xref: /linux/fs/btrfs/backref.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
28 /* Just an arbitrary number so we can be sure this happened */
29 #define BACKREF_FOUND_SHARED 6
30 
31 struct extent_inode_elem {
32 	u64 inum;
33 	u64 offset;
34 	struct extent_inode_elem *next;
35 };
36 
37 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
38 				struct btrfs_file_extent_item *fi,
39 				u64 extent_item_pos,
40 				struct extent_inode_elem **eie)
41 {
42 	u64 offset = 0;
43 	struct extent_inode_elem *e;
44 
45 	if (!btrfs_file_extent_compression(eb, fi) &&
46 	    !btrfs_file_extent_encryption(eb, fi) &&
47 	    !btrfs_file_extent_other_encoding(eb, fi)) {
48 		u64 data_offset;
49 		u64 data_len;
50 
51 		data_offset = btrfs_file_extent_offset(eb, fi);
52 		data_len = btrfs_file_extent_num_bytes(eb, fi);
53 
54 		if (extent_item_pos < data_offset ||
55 		    extent_item_pos >= data_offset + data_len)
56 			return 1;
57 		offset = extent_item_pos - data_offset;
58 	}
59 
60 	e = kmalloc(sizeof(*e), GFP_NOFS);
61 	if (!e)
62 		return -ENOMEM;
63 
64 	e->next = *eie;
65 	e->inum = key->objectid;
66 	e->offset = key->offset + offset;
67 	*eie = e;
68 
69 	return 0;
70 }
71 
72 static void free_inode_elem_list(struct extent_inode_elem *eie)
73 {
74 	struct extent_inode_elem *eie_next;
75 
76 	for (; eie; eie = eie_next) {
77 		eie_next = eie->next;
78 		kfree(eie);
79 	}
80 }
81 
82 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
83 				u64 extent_item_pos,
84 				struct extent_inode_elem **eie)
85 {
86 	u64 disk_byte;
87 	struct btrfs_key key;
88 	struct btrfs_file_extent_item *fi;
89 	int slot;
90 	int nritems;
91 	int extent_type;
92 	int ret;
93 
94 	/*
95 	 * from the shared data ref, we only have the leaf but we need
96 	 * the key. thus, we must look into all items and see that we
97 	 * find one (some) with a reference to our extent item.
98 	 */
99 	nritems = btrfs_header_nritems(eb);
100 	for (slot = 0; slot < nritems; ++slot) {
101 		btrfs_item_key_to_cpu(eb, &key, slot);
102 		if (key.type != BTRFS_EXTENT_DATA_KEY)
103 			continue;
104 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
105 		extent_type = btrfs_file_extent_type(eb, fi);
106 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
107 			continue;
108 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
109 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
110 		if (disk_byte != wanted_disk_byte)
111 			continue;
112 
113 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
114 		if (ret < 0)
115 			return ret;
116 	}
117 
118 	return 0;
119 }
120 
121 /*
122  * this structure records all encountered refs on the way up to the root
123  */
124 struct __prelim_ref {
125 	struct list_head list;
126 	u64 root_id;
127 	struct btrfs_key key_for_search;
128 	int level;
129 	int count;
130 	struct extent_inode_elem *inode_list;
131 	u64 parent;
132 	u64 wanted_disk_byte;
133 };
134 
135 static struct kmem_cache *btrfs_prelim_ref_cache;
136 
137 int __init btrfs_prelim_ref_init(void)
138 {
139 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
140 					sizeof(struct __prelim_ref),
141 					0,
142 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
143 					NULL);
144 	if (!btrfs_prelim_ref_cache)
145 		return -ENOMEM;
146 	return 0;
147 }
148 
149 void btrfs_prelim_ref_exit(void)
150 {
151 	if (btrfs_prelim_ref_cache)
152 		kmem_cache_destroy(btrfs_prelim_ref_cache);
153 }
154 
155 /*
156  * the rules for all callers of this function are:
157  * - obtaining the parent is the goal
158  * - if you add a key, you must know that it is a correct key
159  * - if you cannot add the parent or a correct key, then we will look into the
160  *   block later to set a correct key
161  *
162  * delayed refs
163  * ============
164  *        backref type | shared | indirect | shared | indirect
165  * information         |   tree |     tree |   data |     data
166  * --------------------+--------+----------+--------+----------
167  *      parent logical |    y   |     -    |    -   |     -
168  *      key to resolve |    -   |     y    |    y   |     y
169  *  tree block logical |    -   |     -    |    -   |     -
170  *  root for resolving |    y   |     y    |    y   |     y
171  *
172  * - column 1:       we've the parent -> done
173  * - column 2, 3, 4: we use the key to find the parent
174  *
175  * on disk refs (inline or keyed)
176  * ==============================
177  *        backref type | shared | indirect | shared | indirect
178  * information         |   tree |     tree |   data |     data
179  * --------------------+--------+----------+--------+----------
180  *      parent logical |    y   |     -    |    y   |     -
181  *      key to resolve |    -   |     -    |    -   |     y
182  *  tree block logical |    y   |     y    |    y   |     y
183  *  root for resolving |    -   |     y    |    y   |     y
184  *
185  * - column 1, 3: we've the parent -> done
186  * - column 2:    we take the first key from the block to find the parent
187  *                (see __add_missing_keys)
188  * - column 4:    we use the key to find the parent
189  *
190  * additional information that's available but not required to find the parent
191  * block might help in merging entries to gain some speed.
192  */
193 
194 static int __add_prelim_ref(struct list_head *head, u64 root_id,
195 			    struct btrfs_key *key, int level,
196 			    u64 parent, u64 wanted_disk_byte, int count,
197 			    gfp_t gfp_mask)
198 {
199 	struct __prelim_ref *ref;
200 
201 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
202 		return 0;
203 
204 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
205 	if (!ref)
206 		return -ENOMEM;
207 
208 	ref->root_id = root_id;
209 	if (key)
210 		ref->key_for_search = *key;
211 	else
212 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
213 
214 	ref->inode_list = NULL;
215 	ref->level = level;
216 	ref->count = count;
217 	ref->parent = parent;
218 	ref->wanted_disk_byte = wanted_disk_byte;
219 	list_add_tail(&ref->list, head);
220 
221 	return 0;
222 }
223 
224 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
225 			   struct ulist *parents, struct __prelim_ref *ref,
226 			   int level, u64 time_seq, const u64 *extent_item_pos,
227 			   u64 total_refs)
228 {
229 	int ret = 0;
230 	int slot;
231 	struct extent_buffer *eb;
232 	struct btrfs_key key;
233 	struct btrfs_key *key_for_search = &ref->key_for_search;
234 	struct btrfs_file_extent_item *fi;
235 	struct extent_inode_elem *eie = NULL, *old = NULL;
236 	u64 disk_byte;
237 	u64 wanted_disk_byte = ref->wanted_disk_byte;
238 	u64 count = 0;
239 
240 	if (level != 0) {
241 		eb = path->nodes[level];
242 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
243 		if (ret < 0)
244 			return ret;
245 		return 0;
246 	}
247 
248 	/*
249 	 * We normally enter this function with the path already pointing to
250 	 * the first item to check. But sometimes, we may enter it with
251 	 * slot==nritems. In that case, go to the next leaf before we continue.
