xref: /linux/fs/btrfs/backref.c (revision 7696286034ac72cf9b46499be1715ac62fd302c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "extent-tree.h"
21 #include "relocation.h"
22 #include "tree-checker.h"
23 
24 /* Just arbitrary numbers so we can be sure one of these happened. */
25 #define BACKREF_FOUND_SHARED     6
26 #define BACKREF_FOUND_NOT_SHARED 7
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	u64 num_bytes;
32 	struct extent_inode_elem *next;
33 };
34 
35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36 			      const struct btrfs_key *key,
37 			      const struct extent_buffer *eb,
38 			      const struct btrfs_file_extent_item *fi,
39 			      struct extent_inode_elem **eie)
40 {
41 	const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
42 	u64 offset = key->offset;
43 	struct extent_inode_elem *e;
44 	const u64 *root_ids;
45 	int root_count;
46 	bool cached;
47 
48 	if (!ctx->ignore_extent_item_pos &&
49 	    !btrfs_file_extent_compression(eb, fi) &&
50 	    !btrfs_file_extent_encryption(eb, fi) &&
51 	    !btrfs_file_extent_other_encoding(eb, fi)) {
52 		u64 data_offset;
53 
54 		data_offset = btrfs_file_extent_offset(eb, fi);
55 
56 		if (ctx->extent_item_pos < data_offset ||
57 		    ctx->extent_item_pos >= data_offset + data_len)
58 			return 1;
59 		offset += ctx->extent_item_pos - data_offset;
60 	}
61 
62 	if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
63 		goto add_inode_elem;
64 
65 	cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
66 				   &root_count);
67 	if (!cached)
68 		goto add_inode_elem;
69 
70 	for (int i = 0; i < root_count; i++) {
71 		int ret;
72 
73 		ret = ctx->indirect_ref_iterator(key->objectid, offset,
74 						 data_len, root_ids[i],
75 						 ctx->user_ctx);
76 		if (ret)
77 			return ret;
78 	}
79 
80 add_inode_elem:
81 	e = kmalloc(sizeof(*e), GFP_NOFS);
82 	if (!e)
83 		return -ENOMEM;
84 
85 	e->next = *eie;
86 	e->inum = key->objectid;
87 	e->offset = offset;
88 	e->num_bytes = data_len;
89 	*eie = e;
90 
91 	return 0;
92 }
93 
94 static void free_inode_elem_list(struct extent_inode_elem *eie)
95 {
96 	struct extent_inode_elem *eie_next;
97 
98 	for (; eie; eie = eie_next) {
99 		eie_next = eie->next;
100 		kfree(eie);
101 	}
102 }
103 
104 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
105 			     const struct extent_buffer *eb,
106 			     struct extent_inode_elem **eie)
107 {
108 	u64 disk_byte;
109 	struct btrfs_key key;
110 	struct btrfs_file_extent_item *fi;
111 	int slot;
112 	int nritems;
113 	int extent_type;
114 	int ret;
115 
116 	/*
117 	 * from the shared data ref, we only have the leaf but we need
118 	 * the key. thus, we must look into all items and see that we
119 	 * find one (some) with a reference to our extent item.
120 	 */
121 	nritems = btrfs_header_nritems(eb);
122 	for (slot = 0; slot < nritems; ++slot) {
123 		btrfs_item_key_to_cpu(eb, &key, slot);
124 		if (key.type != BTRFS_EXTENT_DATA_KEY)
125 			continue;
126 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
127 		extent_type = btrfs_file_extent_type(eb, fi);
128 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
129 			continue;
130 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
131 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
132 		if (disk_byte != ctx->bytenr)
133 			continue;
134 
135 		ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
136 		if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
137 			return ret;
138 	}
139 
140 	return 0;
141 }
142 
143 struct preftree {
144 	struct rb_root_cached root;
145 	unsigned int count;
146 };
147 
148 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
149 
150 struct preftrees {
151 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
152 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
153 	struct preftree indirect_missing_keys;
154 };
155 
156 /*
157  * Checks for a shared extent during backref search.
