1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "backref.h" 23 #include "ulist.h" 24 #include "transaction.h" 25 #include "delayed-ref.h" 26 #include "locking.h" 27 28 /* Just an arbitrary number so we can be sure this happened */ 29 #define BACKREF_FOUND_SHARED 6 30 31 struct extent_inode_elem { 32 u64 inum; 33 u64 offset; 34 struct extent_inode_elem *next; 35 }; 36 37 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 38 struct btrfs_file_extent_item *fi, 39 u64 extent_item_pos, 40 struct extent_inode_elem **eie) 41 { 42 u64 offset = 0; 43 struct extent_inode_elem *e; 44 45 if (!btrfs_file_extent_compression(eb, fi) && 46 !btrfs_file_extent_encryption(eb, fi) && 47 !btrfs_file_extent_other_encoding(eb, fi)) { 48 u64 data_offset; 49 u64 data_len; 50 51 data_offset = btrfs_file_extent_offset(eb, fi); 52 data_len = btrfs_file_extent_num_bytes(eb, fi); 53 54 if (extent_item_pos < data_offset || 55 extent_item_pos >= data_offset + data_len) 56 return 1; 57 offset = extent_item_pos - data_offset; 58 } 59 60 e = kmalloc(sizeof(*e), GFP_NOFS); 61 if (!e) 62 return -ENOMEM; 63 64 e->next = *eie; 65 e->inum = key->objectid; 66 e->offset = key->offset + offset; 67 *eie = e; 68 69 return 0; 70 } 71 72 static void free_inode_elem_list(struct extent_inode_elem *eie) 73 { 74 struct extent_inode_elem *eie_next; 75 76 for (; eie; eie = eie_next) { 77 eie_next = eie->next; 78 kfree(eie); 79 } 80 } 81 82 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 83 u64 extent_item_pos, 84 struct extent_inode_elem **eie) 85 { 86 u64 disk_byte; 87 struct btrfs_key key; 88 struct btrfs_file_extent_item *fi; 89 int slot; 90 int nritems; 91 int extent_type; 92 int ret; 93 94 /* 95 * from the shared data ref, we only have the leaf but we need 96 * the key. thus, we must look into all items and see that we 97 * find one (some) with a reference to our extent item. 98 */ 99 nritems = btrfs_header_nritems(eb); 100 for (slot = 0; slot < nritems; ++slot) { 101 btrfs_item_key_to_cpu(eb, &key, slot); 102 if (key.type != BTRFS_EXTENT_DATA_KEY) 103 continue; 104 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 105 extent_type = btrfs_file_extent_type(eb, fi); 106 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 107 continue; 108 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 109 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 110 if (disk_byte != wanted_disk_byte) 111 continue; 112 113 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 114 if (ret < 0) 115 return ret; 116 } 117 118 return 0; 119 } 120 121 /* 122 * this structure records all encountered refs on the way up to the root 123 */ 124 struct __prelim_ref { 125 struct list_head list; 126 u64 root_id; 127 struct btrfs_key key_for_search; 128 int level; 129 int count; 130 struct extent_inode_elem *inode_list; 131 u64 parent; 132 u64 wanted_disk_byte; 133 }; 134 135 static struct kmem_cache *btrfs_prelim_ref_cache; 136 137 int __init btrfs_prelim_ref_init(void) 138 { 139 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 140 sizeof(struct __prelim_ref), 141 0, 142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 143 NULL); 144 if (!btrfs_prelim_ref_cache) 145 return -ENOMEM; 146 return 0; 147 } 148 149 void btrfs_prelim_ref_exit(void) 150 { 151 if (btrfs_prelim_ref_cache) 152 kmem_cache_destroy(btrfs_prelim_ref_cache); 153 } 154 155 /* 156 * the rules for all callers of this function are: 157 * - obtaining the parent is the goal 158 * - if you add a key, you must know that it is a correct key 159 * - if you cannot add the parent or a correct key, then we will look into the 160 * block later to set a correct key 161 * 162 * delayed refs 163 * ============ 164 * backref type | shared | indirect | shared | indirect 165 * information | tree | tree | data | data 166 * --------------------+--------+----------+--------+---------- 167 * parent logical | y | - | - | - 168 * key to resolve | - | y | y | y 169 * tree block logical | - | - | - | - 170 * root for resolving | y | y | y | y 171 * 172 * - column 1: we've the parent -> done 173 * - column 2, 3, 4: we use the key to find the parent 174 * 175 * on disk refs (inline or keyed) 176 * ============================== 177 * backref type | shared | indirect | shared | indirect 178 * information | tree | tree | data | data 179 * --------------------+--------+----------+--------+---------- 180 * parent logical | y | - | y | - 181 * key to resolve | - | - | - | y 182 * tree block logical | y | y | y | y 183 * root for resolving | - | y | y | y 184 * 185 * - column 1, 3: we've the parent -> done 186 * - column 2: we take the first key from the block to find the parent 187 * (see __add_missing_keys) 188 * - column 4: we use the key to find the parent 189 * 190 * additional information that's available but not required to find the parent 191 * block might help in merging entries to gain some speed. 192 */ 193 194 static int __add_prelim_ref(struct list_head *head, u64 root_id, 195 struct btrfs_key *key, int level, 196 u64 parent, u64 wanted_disk_byte, int count, 197 gfp_t gfp_mask) 198 { 199 struct __prelim_ref *ref; 200 201 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 202 return 0; 203 204 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 205 if (!ref) 206 return -ENOMEM; 207 208 ref->root_id = root_id; 209 if (key) 210 ref->key_for_search = *key; 211 else 212 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 213 214 ref->inode_list = NULL; 215 ref->level = level; 216 ref->count = count; 217 ref->parent = parent; 218 ref->wanted_disk_byte = wanted_disk_byte; 219 list_add_tail(&ref->list, head); 220 221 return 0; 222 } 223 224 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 225 struct ulist *parents, struct __prelim_ref *ref, 226 int level, u64 time_seq, const u64 *extent_item_pos, 227 u64 total_refs) 228 { 229 int ret = 0; 230 int slot; 231 struct extent_buffer *eb; 232 struct btrfs_key key; 233 struct btrfs_key *key_for_search = &ref->key_for_search; 234 struct btrfs_file_extent_item *fi; 235 struct extent_inode_elem *eie = NULL, *old = NULL; 236 u64 disk_byte; 237 u64 wanted_disk_byte = ref->wanted_disk_byte; 238 u64 count = 0; 239 240 if (level != 0) { 241 eb = path->nodes[level]; 242 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 243 if (ret < 0) 244 return ret; 245 return 0; 246 } 247 248 /* 249 * We normally enter this function with the path already pointing to 250 * the first item to check. But sometimes, we may enter it with 251 * slot==nritems. In that case, go to the next leaf before we continue. 