1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "extent-tree.h" 21 #include "relocation.h" 22 #include "tree-checker.h" 23 24 /* Just arbitrary numbers so we can be sure one of these happened. */ 25 #define BACKREF_FOUND_SHARED 6 26 #define BACKREF_FOUND_NOT_SHARED 7 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 u64 num_bytes; 32 struct extent_inode_elem *next; 33 }; 34 35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 36 const struct btrfs_key *key, 37 const struct extent_buffer *eb, 38 const struct btrfs_file_extent_item *fi, 39 struct extent_inode_elem **eie) 40 { 41 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi); 42 u64 offset = key->offset; 43 struct extent_inode_elem *e; 44 const u64 *root_ids; 45 int root_count; 46 bool cached; 47 48 if (!ctx->ignore_extent_item_pos && 49 !btrfs_file_extent_compression(eb, fi) && 50 !btrfs_file_extent_encryption(eb, fi) && 51 !btrfs_file_extent_other_encoding(eb, fi)) { 52 u64 data_offset; 53 54 data_offset = btrfs_file_extent_offset(eb, fi); 55 56 if (ctx->extent_item_pos < data_offset || 57 ctx->extent_item_pos >= data_offset + data_len) 58 return 1; 59 offset += ctx->extent_item_pos - data_offset; 60 } 61 62 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup) 63 goto add_inode_elem; 64 65 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids, 66 &root_count); 67 if (!cached) 68 goto add_inode_elem; 69 70 for (int i = 0; i < root_count; i++) { 71 int ret; 72 73 ret = ctx->indirect_ref_iterator(key->objectid, offset, 74 data_len, root_ids[i], 75 ctx->user_ctx); 76 if (ret) 77 return ret; 78 } 79 80 add_inode_elem: 81 e = kmalloc(sizeof(*e), GFP_NOFS); 82 if (!e) 83 return -ENOMEM; 84 85 e->next = *eie; 86 e->inum = key->objectid; 87 e->offset = offset; 88 e->num_bytes = data_len; 89 *eie = e; 90 91 return 0; 92 } 93 94 static void free_inode_elem_list(struct extent_inode_elem *eie) 95 { 96 struct extent_inode_elem *eie_next; 97 98 for (; eie; eie = eie_next) { 99 eie_next = eie->next; 100 kfree(eie); 101 } 102 } 103 104 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 105 const struct extent_buffer *eb, 106 struct extent_inode_elem **eie) 107 { 108 u64 disk_byte; 109 struct btrfs_key key; 110 struct btrfs_file_extent_item *fi; 111 int slot; 112 int nritems; 113 int extent_type; 114 int ret; 115 116 /* 117 * from the shared data ref, we only have the leaf but we need 118 * the key. thus, we must look into all items and see that we 119 * find one (some) with a reference to our extent item. 120 */ 121 nritems = btrfs_header_nritems(eb); 122 for (slot = 0; slot < nritems; ++slot) { 123 btrfs_item_key_to_cpu(eb, &key, slot); 124 if (key.type != BTRFS_EXTENT_DATA_KEY) 125 continue; 126 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 127 extent_type = btrfs_file_extent_type(eb, fi); 128 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 129 continue; 130 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 131 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 132 if (disk_byte != ctx->bytenr) 133 continue; 134 135 ret = check_extent_in_eb(ctx, &key, eb, fi, eie); 136 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 137 return ret; 138 } 139 140 return 0; 141 } 142 143 struct preftree { 144 struct rb_root_cached root; 145 unsigned int count; 146 }; 147 148 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 149 150 struct preftrees { 151 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 152 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 153 struct preftree indirect_missing_keys; 154 }; 155 156 /* 157 * Checks for a shared extent during backref search. 158 * 159 * The share_count tracks prelim_refs (direct and indirect) having a 160 * ref->count >0: 161 * - incremented when a ref->count transitions to >0 162 * - decremented when a ref->count transitions to <1 163 */ 164 struct share_check { 165 struct btrfs_backref_share_check_ctx *ctx; 166 struct btrfs_root *root; 167 u64 inum; 168 u64 data_bytenr; 169 u64 data_extent_gen; 170 /* 171 * Counts number of inodes that refer to an extent (different inodes in 172 * the same root or different roots) that we could find. The sharedness 173 * check typically stops once this counter gets greater than 1, so it 174 * may not reflect the total number of inodes. 175 */ 176 int share_count; 177 /* 178 * The number of times we found our inode refers to the data extent we 179 * are determining the sharedness. In other words, how many file extent 180 * items we could find for our inode that point to our target data 181 * extent. The value we get here after finishing the extent sharedness 182 * check may be smaller than reality, but if it ends up being greater 183 * than 1, then we know for sure the inode has multiple file extent 184 * items that point to our inode, and we can safely assume it's useful 185 * to cache the sharedness check result. 186 */ 187 int self_ref_count; 188 bool have_delayed_delete_refs; 189 }; 190 191 static inline int extent_is_shared(struct share_check *sc) 192 { 193 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 194 } 195 196 static struct kmem_cache *btrfs_prelim_ref_cache; 197 198 int __init btrfs_prelim_ref_init(void) 199 { 200 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 201 sizeof(struct prelim_ref), 0, 0, NULL); 202 if (!btrfs_prelim_ref_cache) 203 return -ENOMEM; 204 return 0; 205 } 206 207 void __cold btrfs_prelim_ref_exit(void) 208 { 209 kmem_cache_destroy(btrfs_prelim_ref_cache); 210 } 211 212 static void free_pref(struct prelim_ref *ref) 213 { 214 kmem_cache_free(btrfs_prelim_ref_cache, ref); 215 } 216 217 /* 218 * Return 0 when both refs are for the same block (and can be merged). 219 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 220 * indicates a 'higher' block. 221 */ 222 static int prelim_ref_compare(const struct prelim_ref *ref1, 223 const struct prelim_ref *ref2) 224 { 225 if (ref1->level < ref2->level) 226 return -1; 227 if (ref1->level > ref2->level) 228 return 1; 229 if (ref1->root_id < ref2->root_id) 230 return -1; 231 if (ref1->root_id > ref2->root_id) 232 return 1; 233 if (ref1->key_for_search.type < ref2->key_for_search.type) 234 return -1; 235 if (ref1->key_for_search.type > ref2->key_for_search.type) 236 return 1; 237 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 238 return -1; 239 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 240 return 1; 241 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 242 return -1; 243 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 244 return 1; 245 if (ref1->parent < ref2->parent) 246 return -1; 247 if (ref1->parent > ref2->parent) 248 return 1; 249 250 return 0; 251 } 252 253 static void update_share_count(struct share_check *sc, int oldcount, 254 int newcount, const struct prelim_ref *newref) 255 { 256 if ((!sc) || (oldcount == 0 && newcount < 1)) 257 return; 258 259 if (oldcount > 0 && newcount < 1) 260 sc->share_count--; 261 else if (oldcount < 1 && newcount > 0) 262 sc->share_count++; 263 264 if (newref->root_id == btrfs_root_id(sc->root) && 265 newref->wanted_disk_byte == sc->data_bytenr && 266 newref->key_for_search.objectid == sc->inum) 267 sc->self_ref_count += newref->count; 268 } 269 270 /* 271 * Add @newref to the @root rbtree, merging identical refs. 272 * 273 * Callers should assume that newref has been freed after calling. 274 */ 275 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 276 struct preftree *preftree, 277 struct prelim_ref *newref, 278 struct share_check *sc) 279 { 280 struct rb_root_cached *root; 281 struct rb_node **p; 282 struct rb_node *parent = NULL; 283 struct prelim_ref *ref; 284 int result; 285 bool leftmost = true; 286 287 root = &preftree->root; 288 p = &root->rb_root.rb_node; 289 290 while (*p) { 291 parent = *p; 292 ref = rb_entry(parent, struct prelim_ref, rbnode); 293 result = prelim_ref_compare(ref, newref); 294 if (result < 0) { 295 p = &(*p)->rb_left; 296 } else if (result > 0) { 297 p = &(*p)->rb_right; 298 leftmost = false; 299 } else { 300 /* Identical refs, merge them and free @newref */ 301 struct extent_inode_elem *eie = ref->inode_list; 302 303 while (eie && eie->next) 304 eie = eie->next; 305 306 if (!eie) 307 ref->inode_list = newref->inode_list; 308 else 309 eie->next = newref->inode_list; 310 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 311 preftree->count); 312 /* 313 * A delayed ref can have newref->count < 0. 314 * The ref->count is updated to follow any 315 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 316 */ 317 update_share_count(sc, ref->count, 318 ref->count + newref->count, newref); 319 ref->count += newref->count; 320 free_pref(newref); 321 return; 322 } 323 } 324 325 update_share_count(sc, 0, newref->count, newref); 326 preftree->count++; 327 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 328 rb_link_node(&newref->rbnode, parent, p); 329 rb_insert_color_cached(&newref->rbnode, root, leftmost); 330 } 331 332 /* 333 * Release the entire tree. We don't care about internal consistency so 334 * just free everything and then reset the tree root. 335 */ 336 static void prelim_release(struct preftree *preftree) 337 { 338 struct prelim_ref *ref, *next_ref; 339 340 rbtree_postorder_for_each_entry_safe(ref, next_ref, 341 &preftree->root.rb_root, rbnode) { 342 free_inode_elem_list(ref->inode_list); 343 free_pref(ref); 344 } 345 346 preftree->root = RB_ROOT_CACHED; 347 preftree->count = 0; 348 } 349 350 /* 351 * the rules for all callers of this function are: 352 * - obtaining the parent is the goal 353 * - if you add a key, you must know that it is a correct key 354 * - if you cannot add the parent or a correct key, then we will look into the 355 * block later to set a correct key 356 * 357 * delayed refs 358 * ============ 359 * backref type | shared | indirect | shared | indirect 360 * information | tree | tree | data | data 361 * --------------------+--------+----------+--------+---------- 362 * parent logical | y | - | - | - 363 * key to resolve | - | y | y | y 364 * tree block logical | - | - | - | - 365 * root for resolving | y | y | y | y 366 * 367 * - column 1: we've the parent -> done 368 * - column 2, 3, 4: we use the key to find the parent 369 * 370 * on disk refs (inline or keyed) 371 * ============================== 372 * backref type | shared | indirect | shared | indirect 373 * information | tree | tree | data | data 374 * --------------------+--------+----------+--------+---------- 375 * parent logical | y | - | y | - 376 * key to resolve | - | - | - | y 377 * tree block logical | y | y | y | y 378 * root for resolving | - | y | y | y 379 * 380 * - column 1, 3: we've the parent -> done 381 * - column 2: we take the first key from the block to find the parent 382 * (see add_missing_keys) 383 * - column 4: we use the key to find the parent 384 * 385 * additional information that's available but not required to find the parent 386 * block might help in merging entries to gain some speed. 387 */ 388 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 389 struct preftree *preftree, u64 root_id, 390 const struct btrfs_key *key, int level, u64 parent, 391 u64 wanted_disk_byte, int count, 392 struct share_check *sc, gfp_t gfp_mask) 393 { 394 struct prelim_ref *ref; 395 396 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 397 return 0; 398 399 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 400 if (!ref) 401 return -ENOMEM; 402 403 ref->root_id = root_id; 404 if (key) 405 ref->key_for_search = *key; 406 else 407 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 408 409 ref->inode_list = NULL; 410 ref->level = level; 411 ref->count = count; 412 ref->parent = parent; 413 ref->wanted_disk_byte = wanted_disk_byte; 414 prelim_ref_insert(fs_info, preftree, ref, sc); 415 return extent_is_shared(sc); 416 } 417 418 /* direct refs use root == 0, key == NULL */ 419 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 420 struct preftrees *preftrees, int level, u64 parent, 421 u64 wanted_disk_byte, int count, 422 struct share_check *sc, gfp_t gfp_mask) 423 { 424 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 425 parent, wanted_disk_byte, count, sc, gfp_mask); 426 } 427 428 /* indirect refs use parent == 0 */ 429 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 430 struct preftrees *preftrees, u64 root_id, 431 const struct btrfs_key *key, int level, 432 u64 wanted_disk_byte, int count, 433 struct share_check *sc, gfp_t gfp_mask) 434 { 435 struct preftree *tree = &preftrees->indirect; 436 437 if (!key) 438 tree = &preftrees->indirect_missing_keys; 439 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 440 wanted_disk_byte, count, sc, gfp_mask); 441 } 442 443 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 444 { 445 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 446 struct rb_node *parent = NULL; 447 struct prelim_ref *ref = NULL; 448 struct prelim_ref target = {}; 449 int result; 450 451 target.parent = bytenr; 452 453 while (*p) { 454 parent = *p; 455 ref = rb_entry(parent, struct prelim_ref, rbnode); 456 result = prelim_ref_compare(ref, &target); 457 458 if (result < 0) 459 p = &(*p)->rb_left; 460 else if (result > 0) 461 p = &(*p)->rb_right; 462 else 463 return 1; 464 } 465 return 0; 466 } 467 468 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx, 469 struct btrfs_root *root, struct btrfs_path *path, 470 struct ulist *parents, 471 struct preftrees *preftrees, struct prelim_ref *ref, 472 int level) 473 { 474 int ret = 0; 475 int slot; 476 struct extent_buffer *eb; 477 struct btrfs_key key; 478 struct btrfs_key *key_for_search = &ref->key_for_search; 479 struct btrfs_file_extent_item *fi; 480 struct extent_inode_elem *eie = NULL, *old = NULL; 481 u64 disk_byte; 482 u64 wanted_disk_byte = ref->wanted_disk_byte; 483 u64 count = 0; 484 u64 data_offset; 485 u8 type; 486 487 if (level != 0) { 488 eb = path->nodes[level]; 489 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 490 if (ret < 0) 491 return ret; 492 return 0; 493 } 494 495 /* 496 * 1. We normally enter this function with the path already pointing to 497 * the first item to check. But sometimes, we may enter it with 498 * slot == nritems. 