1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "extent-tree.h" 21 #include "relocation.h" 22 #include "tree-checker.h" 23 24 /* Just arbitrary numbers so we can be sure one of these happened. */ 25 #define BACKREF_FOUND_SHARED 6 26 #define BACKREF_FOUND_NOT_SHARED 7 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 u64 num_bytes; 32 struct extent_inode_elem *next; 33 }; 34 35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 36 const struct btrfs_key *key, 37 const struct extent_buffer *eb, 38 const struct btrfs_file_extent_item *fi, 39 struct extent_inode_elem **eie) 40 { 41 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi); 42 u64 offset = key->offset; 43 struct extent_inode_elem *e; 44 const u64 *root_ids; 45 int root_count; 46 bool cached; 47 48 if (!ctx->ignore_extent_item_pos && 49 !btrfs_file_extent_compression(eb, fi) && 50 !btrfs_file_extent_encryption(eb, fi) && 51 !btrfs_file_extent_other_encoding(eb, fi)) { 52 u64 data_offset; 53 54 data_offset = btrfs_file_extent_offset(eb, fi); 55 56 if (ctx->extent_item_pos < data_offset || 57 ctx->extent_item_pos >= data_offset + data_len) 58 return 1; 59 offset += ctx->extent_item_pos - data_offset; 60 } 61 62 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup) 63 goto add_inode_elem; 64 65 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids, 66 &root_count); 67 if (!cached) 68 goto add_inode_elem; 69 70 for (int i = 0; i < root_count; i++) { 71 int ret; 72 73 ret = ctx->indirect_ref_iterator(key->objectid, offset, 74 data_len, root_ids[i], 75 ctx->user_ctx); 76 if (ret) 77 return ret; 78 } 79 80 add_inode_elem: 81 e = kmalloc(sizeof(*e), GFP_NOFS); 82 if (!e) 83 return -ENOMEM; 84 85 e->next = *eie; 86 e->inum = key->objectid; 87 e->offset = offset; 88 e->num_bytes = data_len; 89 *eie = e; 90 91 return 0; 92 } 93 94 static void free_inode_elem_list(struct extent_inode_elem *eie) 95 { 96 struct extent_inode_elem *eie_next; 97 98 for (; eie; eie = eie_next) { 99 eie_next = eie->next; 100 kfree(eie); 101 } 102 } 103 104 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 105 const struct extent_buffer *eb, 106 struct extent_inode_elem **eie) 107 { 108 u64 disk_byte; 109 struct btrfs_key key; 110 struct btrfs_file_extent_item *fi; 111 int slot; 112 int nritems; 113 int extent_type; 114 int ret; 115 116 /* 117 * from the shared data ref, we only have the leaf but we need 118 * the key. thus, we must look into all items and see that we 119 * find one (some) with a reference to our extent item. 120 */ 121 nritems = btrfs_header_nritems(eb); 122 for (slot = 0; slot < nritems; ++slot) { 123 btrfs_item_key_to_cpu(eb, &key, slot); 124 if (key.type != BTRFS_EXTENT_DATA_KEY) 125 continue; 126 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 127 extent_type = btrfs_file_extent_type(eb, fi); 128 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 129 continue; 130 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 131 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 132 if (disk_byte != ctx->bytenr) 133 continue; 134 135 ret = check_extent_in_eb(ctx, &key, eb, fi, eie); 136 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 137 return ret; 138 } 139 140 return 0; 141 } 142 143 struct preftree { 144 struct rb_root_cached root; 145 unsigned int count; 146 }; 147 148 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 149 150 struct preftrees { 151 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 152 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 153 struct preftree indirect_missing_keys; 154 }; 155 156 /* 157 * Checks for a shared extent during backref search. 158 * 159 * The share_count tracks prelim_refs (direct and indirect) having a 160 * ref->count >0: 161 * - incremented when a ref->count transitions to >0 162 * - decremented when a ref->count transitions to <1 163 */ 164 struct share_check { 165 struct btrfs_backref_share_check_ctx *ctx; 166 struct btrfs_root *root; 167 u64 inum; 168 u64 data_bytenr; 169 u64 data_extent_gen; 170 /* 171 * Counts number of inodes that refer to an extent (different inodes in 172 * the same root or different roots) that we could find. The sharedness 173 * check typically stops once this counter gets greater than 1, so it 174 * may not reflect the total number of inodes. 175 */ 176 int share_count; 177 /* 178 * The number of times we found our inode refers to the data extent we 179 * are determining the sharedness. In other words, how many file extent 180 * items we could find for our inode that point to our target data 181 * extent. The value we get here after finishing the extent sharedness 182 * check may be smaller than reality, but if it ends up being greater 183 * than 1, then we know for sure the inode has multiple file extent 184 * items that point to our inode, and we can safely assume it's useful 185 * to cache the sharedness check result. 186 */ 187 int self_ref_count; 188 bool have_delayed_delete_refs; 189 }; 190 191 static inline int extent_is_shared(struct share_check *sc) 192 { 193 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 194 } 195 196 static struct kmem_cache *btrfs_prelim_ref_cache; 197 198 int __init btrfs_prelim_ref_init(void) 199 { 200 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 201 sizeof(struct prelim_ref), 0, 0, NULL); 202 if (!btrfs_prelim_ref_cache) 203 return -ENOMEM; 204 return 0; 205 } 206 207 void __cold btrfs_prelim_ref_exit(void) 208 { 209 kmem_cache_destroy(btrfs_prelim_ref_cache); 210 } 211 212 static void free_pref(struct prelim_ref *ref) 213 { 214 kmem_cache_free(btrfs_prelim_ref_cache, ref); 215 } 216 217 /* 218 * Return 0 when both refs are for the same block (and can be merged). 219 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 220 * indicates a 'higher' block. 221 */ 222 static int prelim_ref_compare(const struct prelim_ref *ref1, 223 const struct prelim_ref *ref2) 224 { 225 if (ref1->level < ref2->level) 226 return -1; 227 if (ref1->level > ref2->level) 228 return 1; 229 if (ref1->root_id < ref2->root_id) 230 return -1; 231 if (ref1->root_id > ref2->root_id) 232 return 1; 233 if (ref1->key_for_search.type < ref2->key_for_search.type) 234 return -1; 235 if (ref1->key_for_search.type > ref2->key_for_search.type) 236 return 1; 237 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 238 return -1; 239 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 240 return 1; 241 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 242 return -1; 243 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 244 return 1; 245 if (ref1->parent < ref2->parent) 246 return -1; 247 if (ref1->parent > ref2->parent) 248 return 1; 249 250 return 0; 251 } 252 253 static int prelim_ref_rb_add_cmp(const struct rb_node *new, 254 const struct rb_node *exist) 255 { 256 const struct prelim_ref *ref_new = 257 rb_entry(new, struct prelim_ref, rbnode); 258 const struct prelim_ref *ref_exist = 259 rb_entry(exist, struct prelim_ref, rbnode); 260 261 /* 262 * prelim_ref_compare() expects the first parameter as the existing one, 263 * different from the rb_find_add_cached() order. 264 */ 265 return prelim_ref_compare(ref_exist, ref_new); 266 } 267 268 static void update_share_count(struct share_check *sc, int oldcount, 269 int newcount, const struct prelim_ref *newref) 270 { 271 if ((!sc) || (oldcount == 0 && newcount < 1)) 272 return; 273 274 if (oldcount > 0 && newcount < 1) 275 sc->share_count--; 276 else if (oldcount < 1 && newcount > 0) 277 sc->share_count++; 278 279 if (newref->root_id == btrfs_root_id(sc->root) && 280 newref->wanted_disk_byte == sc->data_bytenr && 281 newref->key_for_search.objectid == sc->inum) 282 sc->self_ref_count += newref->count; 283 } 284 285 /* 286 * Add @newref to the @root rbtree, merging identical refs. 287 * 288 * Callers should assume that newref has been freed after calling. 289 */ 290 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 291 struct preftree *preftree, 292 struct prelim_ref *newref, 293 struct share_check *sc) 294 { 295 struct rb_root_cached *root; 296 struct rb_node *exist; 297 298 root = &preftree->root; 299 exist = rb_find_add_cached(&newref->rbnode, root, prelim_ref_rb_add_cmp); 300 if (exist) { 301 struct prelim_ref *ref = rb_entry(exist, struct prelim_ref, rbnode); 302 /* Identical refs, merge them and free @newref */ 303 struct extent_inode_elem *eie = ref->inode_list; 304 305 while (eie && eie->next) 306 eie = eie->next; 307 308 if (!eie) 309 ref->inode_list = newref->inode_list; 310 else 311 eie->next = newref->inode_list; 312 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 313 preftree->count); 314 /* 315 * A delayed ref can have newref->count < 0. 316 * The ref->count is updated to follow any 317 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 318 */ 319 update_share_count(sc, ref->count, 320 ref->count + newref->count, newref); 321 ref->count += newref->count; 322 free_pref(newref); 323 return; 324 } 325 326 update_share_count(sc, 0, newref->count, newref); 327 preftree->count++; 328 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 329 } 330 331 /* 332 * Release the entire tree. We don't care about internal consistency so 333 * just free everything and then reset the tree root. 334 */ 335 static void prelim_release(struct preftree *preftree) 336 { 337 struct prelim_ref *ref, *next_ref; 338 339 rbtree_postorder_for_each_entry_safe(ref, next_ref, 340 &preftree->root.rb_root, rbnode) { 341 free_inode_elem_list(ref->inode_list); 342 free_pref(ref); 343 } 344 345 preftree->root = RB_ROOT_CACHED; 346 preftree->count = 0; 347 } 348 349 /* 350 * the rules for all callers of this function are: 351 * - obtaining the parent is the goal 352 * - if you add a key, you must know that it is a correct key 353 * - if you cannot add the parent or a correct key, then we will look into the 354 * block later to set a correct key 355 * 356 * delayed refs 357 * ============ 358 * backref type | shared | indirect | shared | indirect 359 * information | tree | tree | data | data 360 * --------------------+--------+----------+--------+---------- 361 * parent logical | y | - | - | - 362 * key to resolve | - | y | y | y 363 * tree block logical | - | - | - | - 364 * root for resolving | y | y | y | y 365 * 366 * - column 1: we've the parent -> done 367 * - column 2, 3, 4: we use the key to find the parent 368 * 369 * on disk refs (inline or keyed) 370 * ============================== 371 * backref type | shared | indirect | shared | indirect 372 * information | tree | tree | data | data 373 * --------------------+--------+----------+--------+---------- 374 * parent logical | y | - | y | - 375 * key to resolve | - | - | - | y 376 * tree block logical | y | y | y | y 377 * root for resolving | - | y | y | y 378 * 379 * - column 1, 3: we've the parent -> done 380 * - column 2: we take the first key from the block to find the parent 381 * (see add_missing_keys) 382 * - column 4: we use the key to find the parent 383 * 384 * additional information that's available but not required to find the parent 385 * block might help in merging entries to gain some speed. 386 */ 387 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 388 struct preftree *preftree, u64 root_id, 389 const struct btrfs_key *key, int level, u64 parent, 390 u64 wanted_disk_byte, int count, 391 struct share_check *sc, gfp_t gfp_mask) 392 { 393 struct prelim_ref *ref; 394 395 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 396 return 0; 397 398 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 399 if (!ref) 400 return -ENOMEM; 401 402 ref->root_id = root_id; 403 if (key) 404 ref->key_for_search = *key; 405 else 406 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 407 408 ref->inode_list = NULL; 409 ref->level = level; 410 ref->count = count; 411 ref->parent = parent; 412 ref->wanted_disk_byte = wanted_disk_byte; 413 prelim_ref_insert(fs_info, preftree, ref, sc); 414 return extent_is_shared(sc); 415 } 416 417 /* direct refs use root == 0, key == NULL */ 418 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 419 struct preftrees *preftrees, int level, u64 parent, 420 u64 wanted_disk_byte, int count, 421 struct share_check *sc, gfp_t gfp_mask) 422 { 423 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 424 parent, wanted_disk_byte, count, sc, gfp_mask); 425 } 426 427 /* indirect refs use parent == 0 */ 428 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 429 struct preftrees *preftrees, u64 root_id, 430 const struct btrfs_key *key, int level, 431 u64 wanted_disk_byte, int count, 432 struct share_check *sc, gfp_t gfp_mask) 433 { 434 struct preftree *tree = &preftrees->indirect; 435 436 if (!key) 437 tree = &preftrees->indirect_missing_keys; 438 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 439 wanted_disk_byte, count, sc, gfp_mask); 440 } 441 442 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 443 { 444 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 445 struct rb_node *parent = NULL; 446 struct prelim_ref *ref = NULL; 447 struct prelim_ref target = {}; 448 int result; 449 450 target.parent = bytenr; 451 452 while (*p) { 453 parent = *p; 454 ref = rb_entry(parent, struct prelim_ref, rbnode); 455 result = prelim_ref_compare(ref, &target); 456 457 if (result < 0) 458 p = &(*p)->rb_left; 459 else if (result > 0) 460 p = &(*p)->rb_right; 461 else 462 return 1; 463 } 464 return 0; 465 } 466 467 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx, 468 struct btrfs_root *root, struct btrfs_path *path, 469 struct ulist *parents, 470 struct preftrees *preftrees, struct prelim_ref *ref, 471 int level) 472 { 473 int ret = 0; 474 int slot; 475 struct extent_buffer *eb; 476 struct btrfs_key key; 477 struct btrfs_key *key_for_search = &ref->key_for_search; 478 struct btrfs_file_extent_item *fi; 479 struct extent_inode_elem *eie = NULL, *old = NULL; 480 u64 disk_byte; 481 u64 wanted_disk_byte = ref->wanted_disk_byte; 482 u64 count = 0; 483 u64 data_offset; 484 u8 type; 485 486 if (level != 0) { 487 eb = path->nodes[level]; 488 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 489 if (ret < 0) 490 return ret; 491 return 0; 492 } 493 494 /* 495 * 1. We normally enter this function with the path already pointing to 496 * the first item to check. But sometimes, we may enter it with 497 * slot == nritems. 