252 */ 253 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 254 if (time_seq == (u64)-1) 255 ret = btrfs_next_leaf(root, path); 256 else 257 ret = btrfs_next_old_leaf(root, path, time_seq); 258 } 259 260 while (!ret && count < total_refs) { 261 eb = path->nodes[0]; 262 slot = path->slots[0]; 263 264 btrfs_item_key_to_cpu(eb, &key, slot); 265 266 if (key.objectid != key_for_search->objectid || 267 key.type != BTRFS_EXTENT_DATA_KEY) 268 break; 269 270 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 271 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 272 273 if (disk_byte == wanted_disk_byte) { 274 eie = NULL; 275 old = NULL; 276 count++; 277 if (extent_item_pos) { 278 ret = check_extent_in_eb(&key, eb, fi, 279 *extent_item_pos, 280 &eie); 281 if (ret < 0) 282 break; 283 } 284 if (ret > 0) 285 goto next; 286 ret = ulist_add_merge_ptr(parents, eb->start, 287 eie, (void **)&old, GFP_NOFS); 288 if (ret < 0) 289 break; 290 if (!ret && extent_item_pos) { 291 while (old->next) 292 old = old->next; 293 old->next = eie; 294 } 295 eie = NULL; 296 } 297 next: 298 if (time_seq == (u64)-1) 299 ret = btrfs_next_item(root, path); 300 else 301 ret = btrfs_next_old_item(root, path, time_seq); 302 } 303 304 if (ret > 0) 305 ret = 0; 306 else if (ret < 0) 307 free_inode_elem_list(eie); 308 return ret; 309 } 310 311 /* 312 * resolve an indirect backref in the form (root_id, key, level) 313 * to a logical address 314 */ 315 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 316 struct btrfs_path *path, u64 time_seq, 317 struct __prelim_ref *ref, 318 struct ulist *parents, 319 const u64 *extent_item_pos, u64 total_refs) 320 { 321 struct btrfs_root *root; 322 struct btrfs_key root_key; 323 struct extent_buffer *eb; 324 int ret = 0; 325 int root_level; 326 int level = ref->level; 327 int index; 328 329 root_key.objectid = ref->root_id; 330 root_key.type = BTRFS_ROOT_ITEM_KEY; 331 root_key.offset = (u64)-1; 332 333 index = srcu_read_lock(&fs_info->subvol_srcu); 334 335 root = btrfs_read_fs_root_no_name(fs_info, &root_key); 336 if (IS_ERR(root)) { 337 srcu_read_unlock(&fs_info->subvol_srcu, index); 338 ret = PTR_ERR(root); 339 goto out; 340 } 341 342 if (path->search_commit_root) 343 root_level = btrfs_header_level(root->commit_root); 344 else if (time_seq == (u64)-1) 345 root_level = btrfs_header_level(root->node); 346 else 347 root_level = btrfs_old_root_level(root, time_seq); 348 349 if (root_level + 1 == level) { 350 srcu_read_unlock(&fs_info->subvol_srcu, index); 351 goto out; 352 } 353 354 path->lowest_level = level; 355 if (time_seq == (u64)-1) 356 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 357 0, 0); 358 else 359 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, 360 time_seq); 361 362 /* root node has been locked, we can release @subvol_srcu safely here */ 363 srcu_read_unlock(&fs_info->subvol_srcu, index); 364 365 pr_debug("search slot in root %llu (level %d, ref count %d) returned " 366 "%d for key (%llu %u %llu)\n", 367 ref->root_id, level, ref->count, ret, 368 ref->key_for_search.objectid, ref->key_for_search.type, 369 ref->key_for_search.offset); 370 if (ret < 0) 371 goto out; 372 373 eb = path->nodes[level]; 374 while (!eb) { 375 if (WARN_ON(!level)) { 376 ret = 1; 377 goto out; 378 } 379 level--; 380 eb = path->nodes[level]; 381 } 382 383 ret = add_all_parents(root, path, parents, ref, level, time_seq, 384 extent_item_pos, total_refs); 385 out: 386 path->lowest_level = 0; 387 btrfs_release_path(path); 388 return ret; 389 } 390 391 /* 392 * resolve all indirect backrefs from the list 393 */ 394 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 395 struct btrfs_path *path, u64 time_seq, 396 struct list_head *head, 397 const u64 *extent_item_pos, u64 total_refs, 398 u64 root_objectid) 399 { 400 int err; 401 int ret = 0; 402 struct __prelim_ref *ref; 403 struct __prelim_ref *ref_safe; 404 struct __prelim_ref *new_ref; 405 struct ulist *parents; 406 struct ulist_node *node; 407 struct ulist_iterator uiter; 408 409 parents = ulist_alloc(GFP_NOFS); 410 if (!parents) 411 return -ENOMEM; 412 413 /* 414 * _safe allows us to insert directly after the current item without 415 * iterating over the newly inserted items. 416 * we're also allowed to re-assign ref during iteration. 417 */ 418 list_for_each_entry_safe(ref, ref_safe, head, list) { 419 if (ref->parent) /* already direct */ 420 continue; 421 if (ref->count == 0) 422 continue; 423 if (root_objectid && ref->root_id != root_objectid) { 424 ret = BACKREF_FOUND_SHARED; 425 goto out; 426 } 427 err = __resolve_indirect_ref(fs_info, path, time_seq, ref, 428 parents, extent_item_pos, 429 total_refs); 430 /* 431 * we can only tolerate ENOENT,otherwise,we should catch error 432 * and return directly. 433 */ 434 if (err == -ENOENT) { 435 continue; 436 } else if (err) { 437 ret = err; 438 goto out; 439 } 440 441 /* we put the first parent into the ref at hand */ 442 ULIST_ITER_INIT(&uiter); 443 node = ulist_next(parents, &uiter); 444 ref->parent = node ? node->val : 0; 445 ref->inode_list = node ? 446 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL; 447 448 /* additional parents require new refs being added here */ 449 while ((node = ulist_next(parents, &uiter))) { 450 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 451 GFP_NOFS); 452 if (!new_ref) { 453 ret = -ENOMEM; 454 goto out; 455 } 456 memcpy(new_ref, ref, sizeof(*ref)); 457 new_ref->parent = node->val; 458 new_ref->inode_list = (struct extent_inode_elem *) 459 (uintptr_t)node->aux; 460 list_add(&new_ref->list, &ref->list); 461 } 462 ulist_reinit(parents); 463 } 464 out: 465 ulist_free(parents); 466 return ret; 467 } 468 469 static inline int ref_for_same_block(struct __prelim_ref *ref1, 470 struct __prelim_ref *ref2) 471 { 472 if (ref1->level != ref2->level) 473 return 0; 474 if (ref1->root_id != ref2->root_id) 475 return 0; 476 if (ref1->key_for_search.type != ref2->key_for_search.type) 477 return 0; 478 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 479 return 0; 480 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 481 return 0; 482 if (ref1->parent != ref2->parent) 483 return 0; 484 485 return 1; 486 } 487 488 /* 489 * read tree blocks and add keys where required. 490 */ 491 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 492 struct list_head *head) 493 { 494 struct list_head *pos; 495 struct extent_buffer *eb; 496 497 list_for_each(pos, head) { 498 struct __prelim_ref *ref; 499 ref = list_entry(pos, struct __prelim_ref, list); 500 501 if (ref->parent) 502 continue; 503 if (ref->key_for_search.type) 504 continue; 505 BUG_ON(!ref->wanted_disk_byte); 506 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 507 0); 508 if (IS_ERR(eb)) { 509 return PTR_ERR(eb); 510 } else if (!extent_buffer_uptodate(eb)) { 511 free_extent_buffer(eb); 512 return -EIO; 513 } 514 btrfs_tree_read_lock(eb); 515 if (btrfs_header_level(eb) == 0) 516 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 517 else 518 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 519 btrfs_tree_read_unlock(eb); 520 free_extent_buffer(eb); 521 } 522 return 0; 523 } 524 525 /* 526 * merge backrefs and adjust counts accordingly 527 * 528 * mode = 1: merge identical keys, if key is set 529 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 530 * additionally, we could even add a key range for the blocks we 531 * looked into to merge even more (-> replace unresolved refs by those 532 * having a parent). 