = ref->offset;
662 
663 			/*
664 			 * Found a inum that doesn't match our known inum, we
665 			 * know it's shared.
666 			 */
667 			if (inum && ref->objectid != inum) {
668 				ret = BACKREF_FOUND_SHARED;
669 				break;
670 			}
671 
672 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
673 					       node->bytenr,
674 					       node->ref_mod * sgn, GFP_ATOMIC);
675 			break;
676 		}
677 		case BTRFS_SHARED_DATA_REF_KEY: {
678 			struct btrfs_delayed_data_ref *ref;
679 
680 			ref = btrfs_delayed_node_to_data_ref(node);
681 			ret = __add_prelim_ref(prefs, 0, NULL, 0,
682 					       ref->parent, node->bytenr,
683 					       node->ref_mod * sgn, GFP_ATOMIC);
684 			break;
685 		}
686 		default:
687 			WARN_ON(1);
688 		}
689 		if (ret)
690 			break;
691 	}
692 	spin_unlock(&head->lock);
693 	return ret;
694 }
695 
696 /*
697  * add all inline backrefs for bytenr to the list
698  */
699 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
700 			     struct btrfs_path *path, u64 bytenr,
701 			     int *info_level, struct list_head *prefs,
702 			     u64 *total_refs, u64 inum)
703 {
704 	int ret = 0;
705 	int slot;
706 	struct extent_buffer *leaf;
707 	struct btrfs_key key;
708 	struct btrfs_key found_key;
709 	unsigned long ptr;
710 	unsigned long end;
711 	struct btrfs_extent_item *ei;
712 	u64 flags;
713 	u64 item_size;
714 
715 	/*
716 	 * enumerate all inline refs
717 	 */
718 	leaf = path->nodes[0];
719 	slot = path->slots[0];
720 
721 	item_size = btrfs_item_size_nr(leaf, slot);
722 	BUG_ON(item_size < sizeof(*ei));
723 
724 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
725 	flags = btrfs_extent_flags(leaf, ei);
726 	*total_refs += btrfs_extent_refs(leaf, ei);
727 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
728 
729 	ptr = (unsigned long)(ei + 1);
730 	end = (unsigned long)ei + item_size;
731 
732 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
733 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
734 		struct btrfs_tree_block_info *info;
735 
736 		info = (struct btrfs_tree_block_info *)ptr;
737 		*info_level = btrfs_tree_block_level(leaf, info);
738 		ptr += sizeof(struct btrfs_tree_block_info);
739 		BUG_ON(ptr > end);
740 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
741 		*info_level = found_key.offset;
742 	} else {
743 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
744 	}
745 
746 	while (ptr < end) {
747 		struct btrfs_extent_inline_ref *iref;
748 		u64 offset;
749 		int type;
750 
751 		iref = (struct btrfs_extent_inline_ref *)ptr;
752 		type = btrfs_extent_inline_ref_type(leaf, iref);
753 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
754 
755 		switch (type) {
756 		case BTRFS_SHARED_BLOCK_REF_KEY:
757 			ret = __add_prelim_ref(prefs, 0, NULL,
758 						*info_level + 1, offset,
759 						bytenr, 1, GFP_NOFS);
760 			break;
761 		case BTRFS_SHARED_DATA_REF_KEY: {
762 			struct btrfs_shared_data_ref *sdref;
763 			int count;
764 
765 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
766 			count = btrfs_shared_data_ref_count(leaf, sdref);
767 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
768 					       bytenr, count, GFP_NOFS);
769 			break;
770 		}
771 		case BTRFS_TREE_BLOCK_REF_KEY:
772 			ret = __add_prelim_ref(prefs, offset, NULL,
773 					       *info_level + 1, 0,
774 					       bytenr, 1, GFP_NOFS);
775 			break;
776 		case BTRFS_EXTENT_DATA_REF_KEY: {
777 			struct btrfs_extent_data_ref *dref;
778 			int count;
779 			u64 root;
780 
781 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
782 			count = btrfs_extent_data_ref_count(leaf, dref);
783 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
784 								      dref);
785 			key.type = BTRFS_EXTENT_DATA_KEY;
786 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
787 
788 			if (inum && key.objectid != inum) {
789 				ret = BACKREF_FOUND_SHARED;
790 				break;
791 			}
792 
793 			root = btrfs_extent_data_ref_root(leaf, dref);
794 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
795 					       bytenr, count, GFP_NOFS);
796 			break;
797 		}
798 		default:
799 			WARN_ON(1);
800 		}
801 		if (ret)
802 			return ret;
803 		ptr += btrfs_extent_inline_ref_size(type);
804 	}
805 
806 	return 0;
807 }
808 
809 /*
810  * add all non-inline backrefs for bytenr to the list