498 * 2. We are searching for normal backref but bytenr of this leaf 499 * matches shared data backref 500 * 3. The leaf owner is not equal to the root we are searching 501 * 502 * For these cases, go to the next leaf before we continue. 503 */ 504 eb = path->nodes[0]; 505 if (path->slots[0] >= btrfs_header_nritems(eb) || 506 is_shared_data_backref(preftrees, eb->start) || 507 ref->root_id != btrfs_header_owner(eb)) { 508 if (ctx->time_seq == BTRFS_SEQ_LAST) 509 ret = btrfs_next_leaf(root, path); 510 else 511 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 512 } 513 514 while (!ret && count < ref->count) { 515 eb = path->nodes[0]; 516 slot = path->slots[0]; 517 518 btrfs_item_key_to_cpu(eb, &key, slot); 519 520 if (key.objectid != key_for_search->objectid || 521 key.type != BTRFS_EXTENT_DATA_KEY) 522 break; 523 524 /* 525 * We are searching for normal backref but bytenr of this leaf 526 * matches shared data backref, OR 527 * the leaf owner is not equal to the root we are searching for 528 */ 529 if (slot == 0 && 530 (is_shared_data_backref(preftrees, eb->start) || 531 ref->root_id != btrfs_header_owner(eb))) { 532 if (ctx->time_seq == BTRFS_SEQ_LAST) 533 ret = btrfs_next_leaf(root, path); 534 else 535 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 536 continue; 537 } 538 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 539 type = btrfs_file_extent_type(eb, fi); 540 if (type == BTRFS_FILE_EXTENT_INLINE) 541 goto next; 542 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 543 data_offset = btrfs_file_extent_offset(eb, fi); 544 545 if (disk_byte == wanted_disk_byte) { 546 eie = NULL; 547 old = NULL; 548 if (ref->key_for_search.offset == key.offset - data_offset) 549 count++; 550 else 551 goto next; 552 if (!ctx->skip_inode_ref_list) { 553 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie); 554 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 555 ret < 0) 556 break; 557 } 558 if (ret > 0) 559 goto next; 560 ret = ulist_add_merge_ptr(parents, eb->start, 561 eie, (void **)&old, GFP_NOFS); 562 if (ret < 0) 563 break; 564 if (!ret && !ctx->skip_inode_ref_list) { 565 while (old->next) 566 old = old->next; 567 old->next = eie; 568 } 569 eie = NULL; 570 } 571 next: 572 if (ctx->time_seq == BTRFS_SEQ_LAST) 573 ret = btrfs_next_item(root, path); 574 else 575 ret = btrfs_next_old_item(root, path, ctx->time_seq); 576 } 577 578 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 579 free_inode_elem_list(eie); 580 else if (ret > 0) 581 ret = 0; 582 583 return ret; 584 } 585 586 /* 587 * resolve an indirect backref in the form (root_id, key, level) 588 * to a logical address 589 */ 590 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx, 591 struct btrfs_path *path, 592 struct preftrees *preftrees, 593 struct prelim_ref *ref, struct ulist *parents) 594 { 595 struct btrfs_root *root; 596 struct extent_buffer *eb; 597 int ret = 0; 598 int root_level; 599 int level = ref->level; 600 struct btrfs_key search_key = ref->key_for_search; 601 602 /* 603 * If we're search_commit_root we could possibly be holding locks on 604 * other tree nodes. This happens when qgroups does backref walks when 605 * adding new delayed refs. To deal with this we need to look in cache 606 * for the root, and if we don't find it then we need to search the 607 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 608 * here. 609 */ 610 if (path->search_commit_root) 611 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id); 612 else 613 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false); 614 if (IS_ERR(root)) { 615 ret = PTR_ERR(root); 616 goto out_free; 617 } 618 619 if (!path->search_commit_root && 620 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 621 ret = -ENOENT; 622 goto out; 623 } 624 625 if (btrfs_is_testing(ctx->fs_info)) { 626 ret = -ENOENT; 627 goto out; 628 } 629 630 if (path->search_commit_root) 631 root_level = btrfs_header_level(root->commit_root); 632 else if (ctx->time_seq == BTRFS_SEQ_LAST) 633 root_level = btrfs_header_level(root->node); 634 else 635 root_level = btrfs_old_root_level(root, ctx->time_seq); 636 637 if (root_level + 1 == level) 638 goto out; 639 640 /* 641 * We can often find data backrefs with an offset that is too large 642 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 643 * subtracting a file's offset with the data offset of its 644 * corresponding extent data item. This can happen for example in the 645 * clone ioctl. 646 * 647 * So if we detect such case we set the search key's offset to zero to 648 * make sure we will find the matching file extent item at 649 * add_all_parents(), otherwise we will miss it because the offset 650 * taken form the backref is much larger then the offset of the file 651 * extent item. This can make us scan a very large number of file 652 * extent items, but at least it will not make us miss any. 653 * 654 * This is an ugly workaround for a behaviour that should have never 655 * existed, but it does and a fix for the clone ioctl would touch a lot 656 * of places, cause backwards incompatibility and would not fix the 657 * problem for extents cloned with older kernels. 658 */ 659 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 660 search_key.offset >= LLONG_MAX) 661 search_key.offset = 0; 662 path->lowest_level = level; 663 if (ctx->time_seq == BTRFS_SEQ_LAST) 664 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 665 else 666 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq); 667 668 btrfs_debug(ctx->fs_info, 669 "search slot in root %llu (level %d, ref count %d) returned %d for key " BTRFS_KEY_FMT, 670 ref->root_id, level, ref->count, ret, 671 BTRFS_KEY_FMT_VALUE(&ref->key_for_search)); 672 if (ret < 0) 673 goto out; 674 675 eb = path->nodes[level]; 676 while (!eb) { 677 if (WARN_ON(!level)) { 678 ret = 1; 679 goto out; 680 } 681 level--; 682 eb = path->nodes[level]; 683 } 684 685 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level); 686 out: 687 btrfs_put_root(root); 688 out_free: 689 path->lowest_level = 0; 690 btrfs_release_path(path); 691 return ret; 692 } 693 694 static struct extent_inode_elem * 695 unode_aux_to_inode_list(struct ulist_node *node) 696 { 697 if (!node) 698 return NULL; 699 return (struct extent_inode_elem *)(uintptr_t)node->aux; 700 } 701 702 static void free_leaf_list(struct ulist *ulist) 703 { 704 struct ulist_node *node; 705 struct ulist_iterator uiter; 706 707 ULIST_ITER_INIT(&uiter); 708 while ((node = ulist_next(ulist, &uiter))) 709 free_inode_elem_list(unode_aux_to_inode_list(node)); 710 711 ulist_free(ulist); 712 } 713 714 /* 715 * We maintain three separate rbtrees: one for direct refs, one for 716 * indirect refs which have a key, and one for indirect refs which do not 717 * have a key. Each tree does merge on insertion. 718 * 719 * Once all of the references are located, we iterate over the tree of 720 * indirect refs with missing keys. An appropriate key is located and 721 * the ref is moved onto the tree for indirect refs. After all missing 722 * keys are thus located, we iterate over the indirect ref tree, resolve 723 * each reference, and then insert the resolved reference onto the 724 * direct tree (merging there too). 725 * 726 * New backrefs (i.e., for parent nodes) are added to the appropriate 727 * rbtree as they are encountered. The new backrefs are subsequently 728 * resolved as above. 729 */ 730 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx, 731 struct btrfs_path *path, 732 struct preftrees *preftrees, 733 struct share_check *sc) 734 { 735 int ret = 0; 736 struct ulist *parents; 737 struct ulist_node *node; 738 struct ulist_iterator uiter; 739 struct rb_node *rnode; 740 741 parents = ulist_alloc(GFP_NOFS); 742 if (!parents) 743 return -ENOMEM; 744 745 /* 746 * We could trade memory usage for performance here by iterating 747 * the tree, allocating new refs for each insertion, and then 748 * freeing the entire indirect tree when we're done. In some test 749 * cases, the tree can grow quite large (~200k objects). 750 */ 751 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 752 struct prelim_ref *ref; 753 int ret2; 754 755 ref = rb_entry(rnode, struct prelim_ref, rbnode); 756 if (WARN(ref->parent, 757 "BUG: direct ref found in indirect tree")) { 758 ret = -EINVAL; 759 goto out; 760 } 761 762 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 763 preftrees->indirect.count--; 764 765 if (ref->count == 0) { 766 free_pref(ref); 767 continue; 768 } 769 770 if (sc && ref->root_id != btrfs_root_id(sc->root)) { 771 free_pref(ref); 772 ret = BACKREF_FOUND_SHARED; 773 goto out; 774 } 775 ret2 = resolve_indirect_ref(ctx, path, preftrees, ref, parents); 776 /* 777 * we can only tolerate ENOENT,otherwise,we should catch error 778 * and return directly. 779 */ 780 if (ret2 == -ENOENT) { 781 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, 782 NULL); 783 continue; 784 } else if (ret2) { 785 free_pref(ref); 786 ret = ret2; 787 goto out; 788 } 789 790 /* we put the first parent into the ref at hand */ 791 ULIST_ITER_INIT(&uiter); 792 node = ulist_next(parents, &uiter); 793 ref->parent = node ? node->val : 0; 794 ref->inode_list = unode_aux_to_inode_list(node); 795 796 /* Add a prelim_ref(s) for any other parent(s). */ 797 while ((node = ulist_next(parents, &uiter))) { 798 struct prelim_ref *new_ref; 799 800 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 801 GFP_NOFS); 802 if (!new_ref) { 803 free_pref(ref); 804 ret = -ENOMEM; 805 goto out; 806 } 807 memcpy(new_ref, ref, sizeof(*ref)); 808 new_ref->parent = node->val; 809 new_ref->inode_list = unode_aux_to_inode_list(node); 810 prelim_ref_insert(ctx->fs_info, &preftrees->direct, 811 new_ref, NULL); 812 } 813 814 /* 815 * Now it's a direct ref, put it in the direct tree. We must 816 * do this last because the ref could be merged/freed here. 817 */ 818 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL); 819 820 ulist_reinit(parents); 821 cond_resched(); 822 } 823 out: 824 /* 825 * We may have inode lists attached to refs in the parents ulist, so we 826 * must free them before freeing the ulist and its refs. 827 */ 828 free_leaf_list(parents); 829 return ret; 830 } 831 832 /* 833 * read tree blocks and add keys where required. 834 */ 835 static int add_missing_keys(struct btrfs_fs_info *fs_info, 836 struct preftrees *preftrees, bool lock) 837 { 838 struct prelim_ref *ref; 839 struct extent_buffer *eb; 840 struct preftree *tree = &preftrees->indirect_missing_keys; 841 struct rb_node *node; 842 843 while ((node = rb_first_cached(&tree->root))) { 844 struct btrfs_tree_parent_check check = { 0 }; 845 846 ref = rb_entry(node, struct prelim_ref, rbnode); 847 rb_erase_cached(node, &tree->root); 848 849 BUG_ON(ref->parent); /* should not be a direct ref */ 850 BUG_ON(ref->key_for_search.type); 851 BUG_ON(!ref->wanted_disk_byte); 852 853 check.level = ref->level - 1; 854 check.owner_root = ref->root_id; 855 856 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check); 857 if (IS_ERR(eb)) { 858 free_pref(ref); 859 return PTR_ERR(eb); 860 } 861 if (unlikely(!extent_buffer_uptodate(eb))) { 862 free_pref(ref); 863 free_extent_buffer(eb); 864 return -EIO; 865 } 866 867 if (lock) 868 btrfs_tree_read_lock(eb); 869 if (btrfs_header_level(eb) == 0) 870 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 871 else 872 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 873 if (lock) 874 btrfs_tree_read_unlock(eb); 875 free_extent_buffer(eb); 876 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 877 cond_resched(); 878 } 879 return 0; 880 } 881 882 /* 883 * add all currently queued delayed refs from this head whose seq nr is 884 * smaller or equal that seq to the list 885 */ 886 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 887 struct btrfs_delayed_ref_head *head, u64 seq, 888 struct preftrees *preftrees, struct share_check *sc) 889 { 890 struct btrfs_delayed_ref_node *node; 891 struct btrfs_key key; 892 struct rb_node *n; 893 int count; 894 int ret = 0; 895 896 spin_lock(&head->lock); 897 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 898 node = rb_entry(n, struct btrfs_delayed_ref_node, 899 ref_node); 900 if (node->seq > seq) 901 continue; 902 903 switch (node->action) { 904 case BTRFS_ADD_DELAYED_EXTENT: 905 case BTRFS_UPDATE_DELAYED_HEAD: 906 WARN_ON(1); 907 continue; 908 case BTRFS_ADD_DELAYED_REF: 909 count = node->ref_mod; 910 break; 911 case BTRFS_DROP_DELAYED_REF: 912 count = node->ref_mod * -1; 913 break; 914 default: 915 BUG(); 916 } 917 switch (node->type) { 918 case BTRFS_TREE_BLOCK_REF_KEY: { 919 /* NORMAL INDIRECT METADATA backref */ 920 struct btrfs_key *key_ptr = NULL; 921 /* The owner of a tree block ref is the level. */ 922 int level = btrfs_delayed_ref_owner(node); 923 924 if (head->extent_op && head->extent_op->update_key) { 925 btrfs_disk_key_to_cpu(&key, &head->extent_op->key); 926 key_ptr = &key; 927 } 928 929 ret = add_indirect_ref(fs_info, preftrees, node->ref_root, 930 key_ptr, level + 1, node->bytenr, 931 count, sc, GFP_ATOMIC); 932 break; 933 } 934 case BTRFS_SHARED_BLOCK_REF_KEY: { 935 /* 936 * SHARED DIRECT METADATA backref 937 * 938 * The owner of a tree block ref is the level. 