499 * 2. We are searching for normal backref but bytenr of this leaf 500 * matches shared data backref 501 * 3. The leaf owner is not equal to the root we are searching 502 * 503 * For these cases, go to the next leaf before we continue. 504 */ 505 eb = path->nodes[0]; 506 if (path->slots[0] >= btrfs_header_nritems(eb) || 507 is_shared_data_backref(preftrees, eb->start) || 508 ref->root_id != btrfs_header_owner(eb)) { 509 if (ctx->time_seq == BTRFS_SEQ_LAST) 510 ret = btrfs_next_leaf(root, path); 511 else 512 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 513 } 514 515 while (!ret && count < ref->count) { 516 eb = path->nodes[0]; 517 slot = path->slots[0]; 518 519 btrfs_item_key_to_cpu(eb, &key, slot); 520 521 if (key.objectid != key_for_search->objectid || 522 key.type != BTRFS_EXTENT_DATA_KEY) 523 break; 524 525 /* 526 * We are searching for normal backref but bytenr of this leaf 527 * matches shared data backref, OR 528 * the leaf owner is not equal to the root we are searching for 529 */ 530 if (slot == 0 && 531 (is_shared_data_backref(preftrees, eb->start) || 532 ref->root_id != btrfs_header_owner(eb))) { 533 if (ctx->time_seq == BTRFS_SEQ_LAST) 534 ret = btrfs_next_leaf(root, path); 535 else 536 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 537 continue; 538 } 539 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 540 type = btrfs_file_extent_type(eb, fi); 541 if (type == BTRFS_FILE_EXTENT_INLINE) 542 goto next; 543 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 544 data_offset = btrfs_file_extent_offset(eb, fi); 545 546 if (disk_byte == wanted_disk_byte) { 547 eie = NULL; 548 old = NULL; 549 if (ref->key_for_search.offset == key.offset - data_offset) 550 count++; 551 else 552 goto next; 553 if (!ctx->skip_inode_ref_list) { 554 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie); 555 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 556 ret < 0) 557 break; 558 } 559 if (ret > 0) 560 goto next; 561 ret = ulist_add_merge_ptr(parents, eb->start, 562 eie, (void **)&old, GFP_NOFS); 563 if (ret < 0) 564 break; 565 if (!ret && !ctx->skip_inode_ref_list) { 566 while (old->next) 567 old = old->next; 568 old->next = eie; 569 } 570 eie = NULL; 571 } 572 next: 573 if (ctx->time_seq == BTRFS_SEQ_LAST) 574 ret = btrfs_next_item(root, path); 575 else 576 ret = btrfs_next_old_item(root, path, ctx->time_seq); 577 } 578 579 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 580 free_inode_elem_list(eie); 581 else if (ret > 0) 582 ret = 0; 583 584 return ret; 585 } 586 587 /* 588 * resolve an indirect backref in the form (root_id, key, level) 589 * to a logical address 590 */ 591 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx, 592 struct btrfs_path *path, 593 struct preftrees *preftrees, 594 struct prelim_ref *ref, struct ulist *parents) 595 { 596 struct btrfs_root *root; 597 struct extent_buffer *eb; 598 int ret = 0; 599 int root_level; 600 int level = ref->level; 601 struct btrfs_key search_key = ref->key_for_search; 602 603 /* 604 * If we're search_commit_root we could possibly be holding locks on 605 * other tree nodes. This happens when qgroups does backref walks when 606 * adding new delayed refs. To deal with this we need to look in cache 607 * for the root, and if we don't find it then we need to search the 608 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 609 * here. 610 */ 611 if (path->search_commit_root) 612 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id); 613 else 614 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false); 615 if (IS_ERR(root)) { 616 ret = PTR_ERR(root); 617 goto out_free; 618 } 619 620 if (!path->search_commit_root && 621 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 622 ret = -ENOENT; 623 goto out; 624 } 625 626 if (btrfs_is_testing(ctx->fs_info)) { 627 ret = -ENOENT; 628 goto out; 629 } 630 631 if (path->search_commit_root) 632 root_level = btrfs_header_level(root->commit_root); 633 else if (ctx->time_seq == BTRFS_SEQ_LAST) 634 root_level = btrfs_header_level(root->node); 635 else 636 root_level = btrfs_old_root_level(root, ctx->time_seq); 637 638 if (root_level + 1 == level) 639 goto out; 640 641 /* 642 * We can often find data backrefs with an offset that is too large 643 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 644 * subtracting a file's offset with the data offset of its 645 * corresponding extent data item. This can happen for example in the 646 * clone ioctl. 647 * 648 * So if we detect such case we set the search key's offset to zero to 649 * make sure we will find the matching file extent item at 650 * add_all_parents(), otherwise we will miss it because the offset 651 * taken form the backref is much larger then the offset of the file 652 * extent item. This can make us scan a very large number of file 653 * extent items, but at least it will not make us miss any. 654 * 655 * This is an ugly workaround for a behaviour that should have never 656 * existed, but it does and a fix for the clone ioctl would touch a lot 657 * of places, cause backwards incompatibility and would not fix the 658 * problem for extents cloned with older kernels. 659 */ 660 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 661 search_key.offset >= LLONG_MAX) 662 search_key.offset = 0; 663 path->lowest_level = level; 664 if (ctx->time_seq == BTRFS_SEQ_LAST) 665 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 666 else 667 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq); 668 669 btrfs_debug(ctx->fs_info, 670 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 671 ref->root_id, level, ref->count, ret, 672 ref->key_for_search.objectid, ref->key_for_search.type, 673 ref->key_for_search.offset); 674 if (ret < 0) 675 goto out; 676 677 eb = path->nodes[level]; 678 while (!eb) { 679 if (WARN_ON(!level)) { 680 ret = 1; 681 goto out; 682 } 683 level--; 684 eb = path->nodes[level]; 685 } 686 687 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level); 688 out: 689 btrfs_put_root(root); 690 out_free: 691 path->lowest_level = 0; 692 btrfs_release_path(path); 693 return ret; 694 } 695 696 static struct extent_inode_elem * 697 unode_aux_to_inode_list(struct ulist_node *node) 698 { 699 if (!node) 700 return NULL; 701 return (struct extent_inode_elem *)(uintptr_t)node->aux; 702 } 703 704 static void free_leaf_list(struct ulist *ulist) 705 { 706 struct ulist_node *node; 707 struct ulist_iterator uiter; 708 709 ULIST_ITER_INIT(&uiter); 710 while ((node = ulist_next(ulist, &uiter))) 711 free_inode_elem_list(unode_aux_to_inode_list(node)); 712 713 ulist_free(ulist); 714 } 715 716 /* 717 * We maintain three separate rbtrees: one for direct refs, one for 718 * indirect refs which have a key, and one for indirect refs which do not 719 * have a key. Each tree does merge on insertion. 720 * 721 * Once all of the references are located, we iterate over the tree of 722 * indirect refs with missing keys. An appropriate key is located and 723 * the ref is moved onto the tree for indirect refs. After all missing 724 * keys are thus located, we iterate over the indirect ref tree, resolve 725 * each reference, and then insert the resolved reference onto the 726 * direct tree (merging there too). 727 * 728 * New backrefs (i.e., for parent nodes) are added to the appropriate 729 * rbtree as they are encountered. The new backrefs are subsequently 730 * resolved as above. 731 */ 732 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx, 733 struct btrfs_path *path, 734 struct preftrees *preftrees, 735 struct share_check *sc) 736 { 737 int err; 738 int ret = 0; 739 struct ulist *parents; 740 struct ulist_node *node; 741 struct ulist_iterator uiter; 742 struct rb_node *rnode; 743 744 parents = ulist_alloc(GFP_NOFS); 745 if (!parents) 746 return -ENOMEM; 747 748 /* 749 * We could trade memory usage for performance here by iterating 750 * the tree, allocating new refs for each insertion, and then 751 * freeing the entire indirect tree when we're done. In some test 752 * cases, the tree can grow quite large (~200k objects). 753 */ 754 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 755 struct prelim_ref *ref; 756 757 ref = rb_entry(rnode, struct prelim_ref, rbnode); 758 if (WARN(ref->parent, 759 "BUG: direct ref found in indirect tree")) { 760 ret = -EINVAL; 761 goto out; 762 } 763 764 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 765 preftrees->indirect.count--; 766 767 if (ref->count == 0) { 768 free_pref(ref); 769 continue; 770 } 771 772 if (sc && ref->root_id != btrfs_root_id(sc->root)) { 773 free_pref(ref); 774 ret = BACKREF_FOUND_SHARED; 775 goto out; 776 } 777 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents); 778 /* 779 * we can only tolerate ENOENT,otherwise,we should catch error 780 * and return directly. 781 */ 782 if (err == -ENOENT) { 783 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, 784 NULL); 785 continue; 786 } else if (err) { 787 free_pref(ref); 788 ret = err; 789 goto out; 790 } 791 792 /* we put the first parent into the ref at hand */ 793 ULIST_ITER_INIT(&uiter); 794 node = ulist_next(parents, &uiter); 795 ref->parent = node ? node->val : 0; 796 ref->inode_list = unode_aux_to_inode_list(node); 797 798 /* Add a prelim_ref(s) for any other parent(s). */ 799 while ((node = ulist_next(parents, &uiter))) { 800 struct prelim_ref *new_ref; 801 802 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 803 GFP_NOFS); 804 if (!new_ref) { 805 free_pref(ref); 806 ret = -ENOMEM; 807 goto out; 808 } 809 memcpy(new_ref, ref, sizeof(*ref)); 810 new_ref->parent = node->val; 811 new_ref->inode_list = unode_aux_to_inode_list(node); 812 prelim_ref_insert(ctx->fs_info, &preftrees->direct, 813 new_ref, NULL); 814 } 815 816 /* 817 * Now it's a direct ref, put it in the direct tree. We must 818 * do this last because the ref could be merged/freed here. 819 */ 820 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL); 821 822 ulist_reinit(parents); 823 cond_resched(); 824 } 825 out: 826 /* 827 * We may have inode lists attached to refs in the parents ulist, so we 828 * must free them before freeing the ulist and its refs. 829 */ 830 free_leaf_list(parents); 831 return ret; 832 } 833 834 /* 835 * read tree blocks and add keys where required. 836 */ 837 static int add_missing_keys(struct btrfs_fs_info *fs_info, 838 struct preftrees *preftrees, bool lock) 839 { 840 struct prelim_ref *ref; 841 struct extent_buffer *eb; 842 struct preftree *tree = &preftrees->indirect_missing_keys; 843 struct rb_node *node; 844 845 while ((node = rb_first_cached(&tree->root))) { 846 struct btrfs_tree_parent_check check = { 0 }; 847 848 ref = rb_entry(node, struct prelim_ref, rbnode); 849 rb_erase_cached(node, &tree->root); 850 851 BUG_ON(ref->parent); /* should not be a direct ref */ 852 BUG_ON(ref->key_for_search.type); 853 BUG_ON(!ref->wanted_disk_byte); 854 855 check.level = ref->level - 1; 856 check.owner_root = ref->root_id; 857 858 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check); 859 if (IS_ERR(eb)) { 860 free_pref(ref); 861 return PTR_ERR(eb); 862 } 863 if (!extent_buffer_uptodate(eb)) { 864 free_pref(ref); 865 free_extent_buffer(eb); 866 return -EIO; 867 } 868 869 if (lock) 870 btrfs_tree_read_lock(eb); 871 if (btrfs_header_level(eb) == 0) 872 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 873 else 874 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 875 if (lock) 876 btrfs_tree_read_unlock(eb); 877 free_extent_buffer(eb); 878 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 879 cond_resched(); 880 } 881 return 0; 882 } 883 884 /* 885 * add all currently queued delayed refs from this head whose seq nr is 886 * smaller or equal that seq to the list 887 */ 888 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 889 struct btrfs_delayed_ref_head *head, u64 seq, 890 struct preftrees *preftrees, struct share_check *sc) 891 { 892 struct btrfs_delayed_ref_node *node; 893 struct btrfs_key key; 894 struct rb_node *n; 895 int count; 896 int ret = 0; 897 898 spin_lock(&head->lock); 899 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 900 node = rb_entry(n, struct btrfs_delayed_ref_node, 901 ref_node); 902 if (node->seq > seq) 903 continue; 904 905 switch (node->action) { 906 case BTRFS_ADD_DELAYED_EXTENT: 907 case BTRFS_UPDATE_DELAYED_HEAD: 908 WARN_ON(1); 909 continue; 910 case BTRFS_ADD_DELAYED_REF: 911 count = node->ref_mod; 912 break; 913 case BTRFS_DROP_DELAYED_REF: 914 count = node->ref_mod * -1; 915 break; 916 default: 917 BUG(); 918 } 919 switch (node->type) { 920 case BTRFS_TREE_BLOCK_REF_KEY: { 921 /* NORMAL INDIRECT METADATA backref */ 922 struct btrfs_key *key_ptr = NULL; 923 /* The owner of a tree block ref is the level. */ 924 int level = btrfs_delayed_ref_owner(node); 925 926 if (head->extent_op && head->extent_op->update_key) { 927 btrfs_disk_key_to_cpu(&key, &head->extent_op->key); 928 key_ptr = &key; 929 } 930 931 ret = add_indirect_ref(fs_info, preftrees, node->ref_root, 932 key_ptr, level + 1, node->bytenr, 933 count, sc, GFP_ATOMIC); 934 break; 935 } 936 case BTRFS_SHARED_BLOCK_REF_KEY: { 937 /* 938 * SHARED DIRECT METADATA backref 939 * 940 * The owner of a tree block ref is the level. 941 */ 942 int level = btrfs_delayed_ref_owner(node); 943 944 ret = add_direct_ref(fs_info, preftrees, level + 1, 945 node->parent, node->bytenr, count, 946 sc, GFP_ATOMIC); 947 break; 948 } 949 case BTRFS_EXTENT_DATA_REF_KEY: { 950 /* NORMAL INDIRECT DATA backref */ 951 key.objectid = btrfs_delayed_ref_owner(node); 952 key.type = BTRFS_EXTENT_DATA_KEY; 953 key.offset = btrfs_delayed_ref_offset(node); 954 955 /* 956 * If we have a share check context and a reference for 957 * another inode, we can't exit immediately. This is 958 * because even if this is a BTRFS_ADD_DELAYED_REF 959 * reference we may find next a BTRFS_DROP_DELAYED_REF 960 * which cancels out this ADD reference. 