811  */
812 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
813 			    struct btrfs_path *path, u64 bytenr,
814 			    int info_level, struct list_head *prefs, u64 inum)
815 {
816 	struct btrfs_root *extent_root = fs_info->extent_root;
817 	int ret;
818 	int slot;
819 	struct extent_buffer *leaf;
820 	struct btrfs_key key;
821 
822 	while (1) {
823 		ret = btrfs_next_item(extent_root, path);
824 		if (ret < 0)
825 			break;
826 		if (ret) {
827 			ret = 0;
828 			break;
829 		}
830 
831 		slot = path->slots[0];
832 		leaf = path->nodes[0];
833 		btrfs_item_key_to_cpu(leaf, &key, slot);
834 
835 		if (key.objectid != bytenr)
836 			break;
837 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
838 			continue;
839 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
840 			break;
841 
842 		switch (key.type) {
843 		case BTRFS_SHARED_BLOCK_REF_KEY:
844 			ret = __add_prelim_ref(prefs, 0, NULL,
845 						info_level + 1, key.offset,
846 						bytenr, 1, GFP_NOFS);
847 			break;
848 		case BTRFS_SHARED_DATA_REF_KEY: {
849 			struct btrfs_shared_data_ref *sdref;
850 			int count;
851 
852 			sdref = btrfs_item_ptr(leaf, slot,
853 					      struct btrfs_shared_data_ref);
854 			count = btrfs_shared_data_ref_count(leaf, sdref);
855 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
856 						bytenr, count, GFP_NOFS);
857 			break;
858 		}
859 		case BTRFS_TREE_BLOCK_REF_KEY:
860 			ret = __add_prelim_ref(prefs, key.offset, NULL,
861 					       info_level + 1, 0,
862 					       bytenr, 1, GFP_NOFS);
863 			break;
864 		case BTRFS_EXTENT_DATA_REF_KEY: {
865 			struct btrfs_extent_data_ref *dref;
866 			int count;
867 			u64 root;
868 
869 			dref = btrfs_item_ptr(leaf, slot,
870 					      struct btrfs_extent_data_ref);
871 			count = btrfs_extent_data_ref_count(leaf, dref);
872 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
873 								      dref);
874 			key.type = BTRFS_EXTENT_DATA_KEY;
875 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
876 
877 			if (inum && key.objectid != inum) {
878 				ret = BACKREF_FOUND_SHARED;
879 				break;
880 			}
881 
882 			root = btrfs_extent_data_ref_root(leaf, dref);
883 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
884 					       bytenr, count, GFP_NOFS);
885 			break;
886 		}
887 		default:
888 			WARN_ON(1);
889 		}
890 		if (ret)
891 			return ret;
892 
893 	}
894 
895 	return ret;
896 }
897 
898 /*
899  * this adds all existing backrefs (inline backrefs, backrefs and delayed
900  * refs) for the given bytenr to the refs list, merges duplicates and resolves
901  * indirect refs to their parent bytenr.
902  * When roots are found, they're added to the roots list
903  *
904  * NOTE: This can return values > 0
905  *
906  * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
907  * much like trans == NULL case, the difference only lies in it will not
908  * commit root.
909  * The special case is for qgroup to search roots in commit_transaction().
910  *
911  * FIXME some caching might speed things up
912  */
913 static int find_parent_nodes(struct btrfs_trans_handle *trans,
914 			     struct btrfs_fs_info *fs_info, u64 bytenr,
915 			     u64 time_seq, struct ulist *refs,
916 			     struct ulist *roots, const u64 *extent_item_pos,
917 			     u64 root_objectid, u64 inum)
918 {
919 	struct btrfs_key key;
920 	struct btrfs_path *path;
921 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
922 	struct btrfs_delayed_ref_head *head;
923 	int info_level = 0;
924 	int ret;
925 	struct list_head prefs_delayed;
926 	struct list_head prefs;
927 	struct __prelim_ref *ref;
928 	struct extent_inode_elem *eie = NULL;
929 	u64 total_refs = 0;
930 
931 	INIT_LIST_HEAD(&prefs);
932 	INIT_LIST_HEAD(&prefs_delayed);
933 
934 	key.objectid = bytenr;
935 	key.offset = (u64)-1;
936 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
937 		key.type = BTRFS_METADATA_ITEM_KEY;
938 	else
939 		key.type = BTRFS_EXTENT_ITEM_KEY;
940 
941 	path = btrfs_alloc_path();
942 	if (!path)
943 		return -ENOMEM;
944 	if (!trans) {
945 		path->search_commit_root = 1;
946 		path->skip_locking = 1;
947 	}
948 
949 	if (time_seq == (u64)-1)
950 		path->skip_locking = 1;
951 
952 	/*
953 	 * grab both a lock on the path and a lock on the delayed ref head.