939 */ 940 int level = btrfs_delayed_ref_owner(node); 941 942 ret = add_direct_ref(fs_info, preftrees, level + 1, 943 node->parent, node->bytenr, count, 944 sc, GFP_ATOMIC); 945 break; 946 } 947 case BTRFS_EXTENT_DATA_REF_KEY: { 948 /* NORMAL INDIRECT DATA backref */ 949 key.objectid = btrfs_delayed_ref_owner(node); 950 key.type = BTRFS_EXTENT_DATA_KEY; 951 key.offset = btrfs_delayed_ref_offset(node); 952 953 /* 954 * If we have a share check context and a reference for 955 * another inode, we can't exit immediately. This is 956 * because even if this is a BTRFS_ADD_DELAYED_REF 957 * reference we may find next a BTRFS_DROP_DELAYED_REF 958 * which cancels out this ADD reference. 959 * 960 * If this is a DROP reference and there was no previous 961 * ADD reference, then we need to signal that when we 962 * process references from the extent tree (through 963 * add_inline_refs() and add_keyed_refs()), we should 964 * not exit early if we find a reference for another 965 * inode, because one of the delayed DROP references 966 * may cancel that reference in the extent tree. 967 */ 968 if (sc && count < 0) 969 sc->have_delayed_delete_refs = true; 970 971 ret = add_indirect_ref(fs_info, preftrees, node->ref_root, 972 &key, 0, node->bytenr, count, sc, 973 GFP_ATOMIC); 974 break; 975 } 976 case BTRFS_SHARED_DATA_REF_KEY: { 977 /* SHARED DIRECT FULL backref */ 978 ret = add_direct_ref(fs_info, preftrees, 0, node->parent, 979 node->bytenr, count, sc, 980 GFP_ATOMIC); 981 break; 982 } 983 default: 984 WARN_ON(1); 985 } 986 /* 987 * We must ignore BACKREF_FOUND_SHARED until all delayed 988 * refs have been checked. 989 */ 990 if (ret && (ret != BACKREF_FOUND_SHARED)) 991 break; 992 } 993 if (!ret) 994 ret = extent_is_shared(sc); 995 996 spin_unlock(&head->lock); 997 return ret; 998 } 999 1000 /* 1001 * add all inline backrefs for bytenr to the list 1002 * 1003 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1004 */ 1005 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx, 1006 struct btrfs_path *path, 1007 int *info_level, struct preftrees *preftrees, 1008 struct share_check *sc) 1009 { 1010 int ret = 0; 1011 int slot; 1012 struct extent_buffer *leaf; 1013 struct btrfs_key key; 1014 struct btrfs_key found_key; 1015 unsigned long ptr; 1016 unsigned long end; 1017 struct btrfs_extent_item *ei; 1018 u64 flags; 1019 u64 item_size; 1020 1021 /* 1022 * enumerate all inline refs 1023 */ 1024 leaf = path->nodes[0]; 1025 slot = path->slots[0]; 1026 1027 item_size = btrfs_item_size(leaf, slot); 1028 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1029 1030 if (ctx->check_extent_item) { 1031 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx); 1032 if (ret) 1033 return ret; 1034 } 1035 1036 flags = btrfs_extent_flags(leaf, ei); 1037 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1038 1039 ptr = (unsigned long)(ei + 1); 1040 end = (unsigned long)ei + item_size; 1041 1042 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 1043 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1044 struct btrfs_tree_block_info *info; 1045 1046 info = (struct btrfs_tree_block_info *)ptr; 1047 *info_level = btrfs_tree_block_level(leaf, info); 1048 ptr += sizeof(struct btrfs_tree_block_info); 1049 BUG_ON(ptr > end); 1050 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1051 *info_level = found_key.offset; 1052 } else { 1053 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1054 } 1055 1056 while (ptr < end) { 1057 struct btrfs_extent_inline_ref *iref; 1058 u64 offset; 1059 int type; 1060 1061 iref = (struct btrfs_extent_inline_ref *)ptr; 1062 type = btrfs_get_extent_inline_ref_type(leaf, iref, 1063 BTRFS_REF_TYPE_ANY); 1064 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1065 return -EUCLEAN; 1066 1067 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1068 1069 switch (type) { 1070 case BTRFS_SHARED_BLOCK_REF_KEY: 1071 ret = add_direct_ref(ctx->fs_info, preftrees, 1072 *info_level + 1, offset, 1073 ctx->bytenr, 1, NULL, GFP_NOFS); 1074 break; 1075 case BTRFS_SHARED_DATA_REF_KEY: { 1076 struct btrfs_shared_data_ref *sdref; 1077 int count; 1078 1079 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1080 count = btrfs_shared_data_ref_count(leaf, sdref); 1081 1082 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset, 1083 ctx->bytenr, count, sc, GFP_NOFS); 1084 break; 1085 } 1086 case BTRFS_TREE_BLOCK_REF_KEY: 1087 ret = add_indirect_ref(ctx->fs_info, preftrees, offset, 1088 NULL, *info_level + 1, 1089 ctx->bytenr, 1, NULL, GFP_NOFS); 1090 break; 1091 case BTRFS_EXTENT_DATA_REF_KEY: { 1092 struct btrfs_extent_data_ref *dref; 1093 int count; 1094 u64 root; 1095 1096 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1097 count = btrfs_extent_data_ref_count(leaf, dref); 1098 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1099 dref); 1100 key.type = BTRFS_EXTENT_DATA_KEY; 1101 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1102 1103 if (sc && key.objectid != sc->inum && 1104 !sc->have_delayed_delete_refs) { 1105 ret = BACKREF_FOUND_SHARED; 1106 break; 1107 } 1108 1109 root = btrfs_extent_data_ref_root(leaf, dref); 1110 1111 if (!ctx->skip_data_ref || 1112 !ctx->skip_data_ref(root, key.objectid, key.offset, 1113 ctx->user_ctx)) 1114 ret = add_indirect_ref(ctx->fs_info, preftrees, 1115 root, &key, 0, ctx->bytenr, 1116 count, sc, GFP_NOFS); 1117 break; 1118 } 1119 case BTRFS_EXTENT_OWNER_REF_KEY: 1120 ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA)); 1121 break; 1122 default: 1123 WARN_ON(1); 1124 } 1125 if (ret) 1126 return ret; 1127 ptr += btrfs_extent_inline_ref_size(type); 1128 } 1129 1130 return 0; 1131 } 1132 1133 /* 1134 * add all non-inline backrefs for bytenr to the list 1135 * 1136 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1137 */ 1138 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx, 1139 struct btrfs_root *extent_root, 1140 struct btrfs_path *path, 1141 int info_level, struct preftrees *preftrees, 1142 struct share_check *sc) 1143 { 1144 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1145 int ret; 1146 int slot; 1147 struct extent_buffer *leaf; 1148 struct btrfs_key key; 1149 1150 while (1) { 1151 ret = btrfs_next_item(extent_root, path); 1152 if (ret < 0) 1153 break; 1154 if (ret) { 1155 ret = 0; 1156 break; 1157 } 1158 1159 slot = path->slots[0]; 1160 leaf = path->nodes[0]; 1161 btrfs_item_key_to_cpu(leaf, &key, slot); 1162 1163 if (key.objectid != ctx->bytenr) 1164 break; 1165 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1166 continue; 1167 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1168 break; 1169 1170 switch (key.type) { 1171 case BTRFS_SHARED_BLOCK_REF_KEY: 1172 /* SHARED DIRECT METADATA backref */ 1173 ret = add_direct_ref(fs_info, preftrees, 1174 info_level + 1, key.offset, 1175 ctx->bytenr, 1, NULL, GFP_NOFS); 1176 break; 1177 case BTRFS_SHARED_DATA_REF_KEY: { 1178 /* SHARED DIRECT FULL backref */ 1179 struct btrfs_shared_data_ref *sdref; 1180 int count; 1181 1182 sdref = btrfs_item_ptr(leaf, slot, 1183 struct btrfs_shared_data_ref); 1184 count = btrfs_shared_data_ref_count(leaf, sdref); 1185 ret = add_direct_ref(fs_info, preftrees, 0, 1186 key.offset, ctx->bytenr, count, 1187 sc, GFP_NOFS); 1188 break; 1189 } 1190 case BTRFS_TREE_BLOCK_REF_KEY: 1191 /* NORMAL INDIRECT METADATA backref */ 1192 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1193 NULL, info_level + 1, ctx->bytenr, 1194 1, NULL, GFP_NOFS); 1195 break; 1196 case BTRFS_EXTENT_DATA_REF_KEY: { 1197 /* NORMAL INDIRECT DATA backref */ 1198 struct btrfs_extent_data_ref *dref; 1199 int count; 1200 u64 root; 1201 1202 dref = btrfs_item_ptr(leaf, slot, 1203 struct btrfs_extent_data_ref); 1204 count = btrfs_extent_data_ref_count(leaf, dref); 1205 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1206 dref); 1207 key.type = BTRFS_EXTENT_DATA_KEY; 1208 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1209 1210 if (sc && key.objectid != sc->inum && 1211 !sc->have_delayed_delete_refs) { 1212 ret = BACKREF_FOUND_SHARED; 1213 break; 1214 } 1215 1216 root = btrfs_extent_data_ref_root(leaf, dref); 1217 1218 if (!ctx->skip_data_ref || 1219 !ctx->skip_data_ref(root, key.objectid, key.offset, 1220 ctx->user_ctx)) 1221 ret = add_indirect_ref(fs_info, preftrees, root, 1222 &key, 0, ctx->bytenr, 1223 count, sc, GFP_NOFS); 1224 break; 1225 } 1226 default: 1227 WARN_ON(1); 1228 } 1229 if (ret) 1230 return ret; 1231 1232 } 1233 1234 return ret; 1235 } 1236 1237 /* 1238 * The caller has joined a transaction or is holding a read lock on the 1239 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1240 * snapshot field changing while updating or checking the cache. 1241 */ 1242 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1243 struct btrfs_root *root, 1244 u64 bytenr, int level, bool *is_shared) 1245 { 1246 const struct btrfs_fs_info *fs_info = root->fs_info; 1247 struct btrfs_backref_shared_cache_entry *entry; 1248 1249 if (!current->journal_info) 1250 lockdep_assert_held(&fs_info->commit_root_sem); 1251 1252 if (!ctx->use_path_cache) 1253 return false; 1254 1255 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1256 return false; 1257 1258 /* 1259 * Level -1 is used for the data extent, which is not reliable to cache 1260 * because its reference count can increase or decrease without us 1261 * realizing. We cache results only for extent buffers that lead from 1262 * the root node down to the leaf with the file extent item. 1263 */ 1264 ASSERT(level >= 0); 1265 1266 entry = &ctx->path_cache_entries[level]; 1267 1268 /* Unused cache entry or being used for some other extent buffer. */ 1269 if (entry->bytenr != bytenr) 1270 return false; 1271 1272 /* 1273 * We cached a false result, but the last snapshot generation of the 1274 * root changed, so we now have a snapshot. Don't trust the result. 1275 */ 1276 if (!entry->is_shared && 1277 entry->gen != btrfs_root_last_snapshot(&root->root_item)) 1278 return false; 1279 1280 /* 1281 * If we cached a true result and the last generation used for dropping 1282 * a root changed, we can not trust the result, because the dropped root 1283 * could be a snapshot sharing this extent buffer. 1284 */ 1285 if (entry->is_shared && 1286 entry->gen != btrfs_get_last_root_drop_gen(fs_info)) 1287 return false; 1288 1289 *is_shared = entry->is_shared; 1290 /* 1291 * If the node at this level is shared, than all nodes below are also 1292 * shared. Currently some of the nodes below may be marked as not shared 1293 * because we have just switched from one leaf to another, and switched 1294 * also other nodes above the leaf and below the current level, so mark 1295 * them as shared. 1296 */ 1297 if (*is_shared) { 1298 for (int i = 0; i < level; i++) { 1299 ctx->path_cache_entries[i].is_shared = true; 1300 ctx->path_cache_entries[i].gen = entry->gen; 1301 } 1302 } 1303 1304 return true; 1305 } 1306 1307 /* 1308 * The caller has joined a transaction or is holding a read lock on the 1309 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1310 * snapshot field changing while updating or checking the cache. 1311 */ 1312 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1313 struct btrfs_root *root, 1314 u64 bytenr, int level, bool is_shared) 1315 { 1316 const struct btrfs_fs_info *fs_info = root->fs_info; 1317 struct btrfs_backref_shared_cache_entry *entry; 1318 u64 gen; 1319 1320 if (!current->journal_info) 1321 lockdep_assert_held(&fs_info->commit_root_sem); 1322 1323 if (!ctx->use_path_cache) 1324 return; 1325 1326 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1327 return; 1328 1329 /* 1330 * Level -1 is used for the data extent, which is not reliable to cache 1331 * because its reference count can increase or decrease without us 1332 * realizing. We cache results only for extent buffers that lead from 1333 * the root node down to the leaf with the file extent item. 1334 */ 1335 ASSERT(level >= 0); 1336 1337 if (is_shared) 1338 gen = btrfs_get_last_root_drop_gen(fs_info); 1339 else 1340 gen = btrfs_root_last_snapshot(&root->root_item); 1341 1342 entry = &ctx->path_cache_entries[level]; 1343 entry->bytenr = bytenr; 1344 entry->is_shared = is_shared; 1345 entry->gen = gen; 1346 1347 /* 1348 * If we found an extent buffer is shared, set the cache result for all 1349 * extent buffers below it to true. As nodes in the path are COWed, 1350 * their sharedness is moved to their children, and if a leaf is COWed, 1351 * then the sharedness of a data extent becomes direct, the refcount of 1352 * data extent is increased in the extent item at the extent tree. 1353 */ 1354 if (is_shared) { 1355 for (int i = 0; i < level; i++) { 1356 entry = &ctx->path_cache_entries[i]; 1357 entry->is_shared = is_shared; 1358 entry->gen = gen; 1359 } 1360 } 1361 } 1362 1363 /* 1364 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1365 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1366 * indirect refs to their parent bytenr. 1367 * When roots are found, they're added to the roots list 1368 * 1369 * @ctx: Backref walking context object, must be not NULL. 1370 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a 1371 * shared extent is detected. 1372 * 1373 * Otherwise this returns 0 for success and <0 for an error. 