961 * 962 * If this is a DROP reference and there was no previous 963 * ADD reference, then we need to signal that when we 964 * process references from the extent tree (through 965 * add_inline_refs() and add_keyed_refs()), we should 966 * not exit early if we find a reference for another 967 * inode, because one of the delayed DROP references 968 * may cancel that reference in the extent tree. 969 */ 970 if (sc && count < 0) 971 sc->have_delayed_delete_refs = true; 972 973 ret = add_indirect_ref(fs_info, preftrees, node->ref_root, 974 &key, 0, node->bytenr, count, sc, 975 GFP_ATOMIC); 976 break; 977 } 978 case BTRFS_SHARED_DATA_REF_KEY: { 979 /* SHARED DIRECT FULL backref */ 980 ret = add_direct_ref(fs_info, preftrees, 0, node->parent, 981 node->bytenr, count, sc, 982 GFP_ATOMIC); 983 break; 984 } 985 default: 986 WARN_ON(1); 987 } 988 /* 989 * We must ignore BACKREF_FOUND_SHARED until all delayed 990 * refs have been checked. 991 */ 992 if (ret && (ret != BACKREF_FOUND_SHARED)) 993 break; 994 } 995 if (!ret) 996 ret = extent_is_shared(sc); 997 998 spin_unlock(&head->lock); 999 return ret; 1000 } 1001 1002 /* 1003 * add all inline backrefs for bytenr to the list 1004 * 1005 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1006 */ 1007 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx, 1008 struct btrfs_path *path, 1009 int *info_level, struct preftrees *preftrees, 1010 struct share_check *sc) 1011 { 1012 int ret = 0; 1013 int slot; 1014 struct extent_buffer *leaf; 1015 struct btrfs_key key; 1016 struct btrfs_key found_key; 1017 unsigned long ptr; 1018 unsigned long end; 1019 struct btrfs_extent_item *ei; 1020 u64 flags; 1021 u64 item_size; 1022 1023 /* 1024 * enumerate all inline refs 1025 */ 1026 leaf = path->nodes[0]; 1027 slot = path->slots[0]; 1028 1029 item_size = btrfs_item_size(leaf, slot); 1030 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1031 1032 if (ctx->check_extent_item) { 1033 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx); 1034 if (ret) 1035 return ret; 1036 } 1037 1038 flags = btrfs_extent_flags(leaf, ei); 1039 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1040 1041 ptr = (unsigned long)(ei + 1); 1042 end = (unsigned long)ei + item_size; 1043 1044 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 1045 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1046 struct btrfs_tree_block_info *info; 1047 1048 info = (struct btrfs_tree_block_info *)ptr; 1049 *info_level = btrfs_tree_block_level(leaf, info); 1050 ptr += sizeof(struct btrfs_tree_block_info); 1051 BUG_ON(ptr > end); 1052 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1053 *info_level = found_key.offset; 1054 } else { 1055 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1056 } 1057 1058 while (ptr < end) { 1059 struct btrfs_extent_inline_ref *iref; 1060 u64 offset; 1061 int type; 1062 1063 iref = (struct btrfs_extent_inline_ref *)ptr; 1064 type = btrfs_get_extent_inline_ref_type(leaf, iref, 1065 BTRFS_REF_TYPE_ANY); 1066 if (type == BTRFS_REF_TYPE_INVALID) 1067 return -EUCLEAN; 1068 1069 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1070 1071 switch (type) { 1072 case BTRFS_SHARED_BLOCK_REF_KEY: 1073 ret = add_direct_ref(ctx->fs_info, preftrees, 1074 *info_level + 1, offset, 1075 ctx->bytenr, 1, NULL, GFP_NOFS); 1076 break; 1077 case BTRFS_SHARED_DATA_REF_KEY: { 1078 struct btrfs_shared_data_ref *sdref; 1079 int count; 1080 1081 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1082 count = btrfs_shared_data_ref_count(leaf, sdref); 1083 1084 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset, 1085 ctx->bytenr, count, sc, GFP_NOFS); 1086 break; 1087 } 1088 case BTRFS_TREE_BLOCK_REF_KEY: 1089 ret = add_indirect_ref(ctx->fs_info, preftrees, offset, 1090 NULL, *info_level + 1, 1091 ctx->bytenr, 1, NULL, GFP_NOFS); 1092 break; 1093 case BTRFS_EXTENT_DATA_REF_KEY: { 1094 struct btrfs_extent_data_ref *dref; 1095 int count; 1096 u64 root; 1097 1098 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1099 count = btrfs_extent_data_ref_count(leaf, dref); 1100 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1101 dref); 1102 key.type = BTRFS_EXTENT_DATA_KEY; 1103 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1104 1105 if (sc && key.objectid != sc->inum && 1106 !sc->have_delayed_delete_refs) { 1107 ret = BACKREF_FOUND_SHARED; 1108 break; 1109 } 1110 1111 root = btrfs_extent_data_ref_root(leaf, dref); 1112 1113 if (!ctx->skip_data_ref || 1114 !ctx->skip_data_ref(root, key.objectid, key.offset, 1115 ctx->user_ctx)) 1116 ret = add_indirect_ref(ctx->fs_info, preftrees, 1117 root, &key, 0, ctx->bytenr, 1118 count, sc, GFP_NOFS); 1119 break; 1120 } 1121 case BTRFS_EXTENT_OWNER_REF_KEY: 1122 ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA)); 1123 break; 1124 default: 1125 WARN_ON(1); 1126 } 1127 if (ret) 1128 return ret; 1129 ptr += btrfs_extent_inline_ref_size(type); 1130 } 1131 1132 return 0; 1133 } 1134 1135 /* 1136 * add all non-inline backrefs for bytenr to the list 1137 * 1138 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1139 */ 1140 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx, 1141 struct btrfs_root *extent_root, 1142 struct btrfs_path *path, 1143 int info_level, struct preftrees *preftrees, 1144 struct share_check *sc) 1145 { 1146 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1147 int ret; 1148 int slot; 1149 struct extent_buffer *leaf; 1150 struct btrfs_key key; 1151 1152 while (1) { 1153 ret = btrfs_next_item(extent_root, path); 1154 if (ret < 0) 1155 break; 1156 if (ret) { 1157 ret = 0; 1158 break; 1159 } 1160 1161 slot = path->slots[0]; 1162 leaf = path->nodes[0]; 1163 btrfs_item_key_to_cpu(leaf, &key, slot); 1164 1165 if (key.objectid != ctx->bytenr) 1166 break; 1167 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1168 continue; 1169 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1170 break; 1171 1172 switch (key.type) { 1173 case BTRFS_SHARED_BLOCK_REF_KEY: 1174 /* SHARED DIRECT METADATA backref */ 1175 ret = add_direct_ref(fs_info, preftrees, 1176 info_level + 1, key.offset, 1177 ctx->bytenr, 1, NULL, GFP_NOFS); 1178 break; 1179 case BTRFS_SHARED_DATA_REF_KEY: { 1180 /* SHARED DIRECT FULL backref */ 1181 struct btrfs_shared_data_ref *sdref; 1182 int count; 1183 1184 sdref = btrfs_item_ptr(leaf, slot, 1185 struct btrfs_shared_data_ref); 1186 count = btrfs_shared_data_ref_count(leaf, sdref); 1187 ret = add_direct_ref(fs_info, preftrees, 0, 1188 key.offset, ctx->bytenr, count, 1189 sc, GFP_NOFS); 1190 break; 1191 } 1192 case BTRFS_TREE_BLOCK_REF_KEY: 1193 /* NORMAL INDIRECT METADATA backref */ 1194 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1195 NULL, info_level + 1, ctx->bytenr, 1196 1, NULL, GFP_NOFS); 1197 break; 1198 case BTRFS_EXTENT_DATA_REF_KEY: { 1199 /* NORMAL INDIRECT DATA backref */ 1200 struct btrfs_extent_data_ref *dref; 1201 int count; 1202 u64 root; 1203 1204 dref = btrfs_item_ptr(leaf, slot, 1205 struct btrfs_extent_data_ref); 1206 count = btrfs_extent_data_ref_count(leaf, dref); 1207 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1208 dref); 1209 key.type = BTRFS_EXTENT_DATA_KEY; 1210 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1211 1212 if (sc && key.objectid != sc->inum && 1213 !sc->have_delayed_delete_refs) { 1214 ret = BACKREF_FOUND_SHARED; 1215 break; 1216 } 1217 1218 root = btrfs_extent_data_ref_root(leaf, dref); 1219 1220 if (!ctx->skip_data_ref || 1221 !ctx->skip_data_ref(root, key.objectid, key.offset, 1222 ctx->user_ctx)) 1223 ret = add_indirect_ref(fs_info, preftrees, root, 1224 &key, 0, ctx->bytenr, 1225 count, sc, GFP_NOFS); 1226 break; 1227 } 1228 default: 1229 WARN_ON(1); 1230 } 1231 if (ret) 1232 return ret; 1233 1234 } 1235 1236 return ret; 1237 } 1238 1239 /* 1240 * The caller has joined a transaction or is holding a read lock on the 1241 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1242 * snapshot field changing while updating or checking the cache. 1243 */ 1244 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1245 struct btrfs_root *root, 1246 u64 bytenr, int level, bool *is_shared) 1247 { 1248 const struct btrfs_fs_info *fs_info = root->fs_info; 1249 struct btrfs_backref_shared_cache_entry *entry; 1250 1251 if (!current->journal_info) 1252 lockdep_assert_held(&fs_info->commit_root_sem); 1253 1254 if (!ctx->use_path_cache) 1255 return false; 1256 1257 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1258 return false; 1259 1260 /* 1261 * Level -1 is used for the data extent, which is not reliable to cache 1262 * because its reference count can increase or decrease without us 1263 * realizing. We cache results only for extent buffers that lead from 1264 * the root node down to the leaf with the file extent item. 1265 */ 1266 ASSERT(level >= 0); 1267 1268 entry = &ctx->path_cache_entries[level]; 1269 1270 /* Unused cache entry or being used for some other extent buffer. */ 1271 if (entry->bytenr != bytenr) 1272 return false; 1273 1274 /* 1275 * We cached a false result, but the last snapshot generation of the 1276 * root changed, so we now have a snapshot. Don't trust the result. 1277 */ 1278 if (!entry->is_shared && 1279 entry->gen != btrfs_root_last_snapshot(&root->root_item)) 1280 return false; 1281 1282 /* 1283 * If we cached a true result and the last generation used for dropping 1284 * a root changed, we can not trust the result, because the dropped root 1285 * could be a snapshot sharing this extent buffer. 1286 */ 1287 if (entry->is_shared && 1288 entry->gen != btrfs_get_last_root_drop_gen(fs_info)) 1289 return false; 1290 1291 *is_shared = entry->is_shared; 1292 /* 1293 * If the node at this level is shared, than all nodes below are also 1294 * shared. Currently some of the nodes below may be marked as not shared 1295 * because we have just switched from one leaf to another, and switched 1296 * also other nodes above the leaf and below the current level, so mark 1297 * them as shared. 1298 */ 1299 if (*is_shared) { 1300 for (int i = 0; i < level; i++) { 1301 ctx->path_cache_entries[i].is_shared = true; 1302 ctx->path_cache_entries[i].gen = entry->gen; 1303 } 1304 } 1305 1306 return true; 1307 } 1308 1309 /* 1310 * The caller has joined a transaction or is holding a read lock on the 1311 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1312 * snapshot field changing while updating or checking the cache. 1313 */ 1314 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1315 struct btrfs_root *root, 1316 u64 bytenr, int level, bool is_shared) 1317 { 1318 const struct btrfs_fs_info *fs_info = root->fs_info; 1319 struct btrfs_backref_shared_cache_entry *entry; 1320 u64 gen; 1321 1322 if (!current->journal_info) 1323 lockdep_assert_held(&fs_info->commit_root_sem); 1324 1325 if (!ctx->use_path_cache) 1326 return; 1327 1328 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1329 return; 1330 1331 /* 1332 * Level -1 is used for the data extent, which is not reliable to cache 1333 * because its reference count can increase or decrease without us 1334 * realizing. We cache results only for extent buffers that lead from 1335 * the root node down to the leaf with the file extent item. 1336 */ 1337 ASSERT(level >= 0); 1338 1339 if (is_shared) 1340 gen = btrfs_get_last_root_drop_gen(fs_info); 1341 else 1342 gen = btrfs_root_last_snapshot(&root->root_item); 1343 1344 entry = &ctx->path_cache_entries[level]; 1345 entry->bytenr = bytenr; 1346 entry->is_shared = is_shared; 1347 entry->gen = gen; 1348 1349 /* 1350 * If we found an extent buffer is shared, set the cache result for all 1351 * extent buffers below it to true. As nodes in the path are COWed, 1352 * their sharedness is moved to their children, and if a leaf is COWed, 1353 * then the sharedness of a data extent becomes direct, the refcount of 1354 * data extent is increased in the extent item at the extent tree. 1355 */ 1356 if (is_shared) { 1357 for (int i = 0; i < level; i++) { 1358 entry = &ctx->path_cache_entries[i]; 1359 entry->is_shared = is_shared; 1360 entry->gen = gen; 1361 } 1362 } 1363 } 1364 1365 /* 1366 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1367 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1368 * indirect refs to their parent bytenr. 1369 * When roots are found, they're added to the roots list 1370 * 1371 * @ctx: Backref walking context object, must be not NULL. 1372 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a 1373 * shared extent is detected. 1374 * 1375 * Otherwise this returns 0 for success and <0 for an error. 1376 * 1377 * FIXME some caching might speed things up 1378 */ 1379 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx, 1380 struct share_check *sc) 1381 { 1382 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr); 1383 struct btrfs_key key; 1384 struct btrfs_path *path; 1385 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1386 struct btrfs_delayed_ref_head *head; 1387 int info_level = 0; 1388 int ret; 1389 struct prelim_ref *ref; 1390 struct rb_node *node; 1391 struct extent_inode_elem *eie = NULL; 1392 struct preftrees preftrees = { 1393 .direct = PREFTREE_INIT, 1394 .indirect = PREFTREE_INIT, 1395 .indirect_missing_keys = PREFTREE_INIT 1396 }; 1397 1398 /* Roots ulist is not needed when using a sharedness check context. */ 1399 if (sc) 1400 ASSERT(ctx->roots == NULL); 1401 1402 key.objectid = ctx->bytenr; 1403 key.offset = (u64)-1; 1404 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA)) 1405 key.type = BTRFS_METADATA_ITEM_KEY; 1406 else 1407 key.type = BTRFS_EXTENT_ITEM_KEY; 1408 1409 path = btrfs_alloc_path(); 1410 if (!path) 1411 return -ENOMEM; 1412 if (!ctx->trans) { 1413 path->search_commit_root = 1; 1414 path->skip_locking = 1; 1415 } 1416 1417 if (ctx->time_seq == BTRFS_SEQ_LAST) 1418 path->skip_locking = 1; 1419 1420 again: 1421 head = NULL; 1422 1423 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1424 if (ret < 0) 1425 goto out; 1426 if (ret == 0) { 1427 /* 1428 * Key with offset -1 found, there would have to exist an extent 1429 * item with such offset, but this is out of the valid range. 