954 	 * We need both to get a consistent picture of how the refs look
955 	 * at a specified point in time
956 	 */
957 again:
958 	head = NULL;
959 
960 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
961 	if (ret < 0)
962 		goto out;
963 	BUG_ON(ret == 0);
964 
965 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
966 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
967 	    time_seq != (u64)-1) {
968 #else
969 	if (trans && time_seq != (u64)-1) {
970 #endif
971 		/*
972 		 * look if there are updates for this ref queued and lock the
973 		 * head
974 		 */
975 		delayed_refs = &trans->transaction->delayed_refs;
976 		spin_lock(&delayed_refs->lock);
977 		head = btrfs_find_delayed_ref_head(trans, bytenr);
978 		if (head) {
979 			if (!mutex_trylock(&head->mutex)) {
980 				atomic_inc(&head->node.refs);
981 				spin_unlock(&delayed_refs->lock);
982 
983 				btrfs_release_path(path);
984 
985 				/*
986 				 * Mutex was contended, block until it's
987 				 * released and try again
988 				 */
989 				mutex_lock(&head->mutex);
990 				mutex_unlock(&head->mutex);
991 				btrfs_put_delayed_ref(&head->node);
992 				goto again;
993 			}
994 			spin_unlock(&delayed_refs->lock);
995 			ret = __add_delayed_refs(head, time_seq,
996 						 &prefs_delayed, &total_refs,
997 						 inum);
998 			mutex_unlock(&head->mutex);
999 			if (ret)
1000 				goto out;
1001 		} else {
1002 			spin_unlock(&delayed_refs->lock);
1003 		}
1004 	}
1005 
1006 	if (path->slots[0]) {
1007 		struct extent_buffer *leaf;
1008 		int slot;
1009 
1010 		path->slots[0]--;
1011 		leaf = path->nodes[0];
1012 		slot = path->slots[0];
1013 		btrfs_item_key_to_cpu(leaf, &key, slot);
1014 		if (key.objectid == bytenr &&
1015 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1016 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1017 			ret = __add_inline_refs(fs_info, path, bytenr,
1018 						&info_level, &prefs,
1019 						&total_refs, inum);
1020 			if (ret)
1021 				goto out;
1022 			ret = __add_keyed_refs(fs_info, path, bytenr,
1023 					       info_level, &prefs, inum);
1024 			if (ret)
1025 				goto out;
1026 		}
1027 	}
1028 	btrfs_release_path(path);
1029 
1030 	list_splice_init(&prefs_delayed, &prefs);
1031 
1032 	ret = __add_missing_keys(fs_info, &prefs);
1033 	if (ret)
1034 		goto out;
1035 
1036 	__merge_refs(&prefs, 1);
1037 
1038 	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1039 				      extent_item_pos, total_refs,
1040 				      root_objectid);
1041 	if (ret)
1042 		goto out;
1043 
1044 	__merge_refs(&prefs, 2);
1045 
1046 	while (!list_empty(&prefs)) {
1047 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1048 		WARN_ON(ref->count < 0);
1049 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1050 			if (root_objectid && ref->root_id != root_objectid) {
1051 				ret = BACKREF_FOUND_SHARED;
1052 				goto out;
1053 			}
1054 
1055 			/* no parent == root of tree */
1056 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1057 			if (ret < 0)
1058 				goto out;
1059 		}
1060 		if (ref->count && ref->parent) {
1061 			if (extent_item_pos && !ref->inode_list &&
1062 			    ref->level == 0) {
1063 				struct extent_buffer *eb;
1064 
1065 				eb = read_tree_block(fs_info->extent_root,
1066 							   ref->parent, 0);
1067 				if (IS_ERR(eb)) {
1068 					ret = PTR_ERR(eb);
1069 					goto out;
1070 				} else if (!extent_buffer_uptodate(eb)) {
1071 					free_extent_buffer(eb);
1072 					ret = -EIO;
1073 					goto out;
1074 				}
1075 				btrfs_tree_read_lock(eb);
1076 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1077 				ret = find_extent_in_eb(eb, bytenr,
1078 							*extent_item_pos, &eie);
1079 				btrfs_tree_read_unlock_blocking(eb);
1080 				free_extent_buffer(eb);
1081 				if (ret < 0)
1082 					goto out;
1083 				ref->inode_list = eie;
1084 			}
1085 			ret = ulist_add_merge_ptr(refs, ref->parent,
1086 						  ref->inode_list,
1087 						  (void **)&eie, GFP_NOFS);
1088 			if (ret < 0)
1089 				goto out;
1090 			if (!ret && extent_item_pos) {
1091 				/*
1092 				 * we've recorded that parent, so we must extend
1093 				 * its inode list here
1094 				 */
1095 				BUG_ON(!eie);
1096 				while (eie->next)
1097 					eie = eie->next;
1098 				eie->next = ref->inode_list;
1099 			}
1100 			eie = NULL;
1101 		}
1102 		list_del(&ref->list);
1103 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1104 	}
1105 
1106 out:
1107 	btrfs_free_path(path);
1108 	while (!list_empty(&prefs)) {
1109 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1110 		list_del(&ref->list);
1111 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1112 	}
1113 	while (!list_empty(&prefs_delayed)) {
1114 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1115 				       list);
1116 		list_del(&ref->list);
1117 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1118 	}
1119 	if (ret < 0)
1120 		free_inode_elem_list(eie);
1121 	return ret;
1122 }
1123 
1124 static void free_leaf_list(struct ulist *blocks)
1125 {
1126 	struct ulist_node *node = NULL;
1127 	struct extent_inode_elem *eie;
1128 	struct ulist_iterator uiter;
1129 
1130 	ULIST_ITER_INIT(&uiter);
1131 	while ((node = ulist_next(blocks, &uiter))) {
1132 		if (!node->aux)
1133 			continue;
1134 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1135 		free_inode_elem_list(eie);
1136 		node->aux = 0;
1137 	}
1138 
1139 	ulist_free(blocks);
1140 }
1141 
1142 /*
1143  * Finds all leafs with a reference to the specified combination of bytenr and
1144  * offset. key_list_head will point to a list of corresponding keys (caller must
1145  * free each list element). The leafs will be stored in the leafs ulist, which
1146  * must be freed with ulist_free.