252 	 */
253 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
254 		if (time_seq == (u64)-1)
255 			ret = btrfs_next_leaf(root, path);
256 		else
257 			ret = btrfs_next_old_leaf(root, path, time_seq);
258 	}
259 
260 	while (!ret && count < total_refs) {
261 		eb = path->nodes[0];
262 		slot = path->slots[0];
263 
264 		btrfs_item_key_to_cpu(eb, &key, slot);
265 
266 		if (key.objectid != key_for_search->objectid ||
267 		    key.type != BTRFS_EXTENT_DATA_KEY)
268 			break;
269 
270 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
271 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
272 
273 		if (disk_byte == wanted_disk_byte) {
274 			eie = NULL;
275 			old = NULL;
276 			count++;
277 			if (extent_item_pos) {
278 				ret = check_extent_in_eb(&key, eb, fi,
279 						*extent_item_pos,
280 						&eie);
281 				if (ret < 0)
282 					break;
283 			}
284 			if (ret > 0)
285 				goto next;
286 			ret = ulist_add_merge_ptr(parents, eb->start,
287 						  eie, (void **)&old, GFP_NOFS);
288 			if (ret < 0)
289 				break;
290 			if (!ret && extent_item_pos) {
291 				while (old->next)
292 					old = old->next;
293 				old->next = eie;
294 			}
295 			eie = NULL;
296 		}
297 next:
298 		if (time_seq == (u64)-1)
299 			ret = btrfs_next_item(root, path);
300 		else
301 			ret = btrfs_next_old_item(root, path, time_seq);
302 	}
303 
304 	if (ret > 0)
305 		ret = 0;
306 	else if (ret < 0)
307 		free_inode_elem_list(eie);
308 	return ret;
309 }
310 
311 /*
312  * resolve an indirect backref in the form (root_id, key, level)
313  * to a logical address
314  */
315 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
316 				  struct btrfs_path *path, u64 time_seq,
317 				  struct __prelim_ref *ref,
318 				  struct ulist *parents,
319 				  const u64 *extent_item_pos, u64 total_refs)
320 {
321 	struct btrfs_root *root;
322 	struct btrfs_key root_key;
323 	struct extent_buffer *eb;
324 	int ret = 0;
325 	int root_level;
326 	int level = ref->level;
327 	int index;
328 
329 	root_key.objectid = ref->root_id;
330 	root_key.type = BTRFS_ROOT_ITEM_KEY;
331 	root_key.offset = (u64)-1;
332 
333 	index = srcu_read_lock(&fs_info->subvol_srcu);
334 
335 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
336 	if (IS_ERR(root)) {
337 		srcu_read_unlock(&fs_info->subvol_srcu, index);
338 		ret = PTR_ERR(root);
339 		goto out;
340 	}
341 
342 	if (path->search_commit_root)
343 		root_level = btrfs_header_level(root->commit_root);
344 	else if (time_seq == (u64)-1)
345 		root_level = btrfs_header_level(root->node);
346 	else
347 		root_level = btrfs_old_root_level(root, time_seq);
348 
349 	if (root_level + 1 == level) {
350 		srcu_read_unlock(&fs_info->subvol_srcu, index);
351 		goto out;
352 	}
353 
354 	path->lowest_level = level;
355 	if (time_seq == (u64)-1)
356 		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
357 					0, 0);
358 	else
359 		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
360 					    time_seq);
361 
362 	/* root node has been locked, we can release @subvol_srcu safely here */
363 	srcu_read_unlock(&fs_info->subvol_srcu, index);
364 
365 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
366 		 "%d for key (%llu %u %llu)\n",
367 		 ref->root_id, level, ref->count, ret,
368 		 ref->key_for_search.objectid, ref->key_for_search.type,
369 		 ref->key_for_search.offset);
370 	if (ret < 0)
371 		goto out;
372 
373 	eb = path->nodes[level];
374 	while (!eb) {
375 		if (WARN_ON(!level)) {
376 			ret = 1;
377 			goto out;
378 		}
379 		level--;
380 		eb = path->nodes[level];
381 	}
382 
383 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
384 			      extent_item_pos, total_refs);
385 out:
386 	path->lowest_level = 0;
387 	btrfs_release_path(path);
388 	return ret;
389 }
390 
391 /*
392  * resolve all indirect backrefs from the list
393  */
394 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
395 				   struct btrfs_path *path, u64 time_seq,
396 				   struct list_head *head,
397 				   const u64 *extent_item_pos, u64 total_refs,
398 				   u64 root_objectid)
399 {
400 	int err;
401 	int ret = 0;
402 	struct __prelim_ref *ref;
403 	struct __prelim_ref *ref_safe;
404 	struct __prelim_ref *new_ref;
405 	struct ulist *parents;
406 	struct ulist_node *node;
407 	struct ulist_iterator uiter;
408 
409 	parents = ulist_alloc(GFP_NOFS);
410 	if (!parents)
411 		return -ENOMEM;
412 
413 	/*
414 	 * _safe allows us to insert directly after the current item without
415 	 * iterating over the newly inserted items.
416 	 * we're also allowed to re-assign ref during iteration.
417 	 */
418 	list_for_each_entry_safe(ref, ref_safe, head, list) {
419 		if (ref->parent)	/* already direct */
420 			continue;
421 		if (ref->count == 0)
422 			continue;
423 		if (root_objectid && ref->root_id != root_objectid) {
424 			ret = BACKREF_FOUND_SHARED;
425 			goto out;
426 		}
427 		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
428 					     parents, extent_item_pos,
429 					     total_refs);
430 		/*
431 		 * we can only tolerate ENOENT,otherwise,we should catch error
432 		 * and return directly.
433 		 */
434 		if (err == -ENOENT) {
435 			continue;
436 		} else if (err) {
437 			ret = err;
438 			goto out;
439 		}
440 
441 		/* we put the first parent into the ref at hand */
442 		ULIST_ITER_INIT(&uiter);
443 		node = ulist_next(parents, &uiter);
444 		ref->parent = node ? node->val : 0;
445 		ref->inode_list = node ?
446 			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
447 
448 		/* additional parents require new refs being added here */
449 		while ((node = ulist_next(parents, &uiter))) {
450 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
451 						   GFP_NOFS);
452 			if (!new_ref) {
453 				ret = -ENOMEM;
454 				goto out;
455 			}
456 			memcpy(new_ref, ref, sizeof(*ref));
457 			new_ref->parent = node->val;
458 			new_ref->inode_list = (struct extent_inode_elem *)
459 							(uintptr_t)node->aux;
460 			list_add(&new_ref->list, &ref->list);
461 		}
462 		ulist_reinit(parents);
463 	}
464 out:
465 	ulist_free(parents);
466 	return ret;
467 }
468 
469 static inline int ref_for_same_block(struct __prelim_ref *ref1,
470 				     struct __prelim_ref *ref2)
471 {
472 	if (ref1->level != ref2->level)
473 		return 0;
474 	if (ref1->root_id != ref2->root_id)
475 		return 0;
476 	if (ref1->key_for_search.type != ref2->key_for_search.type)
477 		return 0;
478 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
479 		return 0;
480 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
481 		return 0;
482 	if (ref1->parent != ref2->parent)
483 		return 0;
484 
485 	return 1;
486 }
487 
488 /*
489  * read tree blocks and add keys where required.
490  */
491 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
492 			      struct list_head *head)
493 {
494 	struct list_head *pos;
495 	struct extent_buffer *eb;
496 
497 	list_for_each(pos, head) {
498 		struct __prelim_ref *ref;
499 		ref = list_entry(pos, struct __prelim_ref, list);
500 
501 		if (ref->parent)
502 			continue;
503 		if (ref->key_for_search.type)
504 			continue;
505 		BUG_ON(!ref->wanted_disk_byte);
506 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
507 				     0);
508 		if (IS_ERR(eb)) {
509 			return PTR_ERR(eb);
510 		} else if (!extent_buffer_uptodate(eb)) {
511 			free_extent_buffer(eb);
512 			return -EIO;
513 		}
514 		btrfs_tree_read_lock(eb);
515 		if (btrfs_header_level(eb) == 0)
516 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
517 		else
518 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
519 		btrfs_tree_read_unlock(eb);
520 		free_extent_buffer(eb);
521 	}
522 	return 0;
523 }
524 
525 /*
526  * merge backrefs and adjust counts accordingly
527  *
528  * mode = 1: merge identical keys, if key is set
529  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
530  *           additionally, we could even add a key range for the blocks we
531  *           looked into to merge even more (-> replace unresolved refs by those
532  *           having a parent).