533 * mode = 2: merge identical parents 534 */ 535 static void __merge_refs(struct list_head *head, int mode) 536 { 537 struct list_head *pos1; 538 539 list_for_each(pos1, head) { 540 struct list_head *n2; 541 struct list_head *pos2; 542 struct __prelim_ref *ref1; 543 544 ref1 = list_entry(pos1, struct __prelim_ref, list); 545 546 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head; 547 pos2 = n2, n2 = pos2->next) { 548 struct __prelim_ref *ref2; 549 struct __prelim_ref *xchg; 550 struct extent_inode_elem *eie; 551 552 ref2 = list_entry(pos2, struct __prelim_ref, list); 553 554 if (!ref_for_same_block(ref1, ref2)) 555 continue; 556 if (mode == 1) { 557 if (!ref1->parent && ref2->parent) { 558 xchg = ref1; 559 ref1 = ref2; 560 ref2 = xchg; 561 } 562 } else { 563 if (ref1->parent != ref2->parent) 564 continue; 565 } 566 567 eie = ref1->inode_list; 568 while (eie && eie->next) 569 eie = eie->next; 570 if (eie) 571 eie->next = ref2->inode_list; 572 else 573 ref1->inode_list = ref2->inode_list; 574 ref1->count += ref2->count; 575 576 list_del(&ref2->list); 577 kmem_cache_free(btrfs_prelim_ref_cache, ref2); 578 } 579 580 } 581 } 582 583 /* 584 * add all currently queued delayed refs from this head whose seq nr is 585 * smaller or equal that seq to the list 586 */ 587 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 588 struct list_head *prefs, u64 *total_refs, 589 u64 inum) 590 { 591 struct btrfs_delayed_ref_node *node; 592 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 593 struct btrfs_key key; 594 struct btrfs_key op_key = {0}; 595 int sgn; 596 int ret = 0; 597 598 if (extent_op && extent_op->update_key) 599 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 600 601 spin_lock(&head->lock); 602 list_for_each_entry(node, &head->ref_list, list) { 603 if (node->seq > seq) 604 continue; 605 606 switch (node->action) { 607 case BTRFS_ADD_DELAYED_EXTENT: 608 case BTRFS_UPDATE_DELAYED_HEAD: 609 WARN_ON(1); 610 continue; 611 case BTRFS_ADD_DELAYED_REF: 612 sgn = 1; 613 break; 614 case BTRFS_DROP_DELAYED_REF: 615 sgn = -1; 616 break; 617 default: 618 BUG_ON(1); 619 } 620 *total_refs += (node->ref_mod * sgn); 621 switch (node->type) { 622 case BTRFS_TREE_BLOCK_REF_KEY: { 623 struct btrfs_delayed_tree_ref *ref; 624 625 ref = btrfs_delayed_node_to_tree_ref(node); 626 ret = __add_prelim_ref(prefs, ref->root, &op_key, 627 ref->level + 1, 0, node->bytenr, 628 node->ref_mod * sgn, GFP_ATOMIC); 629 break; 630 } 631 case BTRFS_SHARED_BLOCK_REF_KEY: { 632 struct btrfs_delayed_tree_ref *ref; 633 634 ref = btrfs_delayed_node_to_tree_ref(node); 635 ret = __add_prelim_ref(prefs, ref->root, NULL, 636 ref->level + 1, ref->parent, 637 node->bytenr, 638 node->ref_mod * sgn, GFP_ATOMIC); 639 break; 640 } 641 case BTRFS_EXTENT_DATA_REF_KEY: { 642 struct btrfs_delayed_data_ref *ref; 643 ref = btrfs_delayed_node_to_data_ref(node); 644 645 key.objectid = ref->objectid; 646 key.type = BTRFS_EXTENT_DATA_KEY; 647 key.offset = ref->offset; 648 649 /* 650 * Found a inum that doesn't match our known inum, we 651 * know it's shared. 652 */ 653 if (inum && ref->objectid != inum) { 654 ret = BACKREF_FOUND_SHARED; 655 break; 656 } 657 658 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 659 node->bytenr, 660 node->ref_mod * sgn, GFP_ATOMIC); 661 break; 662 } 663 case BTRFS_SHARED_DATA_REF_KEY: { 664 struct btrfs_delayed_data_ref *ref; 665 666 ref = btrfs_delayed_node_to_data_ref(node); 667 668 key.objectid = ref->objectid; 669 key.type = BTRFS_EXTENT_DATA_KEY; 670 key.offset = ref->offset; 671 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 672 ref->parent, node->bytenr, 673 node->ref_mod * sgn, GFP_ATOMIC); 674 break; 675 } 676 default: 677 WARN_ON(1); 678 } 679 if (ret) 680 break; 681 } 682 spin_unlock(&head->lock); 683 return ret; 684 } 685 686 /* 687 * add all inline backrefs for bytenr to the list 688 */ 689 static int __add_inline_refs(struct btrfs_fs_info *fs_info, 690 struct btrfs_path *path, u64 bytenr, 691 int *info_level, struct list_head *prefs, 692 u64 *total_refs, u64 inum) 693 { 694 int ret = 0; 695 int slot; 696 struct extent_buffer *leaf; 697 struct btrfs_key key; 698 struct btrfs_key found_key; 699 unsigned long ptr; 700 unsigned long end; 701 struct btrfs_extent_item *ei; 702 u64 flags; 703 u64 item_size; 704 705 /* 706 * enumerate all inline refs 707 */ 708 leaf = path->nodes[0]; 709 slot = path->slots[0]; 710 711 item_size = btrfs_item_size_nr(leaf, slot); 712 BUG_ON(item_size < sizeof(*ei)); 713 714 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 715 flags = btrfs_extent_flags(leaf, ei); 716 *total_refs += btrfs_extent_refs(leaf, ei); 717 btrfs_item_key_to_cpu(leaf, &found_key, slot); 718 719 ptr = (unsigned long)(ei + 1); 720 end = (unsigned long)ei + item_size; 721 722 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 723 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 724 struct btrfs_tree_block_info *info; 725 726 info = (struct btrfs_tree_block_info *)ptr; 727 *info_level = btrfs_tree_block_level(leaf, info); 728 ptr += sizeof(struct btrfs_tree_block_info); 729 BUG_ON(ptr > end); 730 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 731 *info_level = found_key.offset; 732 } else { 733 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 734 } 735 736 while (ptr < end) { 737 struct btrfs_extent_inline_ref *iref; 738 u64 offset; 739 int type; 740 741 iref = (struct btrfs_extent_inline_ref *)ptr; 742 type = btrfs_extent_inline_ref_type(leaf, iref); 743 offset = btrfs_extent_inline_ref_offset(leaf, iref); 744 745 switch (type) { 746 case BTRFS_SHARED_BLOCK_REF_KEY: 747 ret = __add_prelim_ref(prefs, 0, NULL, 748 *info_level + 1, offset, 749 bytenr, 1, GFP_NOFS); 750 break; 751 case BTRFS_SHARED_DATA_REF_KEY: { 752 struct btrfs_shared_data_ref *sdref; 753 int count; 754 755 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 756 count = btrfs_shared_data_ref_count(leaf, sdref); 757 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 758 bytenr, count, GFP_NOFS); 759 break; 760 } 761 case BTRFS_TREE_BLOCK_REF_KEY: 762 ret = __add_prelim_ref(prefs, offset, NULL, 763 *info_level + 1, 0, 764 bytenr, 1, GFP_NOFS); 765 break; 766 case BTRFS_EXTENT_DATA_REF_KEY: { 767 struct btrfs_extent_data_ref *dref; 768 int count; 769 u64 root; 770 771 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 772 count = btrfs_extent_data_ref_count(leaf, dref); 773 key.objectid = btrfs_extent_data_ref_objectid(leaf, 774 dref); 775 key.type = BTRFS_EXTENT_DATA_KEY; 776 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 777 778 if (inum && key.objectid != inum) { 779 ret = BACKREF_FOUND_SHARED; 780 break; 781 } 782 783 root = btrfs_extent_data_ref_root(leaf, dref); 784 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 785 