1374 * 1375 * FIXME some caching might speed things up 1376 */ 1377 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx, 1378 struct share_check *sc) 1379 { 1380 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr); 1381 struct btrfs_key key; 1382 struct btrfs_path *path; 1383 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1384 struct btrfs_delayed_ref_head *head; 1385 int info_level = 0; 1386 int ret; 1387 struct prelim_ref *ref; 1388 struct rb_node *node; 1389 struct extent_inode_elem *eie = NULL; 1390 struct preftrees preftrees = { 1391 .direct = PREFTREE_INIT, 1392 .indirect = PREFTREE_INIT, 1393 .indirect_missing_keys = PREFTREE_INIT 1394 }; 1395 1396 /* Roots ulist is not needed when using a sharedness check context. */ 1397 if (sc) 1398 ASSERT(ctx->roots == NULL); 1399 1400 key.objectid = ctx->bytenr; 1401 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA)) 1402 key.type = BTRFS_METADATA_ITEM_KEY; 1403 else 1404 key.type = BTRFS_EXTENT_ITEM_KEY; 1405 key.offset = (u64)-1; 1406 1407 path = btrfs_alloc_path(); 1408 if (!path) 1409 return -ENOMEM; 1410 if (!ctx->trans) { 1411 path->search_commit_root = true; 1412 path->skip_locking = true; 1413 } 1414 1415 if (ctx->time_seq == BTRFS_SEQ_LAST) 1416 path->skip_locking = true; 1417 1418 again: 1419 head = NULL; 1420 1421 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1422 if (ret < 0) 1423 goto out; 1424 if (unlikely(ret == 0)) { 1425 /* 1426 * Key with offset -1 found, there would have to exist an extent 1427 * item with such offset, but this is out of the valid range. 1428 */ 1429 ret = -EUCLEAN; 1430 goto out; 1431 } 1432 1433 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) && 1434 ctx->time_seq != BTRFS_SEQ_LAST) { 1435 /* 1436 * We have a specific time_seq we care about and trans which 1437 * means we have the path lock, we need to grab the ref head and 1438 * lock it so we have a consistent view of the refs at the given 1439 * time. 1440 */ 1441 delayed_refs = &ctx->trans->transaction->delayed_refs; 1442 spin_lock(&delayed_refs->lock); 1443 head = btrfs_find_delayed_ref_head(ctx->fs_info, delayed_refs, 1444 ctx->bytenr); 1445 if (head) { 1446 if (!mutex_trylock(&head->mutex)) { 1447 refcount_inc(&head->refs); 1448 spin_unlock(&delayed_refs->lock); 1449 1450 btrfs_release_path(path); 1451 1452 /* 1453 * Mutex was contended, block until it's 1454 * released and try again 1455 */ 1456 mutex_lock(&head->mutex); 1457 mutex_unlock(&head->mutex); 1458 btrfs_put_delayed_ref_head(head); 1459 goto again; 1460 } 1461 spin_unlock(&delayed_refs->lock); 1462 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq, 1463 &preftrees, sc); 1464 mutex_unlock(&head->mutex); 1465 if (ret) 1466 goto out; 1467 } else { 1468 spin_unlock(&delayed_refs->lock); 1469 } 1470 } 1471 1472 if (path->slots[0]) { 1473 struct extent_buffer *leaf; 1474 int slot; 1475 1476 path->slots[0]--; 1477 leaf = path->nodes[0]; 1478 slot = path->slots[0]; 1479 btrfs_item_key_to_cpu(leaf, &key, slot); 1480 if (key.objectid == ctx->bytenr && 1481 (key.type == BTRFS_EXTENT_ITEM_KEY || 1482 key.type == BTRFS_METADATA_ITEM_KEY)) { 1483 ret = add_inline_refs(ctx, path, &info_level, 1484 &preftrees, sc); 1485 if (ret) 1486 goto out; 1487 ret = add_keyed_refs(ctx, root, path, info_level, 1488 &preftrees, sc); 1489 if (ret) 1490 goto out; 1491 } 1492 } 1493 1494 /* 1495 * If we have a share context and we reached here, it means the extent 1496 * is not directly shared (no multiple reference items for it), 1497 * otherwise we would have exited earlier with a return value of 1498 * BACKREF_FOUND_SHARED after processing delayed references or while 1499 * processing inline or keyed references from the extent tree. 1500 * The extent may however be indirectly shared through shared subtrees 1501 * as a result from creating snapshots, so we determine below what is 1502 * its parent node, in case we are dealing with a metadata extent, or 1503 * what's the leaf (or leaves), from a fs tree, that has a file extent 1504 * item pointing to it in case we are dealing with a data extent. 1505 */ 1506 ASSERT(extent_is_shared(sc) == 0); 1507 1508 /* 1509 * If we are here for a data extent and we have a share_check structure 1510 * it means the data extent is not directly shared (does not have 1511 * multiple reference items), so we have to check if a path in the fs 1512 * tree (going from the root node down to the leaf that has the file 1513 * extent item pointing to the data extent) is shared, that is, if any 1514 * of the extent buffers in the path is referenced by other trees. 1515 */ 1516 if (sc && ctx->bytenr == sc->data_bytenr) { 1517 /* 1518 * If our data extent is from a generation more recent than the 1519 * last generation used to snapshot the root, then we know that 1520 * it can not be shared through subtrees, so we can skip 1521 * resolving indirect references, there's no point in 1522 * determining the extent buffers for the path from the fs tree 1523 * root node down to the leaf that has the file extent item that 1524 * points to the data extent. 1525 */ 1526 if (sc->data_extent_gen > 1527 btrfs_root_last_snapshot(&sc->root->root_item)) { 1528 ret = BACKREF_FOUND_NOT_SHARED; 1529 goto out; 1530 } 1531 1532 /* 1533 * If we are only determining if a data extent is shared or not 1534 * and the corresponding file extent item is located in the same 1535 * leaf as the previous file extent item, we can skip resolving 1536 * indirect references for a data extent, since the fs tree path 1537 * is the same (same leaf, so same path). We skip as long as the 1538 * cached result for the leaf is valid and only if there's only 1539 * one file extent item pointing to the data extent, because in 1540 * the case of multiple file extent items, they may be located 1541 * in different leaves and therefore we have multiple paths. 1542 */ 1543 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr && 1544 sc->self_ref_count == 1) { 1545 bool cached; 1546 bool is_shared; 1547 1548 cached = lookup_backref_shared_cache(sc->ctx, sc->root, 1549 sc->ctx->curr_leaf_bytenr, 1550 0, &is_shared); 1551 if (cached) { 1552 if (is_shared) 1553 ret = BACKREF_FOUND_SHARED; 1554 else 1555 ret = BACKREF_FOUND_NOT_SHARED; 1556 goto out; 1557 } 1558 } 1559 } 1560 1561 btrfs_release_path(path); 1562 1563 ret = add_missing_keys(ctx->fs_info, &preftrees, !path->skip_locking); 1564 if (ret) 1565 goto out; 1566 1567 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1568 1569 ret = resolve_indirect_refs(ctx, path, &preftrees, sc); 1570 if (ret) 1571 goto out; 1572 1573 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1574 1575 /* 1576 * This walks the tree of merged and resolved refs. Tree blocks are 1577 * read in as needed. Unique entries are added to the ulist, and 1578 * the list of found roots is updated. 1579 * 1580 * We release the entire tree in one go before returning. 1581 */ 1582 node = rb_first_cached(&preftrees.direct.root); 1583 while (node) { 1584 ref = rb_entry(node, struct prelim_ref, rbnode); 1585 node = rb_next(&ref->rbnode); 1586 /* 1587 * ref->count < 0 can happen here if there are delayed 1588 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1589 * prelim_ref_insert() relies on this when merging 1590 * identical refs to keep the overall count correct. 1591 * prelim_ref_insert() will merge only those refs 1592 * which compare identically. Any refs having 1593 * e.g. different offsets would not be merged, 1594 * and would retain their original ref->count < 0. 1595 */ 1596 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) { 1597 /* no parent == root of tree */ 1598 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS); 1599 if (ret < 0) 1600 goto out; 1601 } 1602 if (ref->count && ref->parent) { 1603 if (!ctx->skip_inode_ref_list && !ref->inode_list && 1604 ref->level == 0) { 1605 struct btrfs_tree_parent_check check = { 0 }; 1606 struct extent_buffer *eb; 1607 1608 check.level = ref->level; 1609 1610 eb = read_tree_block(ctx->fs_info, ref->parent, 1611 &check); 1612 if (IS_ERR(eb)) { 1613 ret = PTR_ERR(eb); 1614 goto out; 1615 } 1616 if (unlikely(!extent_buffer_uptodate(eb))) { 1617 free_extent_buffer(eb); 1618 ret = -EIO; 1619 goto out; 1620 } 1621 1622 if (!path->skip_locking) 1623 btrfs_tree_read_lock(eb); 1624 ret = find_extent_in_eb(ctx, eb, &eie); 1625 if (!path->skip_locking) 1626 btrfs_tree_read_unlock(eb); 1627 free_extent_buffer(eb); 1628 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1629 ret < 0) 1630 goto out; 1631 ref->inode_list = eie; 1632 /* 1633 * We transferred the list ownership to the ref, 1634 * so set to NULL to avoid a double free in case 1635 * an error happens after this. 1636 */ 1637 eie = NULL; 1638 } 1639 ret = ulist_add_merge_ptr(ctx->refs, ref->parent, 1640 ref->inode_list, 1641 (void **)&eie, GFP_NOFS); 1642 if (ret < 0) 1643 goto out; 1644 if (!ret && !ctx->skip_inode_ref_list) { 1645 /* 1646 * We've recorded that parent, so we must extend 1647 * its inode list here. 1648 * 1649 * However if there was corruption we may not 1650 * have found an eie, return an error in this 1651 * case. 1652 */ 1653 ASSERT(eie); 1654 if (unlikely(!eie)) { 1655 ret = -EUCLEAN; 1656 goto out; 1657 } 1658 while (eie->next) 1659 eie = eie->next; 1660 eie->next = ref->inode_list; 1661 } 1662 eie = NULL; 1663 /* 1664 * We have transferred the inode list ownership from 1665 * this ref to the ref we added to the 'refs' ulist. 1666 * So set this ref's inode list to NULL to avoid 1667 * use-after-free when our caller uses it or double 1668 * frees in case an error happens before we return. 1669 */ 1670 ref->inode_list = NULL; 1671 } 1672 cond_resched(); 1673 } 1674 1675 out: 1676 btrfs_free_path(path); 1677 1678 prelim_release(&preftrees.direct); 1679 prelim_release(&preftrees.indirect); 1680 prelim_release(&preftrees.indirect_missing_keys); 1681 1682 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 1683 free_inode_elem_list(eie); 1684 return ret; 1685 } 1686 1687 /* 1688 * Finds all leaves with a reference to the specified combination of 1689 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are 1690 * added to the ulist at @ctx->refs, and that ulist is allocated by this 1691 * function. The caller should free the ulist with free_leaf_list() if 1692 * @ctx->ignore_extent_item_pos is false, otherwise a simple ulist_free() is 1693 * enough. 1694 * 1695 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated. 1696 */ 1697 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx) 1698 { 1699 int ret; 1700 1701 ASSERT(ctx->refs == NULL); 1702 1703 ctx->refs = ulist_alloc(GFP_NOFS); 1704 if (!ctx->refs) 1705 return -ENOMEM; 1706 1707 ret = find_parent_nodes(ctx, NULL); 1708 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1709 (ret < 0 && ret != -ENOENT)) { 1710 free_leaf_list(ctx->refs); 1711 ctx->refs = NULL; 1712 return ret; 1713 } 1714 1715 return 0; 1716 } 1717 1718 /* 1719 * Walk all backrefs for a given extent to find all roots that reference this 1720 * extent. Walking a backref means finding all extents that reference this 1721 * extent and in turn walk the backrefs of those, too. Naturally this is a 1722 * recursive process, but here it is implemented in an iterative fashion: We 1723 * find all referencing extents for the extent in question and put them on a 1724 * list. In turn, we find all referencing extents for those, further appending 1725 * to the list. The way we iterate the list allows adding more elements after 1726 * the current while iterating. The process stops when we reach the end of the 1727 * list. 1728 * 1729 * Found roots are added to @ctx->roots, which is allocated by this function if 1730 * it points to NULL, in which case the caller is responsible for freeing it 1731 * after it's not needed anymore. 1732 * This function requires @ctx->refs to be NULL, as it uses it for allocating a 1733 * ulist to do temporary work, and frees it before returning. 1734 * 1735 * Returns 0 on success, < 0 on error. 1736 */ 1737 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx) 1738 { 1739 const u64 orig_bytenr = ctx->bytenr; 1740 const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list; 1741 bool roots_ulist_allocated = false; 1742 struct ulist_iterator uiter; 1743 int ret = 0; 1744 1745 ASSERT(ctx->refs == NULL); 1746 1747 ctx->refs = ulist_alloc(GFP_NOFS); 1748 if (!ctx->refs) 1749 return -ENOMEM; 1750 1751 if (!ctx->roots) { 1752 ctx->roots = ulist_alloc(GFP_NOFS); 1753 if (!ctx->roots) { 1754 ulist_free(ctx->refs); 1755 ctx->refs = NULL; 1756 return -ENOMEM; 1757 } 1758 roots_ulist_allocated = true; 1759 } 1760 1761 ctx->skip_inode_ref_list = true; 1762 1763 ULIST_ITER_INIT(&uiter); 1764 while (1) { 1765 struct ulist_node *node; 1766 1767 ret = find_parent_nodes(ctx, NULL); 1768 if (ret < 0 && ret != -ENOENT) { 1769 if (roots_ulist_allocated) { 1770 ulist_free(ctx->roots); 1771 ctx->roots = NULL; 1772 } 1773 break; 1774 } 1775 ret = 0; 1776 node = ulist_next(ctx->refs, &uiter); 1777 if (!node) 1778 break; 1779 ctx->bytenr = node->val; 1780 cond_resched(); 1781 } 1782 1783 ulist_free(ctx->refs); 1784 ctx->refs = NULL; 1785 ctx->bytenr = orig_bytenr; 1786 ctx->skip_inode_ref_list = orig_skip_inode_ref_list; 1787 1788 return ret; 1789 } 1790 1791 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, 1792 bool skip_commit_root_sem) 1793 { 1794 int ret; 1795 1796 if (!ctx->trans && !skip_commit_root_sem) 1797 down_read(&ctx->fs_info->commit_root_sem); 1798 ret = btrfs_find_all_roots_safe(ctx); 1799 if (!ctx->trans && !skip_commit_root_sem) 1800 up_read(&ctx->fs_info->commit_root_sem); 1801 return ret; 1802 } 1803 1804 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void) 1805 { 1806 struct btrfs_backref_share_check_ctx *ctx; 1807 1808 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1809 if (!ctx) 1810 return NULL; 1811 1812 ulist_init(&ctx->refs); 1813 1814 return ctx; 1815 } 1816 1817 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx) 1818 { 1819 if (!ctx) 1820 return; 1821 1822 ulist_release(&ctx->refs); 1823 kfree(ctx); 1824 } 1825 1826 /* 1827 * Check if a data extent is shared or not. 1828 * 1829 * @inode: The inode whose extent we are checking. 1830 * @bytenr: Logical bytenr of the extent we are checking. 1831 * @extent_gen: Generation of the extent (file extent item) or 0 if it is 1832 * not known. 1833 * @ctx: A backref sharedness check context. 