158  *
159  * The share_count tracks prelim_refs (direct and indirect) having a
160  * ref->count >0:
161  *  - incremented when a ref->count transitions to >0
162  *  - decremented when a ref->count transitions to <1
163  */
164 struct share_check {
165 	struct btrfs_backref_share_check_ctx *ctx;
166 	struct btrfs_root *root;
167 	u64 inum;
168 	u64 data_bytenr;
169 	u64 data_extent_gen;
170 	/*
171 	 * Counts number of inodes that refer to an extent (different inodes in
172 	 * the same root or different roots) that we could find. The sharedness
173 	 * check typically stops once this counter gets greater than 1, so it
174 	 * may not reflect the total number of inodes.
175 	 */
176 	int share_count;
177 	/*
178 	 * The number of times we found our inode refers to the data extent we
179 	 * are determining the sharedness. In other words, how many file extent
180 	 * items we could find for our inode that point to our target data
181 	 * extent. The value we get here after finishing the extent sharedness
182 	 * check may be smaller than reality, but if it ends up being greater
183 	 * than 1, then we know for sure the inode has multiple file extent
184 	 * items that point to our inode, and we can safely assume it's useful
185 	 * to cache the sharedness check result.
186 	 */
187 	int self_ref_count;
188 	bool have_delayed_delete_refs;
189 };
190 
191 static inline int extent_is_shared(struct share_check *sc)
192 {
193 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
194 }
195 
196 static struct kmem_cache *btrfs_prelim_ref_cache;
197 
198 int __init btrfs_prelim_ref_init(void)
199 {
200 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
201 					sizeof(struct prelim_ref), 0, 0, NULL);
202 	if (!btrfs_prelim_ref_cache)
203 		return -ENOMEM;
204 	return 0;
205 }
206 
207 void __cold btrfs_prelim_ref_exit(void)
208 {
209 	kmem_cache_destroy(btrfs_prelim_ref_cache);
210 }
211 
212 static void free_pref(struct prelim_ref *ref)
213 {
214 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
215 }
216 
217 /*
218  * Return 0 when both refs are for the same block (and can be merged).
219  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
220  * indicates a 'higher' block.
221  */
222 static int prelim_ref_compare(const struct prelim_ref *ref1,
223 			      const struct prelim_ref *ref2)
224 {
225 	if (ref1->level < ref2->level)
226 		return -1;
227 	if (ref1->level > ref2->level)
228 		return 1;
229 	if (ref1->root_id < ref2->root_id)
230 		return -1;
231 	if (ref1->root_id > ref2->root_id)
232 		return 1;
233 	if (ref1->key_for_search.type < ref2->key_for_search.type)
234 		return -1;
235 	if (ref1->key_for_search.type > ref2->key_for_search.type)
236 		return 1;
237 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
238 		return -1;
239 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
240 		return 1;
241 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
242 		return -1;
243 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
244 		return 1;
245 	if (ref1->parent < ref2->parent)
246 		return -1;
247 	if (ref1->parent > ref2->parent)
248 		return 1;
249 
250 	return 0;
251 }
252 
253 static int prelim_ref_rb_add_cmp(const struct rb_node *new,
254 				 const struct rb_node *exist)
255 {
256 	const struct prelim_ref *ref_new =
257 		rb_entry(new, struct prelim_ref, rbnode);
258 	const struct prelim_ref *ref_exist =
259 		rb_entry(exist, struct prelim_ref, rbnode);
260 
261 	/*
262 	 * prelim_ref_compare() expects the first parameter as the existing one,
263 	 * different from the rb_find_add_cached() order.