bytenr, count, GFP_NOFS); 786 break; 787 } 788 default: 789 WARN_ON(1); 790 } 791 if (ret) 792 return ret; 793 ptr += btrfs_extent_inline_ref_size(type); 794 } 795 796 return 0; 797 } 798 799 /* 800 * add all non-inline backrefs for bytenr to the list 801 */ 802 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 803 struct btrfs_path *path, u64 bytenr, 804 int info_level, struct list_head *prefs, u64 inum) 805 { 806 struct btrfs_root *extent_root = fs_info->extent_root; 807 int ret; 808 int slot; 809 struct extent_buffer *leaf; 810 struct btrfs_key key; 811 812 while (1) { 813 ret = btrfs_next_item(extent_root, path); 814 if (ret < 0) 815 break; 816 if (ret) { 817 ret = 0; 818 break; 819 } 820 821 slot = path->slots[0]; 822 leaf = path->nodes[0]; 823 btrfs_item_key_to_cpu(leaf, &key, slot); 824 825 if (key.objectid != bytenr) 826 break; 827 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 828 continue; 829 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 830 break; 831 832 switch (key.type) { 833 case BTRFS_SHARED_BLOCK_REF_KEY: 834 ret = __add_prelim_ref(prefs, 0, NULL, 835 info_level + 1, key.offset, 836 bytenr, 1, GFP_NOFS); 837 break; 838 case BTRFS_SHARED_DATA_REF_KEY: { 839 struct btrfs_shared_data_ref *sdref; 840 int count; 841 842 sdref = btrfs_item_ptr(leaf, slot, 843 struct btrfs_shared_data_ref); 844 count = btrfs_shared_data_ref_count(leaf, sdref); 845 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 846 bytenr, count, GFP_NOFS); 847 break; 848 } 849 case BTRFS_TREE_BLOCK_REF_KEY: 850 ret = __add_prelim_ref(prefs, key.offset, NULL, 851 info_level + 1, 0, 852 bytenr, 1, GFP_NOFS); 853 break; 854 case BTRFS_EXTENT_DATA_REF_KEY: { 855 struct btrfs_extent_data_ref *dref; 856 int count; 857 u64 root; 858 859 dref = btrfs_item_ptr(leaf, slot, 860 struct btrfs_extent_data_ref); 861 count = btrfs_extent_data_ref_count(leaf, dref); 862 key.objectid = btrfs_extent_data_ref_objectid(leaf, 863 dref); 864 key.type = BTRFS_EXTENT_DATA_KEY; 865 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 866 867 if (inum && key.objectid != inum) { 868 ret = BACKREF_FOUND_SHARED; 869 break; 870 } 871 872 root = btrfs_extent_data_ref_root(leaf, dref); 873 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 874 bytenr, count, GFP_NOFS); 875 break; 876 } 877 default: 878 WARN_ON(1); 879 } 880 if (ret) 881 return ret; 882 883 } 884 885 return ret; 886 } 887 888 /* 889 * this adds all existing backrefs (inline backrefs, backrefs and delayed 890 * refs) for the given bytenr to the refs list, merges duplicates and resolves 891 * indirect refs to their parent bytenr. 892 * When roots are found, they're added to the roots list 893 * 894 * NOTE: This can return values > 0 895 * 896 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave 897 * much like trans == NULL case, the difference only lies in it will not 898 * commit root. 899 * The special case is for qgroup to search roots in commit_transaction(). 900 * 901 * FIXME some caching might speed things up 902 */ 903 static int find_parent_nodes(struct btrfs_trans_handle *trans, 904 struct btrfs_fs_info *fs_info, u64 bytenr, 905 u64 time_seq, struct ulist *refs, 906 struct ulist *roots, const u64 *extent_item_pos, 907 u64 root_objectid, u64 inum) 908 { 909 struct btrfs_key key; 910 struct btrfs_path *path; 911 struct btrfs_delayed_ref_root *delayed_refs = NULL; 912 struct btrfs_delayed_ref_head *head; 913 int info_level = 0; 914 int ret; 915 struct list_head prefs_delayed; 916 struct list_head prefs; 917 struct __prelim_ref *ref; 918 struct extent_inode_elem *eie = NULL; 919 u64 total_refs = 0; 920 921 INIT_LIST_HEAD(&prefs); 922 INIT_LIST_HEAD(&prefs_delayed); 923 924 key.objectid = bytenr; 925 key.offset = (u64)-1; 926 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 927 key.type = BTRFS_METADATA_ITEM_KEY; 928 else 929 key.type = BTRFS_EXTENT_ITEM_KEY; 930 931 path = btrfs_alloc_path(); 932 if (!path) 933 return -ENOMEM; 934 if (!trans) { 935 path->search_commit_root = 1; 936 path->skip_locking = 1; 937 } 938 939 if (time_seq == (u64)-1) 940 path->skip_locking = 1; 941 942 /* 943 * grab both a lock on the path and a lock on the delayed ref head. 944 * We need both to get a consistent picture of how the refs look 945 * at a specified point in time 946 */ 947 again: 948 head = NULL; 949 950 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 951 if (ret < 0) 952 goto out; 953 BUG_ON(ret == 0); 954 955 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 956 if (trans && likely(trans->type != __TRANS_DUMMY) && 957 time_seq != (u64)-1) { 958 #else 959 if (trans && time_seq != (u64)-1) { 960 #endif 961 /* 962 * look if there are updates for this ref queued and lock the 963 * head 964 */ 965 delayed_refs = &trans->transaction->delayed_refs; 966 spin_lock(&delayed_refs->lock); 967 head = btrfs_find_delayed_ref_head(trans, bytenr); 968 if (head) { 969 if (!mutex_trylock(&head->mutex)) { 970 atomic_inc(&head->node.refs); 971 spin_unlock(&delayed_refs->lock); 972 973 btrfs_release_path(path); 974 975 /* 976 * Mutex was contended, block until it's 977 * released and try again 978 */ 979 mutex_lock(&head->mutex); 980 mutex_unlock(&head->mutex); 981 btrfs_put_delayed_ref(&head->node); 982 goto again; 983 } 984 spin_unlock(&delayed_refs->lock); 985 ret = __add_delayed_refs(head, time_seq, 986 &prefs_delayed, &total_refs, 987 inum); 988 mutex_unlock(&head->mutex); 989 if (ret) 990 goto out; 991 } else { 992 spin_unlock(&delayed_refs->lock); 993 } 994 } 995 996 if (path->slots[0]) { 997 struct extent_buffer *leaf; 998 int slot; 999 1000 path->slots[0]--; 1001 leaf = path->nodes[0]; 1002 slot = path->slots[0]; 1003 btrfs_item_key_to_cpu(leaf, &key, slot); 1004 if (key.objectid == bytenr && 1005 (key.type == BTRFS_EXTENT_ITEM_KEY || 1006 key.type == BTRFS_METADATA_ITEM_KEY)) { 1007 ret = __add_inline_refs(fs_info, path, bytenr, 1008 &info_level, &prefs, 1009 &total_refs, inum); 1010 if (ret) 1011 goto out; 1012 ret = __add_keyed_refs(fs_info, path, bytenr, 1013 info_level, &prefs, inum); 1014 if (ret) 1015 goto out; 1016 } 1017 } 1018 btrfs_release_path(path); 1019 1020 list_splice_init(&prefs_delayed, &prefs); 1021 1022 ret = __add_missing_keys(fs_info, &prefs); 1023 if (ret) 1024 goto out; 1025 1026 __merge_refs(&prefs, 1); 1027 1028 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs, 1029 extent_item_pos, total_refs, 1030 root_objectid); 1031 if (ret) 1032 goto out; 1033 1034 __merge_refs(&prefs, 2); 1035 1036 while (!list_empty(&prefs)) { 1037 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1038 WARN_ON(ref->count < 0); 1039 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1040 if (root_objectid && ref->root_id != root_objectid) { 1041 ret = BACKREF_FOUND_SHARED; 1042 goto out; 1043 } 1044 1045 /* no parent == root of tree */ 1046 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1047 if (ret < 0) 1048 goto out; 1049 } 1050 if (ref->count && ref->parent) { 1051 if (extent_item_pos && !ref->inode_list && 1052 ref->level == 0) { 1053 struct extent_buffer *eb; 1054 1055 eb = read_tree_block(fs_info->extent_root, 1056 ref->parent, 0); 1057 if (IS_ERR(eb)) { 1058 ret = PTR_ERR(eb); 1059 goto out; 1060 } else if (!extent_buffer_uptodate(eb)) { 1061 free_extent_buffer(eb); 1062 ret = -EIO; 1063 goto out; 1064 } 1065 btrfs_tree_read_lock(eb); 1066 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1067 ret = find_extent_in_eb(eb, bytenr, 1068 *extent_item_pos, &eie); 1069 btrfs_tree_read_unlock_blocking(eb); 1070 free_extent_buffer(eb); 1071 if (ret < 0) 1072 goto out; 1073 ref->inode_list = eie; 1074 } 1075 ret = ulist_add_merge_ptr(refs, ref->parent, 1076 ref->inode_list, 1077 (void **)&eie, GFP_NOFS); 1078 if (ret < 0) 1079 goto out; 1080 if (!ret && extent_item_pos) { 1081 /* 1082 * we've recorded that parent, so we must extend 1083 * its inode list here 1084 */ 1085 BUG_ON(!eie); 1086 while (eie->next) 1087 eie = eie->next; 1088 eie->next = ref->inode_list; 1089 } 1090 eie = NULL; 1091 } 1092 list_del(&ref->list); 1093 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1094 } 1095 1096 out: 1097 btrfs_free_path(path); 1098 while (!list_empty(&prefs)) { 1099 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1100 list_del(&ref->list); 1101 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1102 } 1103 while (!list_empty(&prefs_delayed)) { 1104 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 1105 list); 1106 list_del(&ref->list); 1107 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1108 } 1109 if (ret < 0) 1110 free_inode_elem_list(eie); 1111 return ret; 1112 } 1113 1114 static void free_leaf_list(struct ulist *blocks) 1115 { 1116 struct ulist_node *node = NULL; 1117 struct extent_inode_elem *eie; 1118 struct ulist_iterator uiter; 1119 1120 ULIST_ITER_INIT(&uiter); 1121 while ((node = ulist_next(blocks, &uiter))) { 1122 if (!node->aux) 1123 continue; 1124 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 1125 free_inode_elem_list(eie); 1126 node->aux = 0; 1127 } 1128 1129 ulist_free(blocks); 1130 } 1131 1132 /* 1133 * Finds all leafs with a reference to the specified combination of bytenr and 1134 * offset. key_list_head will point to a list of corresponding keys (caller must 1135 * free each list element). The leafs will be stored in the leafs ulist, which 1136 * must be freed with ulist_free. 1137 * 1138 * returns 0 on success, <0 on error 1139 */ 1140 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1141 struct btrfs_fs_info *fs_info, u64 bytenr, 1142 u64 time_seq, struct ulist **leafs, 1143 const u64 *extent_item_pos) 1144 { 1145 int ret; 1146 1147 *leafs = ulist_alloc(GFP_NOFS); 1148 if (!*leafs) 1149 return -ENOMEM; 1150 1151 ret = find_parent_nodes(trans, fs_info, bytenr, 1152 time_seq, *leafs, NULL, extent_item_pos, 0, 0); 1153 if (ret < 0 && ret != -ENOENT) { 1154 free_leaf_list(*leafs); 1155 return ret; 1156 } 1157 1158 return 0; 1159 } 1160 1161 /* 1162 * walk all backrefs for a given extent to find all roots that reference this 1163 * extent. Walking a backref means finding all extents that reference this 1164 * extent and in turn walk the backrefs of those, too. Naturally this is a 1165 * recursive process, but here it is implemented in an iterative fashion: We 1166 * find all referencing extents for the extent in question and put them on a 1167 * list. In turn, we find all referencing extents for those, further appending 1168 * to the list. The way we iterate the list allows adding more elements after 1169 * the current while iterating. The process stops when we reach the end of the 1170 * list. Found roots are added to the roots list. 1171 * 1172 * returns 0 on success, < 0 on error. 1173 */ 1174 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1175 struct btrfs_fs_info *fs_info, u64 bytenr, 1176 u64 time_seq, struct ulist **roots) 1177 { 1178 struct ulist *tmp; 1179 struct ulist_node *node = NULL; 1180 struct ulist_iterator uiter; 1181 int ret; 1182 1183 tmp = ulist_alloc(GFP_NOFS); 1184 if (!tmp) 1185 return -ENOMEM; 1186 *roots = ulist_alloc(GFP_NOFS); 1187 if (!*roots) { 1188 ulist_free(tmp); 1189 return -ENOMEM; 1190 } 1191 1192 ULIST_ITER_INIT(&uiter); 1193 while (1) { 1194 ret = find_parent_nodes(trans, fs_info, bytenr, 1195 time_seq, tmp, *roots, NULL, 0, 0); 1196 if (ret < 0 && ret != -ENOENT) { 1197 ulist_free(tmp); 1198 ulist_free(*roots); 1199 return ret; 1200 } 1201 node = ulist_next(tmp, &uiter); 1202 if (!node) 1203 break; 1204 bytenr = node->val; 1205 cond_resched(); 1206 } 1207 1208 ulist_free(tmp); 1209 return 0; 1210 } 1211 1212 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1213 struct btrfs_fs_info *fs_info, u64 bytenr, 1214 u64 time_seq, struct ulist **roots) 1215 { 1216 int ret; 1217 1218 if (!trans) 1219 down_read(&fs_info->commit_root_sem); 1220 ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots); 1221 if (!trans) 1222 up_read(&fs_info->commit_root_sem); 1223 return ret; 1224 } 1225 1226 /** 1227 * btrfs_check_shared - tell us whether an extent is shared 1228 * 1229 * @trans: optional trans handle 1230 * 1231 * btrfs_check_shared uses the backref walking code but will short 1232 * circuit as soon as it finds a root or inode that doesn't match the 1233 * one passed in. This provides a significant performance benefit for 1234 * callers (such as fiemap) which want to know whether the extent is 1235 * shared but do not need a ref count. 1236 * 1237 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1238 */ 1239 int btrfs_check_shared(struct btrfs_trans_handle *trans, 1240 struct btrfs_fs_info *fs_info, u64 root_objectid, 1241 u64 inum, u64 bytenr) 1242 { 1243 struct ulist *tmp = NULL; 1244 struct ulist *roots = NULL; 1245 struct ulist_iterator uiter; 1246 struct ulist_node *node; 1247 struct seq_list elem = SEQ_LIST_INIT(elem); 1248 int ret = 0; 1249 1250 tmp = ulist_alloc(GFP_NOFS); 1251 roots = ulist_alloc(GFP_NOFS); 1252 if (!tmp || !roots) { 1253 ulist_free(tmp); 1254 ulist_free(roots); 1255 return -ENOMEM; 1256 } 1257 1258 if (trans) 1259 btrfs_get_tree_mod_seq(fs_info, &elem); 1260 else 1261 down_read(&fs_info->commit_root_sem); 1262 ULIST_ITER_INIT(&uiter); 1263 while (1) { 1264 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1265 roots, NULL, root_objectid, inum); 1266 if (ret == BACKREF_FOUND_SHARED) { 1267 /* this is the only condition under which we return 1 */ 1268 ret = 1; 1269 break; 1270 } 1271 if (ret < 0 && ret != -ENOENT) 1272 break; 1273 ret = 0; 1274 node = ulist_next(tmp, &uiter); 1275 if (!node) 1276 break; 1277 bytenr = node->val; 1278 cond_resched(); 1279 } 1280 if (trans) 1281 btrfs_put_tree_mod_seq(fs_info, &elem); 1282 else 1283 up_read(&fs_info->commit_root_sem); 1284 ulist_free(tmp); 1285 ulist_free(roots); 1286 return ret; 1287 } 1288 1289 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1290 u64 