1834 * 1835 * btrfs_is_data_extent_shared uses the backref walking code but will short 1836 * circuit as soon as it finds a root or inode that doesn't match the 1837 * one passed in. This provides a significant performance benefit for 1838 * callers (such as fiemap) which want to know whether the extent is 1839 * shared but do not need a ref count. 1840 * 1841 * This attempts to attach to the running transaction in order to account for 1842 * delayed refs, but continues on even when no running transaction exists. 1843 * 1844 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1845 */ 1846 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, 1847 u64 extent_gen, 1848 struct btrfs_backref_share_check_ctx *ctx) 1849 { 1850 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 1851 struct btrfs_root *root = inode->root; 1852 struct btrfs_fs_info *fs_info = root->fs_info; 1853 struct btrfs_trans_handle *trans; 1854 struct ulist_iterator uiter; 1855 struct ulist_node *node; 1856 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1857 int ret = 0; 1858 struct share_check shared = { 1859 .ctx = ctx, 1860 .root = root, 1861 .inum = btrfs_ino(inode), 1862 .data_bytenr = bytenr, 1863 .data_extent_gen = extent_gen, 1864 .share_count = 0, 1865 .self_ref_count = 0, 1866 .have_delayed_delete_refs = false, 1867 }; 1868 int level; 1869 bool leaf_cached; 1870 bool leaf_is_shared; 1871 1872 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) { 1873 if (ctx->prev_extents_cache[i].bytenr == bytenr) 1874 return ctx->prev_extents_cache[i].is_shared; 1875 } 1876 1877 ulist_init(&ctx->refs); 1878 1879 trans = btrfs_join_transaction_nostart(root); 1880 if (IS_ERR(trans)) { 1881 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1882 ret = PTR_ERR(trans); 1883 goto out; 1884 } 1885 trans = NULL; 1886 down_read(&fs_info->commit_root_sem); 1887 } else { 1888 btrfs_get_tree_mod_seq(fs_info, &elem); 1889 walk_ctx.time_seq = elem.seq; 1890 } 1891 1892 ctx->use_path_cache = true; 1893 1894 /* 1895 * We may have previously determined that the current leaf is shared. 1896 * If it is, then we have a data extent that is shared due to a shared 1897 * subtree (caused by snapshotting) and we don't need to check for data 1898 * backrefs. If the leaf is not shared, then we must do backref walking 1899 * to determine if the data extent is shared through reflinks. 1900 */ 1901 leaf_cached = lookup_backref_shared_cache(ctx, root, 1902 ctx->curr_leaf_bytenr, 0, 1903 &leaf_is_shared); 1904 if (leaf_cached && leaf_is_shared) { 1905 ret = 1; 1906 goto out_trans; 1907 } 1908 1909 walk_ctx.skip_inode_ref_list = true; 1910 walk_ctx.trans = trans; 1911 walk_ctx.fs_info = fs_info; 1912 walk_ctx.refs = &ctx->refs; 1913 1914 /* -1 means we are in the bytenr of the data extent. */ 1915 level = -1; 1916 ULIST_ITER_INIT(&uiter); 1917 while (1) { 1918 const unsigned long prev_ref_count = ctx->refs.nnodes; 1919 1920 walk_ctx.bytenr = bytenr; 1921 ret = find_parent_nodes(&walk_ctx, &shared); 1922 if (ret == BACKREF_FOUND_SHARED || 1923 ret == BACKREF_FOUND_NOT_SHARED) { 1924 /* If shared must return 1, otherwise return 0. */ 1925 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0; 1926 if (level >= 0) 1927 store_backref_shared_cache(ctx, root, bytenr, 1928 level, ret == 1); 1929 break; 1930 } 1931 if (ret < 0 && ret != -ENOENT) 1932 break; 1933 ret = 0; 1934 1935 /* 1936 * More than one extent buffer (bytenr) may have been added to 1937 * the ctx->refs ulist, in which case we have to check multiple 1938 * tree paths in case the first one is not shared, so we can not 1939 * use the path cache which is made for a single path. Multiple 1940 * extent buffers at the current level happen when: 1941 * 1942 * 1) level -1, the data extent: If our data extent was not 1943 * directly shared (without multiple reference items), then 1944 * it might have a single reference item with a count > 1 for 1945 * the same offset, which means there are 2 (or more) file 1946 * extent items that point to the data extent - this happens 1947 * when a file extent item needs to be split and then one 1948 * item gets moved to another leaf due to a b+tree leaf split 1949 * when inserting some item. In this case the file extent 1950 * items may be located in different leaves and therefore 1951 * some of the leaves may be referenced through shared 1952 * subtrees while others are not. Since our extent buffer 1953 * cache only works for a single path (by far the most common 1954 * case and simpler to deal with), we can not use it if we 1955 * have multiple leaves (which implies multiple paths). 1956 * 1957 * 2) level >= 0, a tree node/leaf: We can have a mix of direct 1958 * and indirect references on a b+tree node/leaf, so we have 1959 * to check multiple paths, and the extent buffer (the 1960 * current bytenr) may be shared or not. One example is 1961 * during relocation as we may get a shared tree block ref 1962 * (direct ref) and a non-shared tree block ref (indirect 1963 * ref) for the same node/leaf. 1964 */ 1965 if ((ctx->refs.nnodes - prev_ref_count) > 1) 1966 ctx->use_path_cache = false; 1967 1968 if (level >= 0) 1969 store_backref_shared_cache(ctx, root, bytenr, 1970 level, false); 1971 node = ulist_next(&ctx->refs, &uiter); 1972 if (!node) 1973 break; 1974 bytenr = node->val; 1975 if (ctx->use_path_cache) { 1976 bool is_shared; 1977 bool cached; 1978 1979 level++; 1980 cached = lookup_backref_shared_cache(ctx, root, bytenr, 1981 level, &is_shared); 1982 if (cached) { 1983 ret = (is_shared ? 1 : 0); 1984 break; 1985 } 1986 } 1987 shared.share_count = 0; 1988 shared.have_delayed_delete_refs = false; 1989 cond_resched(); 1990 } 1991 1992 /* 1993 * If the path cache is disabled, then it means at some tree level we 1994 * got multiple parents due to a mix of direct and indirect backrefs or 1995 * multiple leaves with file extent items pointing to the same data 1996 * extent. We have to invalidate the cache and cache only the sharedness 1997 * result for the levels where we got only one node/reference. 1998 */ 1999 if (!ctx->use_path_cache) { 2000 int i = 0; 2001 2002 level--; 2003 if (ret >= 0 && level >= 0) { 2004 bytenr = ctx->path_cache_entries[level].bytenr; 2005 ctx->use_path_cache = true; 2006 store_backref_shared_cache(ctx, root, bytenr, level, ret); 2007 i = level + 1; 2008 } 2009 2010 for ( ; i < BTRFS_MAX_LEVEL; i++) 2011 ctx->path_cache_entries[i].bytenr = 0; 2012 } 2013 2014 /* 2015 * Cache the sharedness result for the data extent if we know our inode 2016 * has more than 1 file extent item that refers to the data extent. 2017 */ 2018 if (ret >= 0 && shared.self_ref_count > 1) { 2019 int slot = ctx->prev_extents_cache_slot; 2020 2021 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr; 2022 ctx->prev_extents_cache[slot].is_shared = (ret == 1); 2023 2024 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; 2025 ctx->prev_extents_cache_slot = slot; 2026 } 2027 2028 out_trans: 2029 if (trans) { 2030 btrfs_put_tree_mod_seq(fs_info, &elem); 2031 btrfs_end_transaction(trans); 2032 } else { 2033 up_read(&fs_info->commit_root_sem); 2034 } 2035 out: 2036 ulist_release(&ctx->refs); 2037 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr; 2038 2039 return ret; 2040 } 2041 2042 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 2043 u64 start_off, struct btrfs_path *path, 2044 struct btrfs_inode_extref **ret_extref, 2045 u64 *found_off) 2046 { 2047 int ret, slot; 2048 struct btrfs_key key; 2049 struct btrfs_key found_key; 2050 struct btrfs_inode_extref *extref; 2051 const struct extent_buffer *leaf; 2052 unsigned long ptr; 2053 2054 key.objectid = inode_objectid; 2055 key.type = BTRFS_INODE_EXTREF_KEY; 2056 key.offset = start_off; 2057 2058 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2059 if (ret < 0) 2060 return ret; 2061 2062 while (1) { 2063 leaf = path->nodes[0]; 2064 slot = path->slots[0]; 2065 if (slot >= btrfs_header_nritems(leaf)) { 2066 /* 2067 * If the item at offset is not found, 2068 * btrfs_search_slot will point us to the slot 2069 * where it should be inserted. In our case 2070 * that will be the slot directly before the 2071 * next INODE_REF_KEY_V2 item. In the case 2072 * that we're pointing to the last slot in a 2073 * leaf, we must move one leaf over. 2074 */ 2075 ret = btrfs_next_leaf(root, path); 2076 if (ret) { 2077 if (ret >= 1) 2078 ret = -ENOENT; 2079 break; 2080 } 2081 continue; 2082 } 2083 2084 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2085 2086 /* 2087 * Check that we're still looking at an extended ref key for 2088 * this particular objectid. If we have different 2089 * objectid or type then there are no more to be found 2090 * in the tree and we can exit. 2091 */ 2092 ret = -ENOENT; 2093 if (found_key.objectid != inode_objectid) 2094 break; 2095 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 2096 break; 2097 2098 ret = 0; 2099 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 2100 extref = (struct btrfs_inode_extref *)ptr; 2101 *ret_extref = extref; 2102 if (found_off) 2103 *found_off = found_key.offset; 2104 break; 2105 } 2106 2107 return ret; 2108 } 2109 2110 /* 2111 * this iterates to turn a name (from iref/extref) into a full filesystem path. 2112 * Elements of the path are separated by '/' and the path is guaranteed to be 2113 * 0-terminated. the path is only given within the current file system. 2114 * Therefore, it never starts with a '/'. the caller is responsible to provide 2115 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 2116 * the start point of the resulting string is returned. this pointer is within 2117 * dest, normally. 2118 * in case the path buffer would overflow, the pointer is decremented further 2119 * as if output was written to the buffer, though no more output is actually 2120 * generated. that way, the caller can determine how much space would be 2121 * required for the path to fit into the buffer. in that case, the returned 2122 * value will be smaller than dest. callers must check this! 2123 */ 2124 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 2125 u32 name_len, unsigned long name_off, 2126 struct extent_buffer *eb_in, u64 parent, 2127 char *dest, u32 size) 2128 { 2129 int slot; 2130 u64 next_inum; 2131 int ret; 2132 s64 bytes_left = ((s64)size) - 1; 2133 struct extent_buffer *eb = eb_in; 2134 struct btrfs_key found_key; 2135 struct btrfs_inode_ref *iref; 2136 2137 if (bytes_left >= 0) 2138 dest[bytes_left] = '\0'; 2139 2140 while (1) { 2141 bytes_left -= name_len; 2142 if (bytes_left >= 0) 2143 read_extent_buffer(eb, dest + bytes_left, 2144 name_off, name_len); 2145 if (eb != eb_in) { 2146 if (!path->skip_locking) 2147 btrfs_tree_read_unlock(eb); 2148 free_extent_buffer(eb); 2149 } 2150 ret = btrfs_find_item(fs_root, path, parent, 0, 2151 BTRFS_INODE_REF_KEY, &found_key); 2152 if (ret > 0) 2153 ret = -ENOENT; 2154 if (ret) 2155 break; 2156 2157 next_inum = found_key.offset; 2158 2159 /* regular exit ahead */ 2160 if (parent == next_inum) 2161 break; 2162 2163 slot = path->slots[0]; 2164 eb = path->nodes[0]; 2165 /* make sure we can use eb after releasing the path */ 2166 if (eb != eb_in) { 2167 path->nodes[0] = NULL; 2168 path->locks[0] = 0; 2169 } 2170 btrfs_release_path(path); 2171 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2172 2173 name_len = btrfs_inode_ref_name_len(eb, iref); 2174 name_off = (unsigned long)(iref + 1); 2175 2176 parent = next_inum; 2177 --bytes_left; 2178 if (bytes_left >= 0) 2179 dest[bytes_left] = '/'; 2180 } 2181 2182 btrfs_release_path(path); 2183 2184 if (ret) 2185 return ERR_PTR(ret); 2186 2187 return dest + bytes_left; 2188 } 2189 2190 /* 2191 * this makes the path point to (logical EXTENT_ITEM *) 2192 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 2193 * tree blocks and <0 on error. 2194 */ 2195 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 2196 struct btrfs_path *path, struct btrfs_key *found_key, 2197 u64 *flags_ret) 2198 { 2199 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 2200 int ret; 2201 u64 flags; 2202 u64 size = 0; 2203 const struct extent_buffer *eb; 2204 struct btrfs_extent_item *ei; 2205 struct btrfs_key key; 2206 2207 key.objectid = logical; 2208 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2209 key.type = BTRFS_METADATA_ITEM_KEY; 2210 else 2211 key.type = BTRFS_EXTENT_ITEM_KEY; 2212 key.offset = (u64)-1; 2213 2214 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2215 if (ret < 0) 2216 return ret; 2217 if (unlikely(ret == 0)) { 2218 /* 2219 * Key with offset -1 found, there would have to exist an extent 2220 * item with such offset, but this is out of the valid range. 2221 */ 2222 return -EUCLEAN; 2223 } 2224 2225 ret = btrfs_previous_extent_item(extent_root, path, 0); 2226 if (ret) { 2227 if (ret > 0) 2228 ret = -ENOENT; 2229 return ret; 2230 } 2231 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 2232 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 2233 size = fs_info->nodesize; 2234 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 2235 size = found_key->offset; 2236 2237 if (found_key->objectid > logical || 2238 found_key->objectid + size <= logical) { 2239 btrfs_debug(fs_info, 2240 "logical %llu is not within any extent", logical); 2241 return -ENOENT; 2242 } 2243 2244 eb = path->nodes[0]; 2245 2246 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 2247 flags = btrfs_extent_flags(eb, ei); 2248 2249 btrfs_debug(fs_info, 2250 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 2251 logical, logical - found_key->objectid, found_key->objectid, 2252 found_key->offset, flags, btrfs_item_size(eb, path->slots[0])); 2253 2254 WARN_ON(!flags_ret); 2255 if (flags_ret) { 2256 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2257 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 2258 else if (flags & BTRFS_EXTENT_FLAG_DATA) 2259 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 2260 else 2261 BUG(); 2262 return 0; 2263 } 2264 2265 return -EIO; 2266 } 2267 2268 /* 2269 * helper function to iterate extent inline refs. ptr must point to a 0 value 2270 * for the first call and may be modified. it is used to track state. 