533  * mode = 2: merge identical parents
534  */
535 static void __merge_refs(struct list_head *head, int mode)
536 {
537 	struct list_head *pos1;
538 
539 	list_for_each(pos1, head) {
540 		struct list_head *n2;
541 		struct list_head *pos2;
542 		struct __prelim_ref *ref1;
543 
544 		ref1 = list_entry(pos1, struct __prelim_ref, list);
545 
546 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
547 		     pos2 = n2, n2 = pos2->next) {
548 			struct __prelim_ref *ref2;
549 			struct __prelim_ref *xchg;
550 			struct extent_inode_elem *eie;
551 
552 			ref2 = list_entry(pos2, struct __prelim_ref, list);
553 
554 			if (!ref_for_same_block(ref1, ref2))
555 				continue;
556 			if (mode == 1) {
557 				if (!ref1->parent && ref2->parent) {
558 					xchg = ref1;
559 					ref1 = ref2;
560 					ref2 = xchg;
561 				}
562 			} else {
563 				if (ref1->parent != ref2->parent)
564 					continue;
565 			}
566 
567 			eie = ref1->inode_list;
568 			while (eie && eie->next)
569 				eie = eie->next;
570 			if (eie)
571 				eie->next = ref2->inode_list;
572 			else
573 				ref1->inode_list = ref2->inode_list;
574 			ref1->count += ref2->count;
575 
576 			list_del(&ref2->list);
577 			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
578 		}
579 
580 	}
581 }
582 
583 /*
584  * add all currently queued delayed refs from this head whose seq nr is
585  * smaller or equal that seq to the list
586  */
587 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
588 			      struct list_head *prefs, u64 *total_refs,
589 			      u64 inum)
590 {
591 	struct btrfs_delayed_ref_node *node;
592 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
593 	struct btrfs_key key;
594 	struct btrfs_key op_key = {0};
595 	int sgn;
596 	int ret = 0;
597 
598 	if (extent_op && extent_op->update_key)
599 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
600 
601 	spin_lock(&head->lock);
602 	list_for_each_entry(node, &head->ref_list, list) {
603 		if (node->seq > seq)
604 			continue;
605 
606 		switch (node->action) {
607 		case BTRFS_ADD_DELAYED_EXTENT:
608 		case BTRFS_UPDATE_DELAYED_HEAD:
609 			WARN_ON(1);
610 			continue;
611 		case BTRFS_ADD_DELAYED_REF:
612 			sgn = 1;
613 			break;
614 		case BTRFS_DROP_DELAYED_REF:
615 			sgn = -1;
616 			break;
617 		default:
618 			BUG_ON(1);
619 		}
620 		*total_refs += (node->ref_mod * sgn);
621 		switch (node->type) {
622 		case BTRFS_TREE_BLOCK_REF_KEY: {
623 			struct btrfs_delayed_tree_ref *ref;
624 
625 			ref = btrfs_delayed_node_to_tree_ref(node);
626 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
627 					       ref->level + 1, 0, node->bytenr,
628 					       node->ref_mod * sgn, GFP_ATOMIC);
629 			break;
630 		}
631 		case BTRFS_SHARED_BLOCK_REF_KEY: {
632 			struct btrfs_delayed_tree_ref *ref;
633 
634 			ref = btrfs_delayed_node_to_tree_ref(node);
635 			ret = __add_prelim_ref(prefs, ref->root, NULL,
636 					       ref->level + 1, ref->parent,
637 					       node->bytenr,
638 					       node->ref_mod * sgn, GFP_ATOMIC);
639 			break;
640 		}
641 		case BTRFS_EXTENT_DATA_REF_KEY: {
642 			struct btrfs_delayed_data_ref *ref;
643 			ref = btrfs_delayed_node_to_data_ref(node);
644 
645 			key.objectid = ref->objectid;
646 			key.type = BTRFS_EXTENT_DATA_KEY;
647 			key.offset = ref->offset;
648 
649 			/*
650 			 * Found a inum that doesn't match our known inum, we
651 			 * know it's shared.
652 			 */
653 			if (inum && ref->objectid != inum) {
654 				ret = BACKREF_FOUND_SHARED;
655 				break;
656 			}
657 
658 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
659 					       node->bytenr,
660 					       node->ref_mod * sgn, GFP_ATOMIC);
661 			break;
662 		}
663 		case BTRFS_SHARED_DATA_REF_KEY: {
664 			struct btrfs_delayed_data_ref *ref;
665 
666 			ref = btrfs_delayed_node_to_data_ref(node);
667 
668 			key.objectid = ref->objectid;
669 			key.type = BTRFS_EXTENT_DATA_KEY;
670 			key.offset = ref->offset;
671 			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
672 					       ref->parent, node->bytenr,
673 					       node->ref_mod * sgn, GFP_ATOMIC);
674 			break;
675 		}
676 		default:
677 			WARN_ON(1);
678 		}
679 		if (ret)
680 			break;
681 	}
682 	spin_unlock(&head->lock);
683 	return ret;
684 }
685 
686 /*
687  * add all inline backrefs for bytenr to the list
688  */
689 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
690 			     struct btrfs_path *path, u64 bytenr,
691 			     int *info_level, struct list_head *prefs,
692 			     u64 *total_refs, u64 inum)
693 {
694 	int ret = 0;
695 	int slot;
696 	struct extent_buffer *leaf;
697 	struct btrfs_key key;
698 	struct btrfs_key found_key;
699 	unsigned long ptr;
700 	unsigned long end;
701 	struct btrfs_extent_item *ei;
702 	u64 flags;
703 	u64 item_size;
704 
705 	/*
706 	 * enumerate all inline refs
707 	 */
708 	leaf = path->nodes[0];
709 	slot = path->slots[0];
710 
711 	item_size = btrfs_item_size_nr(leaf, slot);
712 	BUG_ON(item_size < sizeof(*ei));
713 
714 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
715 	flags = btrfs_extent_flags(leaf, ei);
716 	*total_refs += btrfs_extent_refs(leaf, ei);
717 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
718 
719 	ptr = (unsigned long)(ei + 1);
720 	end = (unsigned long)ei + item_size;
721 
722 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
723 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
724 		struct btrfs_tree_block_info *info;
725 
726 		info = (struct btrfs_tree_block_info *)ptr;
727 		*info_level = btrfs_tree_block_level(leaf, info);
728 		ptr += sizeof(struct btrfs_tree_block_info);
729 		BUG_ON(ptr > end);
730 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
731 		*info_level = found_key.offset;
732 	} else {
733 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
734 	}
735 
736 	while (ptr < end) {
737 		struct btrfs_extent_inline_ref *iref;
738 		u64 offset;
739 		int type;
740 
741 		iref = (struct btrfs_extent_inline_ref *)ptr;
742 		type = btrfs_extent_inline_ref_type(leaf, iref);