start_off, struct btrfs_path *path, 1291 struct btrfs_inode_extref **ret_extref, 1292 u64 *found_off) 1293 { 1294 int ret, slot; 1295 struct btrfs_key key; 1296 struct btrfs_key found_key; 1297 struct btrfs_inode_extref *extref; 1298 struct extent_buffer *leaf; 1299 unsigned long ptr; 1300 1301 key.objectid = inode_objectid; 1302 key.type = BTRFS_INODE_EXTREF_KEY; 1303 key.offset = start_off; 1304 1305 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1306 if (ret < 0) 1307 return ret; 1308 1309 while (1) { 1310 leaf = path->nodes[0]; 1311 slot = path->slots[0]; 1312 if (slot >= btrfs_header_nritems(leaf)) { 1313 /* 1314 * If the item at offset is not found, 1315 * btrfs_search_slot will point us to the slot 1316 * where it should be inserted. In our case 1317 * that will be the slot directly before the 1318 * next INODE_REF_KEY_V2 item. In the case 1319 * that we're pointing to the last slot in a 1320 * leaf, we must move one leaf over. 1321 */ 1322 ret = btrfs_next_leaf(root, path); 1323 if (ret) { 1324 if (ret >= 1) 1325 ret = -ENOENT; 1326 break; 1327 } 1328 continue; 1329 } 1330 1331 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1332 1333 /* 1334 * Check that we're still looking at an extended ref key for 1335 * this particular objectid. If we have different 1336 * objectid or type then there are no more to be found 1337 * in the tree and we can exit. 1338 */ 1339 ret = -ENOENT; 1340 if (found_key.objectid != inode_objectid) 1341 break; 1342 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1343 break; 1344 1345 ret = 0; 1346 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1347 extref = (struct btrfs_inode_extref *)ptr; 1348 *ret_extref = extref; 1349 if (found_off) 1350 *found_off = found_key.offset; 1351 break; 1352 } 1353 1354 return ret; 1355 } 1356 1357 /* 1358 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1359 * Elements of the path are separated by '/' and the path is guaranteed to be 1360 * 0-terminated. the path is only given within the current file system. 1361 * Therefore, it never starts with a '/'. the caller is responsible to provide 1362 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1363 * the start point of the resulting string is returned. this pointer is within 1364 * dest, normally. 1365 * in case the path buffer would overflow, the pointer is decremented further 1366 * as if output was written to the buffer, though no more output is actually 1367 * generated. that way, the caller can determine how much space would be 1368 * required for the path to fit into the buffer. in that case, the returned 1369 * value will be smaller than dest. callers must check this! 1370 */ 1371 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1372 u32 name_len, unsigned long name_off, 1373 struct extent_buffer *eb_in, u64 parent, 1374 char *dest, u32 size) 1375 { 1376 int slot; 1377 u64 next_inum; 1378 int ret; 1379 s64 bytes_left = ((s64)size) - 1; 1380 struct extent_buffer *eb = eb_in; 1381 struct btrfs_key found_key; 1382 int leave_spinning = path->leave_spinning; 1383 struct btrfs_inode_ref *iref; 1384 1385 if (bytes_left >= 0) 1386 dest[bytes_left] = '\0'; 1387 1388 path->leave_spinning = 1; 1389 while (1) { 1390 bytes_left -= name_len; 1391 if (bytes_left >= 0) 1392 read_extent_buffer(eb, dest + bytes_left, 1393 name_off, name_len); 1394 if (eb != eb_in) { 1395 btrfs_tree_read_unlock_blocking(eb); 1396 free_extent_buffer(eb); 1397 } 1398 ret = btrfs_find_item(fs_root, path, parent, 0, 1399 BTRFS_INODE_REF_KEY, &found_key); 1400 if (ret > 0) 1401 ret = -ENOENT; 1402 if (ret) 1403 break; 1404 1405 next_inum = found_key.offset; 1406 1407 /* regular exit ahead */ 1408 if (parent == next_inum) 1409 break; 1410 1411 slot = path->slots[0]; 1412 eb = path->nodes[0]; 1413 /* make sure we can use eb after releasing the path */ 1414 if (eb != eb_in) { 1415 atomic_inc(&eb->refs); 1416 btrfs_tree_read_lock(eb); 1417 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1418 } 1419 btrfs_release_path(path); 1420 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1421 1422 name_len = btrfs_inode_ref_name_len(eb, iref); 1423 name_off = (unsigned long)(iref + 1); 1424 1425 parent = next_inum; 1426 --bytes_left; 1427 if (bytes_left >= 0) 1428 dest[bytes_left] = '/'; 1429 } 1430 1431 btrfs_release_path(path); 1432 path->leave_spinning = leave_spinning; 1433 1434 if (ret) 1435 return ERR_PTR(ret); 1436 1437 return dest + bytes_left; 1438 } 1439 1440 /* 1441 * this makes the path point to (logical EXTENT_ITEM *) 1442 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1443 * tree blocks and <0 on error. 1444 */ 1445 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1446 struct btrfs_path *path, struct btrfs_key *found_key, 1447 u64 *flags_ret) 1448 { 1449 int ret; 1450 u64 flags; 1451 u64 size = 0; 1452 u32 item_size; 1453 struct extent_buffer *eb; 1454 struct btrfs_extent_item *ei; 1455 struct btrfs_key key; 1456 1457 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1458 key.type = BTRFS_METADATA_ITEM_KEY; 1459 else 1460 key.type = BTRFS_EXTENT_ITEM_KEY; 1461 key.objectid = logical; 1462 key.offset = (u64)-1; 1463 1464 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1465 if (ret < 0) 1466 return ret; 1467 1468 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1469 if (ret) { 1470 if (ret > 0) 1471 ret = -ENOENT; 1472 return ret; 1473 } 1474 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1475 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1476 size = fs_info->extent_root->nodesize; 1477 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1478 size = found_key->offset; 1479 1480 if (found_key->objectid > logical || 1481 found_key->objectid + size <= logical) { 1482 pr_debug("logical %llu is not within any extent\n", logical); 1483 return -ENOENT; 1484 } 1485 1486 eb = path->nodes[0]; 1487 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1488 BUG_ON(item_size < sizeof(*ei)); 1489 1490 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1491 flags = btrfs_extent_flags(eb, ei); 1492 1493 pr_debug("logical %llu is at position %llu within the extent (%llu " 1494 "EXTENT_ITEM %llu) flags %#llx size %u\n", 1495 logical, logical - found_key->objectid, found_key->objectid, 1496 found_key->offset, flags, item_size); 1497 1498 WARN_ON(!flags_ret); 1499 if (flags_ret) { 1500 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1501 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1502 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1503 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1504 else 1505 BUG_ON(1); 1506 return 0; 1507 } 1508 1509 return -EIO; 1510 } 1511 1512 /* 1513 * helper function to iterate extent inline refs. ptr must point to a 0 value 1514 * for the first call and may be modified. it is used to track state. 1515 * if more refs exist, 0 is returned and the next call to 1516 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1517 * next ref. after the last ref was processed, 1 is returned. 