2271 * if more refs exist, 0 is returned and the next call to 2272 * get_extent_inline_ref must pass the modified ptr parameter to get the 2273 * next ref. after the last ref was processed, 1 is returned. 2274 * returns <0 on error 2275 */ 2276 static int get_extent_inline_ref(unsigned long *ptr, 2277 const struct extent_buffer *eb, 2278 const struct btrfs_key *key, 2279 const struct btrfs_extent_item *ei, 2280 u32 item_size, 2281 struct btrfs_extent_inline_ref **out_eiref, 2282 int *out_type) 2283 { 2284 unsigned long end; 2285 u64 flags; 2286 struct btrfs_tree_block_info *info; 2287 2288 if (!*ptr) { 2289 /* first call */ 2290 flags = btrfs_extent_flags(eb, ei); 2291 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2292 if (key->type == BTRFS_METADATA_ITEM_KEY) { 2293 /* a skinny metadata extent */ 2294 *out_eiref = 2295 (struct btrfs_extent_inline_ref *)(ei + 1); 2296 } else { 2297 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 2298 info = (struct btrfs_tree_block_info *)(ei + 1); 2299 *out_eiref = 2300 (struct btrfs_extent_inline_ref *)(info + 1); 2301 } 2302 } else { 2303 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 2304 } 2305 *ptr = (unsigned long)*out_eiref; 2306 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 2307 return -ENOENT; 2308 } 2309 2310 end = (unsigned long)ei + item_size; 2311 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 2312 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 2313 BTRFS_REF_TYPE_ANY); 2314 if (unlikely(*out_type == BTRFS_REF_TYPE_INVALID)) 2315 return -EUCLEAN; 2316 2317 *ptr += btrfs_extent_inline_ref_size(*out_type); 2318 WARN_ON(*ptr > end); 2319 if (*ptr == end) 2320 return 1; /* last */ 2321 2322 return 0; 2323 } 2324 2325 /* 2326 * reads the tree block backref for an extent. tree level and root are returned 2327 * through out_level and out_root. ptr must point to a 0 value for the first 2328 * call and may be modified (see get_extent_inline_ref comment). 2329 * returns 0 if data was provided, 1 if there was no more data to provide or 2330 * <0 on error. 2331 */ 2332 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 2333 struct btrfs_key *key, struct btrfs_extent_item *ei, 2334 u32 item_size, u64 *out_root, u8 *out_level) 2335 { 2336 int ret; 2337 int type; 2338 struct btrfs_extent_inline_ref *eiref; 2339 2340 if (*ptr == (unsigned long)-1) 2341 return 1; 2342 2343 while (1) { 2344 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 2345 &eiref, &type); 2346 if (ret < 0) 2347 return ret; 2348 2349 if (type == BTRFS_TREE_BLOCK_REF_KEY || 2350 type == BTRFS_SHARED_BLOCK_REF_KEY) 2351 break; 2352 2353 if (ret == 1) 2354 return 1; 2355 } 2356 2357 /* we can treat both ref types equally here */ 2358 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 2359 2360 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 2361 struct btrfs_tree_block_info *info; 2362 2363 info = (struct btrfs_tree_block_info *)(ei + 1); 2364 *out_level = btrfs_tree_block_level(eb, info); 2365 } else { 2366 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 2367 *out_level = (u8)key->offset; 2368 } 2369 2370 if (ret == 1) 2371 *ptr = (unsigned long)-1; 2372 2373 return 0; 2374 } 2375 2376 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 2377 struct extent_inode_elem *inode_list, 2378 u64 root, u64 extent_item_objectid, 2379 iterate_extent_inodes_t *iterate, void *ctx) 2380 { 2381 struct extent_inode_elem *eie; 2382 int ret = 0; 2383 2384 for (eie = inode_list; eie; eie = eie->next) { 2385 btrfs_debug(fs_info, 2386 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 2387 extent_item_objectid, eie->inum, 2388 eie->offset, root); 2389 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx); 2390 if (ret) { 2391 btrfs_debug(fs_info, 2392 "stopping iteration for %llu due to ret=%d", 2393 extent_item_objectid, ret); 2394 break; 2395 } 2396 } 2397 2398 return ret; 2399 } 2400 2401 /* 2402 * calls iterate() for every inode that references the extent identified by 2403 * the given parameters. 2404 * when the iterator function returns a non-zero value, iteration stops. 2405 */ 2406 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, 2407 bool search_commit_root, 2408 iterate_extent_inodes_t *iterate, void *user_ctx) 2409 { 2410 int ret; 2411 struct ulist *refs; 2412 struct ulist_node *ref_node; 2413 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 2414 struct ulist_iterator ref_uiter; 2415 2416 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu", 2417 ctx->bytenr); 2418 2419 ASSERT(ctx->trans == NULL); 2420 ASSERT(ctx->roots == NULL); 2421 2422 if (!search_commit_root) { 2423 struct btrfs_trans_handle *trans; 2424 2425 trans = btrfs_attach_transaction(ctx->fs_info->tree_root); 2426 if (IS_ERR(trans)) { 2427 if (PTR_ERR(trans) != -ENOENT && 2428 PTR_ERR(trans) != -EROFS) 2429 return PTR_ERR(trans); 2430 trans = NULL; 2431 } 2432 ctx->trans = trans; 2433 } 2434 2435 if (ctx->trans) { 2436 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem); 2437 ctx->time_seq = seq_elem.seq; 2438 } else { 2439 down_read(&ctx->fs_info->commit_root_sem); 2440 } 2441 2442 ret = btrfs_find_all_leafs(ctx); 2443 if (ret) 2444 goto out; 2445 refs = ctx->refs; 2446 ctx->refs = NULL; 2447 2448 ULIST_ITER_INIT(&ref_uiter); 2449 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2450 const u64 leaf_bytenr = ref_node->val; 2451 struct ulist_node *root_node; 2452 struct ulist_iterator root_uiter; 2453 struct extent_inode_elem *inode_list; 2454 2455 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux; 2456 2457 if (ctx->cache_lookup) { 2458 const u64 *root_ids; 2459 int root_count; 2460 bool cached; 2461 2462 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx, 2463 &root_ids, &root_count); 2464 if (cached) { 2465 for (int i = 0; i < root_count; i++) { 2466 ret = iterate_leaf_refs(ctx->fs_info, 2467 inode_list, 2468 root_ids[i], 2469 leaf_bytenr, 2470 iterate, 2471 user_ctx); 2472 if (ret) 2473 break; 2474 } 2475 continue; 2476 } 2477 } 2478 2479 if (!ctx->roots) { 2480 ctx->roots = ulist_alloc(GFP_NOFS); 2481 if (!ctx->roots) { 2482 ret = -ENOMEM; 2483 break; 2484 } 2485 } 2486 2487 ctx->bytenr = leaf_bytenr; 2488 ret = btrfs_find_all_roots_safe(ctx); 2489 if (ret) 2490 break; 2491 2492 if (ctx->cache_store) 2493 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx); 2494 2495 ULIST_ITER_INIT(&root_uiter); 2496 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) { 2497 btrfs_debug(ctx->fs_info, 2498 "root %llu references leaf %llu, data list %#llx", 2499 root_node->val, ref_node->val, 2500 ref_node->aux); 2501 ret = iterate_leaf_refs(ctx->fs_info, inode_list, 2502 root_node->val, ctx->bytenr, 2503 iterate, user_ctx); 2504 } 2505 ulist_reinit(ctx->roots); 2506 } 2507 2508 free_leaf_list(refs); 2509 out: 2510 if (ctx->trans) { 2511 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem); 2512 btrfs_end_transaction(ctx->trans); 2513 ctx->trans = NULL; 2514 } else { 2515 up_read(&ctx->fs_info->commit_root_sem); 2516 } 2517 2518 ulist_free(ctx->roots); 2519 ctx->roots = NULL; 2520 2521 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP) 2522 ret = 0; 2523 2524 return ret; 2525 } 2526 2527 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx) 2528 { 2529 struct btrfs_data_container *inodes = ctx; 2530 const size_t c = 3 * sizeof(u64); 2531 2532 if (inodes->bytes_left >= c) { 2533 inodes->bytes_left -= c; 2534 inodes->val[inodes->elem_cnt] = inum; 2535 inodes->val[inodes->elem_cnt + 1] = offset; 2536 inodes->val[inodes->elem_cnt + 2] = root; 2537 inodes->elem_cnt += 3; 2538 } else { 2539 inodes->bytes_missing += c - inodes->bytes_left; 2540 inodes->bytes_left = 0; 2541 inodes->elem_missed += 3; 2542 } 2543 2544 return 0; 2545 } 2546 2547 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2548 void *ctx, bool ignore_offset) 2549 { 2550 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 2551 int ret; 2552 u64 flags = 0; 2553 struct btrfs_key found_key; 2554 struct btrfs_path *path; 2555 2556 path = btrfs_alloc_path(); 2557 if (!path) 2558 return -ENOMEM; 2559 2560 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2561 btrfs_free_path(path); 2562 if (ret < 0) 2563 return ret; 2564 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2565 return -EINVAL; 2566 2567 walk_ctx.bytenr = found_key.objectid; 2568 if (ignore_offset) 2569 walk_ctx.ignore_extent_item_pos = true; 2570 else 2571 walk_ctx.extent_item_pos = logical - found_key.objectid; 2572 walk_ctx.fs_info = fs_info; 2573 2574 return iterate_extent_inodes(&walk_ctx, false, build_ino_list, ctx); 2575 } 2576 2577 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2578 struct extent_buffer *eb, struct inode_fs_paths *ipath); 2579 2580 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath) 2581 { 2582 int ret = 0; 2583 int slot; 2584 u32 cur; 2585 u32 len; 2586 u32 name_len; 2587 u64 parent = 0; 2588 int found = 0; 2589 struct btrfs_root *fs_root = ipath->fs_root; 2590 struct btrfs_path *path = ipath->btrfs_path; 2591 struct extent_buffer *eb; 2592 struct btrfs_inode_ref *iref; 2593 struct btrfs_key found_key; 2594 2595 while (!ret) { 2596 ret = btrfs_find_item(fs_root, path, inum, 2597 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2598 &found_key); 2599 2600 if (ret < 0) 2601 break; 2602 if (ret) { 2603 ret = found ? 0 : -ENOENT; 2604 break; 2605 } 2606 ++found; 2607 2608 parent = found_key.offset; 2609 slot = path->slots[0]; 2610 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2611 if (!eb) { 2612 ret = -ENOMEM; 2613 break; 2614 } 2615 btrfs_release_path(path); 2616 2617 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2618 2619 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2620 name_len = btrfs_inode_ref_name_len(eb, iref); 2621 /* path must be released before calling iterate()! */ 2622 btrfs_debug(fs_root->fs_info, 2623 "following ref at offset %u for inode %llu in tree %llu", 2624 cur, found_key.objectid, 2625 btrfs_root_id(fs_root)); 2626 ret = inode_to_path(parent, name_len, 2627 (unsigned long)(iref + 1), eb, ipath); 2628 if (ret) 2629 break; 2630 len = sizeof(*iref) + name_len; 2631 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2632 } 2633 free_extent_buffer(eb); 2634 } 2635 2636 btrfs_release_path(path); 2637 2638 return ret; 2639 } 2640 2641 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath) 2642 { 2643 int ret; 2644 int slot; 2645 u64 offset = 0; 2646 u64 parent; 2647 int found = 0; 2648 struct btrfs_root *fs_root = ipath->fs_root; 2649 struct btrfs_path *path = ipath->btrfs_path; 2650 struct extent_buffer *eb; 2651 struct btrfs_inode_extref *extref; 2652 u32 item_size; 2653 u32 cur_offset; 2654 unsigned long ptr; 2655 2656 while (1) { 2657 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2658 &offset); 2659 if (ret < 0) 2660 break; 2661 if (ret) { 2662 ret = found ? 0 : -ENOENT; 2663 break; 2664 } 2665 ++found; 2666 2667 slot = path->slots[0]; 2668 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2669 if (!eb) { 2670 ret = -ENOMEM; 2671 break; 2672 } 2673 btrfs_release_path(path); 2674 2675 item_size = btrfs_item_size(eb, slot); 2676 ptr = btrfs_item_ptr_offset(eb, slot); 2677 cur_offset = 0; 2678 2679 while (cur_offset < item_size) { 2680 u32 name_len; 2681 2682 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2683 parent = btrfs_inode_extref_parent(eb, extref); 2684 name_len = btrfs_inode_extref_name_len(eb, extref); 2685 ret = inode_to_path(parent, name_len, 2686 (unsigned long)&extref->name, eb, ipath); 2687 if (ret) 2688 break; 2689 2690 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2691 cur_offset += sizeof(*extref); 2692 } 2693 free_extent_buffer(eb); 2694 2695 offset++; 2696 } 2697 2698 btrfs_release_path(path); 2699 2700 return ret; 2701 } 2702 2703 /* 2704 * returns 0 if the path could be dumped (probably truncated) 2705 * returns <0 in case of an error 2706 */ 2707 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2708 struct extent_buffer *eb, struct inode_fs_paths *ipath) 2709 { 2710 char *fspath; 2711 char *fspath_min; 2712 int i = ipath->fspath->elem_cnt; 2713 const int s_ptr = sizeof(char *); 2714 u32 bytes_left; 2715 2716 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2717 ipath->fspath->bytes_left - s_ptr : 0; 2718 2719 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2720 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2721 name_off, eb, inum, fspath_min, bytes_left); 2722 if (IS_ERR(fspath)) 2723 return PTR_ERR(fspath); 2724 2725 if (fspath > fspath_min) { 2726 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2727 ++ipath->fspath->elem_cnt; 2728 ipath->fspath->bytes_left = fspath - fspath_min; 2729 } else { 2730 ++ipath->fspath->elem_missed; 2731 ipath->fspath->bytes_missing += fspath_min - fspath; 2732 ipath->fspath->bytes_left = 0; 2733 } 2734 2735 return 0; 2736 } 2737 2738 /* 2739 * this dumps all file system paths to the inode into the ipath struct, provided 2740 * is has been created large enough. each path is zero-terminated and accessed 2741 * from ipath->fspath->val[i]. 2742 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2743 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2744 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2745 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2746 * have been needed to return all paths. 