743 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
744 
745 		switch (type) {
746 		case BTRFS_SHARED_BLOCK_REF_KEY:
747 			ret = __add_prelim_ref(prefs, 0, NULL,
748 						*info_level + 1, offset,
749 						bytenr, 1, GFP_NOFS);
750 			break;
751 		case BTRFS_SHARED_DATA_REF_KEY: {
752 			struct btrfs_shared_data_ref *sdref;
753 			int count;
754 
755 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
756 			count = btrfs_shared_data_ref_count(leaf, sdref);
757 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
758 					       bytenr, count, GFP_NOFS);
759 			break;
760 		}
761 		case BTRFS_TREE_BLOCK_REF_KEY:
762 			ret = __add_prelim_ref(prefs, offset, NULL,
763 					       *info_level + 1, 0,
764 					       bytenr, 1, GFP_NOFS);
765 			break;
766 		case BTRFS_EXTENT_DATA_REF_KEY: {
767 			struct btrfs_extent_data_ref *dref;
768 			int count;
769 			u64 root;
770 
771 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
772 			count = btrfs_extent_data_ref_count(leaf, dref);
773 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
774 								      dref);
775 			key.type = BTRFS_EXTENT_DATA_KEY;
776 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
777 
778 			if (inum && key.objectid != inum) {
779 				ret = BACKREF_FOUND_SHARED;
780 				break;
781 			}
782 
783 			root = btrfs_extent_data_ref_root(leaf, dref);
784 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
785 					       bytenr, count, GFP_NOFS);
786 			break;
787 		}
788 		default:
789 			WARN_ON(1);
790 		}
791 		if (ret)
792 			return ret;
793 		ptr += btrfs_extent_inline_ref_size(type);
794 	}
795 
796 	return 0;
797 }
798 
799 /*
800  * add all non-inline backrefs for bytenr to the list
801  */
802 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
803 			    struct btrfs_path *path, u64 bytenr,
804 			    int info_level, struct list_head *prefs, u64 inum)
805 {
806 	struct btrfs_root *extent_root = fs_info->extent_root;
807 	int ret;
808 	int slot;
809 	struct extent_buffer *leaf;
810 	struct btrfs_key key;
811 
812 	while (1) {
813 		ret = btrfs_next_item(extent_root, path);
814 		if (ret < 0)
815 			break;
816 		if (ret) {
817 			ret = 0;
818 			break;
819 		}
820 
821 		slot = path->slots[0];
822 		leaf = path->nodes[0];
823 		btrfs_item_key_to_cpu(leaf, &key, slot);
824 
825 		if (key.objectid != bytenr)
826 			break;
827 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
828 			continue;
829 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
830 			break;
831 
832 		switch (key.type) {
833 		case BTRFS_SHARED_BLOCK_REF_KEY:
834 			ret = __add_prelim_ref(prefs, 0, NULL,
835 						info_level + 1, key.offset,
836 						bytenr, 1, GFP_NOFS);
837 			break;
838 		case BTRFS_SHARED_DATA_REF_KEY: {
839 			struct btrfs_shared_data_ref *sdref;
840 			int count;
841 
842 			sdref = btrfs_item_ptr(leaf, slot,
843 					      struct btrfs_shared_data_ref);
844 			count = btrfs_shared_data_ref_count(leaf, sdref);
845 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
846 						bytenr, count, GFP_NOFS);
847 			break;
848 		}
849 		case BTRFS_TREE_BLOCK_REF_KEY:
850 			ret = __add_prelim_ref(prefs, key.offset, NULL,
851 					       info_level + 1, 0,
852 					       bytenr, 1, GFP_NOFS);
853 			break;
854 		case BTRFS_EXTENT_DATA_REF_KEY: {
855 			struct btrfs_extent_data_ref *dref;
856 			int count;
857 			u64 root;
858 
859 			dref = btrfs_item_ptr(leaf, slot,
860 					      struct btrfs_extent_data_ref);
861 			count = btrfs_extent_data_ref_count(leaf, dref);
862 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
863 								      dref);
864 			key.type = BTRFS_EXTENT_DATA_KEY;
865 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
866 
867 			if (inum && key.objectid != inum) {
868 				ret = BACKREF_FOUND_SHARED;
869 				break;
870 			}
871 
872 			root = btrfs_extent_data_ref_root(leaf, dref);
873 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
874 					       bytenr, count, GFP_NOFS);
875 			break;
876 		}
877 		default:
878 			WARN_ON(1);
879 		}
880 		if (ret)
881 			return ret;
882 
883 	}
884 
885 	return ret;
886 }
887 
888 /*
889  * this adds all existing backrefs (inline backrefs, backrefs and delayed
890  * refs) for the given bytenr to the refs list, merges duplicates and resolves
891  * indirect refs to their parent bytenr.
892  * When roots are found, they're added to the roots list
893  *
894  * NOTE: This can return values > 0
895  *
896  * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
897  * much like trans == NULL case, the difference only lies in it will not
898  * commit root.
899  * The special case is for qgroup to search roots in commit_transaction().
900  *
901  * FIXME some caching might speed things up
902  */
903 static int find_parent_nodes(struct btrfs_trans_handle *trans,
904 			     struct btrfs_fs_info *fs_info, u64 bytenr,
905 			     u64 time_seq, struct ulist *refs,
906 			     struct ulist *roots, const u64 *extent_item_pos,
907 			     u64 root_objectid, u64 inum)
908 {
909 	struct btrfs_key key;
910 	struct btrfs_path *path;
911 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
912 	struct btrfs_delayed_ref_head *head;
913 	int info_level = 0;
914 	int ret;
915 	struct list_head prefs_delayed;
916 	struct list_head prefs;
917 	struct __prelim_ref *ref;
918 	struct extent_inode_elem *eie = NULL;
919 	u64 total_refs = 0;
920 
921 	INIT_LIST_HEAD(&prefs);
922 	INIT_LIST_HEAD(&prefs_delayed);
923 
924 	key.objectid = bytenr;
925 	key.offset = (u64)-1;
926 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
927 		key.type = BTRFS_METADATA_ITEM_KEY;
928 	else
929 		key.type = BTRFS_EXTENT_ITEM_KEY;
930 
931 	path = btrfs_alloc_path();
932 	if (!path)
933 		return -ENOMEM;
934 	if (!trans) {
935 		path->search_commit_root = 1;
936 		path->skip_locking = 1;
937 	}
938 
939 	if (time_seq == (u64)-1)
940 		path->skip_locking = 1;
941 
942 	/*
943 	 * grab both a lock on the path and a lock on the delayed ref head.