264 	 */
265 	return prelim_ref_compare(ref_exist, ref_new);
266 }
267 
268 static void update_share_count(struct share_check *sc, int oldcount,
269 			       int newcount, const struct prelim_ref *newref)
270 {
271 	if ((!sc) || (oldcount == 0 && newcount < 1))
272 		return;
273 
274 	if (oldcount > 0 && newcount < 1)
275 		sc->share_count--;
276 	else if (oldcount < 1 && newcount > 0)
277 		sc->share_count++;
278 
279 	if (newref->root_id == btrfs_root_id(sc->root) &&
280 	    newref->wanted_disk_byte == sc->data_bytenr &&
281 	    newref->key_for_search.objectid == sc->inum)
282 		sc->self_ref_count += newref->count;
283 }
284 
285 /*
286  * Add @newref to the @root rbtree, merging identical refs.
287  *
288  * Callers should assume that newref has been freed after calling.
289  */
290 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
291 			      struct preftree *preftree,
292 			      struct prelim_ref *newref,
293 			      struct share_check *sc)
294 {
295 	struct rb_root_cached *root;
296 	struct rb_node *exist;
297 
298 	root = &preftree->root;
299 	exist = rb_find_add_cached(&newref->rbnode, root, prelim_ref_rb_add_cmp);
300 	if (exist) {
301 		struct prelim_ref *ref = rb_entry(exist, struct prelim_ref, rbnode);
302 		/* Identical refs, merge them and free @newref */
303 		struct extent_inode_elem *eie = ref->inode_list;
304 
305 		while (eie && eie->next)
306 			eie = eie->next;
307 
308 		if (!eie)
309 			ref->inode_list = newref->inode_list;
310 		else
311 			eie->next = newref->inode_list;
312 		trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
313 							preftree->count);
314 		/*
315 		 * A delayed ref can have newref->count < 0.
316 		 * The ref->count is updated to follow any
317 		 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
318 		 */
319 		update_share_count(sc, ref->count,
320 					ref->count + newref->count, newref);
321 		ref->count += newref->count;
322 		free_pref(newref);
323 		return;
324 	}
325 
326 	update_share_count(sc, 0, newref->count, newref);
327 	preftree->count++;
328 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
329 }
330 
331 /*
332  * Release the entire tree.  We don't care about internal consistency so
333  * just free everything and then reset the tree root.
334  */
335 static void prelim_release(struct preftree *preftree)
336 {
337 	struct prelim_ref *ref, *next_ref;
338 
339 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
340 					     &preftree->root.rb_root, rbnode) {
341 		free_inode_elem_list(ref->inode_list);
342 		free_pref(ref);
343 	}
344 
345 	preftree->root = RB_ROOT_CACHED;
346 	preftree->count = 0;
347 }
348 
349 /*
350  * the rules for all callers of this function are:
351  * - obtaining the parent is the goal
352  * - if you add a key, you must know that it is a correct key
353  * - if you cannot add the parent or a correct key, then we will look into the
354  *   block later to set a correct key
355  *
356  * delayed refs
357  * ============
358  *        backref type | shared | indirect | shared | indirect
359  * information         |   tree |     tree |   data |     data
360  * --------------------+--------+----------+--------+----------
361  *      parent logical |    y   |     -    |    -   |     -
362  *      key to resolve |    -   |     y    |    y   |     y
363  *  tree block logical |    -   |     -    |    -   |     -
364  *  root for resolving |    y   |     y    |    y   |     y
365  *
366  * - column 1:       we've the parent -> done
367  * - column 2, 3, 4: we use the key to find the parent
368  *
369  * on disk refs (inline or keyed)
370  * ==============================
371  *        backref type | shared | indirect | shared | indirect
372  * information         |   tree |     tree |   data |     data
373  * --------------------+--------+----------+--------+----------
374  *      parent logical |    y   |     -    |    y   |     -
375  *      key to resolve |    -   |     -    |    -   |     y
376  *  tree block logical |    y   |     y    |    y   |     y
377  *  root for resolving |    -   |     y    |    y   |     y
378  *
379  * - column 1, 3: we've the parent -> done
380  * - column 2:    we take the first key from the block to find the parent
381  *                (see add_missing_keys)
382  * - column 4:    we use the key to find the parent
383  *
384  * additional information that's available but not required to find the parent
385  * block might help in merging entries to gain some speed.