1430 */ 1431 ret = -EUCLEAN; 1432 goto out; 1433 } 1434 1435 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) && 1436 ctx->time_seq != BTRFS_SEQ_LAST) { 1437 /* 1438 * We have a specific time_seq we care about and trans which 1439 * means we have the path lock, we need to grab the ref head and 1440 * lock it so we have a consistent view of the refs at the given 1441 * time. 1442 */ 1443 delayed_refs = &ctx->trans->transaction->delayed_refs; 1444 spin_lock(&delayed_refs->lock); 1445 head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr); 1446 if (head) { 1447 if (!mutex_trylock(&head->mutex)) { 1448 refcount_inc(&head->refs); 1449 spin_unlock(&delayed_refs->lock); 1450 1451 btrfs_release_path(path); 1452 1453 /* 1454 * Mutex was contended, block until it's 1455 * released and try again 1456 */ 1457 mutex_lock(&head->mutex); 1458 mutex_unlock(&head->mutex); 1459 btrfs_put_delayed_ref_head(head); 1460 goto again; 1461 } 1462 spin_unlock(&delayed_refs->lock); 1463 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq, 1464 &preftrees, sc); 1465 mutex_unlock(&head->mutex); 1466 if (ret) 1467 goto out; 1468 } else { 1469 spin_unlock(&delayed_refs->lock); 1470 } 1471 } 1472 1473 if (path->slots[0]) { 1474 struct extent_buffer *leaf; 1475 int slot; 1476 1477 path->slots[0]--; 1478 leaf = path->nodes[0]; 1479 slot = path->slots[0]; 1480 btrfs_item_key_to_cpu(leaf, &key, slot); 1481 if (key.objectid == ctx->bytenr && 1482 (key.type == BTRFS_EXTENT_ITEM_KEY || 1483 key.type == BTRFS_METADATA_ITEM_KEY)) { 1484 ret = add_inline_refs(ctx, path, &info_level, 1485 &preftrees, sc); 1486 if (ret) 1487 goto out; 1488 ret = add_keyed_refs(ctx, root, path, info_level, 1489 &preftrees, sc); 1490 if (ret) 1491 goto out; 1492 } 1493 } 1494 1495 /* 1496 * If we have a share context and we reached here, it means the extent 1497 * is not directly shared (no multiple reference items for it), 1498 * otherwise we would have exited earlier with a return value of 1499 * BACKREF_FOUND_SHARED after processing delayed references or while 1500 * processing inline or keyed references from the extent tree. 1501 * The extent may however be indirectly shared through shared subtrees 1502 * as a result from creating snapshots, so we determine below what is 1503 * its parent node, in case we are dealing with a metadata extent, or 1504 * what's the leaf (or leaves), from a fs tree, that has a file extent 1505 * item pointing to it in case we are dealing with a data extent. 1506 */ 1507 ASSERT(extent_is_shared(sc) == 0); 1508 1509 /* 1510 * If we are here for a data extent and we have a share_check structure 1511 * it means the data extent is not directly shared (does not have 1512 * multiple reference items), so we have to check if a path in the fs 1513 * tree (going from the root node down to the leaf that has the file 1514 * extent item pointing to the data extent) is shared, that is, if any 1515 * of the extent buffers in the path is referenced by other trees. 1516 */ 1517 if (sc && ctx->bytenr == sc->data_bytenr) { 1518 /* 1519 * If our data extent is from a generation more recent than the 1520 * last generation used to snapshot the root, then we know that 1521 * it can not be shared through subtrees, so we can skip 1522 * resolving indirect references, there's no point in 1523 * determining the extent buffers for the path from the fs tree 1524 * root node down to the leaf that has the file extent item that 1525 * points to the data extent. 1526 */ 1527 if (sc->data_extent_gen > 1528 btrfs_root_last_snapshot(&sc->root->root_item)) { 1529 ret = BACKREF_FOUND_NOT_SHARED; 1530 goto out; 1531 } 1532 1533 /* 1534 * If we are only determining if a data extent is shared or not 1535 * and the corresponding file extent item is located in the same 1536 * leaf as the previous file extent item, we can skip resolving 1537 * indirect references for a data extent, since the fs tree path 1538 * is the same (same leaf, so same path). We skip as long as the 1539 * cached result for the leaf is valid and only if there's only 1540 * one file extent item pointing to the data extent, because in 1541 * the case of multiple file extent items, they may be located 1542 * in different leaves and therefore we have multiple paths. 1543 */ 1544 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr && 1545 sc->self_ref_count == 1) { 1546 bool cached; 1547 bool is_shared; 1548 1549 cached = lookup_backref_shared_cache(sc->ctx, sc->root, 1550 sc->ctx->curr_leaf_bytenr, 1551 0, &is_shared); 1552 if (cached) { 1553 if (is_shared) 1554 ret = BACKREF_FOUND_SHARED; 1555 else 1556 ret = BACKREF_FOUND_NOT_SHARED; 1557 goto out; 1558 } 1559 } 1560 } 1561 1562 btrfs_release_path(path); 1563 1564 ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0); 1565 if (ret) 1566 goto out; 1567 1568 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1569 1570 ret = resolve_indirect_refs(ctx, path, &preftrees, sc); 1571 if (ret) 1572 goto out; 1573 1574 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1575 1576 /* 1577 * This walks the tree of merged and resolved refs. Tree blocks are 1578 * read in as needed. Unique entries are added to the ulist, and 1579 * the list of found roots is updated. 1580 * 1581 * We release the entire tree in one go before returning. 1582 */ 1583 node = rb_first_cached(&preftrees.direct.root); 1584 while (node) { 1585 ref = rb_entry(node, struct prelim_ref, rbnode); 1586 node = rb_next(&ref->rbnode); 1587 /* 1588 * ref->count < 0 can happen here if there are delayed 1589 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1590 * prelim_ref_insert() relies on this when merging 1591 * identical refs to keep the overall count correct. 1592 * prelim_ref_insert() will merge only those refs 1593 * which compare identically. Any refs having 1594 * e.g. different offsets would not be merged, 1595 * and would retain their original ref->count < 0. 1596 */ 1597 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) { 1598 /* no parent == root of tree */ 1599 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS); 1600 if (ret < 0) 1601 goto out; 1602 } 1603 if (ref->count && ref->parent) { 1604 if (!ctx->skip_inode_ref_list && !ref->inode_list && 1605 ref->level == 0) { 1606 struct btrfs_tree_parent_check check = { 0 }; 1607 struct extent_buffer *eb; 1608 1609 check.level = ref->level; 1610 1611 eb = read_tree_block(ctx->fs_info, ref->parent, 1612 &check); 1613 if (IS_ERR(eb)) { 1614 ret = PTR_ERR(eb); 1615 goto out; 1616 } 1617 if (!extent_buffer_uptodate(eb)) { 1618 free_extent_buffer(eb); 1619 ret = -EIO; 1620 goto out; 1621 } 1622 1623 if (!path->skip_locking) 1624 btrfs_tree_read_lock(eb); 1625 ret = find_extent_in_eb(ctx, eb, &eie); 1626 if (!path->skip_locking) 1627 btrfs_tree_read_unlock(eb); 1628 free_extent_buffer(eb); 1629 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1630 ret < 0) 1631 goto out; 1632 ref->inode_list = eie; 1633 /* 1634 * We transferred the list ownership to the ref, 1635 * so set to NULL to avoid a double free in case 1636 * an error happens after this. 1637 */ 1638 eie = NULL; 1639 } 1640 ret = ulist_add_merge_ptr(ctx->refs, ref->parent, 1641 ref->inode_list, 1642 (void **)&eie, GFP_NOFS); 1643 if (ret < 0) 1644 goto out; 1645 if (!ret && !ctx->skip_inode_ref_list) { 1646 /* 1647 * We've recorded that parent, so we must extend 1648 * its inode list here. 1649 * 1650 * However if there was corruption we may not 1651 * have found an eie, return an error in this 1652 * case. 1653 */ 1654 ASSERT(eie); 1655 if (!eie) { 1656 ret = -EUCLEAN; 1657 goto out; 1658 } 1659 while (eie->next) 1660 eie = eie->next; 1661 eie->next = ref->inode_list; 1662 } 1663 eie = NULL; 1664 /* 1665 * We have transferred the inode list ownership from 1666 * this ref to the ref we added to the 'refs' ulist. 1667 * So set this ref's inode list to NULL to avoid 1668 * use-after-free when our caller uses it or double 1669 * frees in case an error happens before we return. 1670 */ 1671 ref->inode_list = NULL; 1672 } 1673 cond_resched(); 1674 } 1675 1676 out: 1677 btrfs_free_path(path); 1678 1679 prelim_release(&preftrees.direct); 1680 prelim_release(&preftrees.indirect); 1681 prelim_release(&preftrees.indirect_missing_keys); 1682 1683 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 1684 free_inode_elem_list(eie); 1685 return ret; 1686 } 1687 1688 /* 1689 * Finds all leaves with a reference to the specified combination of 1690 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are 1691 * added to the ulist at @ctx->refs, and that ulist is allocated by this 1692 * function. The caller should free the ulist with free_leaf_list() if 1693 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is 1694 * enough. 1695 * 1696 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated. 1697 */ 1698 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx) 1699 { 1700 int ret; 1701 1702 ASSERT(ctx->refs == NULL); 1703 1704 ctx->refs = ulist_alloc(GFP_NOFS); 1705 if (!ctx->refs) 1706 return -ENOMEM; 1707 1708 ret = find_parent_nodes(ctx, NULL); 1709 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1710 (ret < 0 && ret != -ENOENT)) { 1711 free_leaf_list(ctx->refs); 1712 ctx->refs = NULL; 1713 return ret; 1714 } 1715 1716 return 0; 1717 } 1718 1719 /* 1720 * Walk all backrefs for a given extent to find all roots that reference this 1721 * extent. Walking a backref means finding all extents that reference this 1722 * extent and in turn walk the backrefs of those, too. Naturally this is a 1723 * recursive process, but here it is implemented in an iterative fashion: We 1724 * find all referencing extents for the extent in question and put them on a 1725 * list. In turn, we find all referencing extents for those, further appending 1726 * to the list. The way we iterate the list allows adding more elements after 1727 * the current while iterating. The process stops when we reach the end of the 1728 * list. 1729 * 1730 * Found roots are added to @ctx->roots, which is allocated by this function if 1731 * it points to NULL, in which case the caller is responsible for freeing it 1732 * after it's not needed anymore. 1733 * This function requires @ctx->refs to be NULL, as it uses it for allocating a 1734 * ulist to do temporary work, and frees it before returning. 1735 * 1736 * Returns 0 on success, < 0 on error. 1737 */ 1738 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx) 1739 { 1740 const u64 orig_bytenr = ctx->bytenr; 1741 const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list; 1742 bool roots_ulist_allocated = false; 1743 struct ulist_iterator uiter; 1744 int ret = 0; 1745 1746 ASSERT(ctx->refs == NULL); 1747 1748 ctx->refs = ulist_alloc(GFP_NOFS); 1749 if (!ctx->refs) 1750 return -ENOMEM; 1751 1752 if (!ctx->roots) { 1753 ctx->roots = ulist_alloc(GFP_NOFS); 1754 if (!ctx->roots) { 1755 ulist_free(ctx->refs); 1756 ctx->refs = NULL; 1757 return -ENOMEM; 1758 } 1759 roots_ulist_allocated = true; 1760 } 1761 1762 ctx->skip_inode_ref_list = true; 1763 1764 ULIST_ITER_INIT(&uiter); 1765 while (1) { 1766 struct ulist_node *node; 1767 1768 ret = find_parent_nodes(ctx, NULL); 1769 if (ret < 0 && ret != -ENOENT) { 1770 if (roots_ulist_allocated) { 1771 ulist_free(ctx->roots); 1772 ctx->roots = NULL; 1773 } 1774 break; 1775 } 1776 ret = 0; 1777 node = ulist_next(ctx->refs, &uiter); 1778 if (!node) 1779 break; 1780 ctx->bytenr = node->val; 1781 cond_resched(); 1782 } 1783 1784 ulist_free(ctx->refs); 1785 ctx->refs = NULL; 1786 ctx->bytenr = orig_bytenr; 1787 ctx->skip_inode_ref_list = orig_skip_inode_ref_list; 1788 1789 return ret; 1790 } 1791 1792 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, 1793 bool skip_commit_root_sem) 1794 { 1795 int ret; 1796 1797 if (!ctx->trans && !skip_commit_root_sem) 1798 down_read(&ctx->fs_info->commit_root_sem); 1799 ret = btrfs_find_all_roots_safe(ctx); 1800 if (!ctx->trans && !skip_commit_root_sem) 1801 up_read(&ctx->fs_info->commit_root_sem); 1802 return ret; 1803 } 1804 1805 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void) 1806 { 1807 struct btrfs_backref_share_check_ctx *ctx; 1808 1809 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1810 if (!ctx) 1811 return NULL; 1812 1813 ulist_init(&ctx->refs); 1814 1815 return ctx; 1816 } 1817 1818 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx) 1819 { 1820 if (!ctx) 1821 return; 1822 1823 ulist_release(&ctx->refs); 1824 kfree(ctx); 1825 } 1826 1827 /* 1828 * Check if a data extent is shared or not. 1829 * 1830 * @inode: The inode whose extent we are checking. 1831 * @bytenr: Logical bytenr of the extent we are checking. 1832 * @extent_gen: Generation of the extent (file extent item) or 0 if it is 1833 * not known. 1834 * @ctx: A backref sharedness check context. 1835 * 1836 * btrfs_is_data_extent_shared uses the backref walking code but will short 1837 * circuit as soon as it finds a root or inode that doesn't match the 1838 * one passed in. This provides a significant performance benefit for 1839 * callers (such as fiemap) which want to know whether the extent is 1840 * shared but do not need a ref count. 1841 * 1842 * This attempts to attach to the running transaction in order to account for 1843 * delayed refs, but continues on even when no running transaction exists. 