944 	 * We need both to get a consistent picture of how the refs look
945 	 * at a specified point in time
946 	 */
947 again:
948 	head = NULL;
949 
950 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
951 	if (ret < 0)
952 		goto out;
953 	BUG_ON(ret == 0);
954 
955 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
956 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
957 	    time_seq != (u64)-1) {
958 #else
959 	if (trans && time_seq != (u64)-1) {
960 #endif
961 		/*
962 		 * look if there are updates for this ref queued and lock the
963 		 * head
964 		 */
965 		delayed_refs = &trans->transaction->delayed_refs;
966 		spin_lock(&delayed_refs->lock);
967 		head = btrfs_find_delayed_ref_head(trans, bytenr);
968 		if (head) {
969 			if (!mutex_trylock(&head->mutex)) {
970 				atomic_inc(&head->node.refs);
971 				spin_unlock(&delayed_refs->lock);
972 
973 				btrfs_release_path(path);
974 
975 				/*
976 				 * Mutex was contended, block until it's
977 				 * released and try again
978 				 */
979 				mutex_lock(&head->mutex);
980 				mutex_unlock(&head->mutex);
981 				btrfs_put_delayed_ref(&head->node);
982 				goto again;
983 			}
984 			spin_unlock(&delayed_refs->lock);
985 			ret = __add_delayed_refs(head, time_seq,
986 						 &prefs_delayed, &total_refs,
987 						 inum);
988 			mutex_unlock(&head->mutex);
989 			if (ret)
990 				goto out;
991 		} else {
992 			spin_unlock(&delayed_refs->lock);
993 		}
994 	}
995 
996 	if (path->slots[0]) {
997 		struct extent_buffer *leaf;
998 		int slot;
999 
1000 		path->slots[0]--;
1001 		leaf = path->nodes[0];
1002 		slot = path->slots[0];
1003 		btrfs_item_key_to_cpu(leaf, &key, slot);
1004 		if (key.objectid == bytenr &&
1005 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1006 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1007 			ret = __add_inline_refs(fs_info, path, bytenr,
1008 						&info_level, &prefs,
1009 						&total_refs, inum);
1010 			if (ret)
1011 				goto out;
1012 			ret = __add_keyed_refs(fs_info, path, bytenr,
1013 					       info_level, &prefs, inum);
1014 			if (ret)
1015 				goto out;
1016 		}
1017 	}
1018 	btrfs_release_path(path);
1019 
1020 	list_splice_init(&prefs_delayed, &prefs);
1021 
1022 	ret = __add_missing_keys(fs_info, &prefs);
1023 	if (ret)
1024 		goto out;
1025 
1026 	__merge_refs(&prefs, 1);
1027 
1028 	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1029 				      extent_item_pos, total_refs,
1030 				      root_objectid);
1031 	if (ret)
1032 		goto out;
1033 
1034 	__merge_refs(&prefs, 2);
1035 
1036 	while (!list_empty(&prefs)) {
1037 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1038 		WARN_ON(ref->count < 0);
1039 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1040 			if (root_objectid && ref->root_id != root_objectid) {
1041 				ret = BACKREF_FOUND_SHARED;
1042 				goto out;
1043 			}
1044 
1045 			/* no parent == root of tree */
1046 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1047 			if (ret < 0)
1048 				goto out;
1049 		}
1050 		if (ref->count && ref->parent) {
1051 			if (extent_item_pos && !ref->inode_list &&
1052 			    ref->level == 0) {
1053 				struct extent_buffer *eb;
1054 
1055 				eb = read_tree_block(fs_info->extent_root,
1056 							   ref->parent, 0);
1057 				if (IS_ERR(eb)) {
1058 					ret = PTR_ERR(eb);
1059 					goto out;
1060 				} else if (!extent_buffer_uptodate(eb)) {
1061 					free_extent_buffer(eb);
1062 					ret = -EIO;
1063 					goto out;
1064 				}
1065 				btrfs_tree_read_lock(eb);
1066 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1067 				ret = find_extent_in_eb(eb, bytenr,
1068 							*extent_item_pos, &eie);
1069 				btrfs_tree_read_unlock_blocking(eb);
1070 				free_extent_buffer(eb);
1071 				if (ret < 0)
1072 					goto out;
1073 				ref->inode_list = eie;
1074 			}
1075 			ret = ulist_add_merge_ptr(refs, ref->parent,
1076 						  ref->inode_list,
1077 						  (void **)&eie, GFP_NOFS);
1078 			if (ret < 0)
1079 				goto out;
1080 			if (!ret && extent_item_pos) {
1081 				/*
1082 				 * we've recorded that parent, so we must extend
1083 				 * its inode list here
1084 				 */
1085 				BUG_ON(!eie);
1086 				while (eie->next)
1087 					eie = eie->next;
1088 				eie->next = ref->inode_list;
1089 			}
1090 			eie = NULL;
1091 		}
1092 		list_del(&ref->list);
1093 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1094 	}
1095 
1096 out:
1097 	btrfs_free_path(path);
1098 	while (!list_empty(&prefs)) {
1099 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1100 		list_del(&ref->list);
1101 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1102 	}
1103 	while (!list_empty(&prefs_delayed)) {
1104 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1105 				       list);
1106 		list_del(&ref->list);
1107 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1108 	}
1109 	if (ret < 0)
1110 		free_inode_elem_list(eie);
1111 	return ret;
1112 }
1113 
1114 static void free_leaf_list(struct ulist *blocks)
1115 {
1116 	struct ulist_node *node = NULL;
1117 	struct extent_inode_elem *eie;
1118 	struct ulist_iterator uiter;
1119 
1120 	ULIST_ITER_INIT(&uiter);
1121 	while ((node = ulist_next(blocks, &uiter))) {
1122 		if (!node->aux)
1123 			continue;
1124 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1125 		free_inode_elem_list(eie);
1126 		node->aux = 0;
1127 	}
1128 
1129 	ulist_free(blocks);
1130 }
1131 
1132 /*
1133  * Finds all leafs with a reference to the specified combination of bytenr and
1134  * offset. key_list_head will point to a list of corresponding keys (caller must
1135  * free each list element). The leafs will be stored in the leafs ulist, which
1136  * must be freed with ulist_free.
1137  *
1138  * returns 0 on success, <0 on error
1139  */
1140 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1141 				struct btrfs_fs_info *fs_info, u64 bytenr,
1142 				u64 time_seq, struct ulist **leafs,
1143 				const u64 *extent_item_pos)
1144 {
1145 	int ret;
1146 
1147 	*leafs = ulist_alloc(GFP_NOFS);
1148 	if (!*leafs)
1149 		return -ENOMEM;
1150 
1151 	ret = find_parent_nodes(trans, fs_info, bytenr,
1152 				time_seq, *leafs, NULL, extent_item_pos, 0, 0);
1153 	if (ret < 0 && ret != -ENOENT) {
1154 		free_leaf_list(*leafs);
1155 		return ret;
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 /*
1162  * walk all backrefs for a given extent to find all roots that reference this
1163  * extent. Walking a backref means finding all extents that reference this
1164  * extent and in turn walk the backrefs of those, too. Naturally this is a
1165  * recursive process, but here it is implemented in an iterative fashion: We
1166  * find all referencing extents for the extent in question and put them on a
1167  * list. In turn, we find all referencing extents for those, further appending
1168  * to the list. The way we iterate the list allows adding more elements after
1169  * the current while iterating. The process stops when we reach the end of the
1170  * list. Found roots are added to the roots list.
1171  *
1172  * returns 0 on success, < 0 on error.
1173  */
1174 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1175 				  struct btrfs_fs_info *fs_info, u64 bytenr,
1176 				  u64 time_seq, struct ulist **roots)
1177 {
1178 	struct ulist *tmp;
1179 	struct ulist_node *node = NULL;
1180 	struct ulist_iterator uiter;
1181 	int ret;
1182 
1183 	tmp = ulist_alloc(GFP_NOFS);
1184 	if (!tmp)
1185 		return -ENOMEM;
1186 	*roots = ulist_alloc(GFP_NOFS);
1187 	if (!*roots) {
1188 		ulist_free(tmp);
1189 		return -ENOMEM;
1190 	}
1191 
1192 	ULIST_ITER_INIT(&uiter);
1193 	while (1) {
1194 		ret = find_parent_nodes(trans, fs_info, bytenr,
1195 					time_seq, tmp, *roots, NULL, 0, 0);
1196 		if (ret < 0 && ret != -ENOENT) {
1197 			ulist_free(tmp);
1198 			ulist_free(*roots);
1199 			return ret;
1200 		}
1201 		node = ulist_next(tmp, &uiter);
1202 		if (!node)
1203 			break;
1204 		bytenr = node->val;
1205 		cond_resched();
1206 	}
1207 
1208 	ulist_free(tmp);
1209 	return 0;
1210 }
1211 
1212 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1213 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1214 			 u64 time_seq, struct ulist **roots)
1215 {
1216 	int ret;
1217 
1218 	if (!trans)
1219 		down_read(&fs_info->commit_root_sem);
1220 	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1221 	if (!trans)
1222 		up_read(&fs_info->commit_root_sem);
1223 	return ret;
1224 }
1225 
1226 /**
1227  * btrfs_check_shared - tell us whether an extent is shared
1228  *
1229  * @trans: optional trans handle
1230  *
1231  * btrfs_check_shared uses the backref walking code but will short
1232  * circuit as soon as it finds a root or inode that doesn't match the
1233  * one passed in. This provides a significant performance benefit for
1234  * callers (such as fiemap) which want to know whether the extent is
1235  * shared but do not need a ref count.