2747 */ 2748 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2749 { 2750 int ret; 2751 int found_refs = 0; 2752 2753 ret = iterate_inode_refs(inum, ipath); 2754 if (!ret) 2755 ++found_refs; 2756 else if (ret != -ENOENT) 2757 return ret; 2758 2759 ret = iterate_inode_extrefs(inum, ipath); 2760 if (ret == -ENOENT && found_refs) 2761 return 0; 2762 2763 return ret; 2764 } 2765 2766 struct btrfs_data_container *init_data_container(u32 total_bytes) 2767 { 2768 struct btrfs_data_container *data; 2769 size_t alloc_bytes; 2770 2771 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2772 data = kvzalloc(alloc_bytes, GFP_KERNEL); 2773 if (!data) 2774 return ERR_PTR(-ENOMEM); 2775 2776 if (total_bytes >= sizeof(*data)) 2777 data->bytes_left = total_bytes - sizeof(*data); 2778 else 2779 data->bytes_missing = sizeof(*data) - total_bytes; 2780 2781 return data; 2782 } 2783 2784 /* 2785 * allocates space to return multiple file system paths for an inode. 2786 * total_bytes to allocate are passed, note that space usable for actual path 2787 * information will be total_bytes - sizeof(struct inode_fs_paths). 2788 * the returned pointer must be freed with __free_inode_fs_paths() in the end. 2789 */ 2790 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2791 struct btrfs_path *path) 2792 { 2793 struct inode_fs_paths *ifp; 2794 struct btrfs_data_container *fspath; 2795 2796 fspath = init_data_container(total_bytes); 2797 if (IS_ERR(fspath)) 2798 return ERR_CAST(fspath); 2799 2800 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2801 if (!ifp) { 2802 kvfree(fspath); 2803 return ERR_PTR(-ENOMEM); 2804 } 2805 2806 ifp->btrfs_path = path; 2807 ifp->fspath = fspath; 2808 ifp->fs_root = fs_root; 2809 2810 return ifp; 2811 } 2812 2813 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info) 2814 { 2815 struct btrfs_backref_iter *ret; 2816 2817 ret = kzalloc(sizeof(*ret), GFP_NOFS); 2818 if (!ret) 2819 return NULL; 2820 2821 ret->path = btrfs_alloc_path(); 2822 if (!ret->path) { 2823 kfree(ret); 2824 return NULL; 2825 } 2826 2827 /* Current backref iterator only supports iteration in commit root */ 2828 ret->path->search_commit_root = true; 2829 ret->path->skip_locking = true; 2830 ret->fs_info = fs_info; 2831 2832 return ret; 2833 } 2834 2835 static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter) 2836 { 2837 iter->bytenr = 0; 2838 iter->item_ptr = 0; 2839 iter->cur_ptr = 0; 2840 iter->end_ptr = 0; 2841 btrfs_release_path(iter->path); 2842 memset(&iter->cur_key, 0, sizeof(iter->cur_key)); 2843 } 2844 2845 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2846 { 2847 struct btrfs_fs_info *fs_info = iter->fs_info; 2848 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2849 struct btrfs_path *path = iter->path; 2850 struct btrfs_extent_item *ei; 2851 struct btrfs_key key; 2852 int ret; 2853 2854 key.objectid = bytenr; 2855 key.type = BTRFS_METADATA_ITEM_KEY; 2856 key.offset = (u64)-1; 2857 iter->bytenr = bytenr; 2858 2859 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2860 if (ret < 0) 2861 return ret; 2862 if (unlikely(ret == 0)) { 2863 /* 2864 * Key with offset -1 found, there would have to exist an extent 2865 * item with such offset, but this is out of the valid range. 2866 */ 2867 ret = -EUCLEAN; 2868 goto release; 2869 } 2870 if (unlikely(path->slots[0] == 0)) { 2871 DEBUG_WARN(); 2872 ret = -EUCLEAN; 2873 goto release; 2874 } 2875 path->slots[0]--; 2876 2877 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2878 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2879 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2880 ret = -ENOENT; 2881 goto release; 2882 } 2883 memcpy(&iter->cur_key, &key, sizeof(key)); 2884 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2885 path->slots[0]); 2886 iter->end_ptr = (u32)(iter->item_ptr + 2887 btrfs_item_size(path->nodes[0], path->slots[0])); 2888 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2889 struct btrfs_extent_item); 2890 2891 /* 2892 * Only support iteration on tree backref yet. 2893 * 2894 * This is an extra precaution for non skinny-metadata, where 2895 * EXTENT_ITEM is also used for tree blocks, that we can only use 2896 * extent flags to determine if it's a tree block. 2897 */ 2898 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2899 ret = -ENOTSUPP; 2900 goto release; 2901 } 2902 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2903 2904 /* If there is no inline backref, go search for keyed backref */ 2905 if (iter->cur_ptr >= iter->end_ptr) { 2906 ret = btrfs_next_item(extent_root, path); 2907 2908 /* No inline nor keyed ref */ 2909 if (ret > 0) { 2910 ret = -ENOENT; 2911 goto release; 2912 } 2913 if (ret < 0) 2914 goto release; 2915 2916 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2917 path->slots[0]); 2918 if (iter->cur_key.objectid != bytenr || 2919 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2920 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2921 ret = -ENOENT; 2922 goto release; 2923 } 2924 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2925 path->slots[0]); 2926 iter->item_ptr = iter->cur_ptr; 2927 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2928 path->nodes[0], path->slots[0])); 2929 } 2930 2931 return 0; 2932 release: 2933 btrfs_backref_iter_release(iter); 2934 return ret; 2935 } 2936 2937 static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter) 2938 { 2939 if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY || 2940 iter->cur_key.type == BTRFS_METADATA_ITEM_KEY) 2941 return true; 2942 return false; 2943 } 2944 2945 /* 2946 * Go to the next backref item of current bytenr, can be either inlined or 2947 * keyed. 2948 * 2949 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2950 * 2951 * Return 0 if we get next backref without problem. 2952 * Return >0 if there is no extra backref for this bytenr. 2953 * Return <0 if there is something wrong happened. 2954 */ 2955 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2956 { 2957 struct extent_buffer *eb = iter->path->nodes[0]; 2958 struct btrfs_root *extent_root; 2959 struct btrfs_path *path = iter->path; 2960 struct btrfs_extent_inline_ref *iref; 2961 int ret; 2962 u32 size; 2963 2964 if (btrfs_backref_iter_is_inline_ref(iter)) { 2965 /* We're still inside the inline refs */ 2966 ASSERT(iter->cur_ptr < iter->end_ptr); 2967 2968 if (btrfs_backref_has_tree_block_info(iter)) { 2969 /* First tree block info */ 2970 size = sizeof(struct btrfs_tree_block_info); 2971 } else { 2972 /* Use inline ref type to determine the size */ 2973 int type; 2974 2975 iref = (struct btrfs_extent_inline_ref *) 2976 ((unsigned long)iter->cur_ptr); 2977 type = btrfs_extent_inline_ref_type(eb, iref); 2978 2979 size = btrfs_extent_inline_ref_size(type); 2980 } 2981 iter->cur_ptr += size; 2982 if (iter->cur_ptr < iter->end_ptr) 2983 return 0; 2984 2985 /* All inline items iterated, fall through */ 2986 } 2987 2988 /* We're at keyed items, there is no inline item, go to the next one */ 2989 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); 2990 ret = btrfs_next_item(extent_root, iter->path); 2991 if (ret) 2992 return ret; 2993 2994 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2995 if (iter->cur_key.objectid != iter->bytenr || 2996 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2997 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2998 return 1; 2999 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 3000 path->slots[0]); 3001 iter->cur_ptr = iter->item_ptr; 3002 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 3003 path->slots[0]); 3004 return 0; 3005 } 3006 3007 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 3008 struct btrfs_backref_cache *cache, bool is_reloc) 3009 { 3010 int i; 3011 3012 cache->rb_root = RB_ROOT; 3013 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 3014 INIT_LIST_HEAD(&cache->pending[i]); 3015 INIT_LIST_HEAD(&cache->pending_edge); 3016 INIT_LIST_HEAD(&cache->useless_node); 3017 cache->fs_info = fs_info; 3018 cache->is_reloc = is_reloc; 3019 } 3020 3021 struct btrfs_backref_node *btrfs_backref_alloc_node( 3022 struct btrfs_backref_cache *cache, u64 bytenr, int level) 3023 { 3024 struct btrfs_backref_node *node; 3025 3026 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 3027 node = kzalloc(sizeof(*node), GFP_NOFS); 3028 if (!node) 3029 return node; 3030 3031 INIT_LIST_HEAD(&node->list); 3032 INIT_LIST_HEAD(&node->upper); 3033 INIT_LIST_HEAD(&node->lower); 3034 RB_CLEAR_NODE(&node->rb_node); 3035 cache->nr_nodes++; 3036 node->level = level; 3037 node->bytenr = bytenr; 3038 3039 return node; 3040 } 3041 3042 void btrfs_backref_free_node(struct btrfs_backref_cache *cache, 3043 struct btrfs_backref_node *node) 3044 { 3045 if (node) { 3046 ASSERT(list_empty(&node->list)); 3047 ASSERT(list_empty(&node->lower)); 3048 ASSERT(node->eb == NULL); 3049 cache->nr_nodes--; 3050 btrfs_put_root(node->root); 3051 kfree(node); 3052 } 3053 } 3054 3055 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 3056 struct btrfs_backref_cache *cache) 3057 { 3058 struct btrfs_backref_edge *edge; 3059 3060 edge = kzalloc(sizeof(*edge), GFP_NOFS); 3061 if (edge) 3062 cache->nr_edges++; 3063 return edge; 3064 } 3065 3066 void btrfs_backref_free_edge(struct btrfs_backref_cache *cache, 3067 struct btrfs_backref_edge *edge) 3068 { 3069 if (edge) { 3070 cache->nr_edges--; 3071 kfree(edge); 3072 } 3073 } 3074 3075 void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node) 3076 { 3077 if (node->locked) { 3078 btrfs_tree_unlock(node->eb); 3079 node->locked = 0; 3080 } 3081 } 3082 3083 void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node) 3084 { 3085 if (node->eb) { 3086 btrfs_backref_unlock_node_buffer(node); 3087 free_extent_buffer(node->eb); 3088 node->eb = NULL; 3089 } 3090 } 3091 3092 /* 3093 * Drop the backref node from cache without cleaning up its children 3094 * edges. 3095 * 3096 * This can only be called on node without parent edges. 3097 * The children edges are still kept as is. 3098 */ 3099 void btrfs_backref_drop_node(struct btrfs_backref_cache *tree, 3100 struct btrfs_backref_node *node) 3101 { 3102 ASSERT(list_empty(&node->upper)); 3103 3104 btrfs_backref_drop_node_buffer(node); 3105 list_del_init(&node->list); 3106 list_del_init(&node->lower); 3107 if (!RB_EMPTY_NODE(&node->rb_node)) 3108 rb_erase(&node->rb_node, &tree->rb_root); 3109 btrfs_backref_free_node(tree, node); 3110 } 3111 3112 /* 3113 * Drop the backref node from cache, also cleaning up all its 3114 * upper edges and any uncached nodes in the path. 3115 * 3116 * This cleanup happens bottom up, thus the node should either 3117 * be the lowest node in the cache or a detached node. 3118 */ 3119 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 3120 struct btrfs_backref_node *node) 3121 { 3122 struct btrfs_backref_edge *edge; 3123 3124 if (!node) 3125 return; 3126 3127 while (!list_empty(&node->upper)) { 3128 edge = list_first_entry(&node->upper, struct btrfs_backref_edge, 3129 list[LOWER]); 3130 list_del(&edge->list[LOWER]); 3131 list_del(&edge->list[UPPER]); 3132 btrfs_backref_free_edge(cache, edge); 3133 } 3134 3135 btrfs_backref_drop_node(cache, node); 3136 } 3137 3138 /* 3139 * Release all nodes/edges from current cache 3140 */ 3141 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 3142 { 3143 struct btrfs_backref_node *node; 3144 3145 while ((node = rb_entry_safe(rb_first(&cache->rb_root), 3146 struct btrfs_backref_node, rb_node))) 3147 btrfs_backref_cleanup_node(cache, node); 3148 3149 ASSERT(list_empty(&cache->pending_edge)); 3150 ASSERT(list_empty(&cache->useless_node)); 3151 ASSERT(!cache->nr_nodes); 3152 ASSERT(!cache->nr_edges); 3153 } 3154 3155 static void btrfs_backref_link_edge(struct btrfs_backref_edge *edge, 3156 struct btrfs_backref_node *lower, 3157 struct btrfs_backref_node *upper) 3158 { 3159 ASSERT(upper && lower && upper->level == lower->level + 1); 3160 edge->node[LOWER] = lower; 3161 edge->node[UPPER] = upper; 3162 list_add_tail(&edge->list[LOWER], &lower->upper); 3163 } 3164 /* 3165 * Handle direct tree backref 3166 * 3167 * Direct tree backref means, the backref item shows its parent bytenr 3168 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 3169 * 3170 * @ref_key: The converted backref key. 3171 * For keyed backref, it's the item key. 3172 * For inlined backref, objectid is the bytenr, 3173 * type is btrfs_inline_ref_type, offset is 3174 * btrfs_inline_ref_offset. 3175 */ 3176 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 3177 struct btrfs_key *ref_key, 3178 struct btrfs_backref_node *cur) 3179 { 3180 struct btrfs_backref_edge *edge; 3181 struct btrfs_backref_node *upper; 3182 struct rb_node *rb_node; 3183 3184 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 3185 3186 /* Only reloc root uses backref pointing to itself */ 3187 if (ref_key->objectid == ref_key->offset) { 3188 struct btrfs_root *root; 3189 3190 cur->is_reloc_root = 1; 3191 /* Only reloc backref cache cares about a specific root */ 3192 if (cache->is_reloc) { 3193 root = find_reloc_root(cache->fs_info, cur->bytenr); 3194 if (!root) 3195 return -ENOENT; 3196 cur->root = root; 3197 } else { 3198 /* 3199 * For generic purpose backref cache, reloc root node 3200 * is useless. 3201 */ 3202 list_add(&cur->list, &cache->useless_node); 3203 } 3204 return 0; 3205 } 3206 3207 edge = btrfs_backref_alloc_edge(cache); 3208 if (!edge) 3209 return -ENOMEM; 3210 3211 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 3212 if (!rb_node) { 3213 /* Parent node not yet cached */ 3214 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 3215 cur->level + 1); 3216 if (!upper) { 3217 btrfs_backref_free_edge(cache, edge); 3218 return -ENOMEM; 3219 } 3220 3221 /* 3222 * Backrefs for the upper level block isn't cached, add the 3223 * block to pending list 3224 */ 3225 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3226 } else { 3227 /* Parent node already cached */ 3228 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 3229 ASSERT(upper->checked); 3230 INIT_LIST_HEAD(&edge->list[UPPER]); 3231 } 3232 btrfs_backref_link_edge(edge, cur, upper); 3233 return 0; 3234 } 3235 3236 /* 3237 * Handle indirect tree backref 3238 * 3239 * Indirect tree backref means, we only know which tree the node belongs to. 3240 * We still need to do a tree search to find out the parents. This is for 3241 * TREE_BLOCK_REF backref (keyed or inlined). 