1147  *
1148  * returns 0 on success, <0 on error
1149  */
1150 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1151 				struct btrfs_fs_info *fs_info, u64 bytenr,
1152 				u64 time_seq, struct ulist **leafs,
1153 				const u64 *extent_item_pos)
1154 {
1155 	int ret;
1156 
1157 	*leafs = ulist_alloc(GFP_NOFS);
1158 	if (!*leafs)
1159 		return -ENOMEM;
1160 
1161 	ret = find_parent_nodes(trans, fs_info, bytenr,
1162 				time_seq, *leafs, NULL, extent_item_pos, 0, 0);
1163 	if (ret < 0 && ret != -ENOENT) {
1164 		free_leaf_list(*leafs);
1165 		return ret;
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 /*
1172  * walk all backrefs for a given extent to find all roots that reference this
1173  * extent. Walking a backref means finding all extents that reference this
1174  * extent and in turn walk the backrefs of those, too. Naturally this is a
1175  * recursive process, but here it is implemented in an iterative fashion: We
1176  * find all referencing extents for the extent in question and put them on a
1177  * list. In turn, we find all referencing extents for those, further appending
1178  * to the list. The way we iterate the list allows adding more elements after
1179  * the current while iterating. The process stops when we reach the end of the
1180  * list. Found roots are added to the roots list.
1181  *
1182  * returns 0 on success, < 0 on error.
1183  */
1184 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1185 				  struct btrfs_fs_info *fs_info, u64 bytenr,
1186 				  u64 time_seq, struct ulist **roots)
1187 {
1188 	struct ulist *tmp;
1189 	struct ulist_node *node = NULL;
1190 	struct ulist_iterator uiter;
1191 	int ret;
1192 
1193 	tmp = ulist_alloc(GFP_NOFS);
1194 	if (!tmp)
1195 		return -ENOMEM;
1196 	*roots = ulist_alloc(GFP_NOFS);
1197 	if (!*roots) {
1198 		ulist_free(tmp);
1199 		return -ENOMEM;
1200 	}
1201 
1202 	ULIST_ITER_INIT(&uiter);
1203 	while (1) {
1204 		ret = find_parent_nodes(trans, fs_info, bytenr,
1205 					time_seq, tmp, *roots, NULL, 0, 0);
1206 		if (ret < 0 && ret != -ENOENT) {
1207 			ulist_free(tmp);
1208 			ulist_free(*roots);
1209 			return ret;
1210 		}
1211 		node = ulist_next(tmp, &uiter);
1212 		if (!node)
1213 			break;
1214 		bytenr = node->val;
1215 		cond_resched();
1216 	}
1217 
1218 	ulist_free(tmp);
1219 	return 0;
1220 }
1221 
1222 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1223 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1224 			 u64 time_seq, struct ulist **roots)
1225 {
1226 	int ret;
1227 
1228 	if (!trans)
1229 		down_read(&fs_info->commit_root_sem);
1230 	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1231 	if (!trans)
1232 		up_read(&fs_info->commit_root_sem);
1233 	return ret;
1234 }
1235 
1236 /**
1237  * btrfs_check_shared - tell us whether an extent is shared
1238  *
1239  * @trans: optional trans handle
1240  *
1241  * btrfs_check_shared uses the backref walking code but will short
1242  * circuit as soon as it finds a root or inode that doesn't match the
1243  * one passed in. This provides a significant performance benefit for
1244  * callers (such as fiemap) which want to know whether the extent is
1245  * shared but do not need a ref count.
1246  *
1247  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1248  */
1249 int btrfs_check_shared(struct btrfs_trans_handle *trans,
1250 		       struct btrfs_fs_info *fs_info, u64 root_objectid,
1251 		       u64 inum, u64 bytenr)
1252 {
1253 	struct ulist *tmp = NULL;
1254 	struct ulist *roots = NULL;
1255 	struct ulist_iterator uiter;
1256 	struct ulist_node *node;
1257 	struct seq_list elem = SEQ_LIST_INIT(elem);
1258 	int ret = 0;
1259 
1260 	tmp = ulist_alloc(GFP_NOFS);
1261 	roots = ulist_alloc(GFP_NOFS);
1262 	if (!tmp || !roots) {
1263 		ulist_free(tmp);
1264 		ulist_free(roots);
1265 		return -ENOMEM;
1266 	}
1267 
1268 	if (trans)
1269 		btrfs_get_tree_mod_seq(fs_info, &elem);
1270 	else
1271 		down_read(&fs_info->commit_root_sem);
1272 	ULIST_ITER_INIT(&uiter);
1273 	while (1) {
1274 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1275 					roots, NULL, root_objectid, inum);
1276 		if (ret == BACKREF_FOUND_SHARED) {
1277 			/* this is the only condition under which we return 1 */
1278 			ret = 1;
1279 			break;
1280 		}
1281 		if (ret < 0 && ret != -ENOENT)
1282 			break;
1283 		ret = 0;
1284 		node = ulist_next(tmp, &uiter);
1285 		if (!node)
1286 			break;
1287 		bytenr = node->val;
1288 		cond_resched();
1289 	}
1290 	if (trans)
1291 		btrfs_put_tree_mod_seq(fs_info, &elem);
1292 	else
1293 		up_read(&fs_info->commit_root_sem);
1294 	ulist_free(tmp);
1295 	ulist_free(roots);
1296 	return ret;
1297 }
1298 
1299 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1300 			  u64 start_off, struct btrfs_path *path,
1301 			  struct btrfs_inode_extref **ret_extref,
1302 			  u64 *found_off)
1303 {
1304 	int ret, slot;
1305 	struct btrfs_key key;
1306 	struct btrfs_key found_key;
1307 	struct btrfs_inode_extref *extref;
1308 	struct extent_buffer *leaf;
1309 	unsigned long ptr;
1310 
1311 	key.objectid = inode_objectid;
1312 	key.type = BTRFS_INODE_EXTREF_KEY;
1313 	key.offset = start_off;
1314 
1315 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1316 	if (ret < 0)
1317 		return ret;
1318 
1319 	while (1) {
1320 		leaf = path->nodes[0];
1321 		slot = path->slots[0];
1322 		if (slot >= btrfs_header_nritems(leaf)) {
1323 			/*
1324 			 * If the item at offset is not found,
1325 			 * btrfs_search_slot will point us to the slot
1326 			 * where it should be inserted. In our case
1327 			 * that will be the slot directly before the
1328 			 * next INODE_REF_KEY_V2 item. In the case
1329 			 * that we're pointing to the last slot in a
1330 			 * leaf, we must move one leaf over.