1236  *
1237  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1238  */
1239 int btrfs_check_shared(struct btrfs_trans_handle *trans,
1240 		       struct btrfs_fs_info *fs_info, u64 root_objectid,
1241 		       u64 inum, u64 bytenr)
1242 {
1243 	struct ulist *tmp = NULL;
1244 	struct ulist *roots = NULL;
1245 	struct ulist_iterator uiter;
1246 	struct ulist_node *node;
1247 	struct seq_list elem = SEQ_LIST_INIT(elem);
1248 	int ret = 0;
1249 
1250 	tmp = ulist_alloc(GFP_NOFS);
1251 	roots = ulist_alloc(GFP_NOFS);
1252 	if (!tmp || !roots) {
1253 		ulist_free(tmp);
1254 		ulist_free(roots);
1255 		return -ENOMEM;
1256 	}
1257 
1258 	if (trans)
1259 		btrfs_get_tree_mod_seq(fs_info, &elem);
1260 	else
1261 		down_read(&fs_info->commit_root_sem);
1262 	ULIST_ITER_INIT(&uiter);
1263 	while (1) {
1264 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1265 					roots, NULL, root_objectid, inum);
1266 		if (ret == BACKREF_FOUND_SHARED) {
1267 			/* this is the only condition under which we return 1 */
1268 			ret = 1;
1269 			break;
1270 		}
1271 		if (ret < 0 && ret != -ENOENT)
1272 			break;
1273 		ret = 0;
1274 		node = ulist_next(tmp, &uiter);
1275 		if (!node)
1276 			break;
1277 		bytenr = node->val;
1278 		cond_resched();
1279 	}
1280 	if (trans)
1281 		btrfs_put_tree_mod_seq(fs_info, &elem);
1282 	else
1283 		up_read(&fs_info->commit_root_sem);
1284 	ulist_free(tmp);
1285 	ulist_free(roots);
1286 	return ret;
1287 }
1288 
1289 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1290 			  u64 start_off, struct btrfs_path *path,
1291 			  struct btrfs_inode_extref **ret_extref,
1292 			  u64 *found_off)
1293 {
1294 	int ret, slot;
1295 	struct btrfs_key key;
1296 	struct btrfs_key found_key;
1297 	struct btrfs_inode_extref *extref;
1298 	struct extent_buffer *leaf;
1299 	unsigned long ptr;
1300 
1301 	key.objectid = inode_objectid;
1302 	key.type = BTRFS_INODE_EXTREF_KEY;
1303 	key.offset = start_off;
1304 
1305 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1306 	if (ret < 0)
1307 		return ret;
1308 
1309 	while (1) {
1310 		leaf = path->nodes[0];
1311 		slot = path->slots[0];
1312 		if (slot >= btrfs_header_nritems(leaf)) {
1313 			/*
1314 			 * If the item at offset is not found,
1315 			 * btrfs_search_slot will point us to the slot
1316 			 * where it should be inserted. In our case
1317 			 * that will be the slot directly before the
1318 			 * next INODE_REF_KEY_V2 item. In the case
1319 			 * that we're pointing to the last slot in a
1320 			 * leaf, we must move one leaf over.
1321 			 */
1322 			ret = btrfs_next_leaf(root, path);
1323 			if (ret) {
1324 				if (ret >= 1)
1325 					ret = -ENOENT;
1326 				break;
1327 			}
1328 			continue;
1329 		}
1330 
1331 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1332 
1333 		/*
1334 		 * Check that we're still looking at an extended ref key for
1335 		 * this particular objectid. If we have different
1336 		 * objectid or type then there are no more to be found
1337 		 * in the tree and we can exit.
1338 		 */
1339 		ret = -ENOENT;
1340 		if (found_key.objectid != inode_objectid)
1341 			break;
1342 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1343 			break;
1344 
1345 		ret = 0;
1346 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1347 		extref = (struct btrfs_inode_extref *)ptr;
1348 		*ret_extref = extref;
1349 		if (found_off)
1350 			*found_off = found_key.offset;
1351 		break;
1352 	}
1353 
1354 	return ret;
1355 }
1356 
1357 /*
1358  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1359  * Elements of the path are separated by '/' and the path is guaranteed to be
1360  * 0-terminated. the path is only given within the current file system.
1361  * Therefore, it never starts with a '/'. the caller is responsible to provide
1362  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1363  * the start point of the resulting string is returned. this pointer is within
1364  * dest, normally.
1365  * in case the path buffer would overflow, the pointer is decremented further
1366  * as if output was written to the buffer, though no more output is actually
1367  * generated. that way, the caller can determine how much space would be
1368  * required for the path to fit into the buffer. in that case, the returned
1369  * value will be smaller than dest. callers must check this!
1370  */
1371 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1372 			u32 name_len, unsigned long name_off,
1373 			struct extent_buffer *eb_in, u64 parent,
1374 			char *dest, u32 size)
1375 {
1376 	int slot;
1377 	u64 next_inum;
1378 	int ret;
1379 	s64 bytes_left = ((s64)size) - 1;
1380 	struct extent_buffer *eb = eb_in;
1381 	struct btrfs_key found_key;
1382 	int leave_spinning = path->leave_spinning;
1383 	struct btrfs_inode_ref *iref;
1384 
1385 	if (bytes_left >= 0)
1386 		dest[bytes_left] = '\0';
1387 
1388 	path->leave_spinning = 1;
1389 	while (1) {
1390 		bytes_left -= name_len;
1391 		if (bytes_left >= 0)
1392 			read_extent_buffer(eb, dest + bytes_left,
1393 					   name_off, name_len);
1394 		if (eb != eb_in) {
1395 			btrfs_tree_read_unlock_blocking(eb);
1396 			free_extent_buffer(eb);
1397 		}
1398 		ret = btrfs_find_item(fs_root, path, parent, 0,
1399 				BTRFS_INODE_REF_KEY, &found_key);
1400 		if (ret > 0)
1401 			ret = -ENOENT;
1402 		if (ret)
1403 			break;
1404 
1405 		next_inum = found_key.offset;
1406 
1407 		/* regular exit ahead */
1408 		if (parent == next_inum)
1409 			break;
1410 
1411 		slot = path->slots[0];
1412 		eb = path->nodes[0];
1413 		/* make sure we can use eb after releasing the path */
1414 		if (eb != eb_in) {
1415 			atomic_inc(&eb->refs);
1416 			btrfs_tree_read_lock(eb);
1417 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1418 		}
1419 		btrfs_release_path(path);
1420 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1421 
1422 		name_len = btrfs_inode_ref_name_len(eb, iref);
1423 		name_off = (unsigned long)(iref + 1);
1424 
1425 		parent = next_inum;
1426 		--bytes_left;
1427 		if (bytes_left >= 0)
1428 			dest[bytes_left] = '/';
1429 	}
1430 
1431 	btrfs_release_path(path);
1432 	path->leave_spinning = leave_spinning;
1433 
1434 	if (ret)
1435 		return ERR_PTR(ret);
1436 
1437 	return dest + bytes_left;
1438 }
1439 
1440 /*
1441  * this makes the path point to (logical EXTENT_ITEM *)
1442  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1443  * tree blocks and <0 on error.
1444  */
1445 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1446 			struct btrfs_path *path, struct btrfs_key *found_key,
1447 			u64 *flags_ret)
1448 {
1449 	int ret;
1450 	u64 flags;
1451 	u64 size = 0;
1452 	u32 item_size;
1453 	struct extent_buffer *eb;
1454 	struct btrfs_extent_item *ei;
1455 	struct btrfs_key key;
1456 
1457 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1458 		key.type = BTRFS_METADATA_ITEM_KEY;
1459 	else
1460 		key.type = BTRFS_EXTENT_ITEM_KEY;
1461 	key.objectid = logical;
1462 	key.offset = (u64)-1;
1463 
1464 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1465 	if (ret < 0)
1466 		return ret;
1467 
1468 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1469 	if (ret) {
1470 		if (ret > 0)
1471 			ret = -ENOENT;
1472 		return ret;
1473 	}
1474 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1475 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1476 		size = fs_info->extent_root->nodesize;
1477 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1478 		size = found_key->offset;
1479 
1480 	if (found_key->objectid > logical ||
1481 	    found_key->objectid + size <= logical) {
1482 		pr_debug("logical %llu is not within any extent\n", logical);
1483 		return -ENOENT;
1484 	}
1485 
1486 	eb = path->nodes[0];
1487 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1488 	BUG_ON(item_size < sizeof(*ei));
1489 
1490 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1491 	flags = btrfs_extent_flags(eb, ei);
1492 
1493 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1494 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1495 		 logical, logical - found_key->objectid, found_key->objectid,
1496 		 found_key->offset, flags, item_size);
1497 
1498 	WARN_ON(!flags_ret);
1499 	if (flags_ret) {
1500 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1501 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1502 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1503 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1504 		else
1505 			BUG_ON(1);
1506 		return 0;
1507 	}
1508 
1509 	return -EIO;
1510 }
1511 
1512 /*
1513  * helper function to iterate extent inline refs. ptr must point to a 0 value
1514  * for the first call and may be modified. it is used to track state.