1518 * returns <0 on error 1519 */ 1520 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1521 struct btrfs_key *key, 1522 struct btrfs_extent_item *ei, u32 item_size, 1523 struct btrfs_extent_inline_ref **out_eiref, 1524 int *out_type) 1525 { 1526 unsigned long end; 1527 u64 flags; 1528 struct btrfs_tree_block_info *info; 1529 1530 if (!*ptr) { 1531 /* first call */ 1532 flags = btrfs_extent_flags(eb, ei); 1533 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1534 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1535 /* a skinny metadata extent */ 1536 *out_eiref = 1537 (struct btrfs_extent_inline_ref *)(ei + 1); 1538 } else { 1539 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1540 info = (struct btrfs_tree_block_info *)(ei + 1); 1541 *out_eiref = 1542 (struct btrfs_extent_inline_ref *)(info + 1); 1543 } 1544 } else { 1545 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1546 } 1547 *ptr = (unsigned long)*out_eiref; 1548 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1549 return -ENOENT; 1550 } 1551 1552 end = (unsigned long)ei + item_size; 1553 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1554 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1555 1556 *ptr += btrfs_extent_inline_ref_size(*out_type); 1557 WARN_ON(*ptr > end); 1558 if (*ptr == end) 1559 return 1; /* last */ 1560 1561 return 0; 1562 } 1563 1564 /* 1565 * reads the tree block backref for an extent. tree level and root are returned 1566 * through out_level and out_root. ptr must point to a 0 value for the first 1567 * call and may be modified (see __get_extent_inline_ref comment). 1568 * returns 0 if data was provided, 1 if there was no more data to provide or 1569 * <0 on error. 1570 */ 1571 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1572 struct btrfs_key *key, struct btrfs_extent_item *ei, 1573 u32 item_size, u64 *out_root, u8 *out_level) 1574 { 1575 int ret; 1576 int type; 1577 struct btrfs_extent_inline_ref *eiref; 1578 1579 if (*ptr == (unsigned long)-1) 1580 return 1; 1581 1582 while (1) { 1583 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size, 1584 &eiref, &type); 1585 if (ret < 0) 1586 return ret; 1587 1588 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1589 type == BTRFS_SHARED_BLOCK_REF_KEY) 1590 break; 1591 1592 if (ret == 1) 1593 return 1; 1594 } 1595 1596 /* we can treat both ref types equally here */ 1597 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1598 1599 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1600 struct btrfs_tree_block_info *info; 1601 1602 info = (struct btrfs_tree_block_info *)(ei + 1); 1603 *out_level = btrfs_tree_block_level(eb, info); 1604 } else { 1605 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1606 *out_level = (u8)key->offset; 1607 } 1608 1609 if (ret == 1) 1610 *ptr = (unsigned long)-1; 1611 1612 return 0; 1613 } 1614 1615 static int iterate_leaf_refs(struct extent_inode_elem *inode_list, 1616 u64 root, u64 extent_item_objectid, 1617 iterate_extent_inodes_t *iterate, void *ctx) 1618 { 1619 struct extent_inode_elem *eie; 1620 int ret = 0; 1621 1622 for (eie = inode_list; eie; eie = eie->next) { 1623 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " 1624 "root %llu\n", extent_item_objectid, 1625 eie->inum, eie->offset, root); 1626 ret = iterate(eie->inum, eie->offset, root, ctx); 1627 if (ret) { 1628 pr_debug("stopping iteration for %llu due to ret=%d\n", 1629 extent_item_objectid, ret); 1630 break; 1631 } 1632 } 1633 1634 return ret; 1635 } 1636 1637 /* 1638 * calls iterate() for every inode that references the extent identified by 1639 * the given parameters. 1640 * when the iterator function returns a non-zero value, iteration stops. 1641 */ 1642 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1643 u64 extent_item_objectid, u64 extent_item_pos, 1644 int search_commit_root, 1645 iterate_extent_inodes_t *iterate, void *ctx) 1646 { 1647 int ret; 1648 struct btrfs_trans_handle *trans = NULL; 1649 struct ulist *refs = NULL; 1650 struct ulist *roots = NULL; 1651 struct ulist_node *ref_node = NULL; 1652 struct ulist_node *root_node = NULL; 1653 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 1654 struct ulist_iterator ref_uiter; 1655 struct ulist_iterator root_uiter; 1656 1657 pr_debug("resolving all inodes for extent %llu\n", 1658 extent_item_objectid); 1659 1660 if (!search_commit_root) { 1661 trans = btrfs_join_transaction(fs_info->extent_root); 1662 if (IS_ERR(trans)) 1663 return PTR_ERR(trans); 1664 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1665 } else { 1666 down_read(&fs_info->commit_root_sem); 1667 } 1668 1669 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1670 tree_mod_seq_elem.seq, &refs, 1671 &extent_item_pos); 1672 if (ret) 1673 goto out; 1674 1675 ULIST_ITER_INIT(&ref_uiter); 1676 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1677 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val, 1678 tree_mod_seq_elem.seq, &roots); 1679 if (ret) 1680 break; 1681 ULIST_ITER_INIT(&root_uiter); 1682 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1683 pr_debug("root %llu references leaf %llu, data list " 1684 "%#llx\n", root_node->val, ref_node->val, 1685 ref_node->aux); 1686 ret = iterate_leaf_refs((struct extent_inode_elem *) 1687 (uintptr_t)ref_node->aux, 1688 root_node->val, 1689 extent_item_objectid, 1690 iterate, ctx); 1691 } 1692 ulist_free(roots); 1693 } 1694 1695 free_leaf_list(refs); 1696 out: 1697 if (!search_commit_root) { 1698 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1699 btrfs_end_transaction(trans, fs_info->extent_root); 1700 } else { 1701 up_read(&fs_info->commit_root_sem); 1702 } 1703 1704 return ret; 1705 } 1706 1707 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1708 struct btrfs_path *path, 1709 iterate_extent_inodes_t *iterate, void *ctx) 1710 { 1711 int ret; 1712 u64 extent_item_pos; 1713 u64 flags = 0; 1714 struct btrfs_key found_key; 1715 int search_commit_root = path->search_commit_root; 1716 1717 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1718 btrfs_release_path(path); 1719 if (ret < 0) 1720 return ret; 1721 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1722 return -EINVAL; 1723 1724 extent_item_pos = logical - found_key.objectid; 1725 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1726 extent_item_pos, search_commit_root, 1727 iterate, ctx); 1728 1729 return ret; 1730 } 1731 1732 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1733 struct extent_buffer *eb, void *ctx); 1734 1735 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1736 struct btrfs_path *path, 1737 iterate_irefs_t *iterate, void *ctx) 1738 { 1739 int ret = 0; 1740 int slot; 1741 u32 cur; 1742 u32 len; 1743 u32 name_len; 1744 u64 parent = 0; 1745 int found = 0; 1746 struct extent_buffer *eb; 1747 struct btrfs_item *item; 1748 struct btrfs_inode_ref *iref; 1749 struct btrfs_key found_key; 1750 1751 while (!ret) { 1752 ret = btrfs_find_item(fs_root, path, inum, 1753 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 1754 &found_key); 1755 1756 if (ret < 0) 1757 break; 1758 if (ret) { 1759 ret = found ? 