1331 			 */
1332 			ret = btrfs_next_leaf(root, path);
1333 			if (ret) {
1334 				if (ret >= 1)
1335 					ret = -ENOENT;
1336 				break;
1337 			}
1338 			continue;
1339 		}
1340 
1341 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1342 
1343 		/*
1344 		 * Check that we're still looking at an extended ref key for
1345 		 * this particular objectid. If we have different
1346 		 * objectid or type then there are no more to be found
1347 		 * in the tree and we can exit.
1348 		 */
1349 		ret = -ENOENT;
1350 		if (found_key.objectid != inode_objectid)
1351 			break;
1352 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1353 			break;
1354 
1355 		ret = 0;
1356 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1357 		extref = (struct btrfs_inode_extref *)ptr;
1358 		*ret_extref = extref;
1359 		if (found_off)
1360 			*found_off = found_key.offset;
1361 		break;
1362 	}
1363 
1364 	return ret;
1365 }
1366 
1367 /*
1368  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1369  * Elements of the path are separated by '/' and the path is guaranteed to be
1370  * 0-terminated. the path is only given within the current file system.
1371  * Therefore, it never starts with a '/'. the caller is responsible to provide
1372  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1373  * the start point of the resulting string is returned. this pointer is within
1374  * dest, normally.
1375  * in case the path buffer would overflow, the pointer is decremented further
1376  * as if output was written to the buffer, though no more output is actually
1377  * generated. that way, the caller can determine how much space would be
1378  * required for the path to fit into the buffer. in that case, the returned
1379  * value will be smaller than dest. callers must check this!
1380  */
1381 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1382 			u32 name_len, unsigned long name_off,
1383 			struct extent_buffer *eb_in, u64 parent,
1384 			char *dest, u32 size)
1385 {
1386 	int slot;
1387 	u64 next_inum;
1388 	int ret;
1389 	s64 bytes_left = ((s64)size) - 1;
1390 	struct extent_buffer *eb = eb_in;
1391 	struct btrfs_key found_key;
1392 	int leave_spinning = path->leave_spinning;
1393 	struct btrfs_inode_ref *iref;
1394 
1395 	if (bytes_left >= 0)
1396 		dest[bytes_left] = '\0';
1397 
1398 	path->leave_spinning = 1;
1399 	while (1) {
1400 		bytes_left -= name_len;
1401 		if (bytes_left >= 0)
1402 			read_extent_buffer(eb, dest + bytes_left,
1403 					   name_off, name_len);
1404 		if (eb != eb_in) {
1405 			if (!path->skip_locking)
1406 				btrfs_tree_read_unlock_blocking(eb);
1407 			free_extent_buffer(eb);
1408 		}
1409 		ret = btrfs_find_item(fs_root, path, parent, 0,
1410 				BTRFS_INODE_REF_KEY, &found_key);
1411 		if (ret > 0)
1412 			ret = -ENOENT;
1413 		if (ret)
1414 			break;
1415 
1416 		next_inum = found_key.offset;
1417 
1418 		/* regular exit ahead */
1419 		if (parent == next_inum)
1420 			break;
1421 
1422 		slot = path->slots[0];
1423 		eb = path->nodes[0];
1424 		/* make sure we can use eb after releasing the path */
1425 		if (eb != eb_in) {
1426 			if (!path->skip_locking)
1427 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1428 			path->nodes[0] = NULL;
1429 			path->locks[0] = 0;
1430 		}
1431 		btrfs_release_path(path);
1432 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1433 
1434 		name_len = btrfs_inode_ref_name_len(eb, iref);
1435 		name_off = (unsigned long)(iref + 1);
1436 
1437 		parent = next_inum;
1438 		--bytes_left;
1439 		if (bytes_left >= 0)
1440 			dest[bytes_left] = '/';
1441 	}
1442 
1443 	btrfs_release_path(path);
1444 	path->leave_spinning = leave_spinning;
1445 
1446 	if (ret)
1447 		return ERR_PTR(ret);
1448 
1449 	return dest + bytes_left;
1450 }
1451 
1452 /*
1453  * this makes the path point to (logical EXTENT_ITEM *)
1454  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1455  * tree blocks and <0 on error.