1515  * if more refs exist, 0 is returned and the next call to
1516  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1517  * next ref. after the last ref was processed, 1 is returned.
1518  * returns <0 on error
1519  */
1520 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1521 				   struct btrfs_key *key,
1522 				   struct btrfs_extent_item *ei, u32 item_size,
1523 				   struct btrfs_extent_inline_ref **out_eiref,
1524 				   int *out_type)
1525 {
1526 	unsigned long end;
1527 	u64 flags;
1528 	struct btrfs_tree_block_info *info;
1529 
1530 	if (!*ptr) {
1531 		/* first call */
1532 		flags = btrfs_extent_flags(eb, ei);
1533 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1534 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1535 				/* a skinny metadata extent */
1536 				*out_eiref =
1537 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1538 			} else {
1539 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1540 				info = (struct btrfs_tree_block_info *)(ei + 1);
1541 				*out_eiref =
1542 				   (struct btrfs_extent_inline_ref *)(info + 1);
1543 			}
1544 		} else {
1545 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1546 		}
1547 		*ptr = (unsigned long)*out_eiref;
1548 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1549 			return -ENOENT;
1550 	}
1551 
1552 	end = (unsigned long)ei + item_size;
1553 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1554 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1555 
1556 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1557 	WARN_ON(*ptr > end);
1558 	if (*ptr == end)
1559 		return 1; /* last */
1560 
1561 	return 0;
1562 }
1563 
1564 /*
1565  * reads the tree block backref for an extent. tree level and root are returned
1566  * through out_level and out_root. ptr must point to a 0 value for the first
1567  * call and may be modified (see __get_extent_inline_ref comment).
1568  * returns 0 if data was provided, 1 if there was no more data to provide or
1569  * <0 on error.
1570  */
1571 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1572 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1573 			    u32 item_size, u64 *out_root, u8 *out_level)
1574 {
1575 	int ret;
1576 	int type;
1577 	struct btrfs_extent_inline_ref *eiref;
1578 
1579 	if (*ptr == (unsigned long)-1)
1580 		return 1;
1581 
1582 	while (1) {
1583 		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1584 					      &eiref, &type);
1585 		if (ret < 0)
1586 			return ret;
1587 
1588 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1589 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1590 			break;
1591 
1592 		if (ret == 1)
1593 			return 1;
1594 	}
1595 
1596 	/* we can treat both ref types equally here */
1597 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1598 
1599 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1600 		struct btrfs_tree_block_info *info;
1601 
1602 		info = (struct btrfs_tree_block_info *)(ei + 1);
1603 		*out_level = btrfs_tree_block_level(eb, info);
1604 	} else {
1605 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1606 		*out_level = (u8)key->offset;
1607 	}
1608 
1609 	if (ret == 1)
1610 		*ptr = (unsigned long)-1;
1611 
1612 	return 0;
1613 }
1614 
1615 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1616 				u64 root, u64 extent_item_objectid,
1617 				iterate_extent_inodes_t *iterate, void *ctx)
1618 {
1619 	struct extent_inode_elem *eie;
1620 	int ret = 0;
1621 
1622 	for (eie = inode_list; eie; eie = eie->next) {
1623 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1624 			 "root %llu\n", extent_item_objectid,
1625 			 eie->inum, eie->offset, root);
1626 		ret = iterate(eie->inum, eie->offset, root, ctx);
1627 		if (ret) {
1628 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1629 				 extent_item_objectid, ret);
1630 			break;
1631 		}
1632 	}
1633 
1634 	return ret;
1635 }
1636 
1637 /*
1638  * calls iterate() for every inode that references the extent identified by
1639  * the given parameters.
1640  * when the iterator function returns a non-zero value, iteration stops.
1641  */
1642 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1643 				u64 extent_item_objectid, u64 extent_item_pos,
1644 				int search_commit_root,
1645 				iterate_extent_inodes_t *iterate, void *ctx)
1646 {
1647 	int ret;
1648 	struct btrfs_trans_handle *trans = NULL;
1649 	struct ulist *refs = NULL;
1650 	struct ulist *roots = NULL;
1651 	struct ulist_node *ref_node = NULL;
1652 	struct ulist_node *root_node = NULL;
1653 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1654 	struct ulist_iterator ref_uiter;
1655 	struct ulist_iterator root_uiter;
1656 
1657 	pr_debug("resolving all inodes for extent %llu\n",
1658 			extent_item_objectid);
1659 
1660 	if (!search_commit_root) {
1661 		trans = btrfs_join_transaction(fs_info->extent_root);
1662 		if (IS_ERR(trans))
1663 			return PTR_ERR(trans);
1664 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1665 	} else {
1666 		down_read(&fs_info->commit_root_sem);
1667 	}
1668 
1669 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1670 				   tree_mod_seq_elem.seq, &refs,
1671 				   &extent_item_pos);
1672 	if (ret)
1673 		goto out;
1674 
1675 	ULIST_ITER_INIT(&ref_uiter);
1676 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1677 		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1678 					     tree_mod_seq_elem.seq, &roots);
1679 		if (ret)
1680 			break;
1681 		ULIST_ITER_INIT(&root_uiter);
1682 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1683 			pr_debug("root %llu references leaf %llu, data list "
1684 				 "%#llx\n", root_node->val, ref_node->val,
1685 				 ref_node->aux);
1686 			ret = iterate_leaf_refs((struct extent_inode_elem *)
1687 						(uintptr_t)ref_node->aux,
1688 						root_node->val,
1689 						extent_item_objectid,
1690 						iterate, ctx);
1691 		}
1692 		ulist_free(roots);
1693 	}
1694 
1695 	free_leaf_list(refs);
1696 out:
1697 	if (!search_commit_root) {
1698 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1699 		btrfs_end_transaction(trans, fs_info->extent_root);
1700 	} else {
1701 		up_read(&fs_info->commit_root_sem);
1702 	}
1703 
1704 	return ret;
1705 }
1706 
1707 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1708 				struct btrfs_path *path,
1709 				iterate_extent_inodes_t *iterate, void *ctx)
1710 {
1711 	int ret;
1712 	u64 extent_item_pos;
1713 	u64 flags = 0;
1714 	struct btrfs_key found_key;
1715 	int search_commit_root = path->search_commit_root;
1716 
1717 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1718 	btrfs_release_path(path);
1719 	if (ret < 0)
1720 		return ret;
1721 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1722 		return -EINVAL;
1723 
1724 	extent_item_pos = logical - found_key.objectid;
1725 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1726 					extent_item_pos, search_commit_root,
1727 					iterate, ctx);
1728 
1729 	return ret;
1730 }
1731 
1732 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1733 			      struct extent_buffer *eb, void *ctx);
1734 
1735 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1736 			      struct btrfs_path *path,
1737 			      iterate_irefs_t *iterate, void *ctx)
1738 {
1739 	int ret = 0;
1740 	int slot;
1741 	u32 cur;
1742 	u32 len;
1743 	u32 name_len;
1744 	u64 parent = 0;
1745 	int found = 0;