3242 * 3243 * @trans: Transaction handle. 3244 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 3245 * @tree_key: The first key of this tree block. 3246 * @path: A clean (released) path, to avoid allocating path every time 3247 * the function get called. 3248 */ 3249 static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans, 3250 struct btrfs_backref_cache *cache, 3251 struct btrfs_path *path, 3252 struct btrfs_key *ref_key, 3253 struct btrfs_key *tree_key, 3254 struct btrfs_backref_node *cur) 3255 { 3256 struct btrfs_fs_info *fs_info = cache->fs_info; 3257 struct btrfs_backref_node *upper; 3258 struct btrfs_backref_node *lower; 3259 struct btrfs_backref_edge *edge; 3260 struct extent_buffer *eb; 3261 struct btrfs_root *root; 3262 struct rb_node *rb_node; 3263 int level; 3264 bool need_check = true; 3265 int ret; 3266 3267 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 3268 if (IS_ERR(root)) 3269 return PTR_ERR(root); 3270 3271 /* We shouldn't be using backref cache for non-shareable roots. */ 3272 if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) { 3273 btrfs_put_root(root); 3274 return -EUCLEAN; 3275 } 3276 3277 if (btrfs_root_level(&root->root_item) == cur->level) { 3278 /* Tree root */ 3279 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 3280 /* 3281 * For reloc backref cache, we may ignore reloc root. But for 3282 * general purpose backref cache, we can't rely on 3283 * btrfs_should_ignore_reloc_root() as it may conflict with 3284 * current running relocation and lead to missing root. 3285 * 3286 * For general purpose backref cache, reloc root detection is 3287 * completely relying on direct backref (key->offset is parent 3288 * bytenr), thus only do such check for reloc cache. 3289 */ 3290 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 3291 btrfs_put_root(root); 3292 list_add(&cur->list, &cache->useless_node); 3293 } else { 3294 cur->root = root; 3295 } 3296 return 0; 3297 } 3298 3299 level = cur->level + 1; 3300 3301 /* Search the tree to find parent blocks referring to the block */ 3302 path->search_commit_root = true; 3303 path->skip_locking = true; 3304 path->lowest_level = level; 3305 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 3306 path->lowest_level = 0; 3307 if (ret < 0) { 3308 btrfs_put_root(root); 3309 return ret; 3310 } 3311 if (ret > 0 && path->slots[level] > 0) 3312 path->slots[level]--; 3313 3314 eb = path->nodes[level]; 3315 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 3316 btrfs_err(fs_info, 3317 "couldn't find block (%llu) (level %d) in tree (%llu) with key " BTRFS_KEY_FMT, 3318 cur->bytenr, level - 1, btrfs_root_id(root), 3319 BTRFS_KEY_FMT_VALUE(tree_key)); 3320 btrfs_put_root(root); 3321 ret = -ENOENT; 3322 goto out; 3323 } 3324 lower = cur; 3325 3326 /* Add all nodes and edges in the path */ 3327 for (; level < BTRFS_MAX_LEVEL; level++) { 3328 if (!path->nodes[level]) { 3329 ASSERT(btrfs_root_bytenr(&root->root_item) == 3330 lower->bytenr); 3331 /* Same as previous should_ignore_reloc_root() call */ 3332 if (btrfs_should_ignore_reloc_root(root) && 3333 cache->is_reloc) { 3334 btrfs_put_root(root); 3335 list_add(&lower->list, &cache->useless_node); 3336 } else { 3337 lower->root = root; 3338 } 3339 break; 3340 } 3341 3342 edge = btrfs_backref_alloc_edge(cache); 3343 if (!edge) { 3344 btrfs_put_root(root); 3345 ret = -ENOMEM; 3346 goto out; 3347 } 3348 3349 eb = path->nodes[level]; 3350 rb_node = rb_simple_search(&cache->rb_root, eb->start); 3351 if (!rb_node) { 3352 upper = btrfs_backref_alloc_node(cache, eb->start, 3353 lower->level + 1); 3354 if (!upper) { 3355 btrfs_put_root(root); 3356 btrfs_backref_free_edge(cache, edge); 3357 ret = -ENOMEM; 3358 goto out; 3359 } 3360 upper->owner = btrfs_header_owner(eb); 3361 3362 /* We shouldn't be using backref cache for non shareable roots. */ 3363 if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) { 3364 btrfs_put_root(root); 3365 btrfs_backref_free_edge(cache, edge); 3366 btrfs_backref_free_node(cache, upper); 3367 ret = -EUCLEAN; 3368 goto out; 3369 } 3370 3371 /* 3372 * If we know the block isn't shared we can avoid 3373 * checking its backrefs. 3374 */ 3375 if (btrfs_block_can_be_shared(trans, root, eb)) 3376 upper->checked = 0; 3377 else 3378 upper->checked = 1; 3379 3380 /* 3381 * Add the block to pending list if we need to check its 3382 * backrefs, we only do this once while walking up a 3383 * tree as we will catch anything else later on. 3384 */ 3385 if (!upper->checked && need_check) { 3386 need_check = false; 3387 list_add_tail(&edge->list[UPPER], 3388 &cache->pending_edge); 3389 } else { 3390 if (upper->checked) 3391 need_check = true; 3392 INIT_LIST_HEAD(&edge->list[UPPER]); 3393 } 3394 } else { 3395 upper = rb_entry(rb_node, struct btrfs_backref_node, 3396 rb_node); 3397 ASSERT(upper->checked); 3398 INIT_LIST_HEAD(&edge->list[UPPER]); 3399 if (!upper->owner) 3400 upper->owner = btrfs_header_owner(eb); 3401 } 3402 btrfs_backref_link_edge(edge, lower, upper); 3403 3404 if (rb_node) { 3405 btrfs_put_root(root); 3406 break; 3407 } 3408 lower = upper; 3409 upper = NULL; 3410 } 3411 out: 3412 btrfs_release_path(path); 3413 return ret; 3414 } 3415 3416 /* 3417 * Add backref node @cur into @cache. 3418 * 3419 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 3420 * links aren't yet bi-directional. Needs to finish such links. 3421 * Use btrfs_backref_finish_upper_links() to finish such linkage. 3422 * 3423 * @trans: Transaction handle. 3424 * @path: Released path for indirect tree backref lookup 3425 * @iter: Released backref iter for extent tree search 3426 * @node_key: The first key of the tree block 3427 */ 3428 int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans, 3429 struct btrfs_backref_cache *cache, 3430 struct btrfs_path *path, 3431 struct btrfs_backref_iter *iter, 3432 struct btrfs_key *node_key, 3433 struct btrfs_backref_node *cur) 3434 { 3435 struct btrfs_backref_edge *edge; 3436 struct btrfs_backref_node *exist; 3437 int ret; 3438 3439 ret = btrfs_backref_iter_start(iter, cur->bytenr); 3440 if (ret < 0) 3441 return ret; 3442 /* 3443 * We skip the first btrfs_tree_block_info, as we don't use the key 3444 * stored in it, but fetch it from the tree block 3445 */ 3446 if (btrfs_backref_has_tree_block_info(iter)) { 3447 ret = btrfs_backref_iter_next(iter); 3448 if (ret < 0) 3449 goto out; 3450 /* No extra backref? This means the tree block is corrupted */ 3451 if (unlikely(ret > 0)) { 3452 ret = -EUCLEAN; 3453 goto out; 3454 } 3455 } 3456 WARN_ON(cur->checked); 3457 if (!list_empty(&cur->upper)) { 3458 /* 3459 * The backref was added previously when processing backref of 3460 * type BTRFS_TREE_BLOCK_REF_KEY 3461 */ 3462 ASSERT(list_is_singular(&cur->upper)); 3463 edge = list_first_entry(&cur->upper, struct btrfs_backref_edge, 3464 list[LOWER]); 3465 ASSERT(list_empty(&edge->list[UPPER])); 3466 exist = edge->node[UPPER]; 3467 /* 3468 * Add the upper level block to pending list if we need check 3469 * its backrefs 3470 */ 3471 if (!exist->checked) 3472 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3473 } else { 3474 exist = NULL; 3475 } 3476 3477 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 3478 struct extent_buffer *eb; 3479 struct btrfs_key key; 3480 int type; 3481 3482 cond_resched(); 3483 eb = iter->path->nodes[0]; 3484 3485 key.objectid = iter->bytenr; 3486 if (btrfs_backref_iter_is_inline_ref(iter)) { 3487 struct btrfs_extent_inline_ref *iref; 3488 3489 /* Update key for inline backref */ 3490 iref = (struct btrfs_extent_inline_ref *) 3491 ((unsigned long)iter->cur_ptr); 3492 type = btrfs_get_extent_inline_ref_type(eb, iref, 3493 BTRFS_REF_TYPE_BLOCK); 3494 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) { 3495 ret = -EUCLEAN; 3496 goto out; 3497 } 3498 key.type = type; 3499 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3500 } else { 3501 key.type = iter->cur_key.type; 3502 key.offset = iter->cur_key.offset; 3503 } 3504 3505 /* 3506 * Parent node found and matches current inline ref, no need to 3507 * rebuild this node for this inline ref 3508 */ 3509 if (exist && 3510 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 3511 exist->owner == key.offset) || 3512 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 3513 exist->bytenr == key.offset))) { 3514 exist = NULL; 3515 continue; 3516 } 3517 3518 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 3519 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 3520 ret = handle_direct_tree_backref(cache, &key, cur); 3521 if (ret < 0) 3522 goto out; 3523 } else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) { 3524 /* 3525 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref 3526 * offset means the root objectid. We need to search 3527 * the tree to get its parent bytenr. 3528 */ 3529 ret = handle_indirect_tree_backref(trans, cache, path, 3530 &key, node_key, cur); 3531 if (ret < 0) 3532 goto out; 3533 } 3534 /* 3535 * Unrecognized tree backref items (if it can pass tree-checker) 3536 * would be ignored. 3537 */ 3538 } 3539 ret = 0; 3540 cur->checked = 1; 3541 WARN_ON(exist); 3542 out: 3543 btrfs_backref_iter_release(iter); 3544 return ret; 3545 } 3546 3547 /* 3548 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 3549 */ 3550 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 3551 struct btrfs_backref_node *start) 3552 { 3553 struct list_head *useless_node = &cache->useless_node; 3554 struct btrfs_backref_edge *edge; 3555 struct rb_node *rb_node; 3556 LIST_HEAD(pending_edge); 3557 3558 ASSERT(start->checked); 3559 3560 rb_node = rb_simple_insert(&cache->rb_root, &start->simple_node); 3561 if (rb_node) 3562 btrfs_backref_panic(cache->fs_info, start->bytenr, -EEXIST); 3563 3564 /* 3565 * Use breadth first search to iterate all related edges. 3566 * 3567 * The starting points are all the edges of this node 3568 */ 3569 list_for_each_entry(edge, &start->upper, list[LOWER]) 3570 list_add_tail(&edge->list[UPPER], &pending_edge); 3571 3572 while (!list_empty(&pending_edge)) { 3573 struct btrfs_backref_node *upper; 3574 struct btrfs_backref_node *lower; 3575 3576 edge = list_first_entry(&pending_edge, 3577 struct btrfs_backref_edge, list[UPPER]); 3578 list_del_init(&edge->list[UPPER]); 3579 upper = edge->node[UPPER]; 3580 lower = edge->node[LOWER]; 3581 3582 /* Parent is detached, no need to keep any edges */ 3583 if (upper->detached) { 3584 list_del(&edge->list[LOWER]); 3585 btrfs_backref_free_edge(cache, edge); 3586 3587 /* Lower node is orphan, queue for cleanup */ 3588 if (list_empty(&lower->upper)) 3589 list_add(&lower->list, useless_node); 3590 continue; 3591 } 3592 3593 /* 3594 * All new nodes added in current build_backref_tree() haven't 3595 * been linked to the cache rb tree. 3596 * So if we have upper->rb_node populated, this means a cache 3597 * hit. We only need to link the edge, as @upper and all its 3598 * parents have already been linked. 3599 */ 3600 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3601 list_add_tail(&edge->list[UPPER], &upper->lower); 3602 continue; 3603 } 3604 3605 /* Sanity check, we shouldn't have any unchecked nodes */ 3606 if (unlikely(!upper->checked)) { 3607 DEBUG_WARN("we should not have any unchecked nodes"); 3608 return -EUCLEAN; 3609 } 3610 3611 rb_node = rb_simple_insert(&cache->rb_root, &upper->simple_node); 3612 if (unlikely(rb_node)) { 3613 btrfs_backref_panic(cache->fs_info, upper->bytenr, -EEXIST); 3614 return -EUCLEAN; 3615 } 3616 3617 list_add_tail(&edge->list[UPPER], &upper->lower); 3618 3619 /* 3620 * Also queue all the parent edges of this uncached node 3621 * to finish the upper linkage 3622 */ 3623 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3624 list_add_tail(&edge->list[UPPER], &pending_edge); 3625 } 3626 return 0; 3627 } 3628 3629 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3630 struct btrfs_backref_node *node) 3631 { 3632 struct btrfs_backref_node *lower; 3633 struct btrfs_backref_node *upper; 3634 struct btrfs_backref_edge *edge; 3635 3636 while (!list_empty(&cache->useless_node)) { 3637 lower = list_first_entry(&cache->useless_node, 3638 struct btrfs_backref_node, list); 3639 list_del_init(&lower->list); 3640 } 3641 while (!list_empty(&cache->pending_edge)) { 3642 edge = list_first_entry(&cache->pending_edge, 3643 struct btrfs_backref_edge, list[UPPER]); 3644 list_del(&edge->list[UPPER]); 3645 list_del(&edge->list[LOWER]); 3646 lower = edge->node[LOWER]; 3647 upper = edge->node[UPPER]; 3648 btrfs_backref_free_edge(cache, edge); 3649 3650 /* 3651 * Lower is no longer linked to any upper backref nodes and 3652 * isn't in the cache, we can free it ourselves. 3653 */ 3654 if (list_empty(&lower->upper) && 3655 RB_EMPTY_NODE(&lower->rb_node)) 3656 list_add(&lower->list, &cache->useless_node); 3657 3658 if (!RB_EMPTY_NODE(&upper->rb_node)) 3659 continue; 3660 3661 /* Add this guy's upper edges to the list to process */ 3662 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3663 list_add_tail(&edge->list[UPPER], 3664 &cache->pending_edge); 3665 if (list_empty(&upper->upper)) 3666 list_add(&upper->list, &cache->useless_node); 3667 } 3668 3669 while (!list_empty(&cache->useless_node)) { 3670 lower = list_first_entry(&cache->useless_node, 3671 struct btrfs_backref_node, list); 3672 list_del_init(&lower->list); 3673 if (lower == node) 3674 node = NULL; 3675 btrfs_backref_drop_node(cache, lower); 3676 } 3677 3678 btrfs_backref_cleanup_node(cache, node); 3679 ASSERT(list_empty(&cache->useless_node) && 3680 list_empty(&cache->pending_edge)); 3681 } 3682