1456  */
1457 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1458 			struct btrfs_path *path, struct btrfs_key *found_key,
1459 			u64 *flags_ret)
1460 {
1461 	int ret;
1462 	u64 flags;
1463 	u64 size = 0;
1464 	u32 item_size;
1465 	struct extent_buffer *eb;
1466 	struct btrfs_extent_item *ei;
1467 	struct btrfs_key key;
1468 
1469 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1470 		key.type = BTRFS_METADATA_ITEM_KEY;
1471 	else
1472 		key.type = BTRFS_EXTENT_ITEM_KEY;
1473 	key.objectid = logical;
1474 	key.offset = (u64)-1;
1475 
1476 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1477 	if (ret < 0)
1478 		return ret;
1479 
1480 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1481 	if (ret) {
1482 		if (ret > 0)
1483 			ret = -ENOENT;
1484 		return ret;
1485 	}
1486 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1487 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1488 		size = fs_info->extent_root->nodesize;
1489 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1490 		size = found_key->offset;
1491 
1492 	if (found_key->objectid > logical ||
1493 	    found_key->objectid + size <= logical) {
1494 		pr_debug("logical %llu is not within any extent\n", logical);
1495 		return -ENOENT;
1496 	}
1497 
1498 	eb = path->nodes[0];
1499 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1500 	BUG_ON(item_size < sizeof(*ei));
1501 
1502 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1503 	flags = btrfs_extent_flags(eb, ei);
1504 
1505 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1506 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1507 		 logical, logical - found_key->objectid, found_key->objectid,
1508 		 found_key->offset, flags, item_size);
1509 
1510 	WARN_ON(!flags_ret);
1511 	if (flags_ret) {
1512 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1513 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1514 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1515 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1516 		else
1517 			BUG_ON(1);
1518 		return 0;
1519 	}
1520 
1521 	return -EIO;
1522 }
1523 
1524 /*
1525  * helper function to iterate extent inline refs. ptr must point to a 0 value
1526  * for the first call and may be modified. it is used to track state.
1527  * if more refs exist, 0 is returned and the next call to
1528  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1529  * next ref. after the last ref was processed, 1 is returned.
1530  * returns <0 on error
1531  */
1532 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1533 				   struct btrfs_key *key,
1534 				   struct btrfs_extent_item *ei, u32 item_size,
1535 				   struct btrfs_extent_inline_ref **out_eiref,
1536 				   int *out_type)
1537 {
1538 	unsigned long end;
1539 	u64 flags;
1540 	struct btrfs_tree_block_info *info;
1541 
1542 	if (!*ptr) {
1543 		/* first call */
1544 		flags = btrfs_extent_flags(eb, ei);
1545 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1546 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1547 				/* a skinny metadata extent */
1548 				*out_eiref =
1549 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1550 			} else {
1551 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1552 				info = (struct btrfs_tree_block_info *)(ei + 1);
1553 				*out_eiref =
1554 				   (struct btrfs_extent_inline_ref *)(info + 1);
1555 			}
1556 		} else {
1557 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1558 		}
1559 		*ptr = (unsigned long)*out_eiref;
1560 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1561 			return -ENOENT;
1562 	}
1563 
1564 	end = (unsigned long)ei + item_size;
1565 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1566 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1567 
1568 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1569 	WARN_ON(*ptr > end);
1570 	if (*ptr == end)
1571 		return 1; /* last */
1572 
1573 	return 0;
1574 }
1575 
1576 /*
1577  * reads the tree block backref for an extent. tree level and root are returned
1578  * through out_level and out_root. ptr must point to a 0 value for the first
1579  * call and may be modified (see __get_extent_inline_ref comment).
1580  * returns 0 if data was provided, 1 if there was no more data to provide or
1581  * <0 on error.
1582  */
1583 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1584 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1585 			    u32 item_size, u64 *out_root, u8 *out_level)
1586 {
1587 	int ret;
1588 	int type;
1589 	struct btrfs_extent_inline_ref *eiref;
1590 
1591 	if (*ptr == (unsigned long)-1)
1592 		return 1;
1593 
1594 	while (1) {
1595 		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1596 					      &eiref, &type);
1597 		if (ret < 0)
1598 			return ret;
1599 
1600 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1601 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1602 			break;
1603 
1604 		if (ret == 1)
1605 			return 1;
1606 	}
1607 
1608 	/* we can treat both ref types equally here */
1609 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1610 
1611 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1612 		struct btrfs_tree_block_info *info;
1613 
1614 		info = (struct btrfs_tree_block_info *)(ei + 1);
1615 		*out_level = btrfs_tree_block_level(eb, info);
1616 	} else {
1617 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1618 		*out_level = (u8)key->offset;
1619 	}
1620 
1621 	if (ret == 1)
1622 		*ptr = (unsigned long)-1;
1623 
1624 	return 0;
1625 }
1626 
1627 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1628 				u64 root, u64 extent_item_objectid,
1629 				iterate_extent_inodes_t *iterate, void *ctx)
1630 {
1631 	struct extent_inode_elem *eie;
1632 	int ret = 0;
1633 
1634 	for (eie = inode_list; eie; eie = eie->next) {
1635 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1636 			 "root %llu\n", extent_item_objectid,
1637 			 eie->inum, eie->offset, root);
1638 		ret = iterate(eie->inum, eie->offset, root, ctx);
1639 		if (ret) {
1640 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1641 				 extent_item_objectid, ret);
1642 			break;
1643 		}
1644 	}
1645 
1646 	return ret;
1647 }
1648 
1649 /*
1650  * calls iterate() for every inode that references the extent identified by
1651  * the given parameters.
1652  * when the iterator function returns a non-zero value, iteration stops.