1844 * 1845 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1846 */ 1847 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, 1848 u64 extent_gen, 1849 struct btrfs_backref_share_check_ctx *ctx) 1850 { 1851 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 1852 struct btrfs_root *root = inode->root; 1853 struct btrfs_fs_info *fs_info = root->fs_info; 1854 struct btrfs_trans_handle *trans; 1855 struct ulist_iterator uiter; 1856 struct ulist_node *node; 1857 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1858 int ret = 0; 1859 struct share_check shared = { 1860 .ctx = ctx, 1861 .root = root, 1862 .inum = btrfs_ino(inode), 1863 .data_bytenr = bytenr, 1864 .data_extent_gen = extent_gen, 1865 .share_count = 0, 1866 .self_ref_count = 0, 1867 .have_delayed_delete_refs = false, 1868 }; 1869 int level; 1870 bool leaf_cached; 1871 bool leaf_is_shared; 1872 1873 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) { 1874 if (ctx->prev_extents_cache[i].bytenr == bytenr) 1875 return ctx->prev_extents_cache[i].is_shared; 1876 } 1877 1878 ulist_init(&ctx->refs); 1879 1880 trans = btrfs_join_transaction_nostart(root); 1881 if (IS_ERR(trans)) { 1882 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1883 ret = PTR_ERR(trans); 1884 goto out; 1885 } 1886 trans = NULL; 1887 down_read(&fs_info->commit_root_sem); 1888 } else { 1889 btrfs_get_tree_mod_seq(fs_info, &elem); 1890 walk_ctx.time_seq = elem.seq; 1891 } 1892 1893 ctx->use_path_cache = true; 1894 1895 /* 1896 * We may have previously determined that the current leaf is shared. 1897 * If it is, then we have a data extent that is shared due to a shared 1898 * subtree (caused by snapshotting) and we don't need to check for data 1899 * backrefs. If the leaf is not shared, then we must do backref walking 1900 * to determine if the data extent is shared through reflinks. 1901 */ 1902 leaf_cached = lookup_backref_shared_cache(ctx, root, 1903 ctx->curr_leaf_bytenr, 0, 1904 &leaf_is_shared); 1905 if (leaf_cached && leaf_is_shared) { 1906 ret = 1; 1907 goto out_trans; 1908 } 1909 1910 walk_ctx.skip_inode_ref_list = true; 1911 walk_ctx.trans = trans; 1912 walk_ctx.fs_info = fs_info; 1913 walk_ctx.refs = &ctx->refs; 1914 1915 /* -1 means we are in the bytenr of the data extent. */ 1916 level = -1; 1917 ULIST_ITER_INIT(&uiter); 1918 while (1) { 1919 const unsigned long prev_ref_count = ctx->refs.nnodes; 1920 1921 walk_ctx.bytenr = bytenr; 1922 ret = find_parent_nodes(&walk_ctx, &shared); 1923 if (ret == BACKREF_FOUND_SHARED || 1924 ret == BACKREF_FOUND_NOT_SHARED) { 1925 /* If shared must return 1, otherwise return 0. */ 1926 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0; 1927 if (level >= 0) 1928 store_backref_shared_cache(ctx, root, bytenr, 1929 level, ret == 1); 1930 break; 1931 } 1932 if (ret < 0 && ret != -ENOENT) 1933 break; 1934 ret = 0; 1935 1936 /* 1937 * More than one extent buffer (bytenr) may have been added to 1938 * the ctx->refs ulist, in which case we have to check multiple 1939 * tree paths in case the first one is not shared, so we can not 1940 * use the path cache which is made for a single path. Multiple 1941 * extent buffers at the current level happen when: 1942 * 1943 * 1) level -1, the data extent: If our data extent was not 1944 * directly shared (without multiple reference items), then 1945 * it might have a single reference item with a count > 1 for 1946 * the same offset, which means there are 2 (or more) file 1947 * extent items that point to the data extent - this happens 1948 * when a file extent item needs to be split and then one 1949 * item gets moved to another leaf due to a b+tree leaf split 1950 * when inserting some item. In this case the file extent 1951 * items may be located in different leaves and therefore 1952 * some of the leaves may be referenced through shared 1953 * subtrees while others are not. Since our extent buffer 1954 * cache only works for a single path (by far the most common 1955 * case and simpler to deal with), we can not use it if we 1956 * have multiple leaves (which implies multiple paths). 1957 * 1958 * 2) level >= 0, a tree node/leaf: We can have a mix of direct 1959 * and indirect references on a b+tree node/leaf, so we have 1960 * to check multiple paths, and the extent buffer (the 1961 * current bytenr) may be shared or not. One example is 1962 * during relocation as we may get a shared tree block ref 1963 * (direct ref) and a non-shared tree block ref (indirect 1964 * ref) for the same node/leaf. 1965 */ 1966 if ((ctx->refs.nnodes - prev_ref_count) > 1) 1967 ctx->use_path_cache = false; 1968 1969 if (level >= 0) 1970 store_backref_shared_cache(ctx, root, bytenr, 1971 level, false); 1972 node = ulist_next(&ctx->refs, &uiter); 1973 if (!node) 1974 break; 1975 bytenr = node->val; 1976 if (ctx->use_path_cache) { 1977 bool is_shared; 1978 bool cached; 1979 1980 level++; 1981 cached = lookup_backref_shared_cache(ctx, root, bytenr, 1982 level, &is_shared); 1983 if (cached) { 1984 ret = (is_shared ? 1 : 0); 1985 break; 1986 } 1987 } 1988 shared.share_count = 0; 1989 shared.have_delayed_delete_refs = false; 1990 cond_resched(); 1991 } 1992 1993 /* 1994 * If the path cache is disabled, then it means at some tree level we 1995 * got multiple parents due to a mix of direct and indirect backrefs or 1996 * multiple leaves with file extent items pointing to the same data 1997 * extent. We have to invalidate the cache and cache only the sharedness 1998 * result for the levels where we got only one node/reference. 1999 */ 2000 if (!ctx->use_path_cache) { 2001 int i = 0; 2002 2003 level--; 2004 if (ret >= 0 && level >= 0) { 2005 bytenr = ctx->path_cache_entries[level].bytenr; 2006 ctx->use_path_cache = true; 2007 store_backref_shared_cache(ctx, root, bytenr, level, ret); 2008 i = level + 1; 2009 } 2010 2011 for ( ; i < BTRFS_MAX_LEVEL; i++) 2012 ctx->path_cache_entries[i].bytenr = 0; 2013 } 2014 2015 /* 2016 * Cache the sharedness result for the data extent if we know our inode 2017 * has more than 1 file extent item that refers to the data extent. 2018 */ 2019 if (ret >= 0 && shared.self_ref_count > 1) { 2020 int slot = ctx->prev_extents_cache_slot; 2021 2022 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr; 2023 ctx->prev_extents_cache[slot].is_shared = (ret == 1); 2024 2025 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; 2026 ctx->prev_extents_cache_slot = slot; 2027 } 2028 2029 out_trans: 2030 if (trans) { 2031 btrfs_put_tree_mod_seq(fs_info, &elem); 2032 btrfs_end_transaction(trans); 2033 } else { 2034 up_read(&fs_info->commit_root_sem); 2035 } 2036 out: 2037 ulist_release(&ctx->refs); 2038 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr; 2039 2040 return ret; 2041 } 2042 2043 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 2044 u64 start_off, struct btrfs_path *path, 2045 struct btrfs_inode_extref **ret_extref, 2046 u64 *found_off) 2047 { 2048 int ret, slot; 2049 struct btrfs_key key; 2050 struct btrfs_key found_key; 2051 struct btrfs_inode_extref *extref; 2052 const struct extent_buffer *leaf; 2053 unsigned long ptr; 2054 2055 key.objectid = inode_objectid; 2056 key.type = BTRFS_INODE_EXTREF_KEY; 2057 key.offset = start_off; 2058 2059 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2060 if (ret < 0) 2061 return ret; 2062 2063 while (1) { 2064 leaf = path->nodes[0]; 2065 slot = path->slots[0]; 2066 if (slot >= btrfs_header_nritems(leaf)) { 2067 /* 2068 * If the item at offset is not found, 2069 * btrfs_search_slot will point us to the slot 2070 * where it should be inserted. In our case 2071 * that will be the slot directly before the 2072 * next INODE_REF_KEY_V2 item. In the case 2073 * that we're pointing to the last slot in a 2074 * leaf, we must move one leaf over. 2075 */ 2076 ret = btrfs_next_leaf(root, path); 2077 if (ret) { 2078 if (ret >= 1) 2079 ret = -ENOENT; 2080 break; 2081 } 2082 continue; 2083 } 2084 2085 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2086 2087 /* 2088 * Check that we're still looking at an extended ref key for 2089 * this particular objectid. If we have different 2090 * objectid or type then there are no more to be found 2091 * in the tree and we can exit. 2092 */ 2093 ret = -ENOENT; 2094 if (found_key.objectid != inode_objectid) 2095 break; 2096 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 2097 break; 2098 2099 ret = 0; 2100 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 2101 extref = (struct btrfs_inode_extref *)ptr; 2102 *ret_extref = extref; 2103 if (found_off) 2104 *found_off = found_key.offset; 2105 break; 2106 } 2107 2108 return ret; 2109 } 2110 2111 /* 2112 * this iterates to turn a name (from iref/extref) into a full filesystem path. 2113 * Elements of the path are separated by '/' and the path is guaranteed to be 2114 * 0-terminated. the path is only given within the current file system. 2115 * Therefore, it never starts with a '/'. the caller is responsible to provide 2116 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 2117 * the start point of the resulting string is returned. this pointer is within 2118 * dest, normally. 2119 * in case the path buffer would overflow, the pointer is decremented further 2120 * as if output was written to the buffer, though no more output is actually 2121 * generated. that way, the caller can determine how much space would be 2122 * required for the path to fit into the buffer. in that case, the returned 2123 * value will be smaller than dest. callers must check this! 2124 */ 2125 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 2126 u32 name_len, unsigned long name_off, 2127 struct extent_buffer *eb_in, u64 parent, 2128 char *dest, u32 size) 2129 { 2130 int slot; 2131 u64 next_inum; 2132 int ret; 2133 s64 bytes_left = ((s64)size) - 1; 2134 struct extent_buffer *eb = eb_in; 2135 struct btrfs_key found_key; 2136 struct btrfs_inode_ref *iref; 2137 2138 if (bytes_left >= 0) 2139 dest[bytes_left] = '\0'; 2140 2141 while (1) { 2142 bytes_left -= name_len; 2143 if (bytes_left >= 0) 2144 read_extent_buffer(eb, dest + bytes_left, 2145 name_off, name_len); 2146 if (eb != eb_in) { 2147 if (!path->skip_locking) 2148 btrfs_tree_read_unlock(eb); 2149 free_extent_buffer(eb); 2150 } 2151 ret = btrfs_find_item(fs_root, path, parent, 0, 2152 BTRFS_INODE_REF_KEY, &found_key); 2153 if (ret > 0) 2154 ret = -ENOENT; 2155 if (ret) 2156 break; 2157 2158 next_inum = found_key.offset; 2159 2160 /* regular exit ahead */ 2161 if (parent == next_inum) 2162 break; 2163 2164 slot = path->slots[0]; 2165 eb = path->nodes[0]; 2166 /* make sure we can use eb after releasing the path */ 2167 if (eb != eb_in) { 2168 path->nodes[0] = NULL; 2169 path->locks[0] = 0; 2170 } 2171 btrfs_release_path(path); 2172 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2173 2174 name_len = btrfs_inode_ref_name_len(eb, iref); 2175 name_off = (unsigned long)(iref + 1); 2176 2177 parent = next_inum; 2178 --bytes_left; 2179 if (bytes_left >= 0) 2180 dest[bytes_left] = '/'; 2181 } 2182 2183 btrfs_release_path(path); 2184 2185 if (ret) 2186 return ERR_PTR(ret); 2187 2188 return dest + bytes_left; 2189 } 2190 2191 /* 2192 * this makes the path point to (logical EXTENT_ITEM *) 2193 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 2194 * tree blocks and <0 on error. 2195 */ 2196 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 2197 struct btrfs_path *path, struct btrfs_key *found_key, 2198 u64 *flags_ret) 2199 { 2200 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 2201 int ret; 2202 u64 flags; 2203 u64 size = 0; 2204 u32 item_size; 2205 const struct extent_buffer *eb; 2206 struct btrfs_extent_item *ei; 2207 struct btrfs_key key; 2208 2209 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2210 key.type = BTRFS_METADATA_ITEM_KEY; 2211 else 2212 key.type = BTRFS_EXTENT_ITEM_KEY; 2213 key.objectid = logical; 2214 key.offset = (u64)-1; 2215 2216 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2217 if (ret < 0) 2218 return ret; 2219 if (ret == 0) { 2220 /* 2221 * Key with offset -1 found, there would have to exist an extent 2222 * item with such offset, but this is out of the valid range. 2223 */ 2224 return -EUCLEAN; 2225 } 2226 2227 ret = btrfs_previous_extent_item(extent_root, path, 0); 2228 if (ret) { 2229 if (ret > 0) 2230 ret = -ENOENT; 2231 return ret; 2232 } 2233 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 2234 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 2235 size = fs_info->nodesize; 2236 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 2237 size = found_key->offset; 2238 2239 if (found_key->objectid > logical || 2240 found_key->objectid + size <= logical) { 2241 btrfs_debug(fs_info, 2242 "logical %llu is not within any extent", logical); 2243 return -ENOENT; 2244 } 2245 2246 eb = path->nodes[0]; 2247 item_size = btrfs_item_size(eb, path->slots[0]); 2248 2249 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 2250 flags = btrfs_extent_flags(eb, ei); 2251 2252 btrfs_debug(fs_info, 2253 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 2254 logical, logical - found_key->objectid, found_key->objectid, 2255 found_key->offset, flags, item_size); 2256 2257 WARN_ON(!flags_ret); 2258 if (flags_ret) { 2259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2260 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 2261 else if (flags & BTRFS_EXTENT_FLAG_DATA) 2262 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 2263 else 2264 BUG(); 2265 return 0; 2266 } 2267 2268 return -EIO; 2269 } 2270 2271 /* 2272 * helper function to iterate extent inline refs. ptr must point to a 0 value 2273 * for the first call and may be modified. it is used to track state. 2274 * if more refs exist, 0 is returned and the next call to 2275 * get_extent_inline_ref must pass the modified ptr parameter to get the 2276 * next ref. after the last ref was processed, 1 is returned. 2277 * returns <0 on error 2278 */ 2279 static int get_extent_inline_ref(unsigned long *ptr, 2280 const struct extent_buffer *eb, 2281 const struct btrfs_key *key, 2282 const struct btrfs_extent_item *ei, 2283 u32 item_size, 2284 struct btrfs_extent_inline_ref **out_eiref, 2285 int *out_type) 2286 { 2287 unsigned long end; 2288 u64 flags; 2289 struct btrfs_tree_block_info *info; 2290 2291 if (!