1746 	struct extent_buffer *eb;
1747 	struct btrfs_item *item;
1748 	struct btrfs_inode_ref *iref;
1749 	struct btrfs_key found_key;
1750 
1751 	while (!ret) {
1752 		ret = btrfs_find_item(fs_root, path, inum,
1753 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
1754 				&found_key);
1755 
1756 		if (ret < 0)
1757 			break;
1758 		if (ret) {
1759 			ret = found ? 0 : -ENOENT;
1760 			break;
1761 		}
1762 		++found;
1763 
1764 		parent = found_key.offset;
1765 		slot = path->slots[0];
1766 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1767 		if (!eb) {
1768 			ret = -ENOMEM;
1769 			break;
1770 		}
1771 		extent_buffer_get(eb);
1772 		btrfs_tree_read_lock(eb);
1773 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1774 		btrfs_release_path(path);
1775 
1776 		item = btrfs_item_nr(slot);
1777 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1778 
1779 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1780 			name_len = btrfs_inode_ref_name_len(eb, iref);
1781 			/* path must be released before calling iterate()! */
1782 			pr_debug("following ref at offset %u for inode %llu in "
1783 				 "tree %llu\n", cur, found_key.objectid,
1784 				 fs_root->objectid);
1785 			ret = iterate(parent, name_len,
1786 				      (unsigned long)(iref + 1), eb, ctx);
1787 			if (ret)
1788 				break;
1789 			len = sizeof(*iref) + name_len;
1790 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1791 		}
1792 		btrfs_tree_read_unlock_blocking(eb);
1793 		free_extent_buffer(eb);
1794 	}
1795 
1796 	btrfs_release_path(path);
1797 
1798 	return ret;
1799 }
1800 
1801 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1802 				 struct btrfs_path *path,
1803 				 iterate_irefs_t *iterate, void *ctx)
1804 {
1805 	int ret;
1806 	int slot;
1807 	u64 offset = 0;
1808 	u64 parent;
1809 	int found = 0;
1810 	struct extent_buffer *eb;
1811 	struct btrfs_inode_extref *extref;
1812 	struct extent_buffer *leaf;
1813 	u32 item_size;
1814 	u32 cur_offset;
1815 	unsigned long ptr;
1816 
1817 	while (1) {
1818 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1819 					    &offset);
1820 		if (ret < 0)
1821 			break;
1822 		if (ret) {
1823 			ret = found ? 0 : -ENOENT;
1824 			break;
1825 		}
1826 		++found;
1827 
1828 		slot = path->slots[0];
1829 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1830 		if (!eb) {
1831 			ret = -ENOMEM;
1832 			break;
1833 		}
1834 		extent_buffer_get(eb);
1835 
1836 		btrfs_tree_read_lock(eb);
1837 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1838 		btrfs_release_path(path);
1839 
1840 		leaf = path->nodes[0];
1841 		item_size = btrfs_item_size_nr(leaf, slot);
1842 		ptr = btrfs_item_ptr_offset(leaf, slot);
1843 		cur_offset = 0;
1844 
1845 		while (cur_offset < item_size) {
1846 			u32 name_len;
1847 
1848 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1849 			parent = btrfs_inode_extref_parent(eb, extref);
1850 			name_len = btrfs_inode_extref_name_len(eb, extref);
1851 			ret = iterate(parent, name_len,
1852 				      (unsigned long)&extref->name, eb, ctx);
1853 			if (ret)
1854 				break;
1855 
1856 			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1857 			cur_offset += sizeof(*extref);
1858 		}
1859 		btrfs_tree_read_unlock_blocking(eb);
1860 		free_extent_buffer(eb);
1861 
1862 		offset++;
1863 	}
1864 
1865 	btrfs_release_path(path);
1866 
1867 	return ret;
1868 }
1869 
1870 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1871 			 struct btrfs_path *path, iterate_irefs_t *iterate,
1872 			 void *ctx)
1873 {
1874 	int ret;
1875 	int found_refs = 0;
1876 
1877 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1878 	if (!ret)
1879 		++found_refs;
1880 	else if (ret != -ENOENT)
1881 		return ret;
1882 
1883 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1884 	if (ret == -ENOENT && found_refs)
1885 		return 0;
1886 
1887 	return ret;
1888 }
1889 
1890 /*
1891  * returns 0 if the path could be dumped (probably truncated)
1892  * returns <0 in case of an error
1893  */
1894 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1895 			 struct extent_buffer *eb, void *ctx)
1896 {
1897 	struct inode_fs_paths *ipath = ctx;
1898 	char *fspath;
1899 	char *fspath_min;
1900 	int i = ipath->fspath->elem_cnt;
1901 	const int s_ptr = sizeof(char *);
1902 	u32 bytes_left;
1903 
1904 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1905 					ipath->fspath->bytes_left - s_ptr : 0;
1906 
1907 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1908 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1909 				   name_off, eb, inum, fspath_min, bytes_left);
1910 	if (IS_ERR(fspath))
1911 		return PTR_ERR(fspath);
1912 
1913 	if (fspath > fspath_min) {
1914 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1915 		++ipath->fspath->elem_cnt;
1916 		ipath->fspath->bytes_left = fspath - fspath_min;
1917 	} else {
1918 		++ipath->fspath->elem_missed;
1919 		ipath->fspath->bytes_missing += fspath_min - fspath;
1920 		ipath->fspath->bytes_left = 0;
1921 	}
1922 
1923 	return 0;
1924 }
1925 
1926 /*
1927  * this dumps all file system paths to the inode into the ipath struct, provided
1928  * is has been created large enough. each path is zero-terminated and accessed
1929  * from ipath->fspath->val[i].
1930  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1931  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1932  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1933  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1934  * have been needed to return all paths.
1935  */
1936 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1937 {
1938 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1939 			     inode_to_path, ipath);
1940 }
1941 
1942 struct btrfs_data_container *init_data_container(u32 total_bytes)
1943 {
1944 	struct btrfs_data_container *data;
1945 	size_t alloc_bytes;
1946 
1947 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1948 	data = vmalloc(alloc_bytes);
1949 	if (!data)
1950 		return ERR_PTR(-ENOMEM);
1951 
1952 	if (total_bytes >= sizeof(*data)) {
1953 		data->bytes_left = total_bytes - sizeof(*data);
1954 		data->bytes_missing = 0;
1955 	} else {
1956 		data->bytes_missing = sizeof(*data) - total_bytes;
1957 		data->bytes_left = 0;
1958 	}
1959 
1960 	data->elem_cnt = 0;
1961 	data->elem_missed = 0;
1962 
1963 	return data;
1964 }
1965 
1966 /*
1967  * allocates space to return multiple file system paths for an inode.
1968  * total_bytes to allocate are passed, note that space usable for actual path
1969  * information will be total_bytes - sizeof(struct inode_fs_paths).
1970  * the returned pointer must be freed with free_ipath() in the end.
1971  */
1972 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1973 					struct btrfs_path *path)
1974 {
1975 	struct inode_fs_paths *ifp;
1976 	struct btrfs_data_container *fspath;
1977 
1978 	fspath = init_data_container(total_bytes);
1979 	if (IS_ERR(fspath))
1980 		return (void *)fspath;
1981 
1982 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1983 	if (!ifp) {
1984 		kfree(fspath);
1985 		return ERR_PTR(-ENOMEM);
1986 	}
1987 
1988 	ifp->btrfs_path = path;
1989 	ifp->fspath = fspath;
1990 	ifp->fs_root = fs_root;
1991 
1992 	return ifp;
1993 }
1994 
1995 void free_ipath(struct inode_fs_paths *ipath)
1996 {
1997 	if (!ipath)
1998 		return;
1999 	vfree(ipath->fspath);
2000 	kfree(ipath);
2001 }
2002