0 : -ENOENT; 1760 break; 1761 } 1762 ++found; 1763 1764 parent = found_key.offset; 1765 slot = path->slots[0]; 1766 eb = btrfs_clone_extent_buffer(path->nodes[0]); 1767 if (!eb) { 1768 ret = -ENOMEM; 1769 break; 1770 } 1771 extent_buffer_get(eb); 1772 btrfs_tree_read_lock(eb); 1773 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1774 btrfs_release_path(path); 1775 1776 item = btrfs_item_nr(slot); 1777 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1778 1779 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 1780 name_len = btrfs_inode_ref_name_len(eb, iref); 1781 /* path must be released before calling iterate()! */ 1782 pr_debug("following ref at offset %u for inode %llu in " 1783 "tree %llu\n", cur, found_key.objectid, 1784 fs_root->objectid); 1785 ret = iterate(parent, name_len, 1786 (unsigned long)(iref + 1), eb, ctx); 1787 if (ret) 1788 break; 1789 len = sizeof(*iref) + name_len; 1790 iref = (struct btrfs_inode_ref *)((char *)iref + len); 1791 } 1792 btrfs_tree_read_unlock_blocking(eb); 1793 free_extent_buffer(eb); 1794 } 1795 1796 btrfs_release_path(path); 1797 1798 return ret; 1799 } 1800 1801 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 1802 struct btrfs_path *path, 1803 iterate_irefs_t *iterate, void *ctx) 1804 { 1805 int ret; 1806 int slot; 1807 u64 offset = 0; 1808 u64 parent; 1809 int found = 0; 1810 struct extent_buffer *eb; 1811 struct btrfs_inode_extref *extref; 1812 struct extent_buffer *leaf; 1813 u32 item_size; 1814 u32 cur_offset; 1815 unsigned long ptr; 1816 1817 while (1) { 1818 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 1819 &offset); 1820 if (ret < 0) 1821 break; 1822 if (ret) { 1823 ret = found ? 0 : -ENOENT; 1824 break; 1825 } 1826 ++found; 1827 1828 slot = path->slots[0]; 1829 eb = btrfs_clone_extent_buffer(path->nodes[0]); 1830 if (!eb) { 1831 ret = -ENOMEM; 1832 break; 1833 } 1834 extent_buffer_get(eb); 1835 1836 btrfs_tree_read_lock(eb); 1837 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1838 btrfs_release_path(path); 1839 1840 leaf = path->nodes[0]; 1841 item_size = btrfs_item_size_nr(leaf, slot); 1842 ptr = btrfs_item_ptr_offset(leaf, slot); 1843 cur_offset = 0; 1844 1845 while (cur_offset < item_size) { 1846 u32 name_len; 1847 1848 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 1849 parent = btrfs_inode_extref_parent(eb, extref); 1850 name_len = btrfs_inode_extref_name_len(eb, extref); 1851 ret = iterate(parent, name_len, 1852 (unsigned long)&extref->name, eb, ctx); 1853 if (ret) 1854 break; 1855 1856 cur_offset += btrfs_inode_extref_name_len(leaf, extref); 1857 cur_offset += sizeof(*extref); 1858 } 1859 btrfs_tree_read_unlock_blocking(eb); 1860 free_extent_buffer(eb); 1861 1862 offset++; 1863 } 1864 1865 btrfs_release_path(path); 1866 1867 return ret; 1868 } 1869 1870 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 1871 struct btrfs_path *path, iterate_irefs_t *iterate, 1872 void *ctx) 1873 { 1874 int ret; 1875 int found_refs = 0; 1876 1877 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 1878 if (!ret) 1879 ++found_refs; 1880 else if (ret != -ENOENT) 1881 return ret; 1882 1883 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 1884 if (ret == -ENOENT && found_refs) 1885 return 0; 1886 1887 return ret; 1888 } 1889 1890 /* 1891 * returns 0 if the path could be dumped (probably truncated) 1892 * returns <0 in case of an error 1893 */ 1894 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 1895 struct extent_buffer *eb, void *ctx) 1896 { 1897 struct inode_fs_paths *ipath = ctx; 1898 char *fspath; 1899 char *fspath_min; 1900 int i = ipath->fspath->elem_cnt; 1901 const int s_ptr = sizeof(char *); 1902 u32 bytes_left; 1903 1904 bytes_left = ipath->fspath->bytes_left > s_ptr ? 1905 ipath->fspath->bytes_left - s_ptr : 0; 1906 1907 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 1908 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 1909 name_off, eb, inum, fspath_min, bytes_left); 1910 if (IS_ERR(fspath)) 1911 return PTR_ERR(fspath); 1912 1913 if (fspath > fspath_min) { 1914 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 1915 ++ipath->fspath->elem_cnt; 1916 ipath->fspath->bytes_left = fspath - fspath_min; 1917 } else { 1918 ++ipath->fspath->elem_missed; 1919 ipath->fspath->bytes_missing += fspath_min - fspath; 1920 ipath->fspath->bytes_left = 0; 1921 } 1922 1923 return 0; 1924 } 1925 1926 /* 1927 * this dumps all file system paths to the inode into the ipath struct, provided 1928 * is has been created large enough. each path is zero-terminated and accessed 1929 * from ipath->fspath->val[i]. 1930 * when it returns, there are ipath->fspath->elem_cnt number of paths available 1931 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 1932 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, 1933 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 1934 * have been needed to return all paths. 1935 */ 1936 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 1937 { 1938 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 1939 inode_to_path, ipath); 1940 } 1941 1942 struct btrfs_data_container *init_data_container(u32 total_bytes) 1943 { 1944 struct btrfs_data_container *data; 1945 size_t alloc_bytes; 1946 1947 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 1948 data = vmalloc(alloc_bytes); 1949 if (!data) 1950 return ERR_PTR(-ENOMEM); 1951 1952 if (total_bytes >= sizeof(*data)) { 1953 data->bytes_left = total_bytes - sizeof(*data); 1954 data->bytes_missing = 0; 1955 } else { 1956 data->bytes_missing = sizeof(*data) - total_bytes; 1957 data->bytes_left = 0; 1958 } 1959 1960 data->elem_cnt = 0; 1961 data->elem_missed = 0; 1962 1963 return data; 1964 } 1965 1966 /* 1967 * allocates space to return multiple file system paths for an inode. 1968 * total_bytes to allocate are passed, note that space usable for actual path 1969 * information will be total_bytes - sizeof(struct inode_fs_paths). 1970 * the returned pointer must be freed with free_ipath() in the end. 1971 */ 1972 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 1973 struct btrfs_path *path) 1974 { 1975 struct inode_fs_paths *ifp; 1976 struct btrfs_data_container *fspath; 1977 1978 fspath = init_data_container(total_bytes); 1979 if (IS_ERR(fspath)) 1980 return (void *)fspath; 1981 1982 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 1983 if (!ifp) { 1984 kfree(fspath); 1985 return ERR_PTR(-ENOMEM); 1986 } 1987 1988 ifp->btrfs_path = path; 1989 ifp->fspath = fspath; 1990 ifp->fs_root = fs_root; 1991 1992 return ifp; 1993 } 1994 1995 void free_ipath(struct inode_fs_paths *ipath) 1996 { 1997 if (!ipath) 1998 return; 1999 vfree(ipath->fspath); 2000 kfree(ipath); 2001 } 2002