*ptr) { 2292 /* first call */ 2293 flags = btrfs_extent_flags(eb, ei); 2294 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2295 if (key->type == BTRFS_METADATA_ITEM_KEY) { 2296 /* a skinny metadata extent */ 2297 *out_eiref = 2298 (struct btrfs_extent_inline_ref *)(ei + 1); 2299 } else { 2300 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 2301 info = (struct btrfs_tree_block_info *)(ei + 1); 2302 *out_eiref = 2303 (struct btrfs_extent_inline_ref *)(info + 1); 2304 } 2305 } else { 2306 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 2307 } 2308 *ptr = (unsigned long)*out_eiref; 2309 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 2310 return -ENOENT; 2311 } 2312 2313 end = (unsigned long)ei + item_size; 2314 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 2315 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 2316 BTRFS_REF_TYPE_ANY); 2317 if (*out_type == BTRFS_REF_TYPE_INVALID) 2318 return -EUCLEAN; 2319 2320 *ptr += btrfs_extent_inline_ref_size(*out_type); 2321 WARN_ON(*ptr > end); 2322 if (*ptr == end) 2323 return 1; /* last */ 2324 2325 return 0; 2326 } 2327 2328 /* 2329 * reads the tree block backref for an extent. tree level and root are returned 2330 * through out_level and out_root. ptr must point to a 0 value for the first 2331 * call and may be modified (see get_extent_inline_ref comment). 2332 * returns 0 if data was provided, 1 if there was no more data to provide or 2333 * <0 on error. 2334 */ 2335 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 2336 struct btrfs_key *key, struct btrfs_extent_item *ei, 2337 u32 item_size, u64 *out_root, u8 *out_level) 2338 { 2339 int ret; 2340 int type; 2341 struct btrfs_extent_inline_ref *eiref; 2342 2343 if (*ptr == (unsigned long)-1) 2344 return 1; 2345 2346 while (1) { 2347 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 2348 &eiref, &type); 2349 if (ret < 0) 2350 return ret; 2351 2352 if (type == BTRFS_TREE_BLOCK_REF_KEY || 2353 type == BTRFS_SHARED_BLOCK_REF_KEY) 2354 break; 2355 2356 if (ret == 1) 2357 return 1; 2358 } 2359 2360 /* we can treat both ref types equally here */ 2361 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 2362 2363 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 2364 struct btrfs_tree_block_info *info; 2365 2366 info = (struct btrfs_tree_block_info *)(ei + 1); 2367 *out_level = btrfs_tree_block_level(eb, info); 2368 } else { 2369 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 2370 *out_level = (u8)key->offset; 2371 } 2372 2373 if (ret == 1) 2374 *ptr = (unsigned long)-1; 2375 2376 return 0; 2377 } 2378 2379 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 2380 struct extent_inode_elem *inode_list, 2381 u64 root, u64 extent_item_objectid, 2382 iterate_extent_inodes_t *iterate, void *ctx) 2383 { 2384 struct extent_inode_elem *eie; 2385 int ret = 0; 2386 2387 for (eie = inode_list; eie; eie = eie->next) { 2388 btrfs_debug(fs_info, 2389 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 2390 extent_item_objectid, eie->inum, 2391 eie->offset, root); 2392 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx); 2393 if (ret) { 2394 btrfs_debug(fs_info, 2395 "stopping iteration for %llu due to ret=%d", 2396 extent_item_objectid, ret); 2397 break; 2398 } 2399 } 2400 2401 return ret; 2402 } 2403 2404 /* 2405 * calls iterate() for every inode that references the extent identified by 2406 * the given parameters. 2407 * when the iterator function returns a non-zero value, iteration stops. 2408 */ 2409 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, 2410 bool search_commit_root, 2411 iterate_extent_inodes_t *iterate, void *user_ctx) 2412 { 2413 int ret; 2414 struct ulist *refs; 2415 struct ulist_node *ref_node; 2416 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 2417 struct ulist_iterator ref_uiter; 2418 2419 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu", 2420 ctx->bytenr); 2421 2422 ASSERT(ctx->trans == NULL); 2423 ASSERT(ctx->roots == NULL); 2424 2425 if (!search_commit_root) { 2426 struct btrfs_trans_handle *trans; 2427 2428 trans = btrfs_attach_transaction(ctx->fs_info->tree_root); 2429 if (IS_ERR(trans)) { 2430 if (PTR_ERR(trans) != -ENOENT && 2431 PTR_ERR(trans) != -EROFS) 2432 return PTR_ERR(trans); 2433 trans = NULL; 2434 } 2435 ctx->trans = trans; 2436 } 2437 2438 if (ctx->trans) { 2439 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem); 2440 ctx->time_seq = seq_elem.seq; 2441 } else { 2442 down_read(&ctx->fs_info->commit_root_sem); 2443 } 2444 2445 ret = btrfs_find_all_leafs(ctx); 2446 if (ret) 2447 goto out; 2448 refs = ctx->refs; 2449 ctx->refs = NULL; 2450 2451 ULIST_ITER_INIT(&ref_uiter); 2452 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2453 const u64 leaf_bytenr = ref_node->val; 2454 struct ulist_node *root_node; 2455 struct ulist_iterator root_uiter; 2456 struct extent_inode_elem *inode_list; 2457 2458 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux; 2459 2460 if (ctx->cache_lookup) { 2461 const u64 *root_ids; 2462 int root_count; 2463 bool cached; 2464 2465 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx, 2466 &root_ids, &root_count); 2467 if (cached) { 2468 for (int i = 0; i < root_count; i++) { 2469 ret = iterate_leaf_refs(ctx->fs_info, 2470 inode_list, 2471 root_ids[i], 2472 leaf_bytenr, 2473 iterate, 2474 user_ctx); 2475 if (ret) 2476 break; 2477 } 2478 continue; 2479 } 2480 } 2481 2482 if (!ctx->roots) { 2483 ctx->roots = ulist_alloc(GFP_NOFS); 2484 if (!ctx->roots) { 2485 ret = -ENOMEM; 2486 break; 2487 } 2488 } 2489 2490 ctx->bytenr = leaf_bytenr; 2491 ret = btrfs_find_all_roots_safe(ctx); 2492 if (ret) 2493 break; 2494 2495 if (ctx->cache_store) 2496 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx); 2497 2498 ULIST_ITER_INIT(&root_uiter); 2499 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) { 2500 btrfs_debug(ctx->fs_info, 2501 "root %llu references leaf %llu, data list %#llx", 2502 root_node->val, ref_node->val, 2503 ref_node->aux); 2504 ret = iterate_leaf_refs(ctx->fs_info, inode_list, 2505 root_node->val, ctx->bytenr, 2506 iterate, user_ctx); 2507 } 2508 ulist_reinit(ctx->roots); 2509 } 2510 2511 free_leaf_list(refs); 2512 out: 2513 if (ctx->trans) { 2514 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem); 2515 btrfs_end_transaction(ctx->trans); 2516 ctx->trans = NULL; 2517 } else { 2518 up_read(&ctx->fs_info->commit_root_sem); 2519 } 2520 2521 ulist_free(ctx->roots); 2522 ctx->roots = NULL; 2523 2524 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP) 2525 ret = 0; 2526 2527 return ret; 2528 } 2529 2530 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx) 2531 { 2532 struct btrfs_data_container *inodes = ctx; 2533 const size_t c = 3 * sizeof(u64); 2534 2535 if (inodes->bytes_left >= c) { 2536 inodes->bytes_left -= c; 2537 inodes->val[inodes->elem_cnt] = inum; 2538 inodes->val[inodes->elem_cnt + 1] = offset; 2539 inodes->val[inodes->elem_cnt + 2] = root; 2540 inodes->elem_cnt += 3; 2541 } else { 2542 inodes->bytes_missing += c - inodes->bytes_left; 2543 inodes->bytes_left = 0; 2544 inodes->elem_missed += 3; 2545 } 2546 2547 return 0; 2548 } 2549 2550 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2551 struct btrfs_path *path, 2552 void *ctx, bool ignore_offset) 2553 { 2554 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 2555 int ret; 2556 u64 flags = 0; 2557 struct btrfs_key found_key; 2558 int search_commit_root = path->search_commit_root; 2559 2560 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2561 btrfs_release_path(path); 2562 if (ret < 0) 2563 return ret; 2564 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2565 return -EINVAL; 2566 2567 walk_ctx.bytenr = found_key.objectid; 2568 if (ignore_offset) 2569 walk_ctx.ignore_extent_item_pos = true; 2570 else 2571 walk_ctx.extent_item_pos = logical - found_key.objectid; 2572 walk_ctx.fs_info = fs_info; 2573 2574 return iterate_extent_inodes(&walk_ctx, search_commit_root, 2575 build_ino_list, ctx); 2576 } 2577 2578 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2579 struct extent_buffer *eb, struct inode_fs_paths *ipath); 2580 2581 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath) 2582 { 2583 int ret = 0; 2584 int slot; 2585 u32 cur; 2586 u32 len; 2587 u32 name_len; 2588 u64 parent = 0; 2589 int found = 0; 2590 struct btrfs_root *fs_root = ipath->fs_root; 2591 struct btrfs_path *path = ipath->btrfs_path; 2592 struct extent_buffer *eb; 2593 struct btrfs_inode_ref *iref; 2594 struct btrfs_key found_key; 2595 2596 while (!ret) { 2597 ret = btrfs_find_item(fs_root, path, inum, 2598 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2599 &found_key); 2600 2601 if (ret < 0) 2602 break; 2603 if (ret) { 2604 ret = found ? 0 : -ENOENT; 2605 break; 2606 } 2607 ++found; 2608 2609 parent = found_key.offset; 2610 slot = path->slots[0]; 2611 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2612 if (!eb) { 2613 ret = -ENOMEM; 2614 break; 2615 } 2616 btrfs_release_path(path); 2617 2618 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2619 2620 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2621 name_len = btrfs_inode_ref_name_len(eb, iref); 2622 /* path must be released before calling iterate()! */ 2623 btrfs_debug(fs_root->fs_info, 2624 "following ref at offset %u for inode %llu in tree %llu", 2625 cur, found_key.objectid, 2626 btrfs_root_id(fs_root)); 2627 ret = inode_to_path(parent, name_len, 2628 (unsigned long)(iref + 1), eb, ipath); 2629 if (ret) 2630 break; 2631 len = sizeof(*iref) + name_len; 2632 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2633 } 2634 free_extent_buffer(eb); 2635 } 2636 2637 btrfs_release_path(path); 2638 2639 return ret; 2640 } 2641 2642 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath) 2643 { 2644 int ret; 2645 int slot; 2646 u64 offset = 0; 2647 u64 parent; 2648 int found = 0; 2649 struct btrfs_root *fs_root = ipath->fs_root; 2650 struct btrfs_path *path = ipath->btrfs_path; 2651 struct extent_buffer *eb; 2652 struct btrfs_inode_extref *extref; 2653 u32 item_size; 2654 u32 cur_offset; 2655 unsigned long ptr; 2656 2657 while (1) { 2658 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2659 &offset); 2660 if (ret < 0) 2661 break; 2662 if (ret) { 2663 ret = found ? 0 : -ENOENT; 2664 break; 2665 } 2666 ++found; 2667 2668 slot = path->slots[0]; 2669 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2670 if (!eb) { 2671 ret = -ENOMEM; 2672 break; 2673 } 2674 btrfs_release_path(path); 2675 2676 item_size = btrfs_item_size(eb, slot); 2677 ptr = btrfs_item_ptr_offset(eb, slot); 2678 cur_offset = 0; 2679 2680 while (cur_offset < item_size) { 2681 u32 name_len; 2682 2683 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2684 parent = btrfs_inode_extref_parent(eb, extref); 2685 name_len = btrfs_inode_extref_name_len(eb, extref); 2686 ret = inode_to_path(parent, name_len, 2687 (unsigned long)&extref->name, eb, ipath); 2688 if (ret) 2689 break; 2690 2691 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2692 cur_offset += sizeof(*extref); 2693 } 2694 free_extent_buffer(eb); 2695 2696 offset++; 2697 } 2698 2699 btrfs_release_path(path); 2700 2701 return ret; 2702 } 2703 2704 /* 2705 * returns 0 if the path could be dumped (probably truncated) 2706 * returns <0 in case of an error 2707 */ 2708 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2709 struct extent_buffer *eb, struct inode_fs_paths *ipath) 2710 { 2711 char *fspath; 2712 char *fspath_min; 2713 int i = ipath->fspath->elem_cnt; 2714 const int s_ptr = sizeof(char *); 2715 u32 bytes_left; 2716 2717 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2718 ipath->fspath->bytes_left - s_ptr : 0; 2719 2720 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2721 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2722 name_off, eb, inum, fspath_min, bytes_left); 2723 if (IS_ERR(fspath)) 2724 return PTR_ERR(fspath); 2725 2726 if (fspath > fspath_min) { 2727 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2728 ++ipath->fspath->elem_cnt; 2729 ipath->fspath->bytes_left = fspath - fspath_min; 2730 } else { 2731 ++ipath->fspath->elem_missed; 2732 ipath->fspath->bytes_missing += fspath_min - fspath; 2733 ipath->fspath->bytes_left = 0; 2734 } 2735 2736 return 0; 2737 } 2738 2739 /* 2740 * this dumps all file system paths to the inode into the ipath struct, provided 2741 * is has been created large enough. each path is zero-terminated and accessed 2742 * from ipath->fspath->val[i]. 2743 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2744 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2745 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2746 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2747 * have been needed to return all paths. 2748 */ 2749 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2750 { 2751 int ret; 2752 int found_refs = 0; 2753 2754 ret = iterate_inode_refs(inum, ipath); 2755 if (!ret) 2756 ++found_refs; 2757 else if (ret != -ENOENT) 2758 return ret; 2759 2760 ret = iterate_inode_extrefs(inum, ipath); 2761 if (ret == -ENOENT && found_refs) 2762 return 0; 2763 2764 return ret; 2765 } 2766 2767 struct btrfs_data_container *init_data_container(u32 total_bytes) 2768 { 2769 struct btrfs_data_container *data; 2770 size_t alloc_bytes; 2771 2772 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2773 data = kvzalloc(alloc_bytes, GFP_KERNEL); 2774 if (!data) 2775 return ERR_PTR(-ENOMEM); 2776 2777 if (total_bytes >= sizeof(*data)) 2778 data->bytes_left = total_bytes - sizeof(*data); 2779 else 2780 data->bytes_missing = sizeof(*data) - total_bytes; 2781 2782 return data; 2783 } 2784 2785 /* 2786 * allocates space to return multiple file system paths for an inode. 2787 * total_bytes to allocate are passed, note that space usable for actual path 2788 * information will be total_bytes - sizeof(struct inode_fs_paths). 