386  */
387 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
388 			  struct preftree *preftree, u64 root_id,
389 			  const struct btrfs_key *key, int level, u64 parent,
390 			  u64 wanted_disk_byte, int count,
391 			  struct share_check *sc, gfp_t gfp_mask)
392 {
393 	struct prelim_ref *ref;
394 
395 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
396 		return 0;
397 
398 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
399 	if (!ref)
400 		return -ENOMEM;
401 
402 	ref->root_id = root_id;
403 	if (key)
404 		ref->key_for_search = *key;
405 	else
406 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
407 
408 	ref->inode_list = NULL;
409 	ref->level = level;
410 	ref->count = count;
411 	ref->parent = parent;
412 	ref->wanted_disk_byte = wanted_disk_byte;
413 	prelim_ref_insert(fs_info, preftree, ref, sc);
414 	return extent_is_shared(sc);
415 }
416 
417 /* direct refs use root == 0, key == NULL */
418 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
419 			  struct preftrees *preftrees, int level, u64 parent,
420 			  u64 wanted_disk_byte, int count,
421 			  struct share_check *sc, gfp_t gfp_mask)
422 {
423 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
424 			      parent, wanted_disk_byte, count, sc, gfp_mask);
425 }
426 
427 /* indirect refs use parent == 0 */
428 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
429 			    struct preftrees *preftrees, u64 root_id,
430 			    const struct btrfs_key *key, int level,
431 			    u64 wanted_disk_byte, int count,
432 			    struct share_check *sc, gfp_t gfp_mask)
433 {
434 	struct preftree *tree = &preftrees->indirect;
435 
436 	if (!key)
437 		tree = &preftrees->indirect_missing_keys;
438 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
439 			      wanted_disk_byte, count, sc, gfp_mask);
440 }
441 
442 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
443 {
444 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
445 	struct rb_node *parent = NULL;
446 	struct prelim_ref *ref = NULL;
447 	struct prelim_ref target = {};
448 	int result;
449 
450 	target.parent = bytenr;
451 
452 	while (*p) {
453 		parent = *p;
454 		ref = rb_entry(parent, struct prelim_ref, rbnode);
455 		result = prelim_ref_compare(ref, &target);
456 
457 		if (result < 0)
458 			p = &(*p)->rb_left;
459 		else if (result > 0)
460 			p = &(*p)->rb_right;
461 		else
462 			return 1;
463 	}
464 	return 0;
465 }
466 
467 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
468 			   struct btrfs_root *root, struct btrfs_path *path,
469 			   struct ulist *parents,
470 			   struct preftrees *preftrees, struct prelim_ref *ref,
471 			   int level)
472 {
473 	int ret = 0;
474 	int slot;
475 	struct extent_buffer *eb;
476 	struct btrfs_key key;
477 	struct btrfs_key *key_for_search = &ref->key_for_search;
478 	struct btrfs_file_extent_item *fi;
479 	struct extent_inode_elem *eie = NULL, *old = NULL;
480 	u64 disk_byte;
481 	u64 wanted_disk_byte = ref->wanted_disk_byte;
482 	u64 count = 0;
483 	u64 data_offset;
484 	u8 type;
485 
486 	if (level != 0) {
487 		eb = path->nodes[level];
488 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
489 		if (ret < 0)
490 			return ret;
491 		return 0;
492 	}
493 
494 	/*
495 	 * 1. We normally enter this function with the path already pointing to
496 	 *    the first item to check. But sometimes, we may enter it with
497 	 *    slot == nritems.
498 	 * 2. We are searching for normal backref but bytenr of this leaf
499 	 *    matches shared data backref
500 	 * 3. The leaf owner is not equal to the root we are searching
501 	 *
502 	 * For these cases, go to the next leaf before we continue.