1653  */
1654 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1655 				u64 extent_item_objectid, u64 extent_item_pos,
1656 				int search_commit_root,
1657 				iterate_extent_inodes_t *iterate, void *ctx)
1658 {
1659 	int ret;
1660 	struct btrfs_trans_handle *trans = NULL;
1661 	struct ulist *refs = NULL;
1662 	struct ulist *roots = NULL;
1663 	struct ulist_node *ref_node = NULL;
1664 	struct ulist_node *root_node = NULL;
1665 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1666 	struct ulist_iterator ref_uiter;
1667 	struct ulist_iterator root_uiter;
1668 
1669 	pr_debug("resolving all inodes for extent %llu\n",
1670 			extent_item_objectid);
1671 
1672 	if (!search_commit_root) {
1673 		trans = btrfs_join_transaction(fs_info->extent_root);
1674 		if (IS_ERR(trans))
1675 			return PTR_ERR(trans);
1676 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1677 	} else {
1678 		down_read(&fs_info->commit_root_sem);
1679 	}
1680 
1681 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1682 				   tree_mod_seq_elem.seq, &refs,
1683 				   &extent_item_pos);
1684 	if (ret)
1685 		goto out;
1686 
1687 	ULIST_ITER_INIT(&ref_uiter);
1688 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1689 		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1690 					     tree_mod_seq_elem.seq, &roots);
1691 		if (ret)
1692 			break;
1693 		ULIST_ITER_INIT(&root_uiter);
1694 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1695 			pr_debug("root %llu references leaf %llu, data list "
1696 				 "%#llx\n", root_node->val, ref_node->val,
1697 				 ref_node->aux);
1698 			ret = iterate_leaf_refs((struct extent_inode_elem *)
1699 						(uintptr_t)ref_node->aux,
1700 						root_node->val,
1701 						extent_item_objectid,
1702 						iterate, ctx);
1703 		}
1704 		ulist_free(roots);
1705 	}
1706 
1707 	free_leaf_list(refs);
1708 out:
1709 	if (!search_commit_root) {
1710 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1711 		btrfs_end_transaction(trans, fs_info->extent_root);
1712 	} else {
1713 		up_read(&fs_info->commit_root_sem);
1714 	}
1715 
1716 	return ret;
1717 }
1718 
1719 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1720 				struct btrfs_path *path,
1721 				iterate_extent_inodes_t *iterate, void *ctx)
1722 {
1723 	int ret;
1724 	u64 extent_item_pos;
1725 	u64 flags = 0;
1726 	struct btrfs_key found_key;
1727 	int search_commit_root = path->search_commit_root;
1728 
1729 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1730 	btrfs_release_path(path);
1731 	if (ret < 0)
1732 		return ret;
1733 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1734 		return -EINVAL;
1735 
1736 	extent_item_pos = logical - found_key.objectid;
1737 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1738 					extent_item_pos, search_commit_root,
1739 					iterate, ctx);
1740 
1741 	return ret;
1742 }
1743 
1744 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1745 			      struct extent_buffer *eb, void *ctx);
1746 
1747 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1748 			      struct btrfs_path *path,
1749 			      iterate_irefs_t *iterate, void *ctx)
1750 {
1751 	int ret = 0;
1752 	int slot;
1753 	u32 cur;
1754 	u32 len;
1755 	u32 name_len;
1756 	u64 parent = 0;
1757 	int found = 0;
1758 	struct extent_buffer *eb;
1759 	struct btrfs_item *item;
1760 	struct btrfs_inode_ref *iref;
1761 	struct btrfs_key found_key;
1762 
1763 	while (!ret) {
1764 		ret = btrfs_find_item(fs_root, path, inum,
1765 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
1766 				&found_key);
1767 
1768 		if (ret < 0)
1769 			break;
1770 		if (ret) {
1771 			ret = found ? 0 : -ENOENT;
1772 			break;
1773 		}
1774 		++found;
1775 
1776 		parent = found_key.offset;
1777 		slot = path->slots[0];
1778 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1779 		if (!eb) {
1780 			ret = -ENOMEM;
1781 			break;
1782 		}
1783 		extent_buffer_get(eb);
1784 		btrfs_tree_read_lock(eb);
1785 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1786 		btrfs_release_path(path);
1787 
1788 		item = btrfs_item_nr(slot);
1789 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1790 
1791 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1792 			name_len = btrfs_inode_ref_name_len(eb, iref);
1793 			/* path must be released before calling iterate()! */
1794 			pr_debug("following ref at offset %u for inode %llu in "
1795 				 "tree %llu\n", cur, found_key.objectid,
1796 				 fs_root->objectid);
1797 			ret = iterate(parent, name_len,
1798 				      (unsigned long)(iref + 1), eb, ctx);
1799 			if (ret)
1800 				break;
1801 			len = sizeof(*iref) + name_len;
1802 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1803 		}
1804 		btrfs_tree_read_unlock_blocking(eb);
1805 		free_extent_buffer(eb);
1806 	}
1807 
1808 	btrfs_release_path(path);
1809 
1810 	return ret;
1811 }
1812 
1813 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1814 				 struct btrfs_path *path,
1815 				 iterate_irefs_t *iterate, void *ctx)
1816 {
1817 	int ret;
1818 	int slot;
1819 	u64 offset = 0;
1820 	u64 parent;
1821 	int found = 0;
1822 	struct extent_buffer *eb;
1823 	struct btrfs_inode_extref *extref;
1824 	u32 item_size;
1825 	u32 cur_offset;
1826 	unsigned long ptr;
1827 
1828 	while (1) {