2789 * the returned pointer must be freed with free_ipath() in the end. 2790 */ 2791 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2792 struct btrfs_path *path) 2793 { 2794 struct inode_fs_paths *ifp; 2795 struct btrfs_data_container *fspath; 2796 2797 fspath = init_data_container(total_bytes); 2798 if (IS_ERR(fspath)) 2799 return ERR_CAST(fspath); 2800 2801 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2802 if (!ifp) { 2803 kvfree(fspath); 2804 return ERR_PTR(-ENOMEM); 2805 } 2806 2807 ifp->btrfs_path = path; 2808 ifp->fspath = fspath; 2809 ifp->fs_root = fs_root; 2810 2811 return ifp; 2812 } 2813 2814 void free_ipath(struct inode_fs_paths *ipath) 2815 { 2816 if (!ipath) 2817 return; 2818 kvfree(ipath->fspath); 2819 kfree(ipath); 2820 } 2821 2822 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info) 2823 { 2824 struct btrfs_backref_iter *ret; 2825 2826 ret = kzalloc(sizeof(*ret), GFP_NOFS); 2827 if (!ret) 2828 return NULL; 2829 2830 ret->path = btrfs_alloc_path(); 2831 if (!ret->path) { 2832 kfree(ret); 2833 return NULL; 2834 } 2835 2836 /* Current backref iterator only supports iteration in commit root */ 2837 ret->path->search_commit_root = 1; 2838 ret->path->skip_locking = 1; 2839 ret->fs_info = fs_info; 2840 2841 return ret; 2842 } 2843 2844 static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter) 2845 { 2846 iter->bytenr = 0; 2847 iter->item_ptr = 0; 2848 iter->cur_ptr = 0; 2849 iter->end_ptr = 0; 2850 btrfs_release_path(iter->path); 2851 memset(&iter->cur_key, 0, sizeof(iter->cur_key)); 2852 } 2853 2854 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2855 { 2856 struct btrfs_fs_info *fs_info = iter->fs_info; 2857 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2858 struct btrfs_path *path = iter->path; 2859 struct btrfs_extent_item *ei; 2860 struct btrfs_key key; 2861 int ret; 2862 2863 key.objectid = bytenr; 2864 key.type = BTRFS_METADATA_ITEM_KEY; 2865 key.offset = (u64)-1; 2866 iter->bytenr = bytenr; 2867 2868 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2869 if (ret < 0) 2870 return ret; 2871 if (ret == 0) { 2872 /* 2873 * Key with offset -1 found, there would have to exist an extent 2874 * item with such offset, but this is out of the valid range. 2875 */ 2876 ret = -EUCLEAN; 2877 goto release; 2878 } 2879 if (path->slots[0] == 0) { 2880 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2881 ret = -EUCLEAN; 2882 goto release; 2883 } 2884 path->slots[0]--; 2885 2886 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2887 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2888 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2889 ret = -ENOENT; 2890 goto release; 2891 } 2892 memcpy(&iter->cur_key, &key, sizeof(key)); 2893 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2894 path->slots[0]); 2895 iter->end_ptr = (u32)(iter->item_ptr + 2896 btrfs_item_size(path->nodes[0], path->slots[0])); 2897 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2898 struct btrfs_extent_item); 2899 2900 /* 2901 * Only support iteration on tree backref yet. 2902 * 2903 * This is an extra precaution for non skinny-metadata, where 2904 * EXTENT_ITEM is also used for tree blocks, that we can only use 2905 * extent flags to determine if it's a tree block. 2906 */ 2907 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2908 ret = -ENOTSUPP; 2909 goto release; 2910 } 2911 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2912 2913 /* If there is no inline backref, go search for keyed backref */ 2914 if (iter->cur_ptr >= iter->end_ptr) { 2915 ret = btrfs_next_item(extent_root, path); 2916 2917 /* No inline nor keyed ref */ 2918 if (ret > 0) { 2919 ret = -ENOENT; 2920 goto release; 2921 } 2922 if (ret < 0) 2923 goto release; 2924 2925 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2926 path->slots[0]); 2927 if (iter->cur_key.objectid != bytenr || 2928 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2929 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2930 ret = -ENOENT; 2931 goto release; 2932 } 2933 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2934 path->slots[0]); 2935 iter->item_ptr = iter->cur_ptr; 2936 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2937 path->nodes[0], path->slots[0])); 2938 } 2939 2940 return 0; 2941 release: 2942 btrfs_backref_iter_release(iter); 2943 return ret; 2944 } 2945 2946 static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter) 2947 { 2948 if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY || 2949 iter->cur_key.type == BTRFS_METADATA_ITEM_KEY) 2950 return true; 2951 return false; 2952 } 2953 2954 /* 2955 * Go to the next backref item of current bytenr, can be either inlined or 2956 * keyed. 2957 * 2958 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2959 * 2960 * Return 0 if we get next backref without problem. 2961 * Return >0 if there is no extra backref for this bytenr. 2962 * Return <0 if there is something wrong happened. 2963 */ 2964 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2965 { 2966 struct extent_buffer *eb = iter->path->nodes[0]; 2967 struct btrfs_root *extent_root; 2968 struct btrfs_path *path = iter->path; 2969 struct btrfs_extent_inline_ref *iref; 2970 int ret; 2971 u32 size; 2972 2973 if (btrfs_backref_iter_is_inline_ref(iter)) { 2974 /* We're still inside the inline refs */ 2975 ASSERT(iter->cur_ptr < iter->end_ptr); 2976 2977 if (btrfs_backref_has_tree_block_info(iter)) { 2978 /* First tree block info */ 2979 size = sizeof(struct btrfs_tree_block_info); 2980 } else { 2981 /* Use inline ref type to determine the size */ 2982 int type; 2983 2984 iref = (struct btrfs_extent_inline_ref *) 2985 ((unsigned long)iter->cur_ptr); 2986 type = btrfs_extent_inline_ref_type(eb, iref); 2987 2988 size = btrfs_extent_inline_ref_size(type); 2989 } 2990 iter->cur_ptr += size; 2991 if (iter->cur_ptr < iter->end_ptr) 2992 return 0; 2993 2994 /* All inline items iterated, fall through */ 2995 } 2996 2997 /* We're at keyed items, there is no inline item, go to the next one */ 2998 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); 2999 ret = btrfs_next_item(extent_root, iter->path); 3000 if (ret) 3001 return ret; 3002 3003 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 3004 if (iter->cur_key.objectid != iter->bytenr || 3005 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 3006 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 3007 return 1; 3008 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 3009 path->slots[0]); 3010 iter->cur_ptr = iter->item_ptr; 3011 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 3012 path->slots[0]); 3013 return 0; 3014 } 3015 3016 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 3017 struct btrfs_backref_cache *cache, bool is_reloc) 3018 { 3019 int i; 3020 3021 cache->rb_root = RB_ROOT; 3022 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 3023 INIT_LIST_HEAD(&cache->pending[i]); 3024 INIT_LIST_HEAD(&cache->changed); 3025 INIT_LIST_HEAD(&cache->detached); 3026 INIT_LIST_HEAD(&cache->leaves); 3027 INIT_LIST_HEAD(&cache->pending_edge); 3028 INIT_LIST_HEAD(&cache->useless_node); 3029 cache->fs_info = fs_info; 3030 cache->is_reloc = is_reloc; 3031 } 3032 3033 struct btrfs_backref_node *btrfs_backref_alloc_node( 3034 struct btrfs_backref_cache *cache, u64 bytenr, int level) 3035 { 3036 struct btrfs_backref_node *node; 3037 3038 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 3039 node = kzalloc(sizeof(*node), GFP_NOFS); 3040 if (!node) 3041 return node; 3042 3043 INIT_LIST_HEAD(&node->list); 3044 INIT_LIST_HEAD(&node->upper); 3045 INIT_LIST_HEAD(&node->lower); 3046 RB_CLEAR_NODE(&node->rb_node); 3047 cache->nr_nodes++; 3048 node->level = level; 3049 node->bytenr = bytenr; 3050 3051 return node; 3052 } 3053 3054 void btrfs_backref_free_node(struct btrfs_backref_cache *cache, 3055 struct btrfs_backref_node *node) 3056 { 3057 if (node) { 3058 ASSERT(list_empty(&node->list)); 3059 ASSERT(list_empty(&node->lower)); 3060 ASSERT(node->eb == NULL); 3061 cache->nr_nodes--; 3062 btrfs_put_root(node->root); 3063 kfree(node); 3064 } 3065 } 3066 3067 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 3068 struct btrfs_backref_cache *cache) 3069 { 3070 struct btrfs_backref_edge *edge; 3071 3072 edge = kzalloc(sizeof(*edge), GFP_NOFS); 3073 if (edge) 3074 cache->nr_edges++; 3075 return edge; 3076 } 3077 3078 void btrfs_backref_free_edge(struct btrfs_backref_cache *cache, 3079 struct btrfs_backref_edge *edge) 3080 { 3081 if (edge) { 3082 cache->nr_edges--; 3083 kfree(edge); 3084 } 3085 } 3086 3087 void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node) 3088 { 3089 if (node->locked) { 3090 btrfs_tree_unlock(node->eb); 3091 node->locked = 0; 3092 } 3093 } 3094 3095 void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node) 3096 { 3097 if (node->eb) { 3098 btrfs_backref_unlock_node_buffer(node); 3099 free_extent_buffer(node->eb); 3100 node->eb = NULL; 3101 } 3102 } 3103 3104 /* 3105 * Drop the backref node from cache without cleaning up its children 3106 * edges. 3107 * 3108 * This can only be called on node without parent edges. 3109 * The children edges are still kept as is. 3110 */ 3111 void btrfs_backref_drop_node(struct btrfs_backref_cache *tree, 3112 struct btrfs_backref_node *node) 3113 { 3114 ASSERT(list_empty(&node->upper)); 3115 3116 btrfs_backref_drop_node_buffer(node); 3117 list_del_init(&node->list); 3118 list_del_init(&node->lower); 3119 if (!RB_EMPTY_NODE(&node->rb_node)) 3120 rb_erase(&node->rb_node, &tree->rb_root); 3121 btrfs_backref_free_node(tree, node); 3122 } 3123 3124 /* 3125 * Drop the backref node from cache, also cleaning up all its 3126 * upper edges and any uncached nodes in the path. 3127 * 3128 * This cleanup happens bottom up, thus the node should either 3129 * be the lowest node in the cache or a detached node. 3130 */ 3131 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 3132 struct btrfs_backref_node *node) 3133 { 3134 struct btrfs_backref_node *upper; 3135 struct btrfs_backref_edge *edge; 3136 3137 if (!node) 3138 return; 3139 3140 BUG_ON(!node->lowest && !node->detached); 3141 while (!list_empty(&node->upper)) { 3142 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 3143 list[LOWER]); 3144 upper = edge->node[UPPER]; 3145 list_del(&edge->list[LOWER]); 3146 list_del(&edge->list[UPPER]); 3147 btrfs_backref_free_edge(cache, edge); 3148 3149 /* 3150 * Add the node to leaf node list if no other child block 3151 * cached. 3152 */ 3153 if (list_empty(&upper->lower)) { 3154 list_add_tail(&upper->lower, &cache->leaves); 3155 upper->lowest = 1; 3156 } 3157 } 3158 3159 btrfs_backref_drop_node(cache, node); 3160 } 3161 3162 /* 3163 * Release all nodes/edges from current cache 3164 */ 3165 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 3166 { 3167 struct btrfs_backref_node *node; 3168 int i; 3169 3170 while (!list_empty(&cache->detached)) { 3171 node = list_entry(cache->detached.next, 3172 struct btrfs_backref_node, list); 3173 btrfs_backref_cleanup_node(cache, node); 3174 } 3175 3176 while (!list_empty(&cache->leaves)) { 3177 node = list_entry(cache->leaves.next, 3178 struct btrfs_backref_node, lower); 3179 btrfs_backref_cleanup_node(cache, node); 3180 } 3181 3182 cache->last_trans = 0; 3183 3184 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 3185 ASSERT(list_empty(&cache->pending[i])); 3186 ASSERT(list_empty(&cache->pending_edge)); 3187 ASSERT(list_empty(&cache->useless_node)); 3188 ASSERT(list_empty(&cache->changed)); 3189 ASSERT(list_empty(&cache->detached)); 3190 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 3191 ASSERT(!cache->nr_nodes); 3192 ASSERT(!cache->nr_edges); 3193 } 3194 3195 void btrfs_backref_link_edge(struct btrfs_backref_edge *edge, 3196 struct btrfs_backref_node *lower, 3197 struct btrfs_backref_node *upper, 3198 int link_which) 3199 { 3200 ASSERT(upper && lower && upper->level == lower->level + 1); 3201 edge->node[LOWER] = lower; 3202 edge->node[UPPER] = upper; 3203 if (link_which & LINK_LOWER) 3204 list_add_tail(&edge->list[LOWER], &lower->upper); 3205 if (link_which & LINK_UPPER) 3206 list_add_tail(&edge->list[UPPER], &upper->lower); 3207 } 3208 /* 3209 * Handle direct tree backref 3210 * 3211 * Direct tree backref means, the backref item shows its parent bytenr 3212 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 3213 * 3214 * @ref_key: The converted backref key. 3215 * For keyed backref, it's the item key. 3216 * For inlined backref, objectid is the bytenr, 3217 * type is btrfs_inline_ref_type, offset is 3218 * btrfs_inline_ref_offset. 3219 */ 3220 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 3221 struct btrfs_key *ref_key, 3222 struct btrfs_backref_node *cur) 3223 { 3224 struct btrfs_backref_edge *edge; 3225 struct btrfs_backref_node *upper; 3226 struct rb_node *rb_node; 3227 3228 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 3229 3230 /* Only reloc root uses backref pointing to itself */ 3231 if (ref_key->objectid == ref_key->offset) { 3232 struct btrfs_root *root; 3233 3234 cur->is_reloc_root = 1; 3235 /* Only reloc backref cache cares about a specific root */ 3236 if (cache->is_reloc) { 3237 root = find_reloc_root(cache->fs_info, cur->bytenr); 3238 if (!root) 3239 return -ENOENT; 3240 cur->root = root; 3241 } else { 3242 /* 3243 * For generic purpose backref cache, reloc root node 3244 * is useless. 3245 */ 3246 list_add(&cur->list, &cache->useless_node); 3247 } 3248 return 0; 3249 } 3250 3251 edge = btrfs_backref_alloc_edge(cache); 3252 if (!edge) 3253 return -ENOMEM; 3254 3255 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 3256 if (!rb_node) { 3257 /* Parent node not yet cached */ 3258 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 3259 cur->level + 1); 3260 if (!upper) { 3261 btrfs_backref_free_edge(cache, edge); 3262 return -ENOMEM; 3263 } 3264 3265 /* 3266 * Backrefs for the upper level block isn't cached, add the 3267 * block to pending list 3268 */ 3269 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3270 } else { 3271 /* Parent node already cached */ 3272 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 3273 ASSERT(upper->checked); 3274 INIT_LIST_HEAD(&edge->list[UPPER]); 3275 } 3276 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 3277 return 0; 3278 } 3279 3280 /* 3281 * Handle indirect tree backref 3282 * 3283 * Indirect tree backref means, we only know which tree the node belongs to. 3284 * We still need to do a tree search to find out the parents. This is for 3285 * TREE_BLOCK_REF backref (keyed or inlined). 3286 * 3287 * @trans: Transaction handle. 3288 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 3289 * @tree_key: The first key of this tree block. 3290 * @path: A clean (released) path, to avoid allocating path every time 3291 * the function get called. 3292 */ 3293 static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans, 3294 struct btrfs_backref_cache *cache, 3295 struct btrfs_path *path, 3296 struct btrfs_key *ref_key, 3297 struct btrfs_key *tree_key, 3298 struct btrfs_backref_node *cur) 3299 { 3300 struct btrfs_fs_info *fs_info = cache->fs_info; 3301 struct btrfs_backref_node *upper; 3302 struct btrfs_backref_node *lower; 3303 struct btrfs_backref_edge *edge; 3304 struct extent_buffer *eb; 3305 struct btrfs_root *root; 3306 struct rb_node *rb_node; 3307 int level; 3308 bool need_check = true; 3309 int ret; 3310 3311 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 3312 if (IS_ERR(root)) 3313 return PTR_ERR(root); 3314 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3315 cur->cowonly = 1; 3316 3317 if (btrfs_root_level(&root->root_item) == cur->level) { 3318 /* Tree root */ 3319 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 3320 /* 3321 * For reloc backref cache, we may ignore reloc root. But for 3322 * general purpose backref cache, we can't rely on 3323 * btrfs_should_ignore_reloc_root() as it may conflict with 3324 * current running relocation and lead to missing root. 3325 * 3326 * For general purpose backref cache, reloc root detection is 3327 * completely relying on direct backref (key->offset is parent 3328 * bytenr), thus only do such check for reloc cache. 3329 */ 3330 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 3331 btrfs_put_root(root); 3332 list_add(&cur->list, &cache->useless_node); 3333 } else { 3334 cur->root = root; 3335 } 3336 return 0; 3337 } 3338 3339 level = cur->level + 1; 3340 3341 /* Search the tree to find parent blocks referring to the block */ 3342 path->search_commit_root = 1; 3343 path->skip_locking = 1; 3344 path->lowest_level = level; 3345 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 3346 path->lowest_level = 0; 3347 if (ret < 0) { 3348 btrfs_put_root(root); 3349 return ret; 3350 } 3351 if (ret > 0 && path->slots[level] > 0) 3352 path->slots[level]--; 3353 3354 eb = path->nodes[level]; 3355 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 3356 btrfs_err(fs_info, 3357 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 3358 cur->bytenr, level - 1, btrfs_root_id(root), 3359 tree_key->objectid, tree_key->type, tree_key->offset); 3360 btrfs_put_root(root); 3361 ret = -ENOENT; 3362 goto out; 3363 } 3364 lower = cur; 3365 3366 /* Add all nodes and edges in the path */ 3367 for (; level < BTRFS_MAX_LEVEL; level++) { 3368 if (!path->nodes[level]) { 3369 ASSERT(btrfs_root_bytenr(&root->root_item) == 3370 lower->bytenr); 3371 /* Same as previous should_ignore_reloc_root() call */ 3372 if (btrfs_should_ignore_reloc_root(root) && 3373 cache->is_reloc) { 3374 btrfs_put_root(root); 3375 list_add(&lower->list, &cache->useless_node); 3376 } else { 3377 lower->root = root; 3378 } 3379 break; 3380 } 3381 3382 edge = btrfs_backref_alloc_edge(cache); 3383 if (!edge) { 3384 btrfs_put_root(root); 3385 ret = -ENOMEM; 3386 goto out; 3387 } 3388 3389 eb = path->nodes[level]; 3390 rb_node = rb_simple_search(&cache->rb_root, eb->start); 3391 if (!rb_node) { 3392 upper = btrfs_backref_alloc_node(cache, eb->start, 3393 lower->level + 1); 3394 if (!upper) { 3395 btrfs_put_root(root); 3396 btrfs_backref_free_edge(cache, edge); 3397 ret = -ENOMEM; 3398 goto out; 3399 } 3400 upper->owner = btrfs_header_owner(eb); 3401 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3402 upper->cowonly = 1; 3403 3404 /* 3405 * If we know the block isn't shared we can avoid 3406 * checking its backrefs. 3407 */ 3408 if (btrfs_block_can_be_shared(trans, root, eb)) 3409 upper->checked = 0; 3410 else 3411 upper->checked = 1; 3412 3413 /* 3414 * Add the block to pending list if we need to check its 3415 * backrefs, we only do this once while walking up a 3416 * tree as we will catch anything else later on. 3417 */ 3418 if (!upper->checked && need_check) { 3419 need_check = false; 3420 list_add_tail(&edge->list[UPPER], 3421 &cache->pending_edge); 3422 } else { 3423 if (upper->checked) 3424 need_check = true; 3425 INIT_LIST_HEAD(&edge->list[UPPER]); 3426 } 3427 } else { 3428 upper = rb_entry(rb_node, struct btrfs_backref_node, 3429 rb_node); 3430 ASSERT(upper->checked); 3431 INIT_LIST_HEAD(&edge->list[UPPER]); 3432 if (!upper->owner) 3433 upper->owner = btrfs_header_owner(eb); 3434 } 3435 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 3436 3437 if (rb_node) { 3438 btrfs_put_root(root); 3439 break; 3440 } 3441 lower = upper; 3442 upper = NULL; 3443 } 3444 out: 3445 btrfs_release_path(path); 3446 return ret; 3447 } 3448 3449 /* 3450 * Add backref node @cur into @cache. 3451 * 3452 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 3453 * links aren't yet bi-directional. Needs to finish such links. 3454 * Use btrfs_backref_finish_upper_links() to finish such linkage. 3455 * 3456 * @trans: Transaction handle. 3457 * @path: Released path for indirect tree backref lookup 3458 * @iter: Released backref iter for extent tree search 3459 * @node_key: The first key of the tree block 3460 */ 3461 int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans, 3462 struct btrfs_backref_cache *cache, 3463 struct btrfs_path *path, 3464 struct btrfs_backref_iter *iter, 3465 struct btrfs_key *node_key, 3466 struct btrfs_backref_node *cur) 3467 { 3468 struct btrfs_backref_edge *edge; 3469 struct btrfs_backref_node *exist; 3470 int ret; 3471 3472 ret = btrfs_backref_iter_start(iter, cur->bytenr); 3473 if (ret < 0) 3474 return ret; 3475 /* 3476 * We skip the first btrfs_tree_block_info, as we don't use the key 3477 * stored in it, but fetch it from the tree block 3478 */ 3479 if (btrfs_backref_has_tree_block_info(iter)) { 3480 ret = btrfs_backref_iter_next(iter); 3481 if (ret < 0) 3482 goto out; 3483 /* No extra backref? This means the tree block is corrupted */ 3484 if (ret > 0) { 3485 ret = -EUCLEAN; 3486 goto out; 3487 } 3488 } 3489 WARN_ON(cur->checked); 3490 if (!list_empty(&cur->upper)) { 3491 /* 3492 * The backref was added previously when processing backref of 3493 * type BTRFS_TREE_BLOCK_REF_KEY 3494 */ 3495 ASSERT(list_is_singular(&cur->upper)); 3496 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 3497 list[LOWER]); 3498 ASSERT(list_empty(&edge->list[UPPER])); 3499 exist = edge->node[UPPER]; 3500 /* 3501 * Add the upper level block to pending list if we need check 3502 * its backrefs 3503 */ 3504 if (!exist->checked) 3505 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3506 } else { 3507 exist = NULL; 3508 } 3509 3510 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 3511 struct extent_buffer *eb; 3512 struct btrfs_key key; 3513 int type; 3514 3515 cond_resched(); 3516 eb = iter->path->nodes[0]; 3517 3518 key.objectid = iter->bytenr; 3519 if (btrfs_backref_iter_is_inline_ref(iter)) { 3520 struct btrfs_extent_inline_ref *iref; 3521 3522 /* Update key for inline backref */ 3523 iref = (struct btrfs_extent_inline_ref *) 3524 ((unsigned long)iter->cur_ptr); 3525 type = btrfs_get_extent_inline_ref_type(eb, iref, 3526 BTRFS_REF_TYPE_BLOCK); 3527 if (type == BTRFS_REF_TYPE_INVALID) { 3528 ret = -EUCLEAN; 3529 goto out; 3530 } 3531 key.type = type; 3532 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3533 } else { 3534 key.type = iter->cur_key.type; 3535 key.offset = iter->cur_key.offset; 3536 } 3537 3538 /* 3539 * Parent node found and matches current inline ref, no need to 3540 * rebuild this node for this inline ref 3541 */ 3542 if (exist && 3543 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 3544 exist->owner == key.offset) || 3545 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 3546 exist->bytenr == key.offset))) { 3547 exist = NULL; 3548 continue; 3549 } 3550 3551 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 3552 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 3553 ret = handle_direct_tree_backref(cache, &key, cur); 3554 if (ret < 0) 3555 goto out; 3556 } else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) { 3557 /* 3558 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref 3559 * offset means the root objectid. We need to search 3560 * the tree to get its parent bytenr. 3561 */ 3562 ret = handle_indirect_tree_backref(trans, cache, path, 3563 &key, node_key, cur); 3564 if (ret < 0) 3565 goto out; 3566 } 3567 /* 3568 * Unrecognized tree backref items (if it can pass tree-checker) 3569 * would be ignored. 3570 */ 3571 } 3572 ret = 0; 3573 cur->checked = 1; 3574 WARN_ON(exist); 3575 out: 3576 btrfs_backref_iter_release(iter); 3577 return ret; 3578 } 3579 3580 /* 3581 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 3582 */ 3583 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 3584 struct btrfs_backref_node *start) 3585 { 3586 struct list_head *useless_node = &cache->useless_node; 3587 struct btrfs_backref_edge *edge; 3588 struct rb_node *rb_node; 3589 LIST_HEAD(pending_edge); 3590 3591 ASSERT(start->checked); 3592 3593 /* Insert this node to cache if it's not COW-only */ 3594 if (!start->cowonly) { 3595 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 3596 &start->rb_node); 3597 if (rb_node) 3598 btrfs_backref_panic(cache->fs_info, start->bytenr, 3599 -EEXIST); 3600 list_add_tail(&start->lower, &cache->leaves); 3601 } 3602 3603 /* 3604 * Use breadth first search to iterate all related edges. 3605 * 3606 * The starting points are all the edges of this node 3607 */ 3608 list_for_each_entry(edge, &start->upper, list[LOWER]) 3609 list_add_tail(&edge->list[UPPER], &pending_edge); 3610 3611 while (!list_empty(&pending_edge)) { 3612 struct btrfs_backref_node *upper; 3613 struct btrfs_backref_node *lower; 3614 3615 edge = list_first_entry(&pending_edge, 3616 struct btrfs_backref_edge, list[UPPER]); 3617 list_del_init(&edge->list[UPPER]); 3618 upper = edge->node[UPPER]; 3619 lower = edge->node[LOWER]; 3620 3621 /* Parent is detached, no need to keep any edges */ 3622 if (upper->detached) { 3623 list_del(&edge->list[LOWER]); 3624 btrfs_backref_free_edge(cache, edge); 3625 3626 /* Lower node is orphan, queue for cleanup */ 3627 if (list_empty(&lower->upper)) 3628 list_add(&lower->list, useless_node); 3629 continue; 3630 } 3631 3632 /* 3633 * All new nodes added in current build_backref_tree() haven't 3634 * been linked to the cache rb tree. 3635 * So if we have upper->rb_node populated, this means a cache 3636 * hit. We only need to link the edge, as @upper and all its 3637 * parents have already been linked. 3638 */ 3639 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3640 if (upper->lowest) { 3641 list_del_init(&upper->lower); 3642 upper->lowest = 0; 3643 } 3644 3645 list_add_tail(&edge->list[UPPER], &upper->lower); 3646 continue; 3647 } 3648 3649 /* Sanity check, we shouldn't have any unchecked nodes */ 3650 if (!upper->checked) { 3651 ASSERT(0); 3652 return -EUCLEAN; 3653 } 3654 3655 /* Sanity check, COW-only node has non-COW-only parent */ 3656 if (start->cowonly != upper->cowonly) { 3657 ASSERT(0); 3658 return -EUCLEAN; 3659 } 3660 3661 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3662 if (!upper->cowonly) { 3663 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3664 &upper->rb_node); 3665 if (rb_node) { 3666 btrfs_backref_panic(cache->fs_info, 3667 upper->bytenr, -EEXIST); 3668 return -EUCLEAN; 3669 } 3670 } 3671 3672 list_add_tail(&edge->list[UPPER], &upper->lower); 3673 3674 /* 3675 * Also queue all the parent edges of this uncached node 3676 * to finish the upper linkage 3677 */ 3678 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3679 list_add_tail(&edge->list[UPPER], &pending_edge); 3680 } 3681 return 0; 3682 } 3683 3684 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3685 struct btrfs_backref_node *node) 3686 { 3687 struct btrfs_backref_node *lower; 3688 struct btrfs_backref_node *upper; 3689 struct btrfs_backref_edge *edge; 3690 3691 while (!list_empty(&cache->useless_node)) { 3692 lower = list_first_entry(&cache->useless_node, 3693 struct btrfs_backref_node, list); 3694 list_del_init(&lower->list); 3695 } 3696 while (!list_empty(&cache->pending_edge)) { 3697 edge = list_first_entry(&cache->pending_edge, 3698 struct btrfs_backref_edge, list[UPPER]); 3699 list_del(&edge->list[UPPER]); 3700 list_del(&edge->list[LOWER]); 3701 lower = edge->node[LOWER]; 3702 upper = edge->node[UPPER]; 3703 btrfs_backref_free_edge(cache, edge); 3704 3705 /* 3706 * Lower is no longer linked to any upper backref nodes and 3707 * isn't in the cache, we can free it ourselves. 3708 */ 3709 if (list_empty(&lower->upper) && 3710 RB_EMPTY_NODE(&lower->rb_node)) 3711 list_add(&lower->list, &cache->useless_node); 3712 3713 if (!RB_EMPTY_NODE(&upper->rb_node)) 3714 continue; 3715 3716 /* Add this guy's upper edges to the list to process */ 3717 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3718 list_add_tail(&edge->list[UPPER], 3719 &cache->pending_edge); 3720 if (list_empty(&upper->upper)) 3721 list_add(&upper->list, &cache->useless_node); 3722 } 3723 3724 while (!list_empty(&cache->useless_node)) { 3725 lower = list_first_entry(&cache->useless_node, 3726 struct btrfs_backref_node, list); 3727 list_del_init(&lower->list); 3728 if (lower == node) 3729 node = NULL; 3730 btrfs_backref_drop_node(cache, lower); 3731 } 3732 3733 btrfs_backref_cleanup_node(cache, node); 3734 ASSERT(list_empty(&cache->useless_node) && 3735 list_empty(&cache->pending_edge)); 3736 } 3737