1829 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1830 					    &offset);
1831 		if (ret < 0)
1832 			break;
1833 		if (ret) {
1834 			ret = found ? 0 : -ENOENT;
1835 			break;
1836 		}
1837 		++found;
1838 
1839 		slot = path->slots[0];
1840 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1841 		if (!eb) {
1842 			ret = -ENOMEM;
1843 			break;
1844 		}
1845 		extent_buffer_get(eb);
1846 
1847 		btrfs_tree_read_lock(eb);
1848 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1849 		btrfs_release_path(path);
1850 
1851 		item_size = btrfs_item_size_nr(eb, slot);
1852 		ptr = btrfs_item_ptr_offset(eb, slot);
1853 		cur_offset = 0;
1854 
1855 		while (cur_offset < item_size) {
1856 			u32 name_len;
1857 
1858 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1859 			parent = btrfs_inode_extref_parent(eb, extref);
1860 			name_len = btrfs_inode_extref_name_len(eb, extref);
1861 			ret = iterate(parent, name_len,
1862 				      (unsigned long)&extref->name, eb, ctx);
1863 			if (ret)
1864 				break;
1865 
1866 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
1867 			cur_offset += sizeof(*extref);
1868 		}
1869 		btrfs_tree_read_unlock_blocking(eb);
1870 		free_extent_buffer(eb);
1871 
1872 		offset++;
1873 	}
1874 
1875 	btrfs_release_path(path);
1876 
1877 	return ret;
1878 }
1879 
1880 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1881 			 struct btrfs_path *path, iterate_irefs_t *iterate,
1882 			 void *ctx)
1883 {
1884 	int ret;
1885 	int found_refs = 0;
1886 
1887 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1888 	if (!ret)
1889 		++found_refs;
1890 	else if (ret != -ENOENT)
1891 		return ret;
1892 
1893 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1894 	if (ret == -ENOENT && found_refs)
1895 		return 0;
1896 
1897 	return ret;
1898 }
1899 
1900 /*
1901  * returns 0 if the path could be dumped (probably truncated)
1902  * returns <0 in case of an error
1903  */
1904 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1905 			 struct extent_buffer *eb, void *ctx)
1906 {
1907 	struct inode_fs_paths *ipath = ctx;
1908 	char *fspath;
1909 	char *fspath_min;
1910 	int i = ipath->fspath->elem_cnt;
1911 	const int s_ptr = sizeof(char *);
1912 	u32 bytes_left;
1913 
1914 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1915 					ipath->fspath->bytes_left - s_ptr : 0;
1916 
1917 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1918 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1919 				   name_off, eb, inum, fspath_min, bytes_left);
1920 	if (IS_ERR(fspath))
1921 		return PTR_ERR(fspath);
1922 
1923 	if (fspath > fspath_min) {
1924 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1925 		++ipath->fspath->elem_cnt;
1926 		ipath->fspath->bytes_left = fspath - fspath_min;
1927 	} else {
1928 		++ipath->fspath->elem_missed;
1929 		ipath->fspath->bytes_missing += fspath_min - fspath;
1930 		ipath->fspath->bytes_left = 0;
1931 	}
1932 
1933 	return 0;
1934 }
1935 
1936 /*
1937  * this dumps all file system paths to the inode into the ipath struct, provided
1938  * is has been created large enough. each path is zero-terminated and accessed
1939  * from ipath->fspath->val[i].
1940  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1941  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1942  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
1943  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1944  * have been needed to return all paths.
1945  */
1946 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1947 {
1948 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1949 			     inode_to_path, ipath);
1950 }
1951 
1952 struct btrfs_data_container *init_data_container(u32 total_bytes)
1953 {
1954 	struct btrfs_data_container *data;
1955 	size_t alloc_bytes;
1956 
1957 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1958 	data = vmalloc(alloc_bytes);
1959 	if (!data)
1960 		return ERR_PTR(-ENOMEM);
1961 
1962 	if (total_bytes >= sizeof(*data)) {
1963 		data->bytes_left = total_bytes - sizeof(*data);
1964 		data->bytes_missing = 0;
1965 	} else {
1966 		data->bytes_missing = sizeof(*data) - total_bytes;
1967 		data->bytes_left = 0;
1968 	}
1969 
1970 	data->elem_cnt = 0;
1971 	data->elem_missed = 0;
1972 
1973 	return data;
1974 }
1975 
1976 /*
1977  * allocates space to return multiple file system paths for an inode.
1978  * total_bytes to allocate are passed, note that space usable for actual path
1979  * information will be total_bytes - sizeof(struct inode_fs_paths).
1980  * the returned pointer must be freed with free_ipath() in the end.
1981  */
1982 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1983 					struct btrfs_path *path)
1984 {
1985 	struct inode_fs_paths *ifp;
1986 	struct btrfs_data_container *fspath;
1987 
1988 	fspath = init_data_container(total_bytes);
1989 	if (IS_ERR(fspath))
1990 		return (void *)fspath;
1991 
1992 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1993 	if (!ifp) {
1994 		vfree(fspath);
1995 		return ERR_PTR(-ENOMEM);
1996 	}
1997 
1998 	ifp->btrfs_path = path;
1999 	ifp->fspath = fspath;
2000 	ifp->fs_root = fs_root;
2001 
2002 	return ifp;
2003 }
2004 
2005 void free_ipath(struct inode_fs_paths *ipath)
2006 {
2007 	if (!ipath)
2008 		return;
2009 	vfree(ipath->fspath);
2010 	kfree(ipath);
2011 }
2012