503 	 */
504 	eb = path->nodes[0];
505 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
506 	    is_shared_data_backref(preftrees, eb->start) ||
507 	    ref->root_id != btrfs_header_owner(eb)) {
508 		if (ctx->time_seq == BTRFS_SEQ_LAST)
509 			ret = btrfs_next_leaf(root, path);
510 		else
511 			ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
512 	}
513 
514 	while (!ret && count < ref->count) {
515 		eb = path->nodes[0];
516 		slot = path->slots[0];
517 
518 		btrfs_item_key_to_cpu(eb, &key, slot);
519 
520 		if (key.objectid != key_for_search->objectid ||
521 		    key.type != BTRFS_EXTENT_DATA_KEY)
522 			break;
523 
524 		/*
525 		 * We are searching for normal backref but bytenr of this leaf
526 		 * matches shared data backref, OR
527 		 * the leaf owner is not equal to the root we are searching for
528 		 */
529 		if (slot == 0 &&
530 		    (is_shared_data_backref(preftrees, eb->start) ||
531 		     ref->root_id != btrfs_header_owner(eb))) {
532 			if (ctx->time_seq == BTRFS_SEQ_LAST)
533 				ret = btrfs_next_leaf(root, path);
534 			else
535 				ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
536 			continue;
537 		}
538 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
539 		type = btrfs_file_extent_type(eb, fi);
540 		if (type == BTRFS_FILE_EXTENT_INLINE)
541 			goto next;
542 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
543 		data_offset = btrfs_file_extent_offset(eb, fi);
544 
545 		if (disk_byte == wanted_disk_byte) {
546 			eie = NULL;
547 			old = NULL;
548 			if (ref->key_for_search.offset == key.offset - data_offset)
549 				count++;
550 			else
551 				goto next;
552 			if (!ctx->skip_inode_ref_list) {
553 				ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
554 				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
555 				    ret < 0)
556 					break;
557 			}
558 			if (ret > 0)
559 				goto next;
560 			ret = ulist_add_merge_ptr(parents, eb->start,
561 						  eie, (void **)&old, GFP_NOFS);
562 			if (ret < 0)
563 				break;
564 			if (!ret && !ctx->skip_inode_ref_list) {
565 				while (old->next)
566 					old = old->next;
567 				old->next = eie;
568 			}
569 			eie = NULL;
570 		}
571 next:
572 		if (ctx->time_seq == BTRFS_SEQ_LAST)
573 			ret = btrfs_next_item(root, path);
574 		else
575 			ret = btrfs_next_old_item(root, path, ctx->time_seq);
576 	}
577 
578 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
579 		free_inode_elem_list(eie);
580 	else if (ret > 0)
581 		ret = 0;
582 
583 	return ret;
584 }
585 
586 /*
587  * resolve an indirect backref in the form (root_id, key, level)
588  * to a logical address
589  */
590 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
591 				struct btrfs_path *path,
592 				struct preftrees *preftrees,
593 				struct prelim_ref *ref, struct ulist *parents)
594 {
595 	struct btrfs_root *root;
596 	struct extent_buffer *eb;
597 	int ret = 0;
598 	int root_level;
599 	int level = ref->level;
600 	struct btrfs_key search_key = ref->key_for_search;
601 
602 	/*
603 	 * If we're search_commit_root we could possibly be holding locks on
604 	 * other tree nodes.  This happens when qgroups does backref walks when
605 	 * adding new delayed refs.  To deal with this we need to look in cache
606 	 * for the root, and if we don't find it then we need to search the
607 	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
608 	 * here.
609 	 */
610 	if (path->search_commit_root)
611 		root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
612 	else
613 		root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
614 	if (IS_ERR(root)) {
615 		ret = PTR_ERR(root);
616 		goto out_free;
617 	}
618 
619 	if (!path->search_commit_root &&
620 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
621 		ret = -ENOENT;
622 		goto out;
623 	}
624 
625 	if (btrfs_is_testing(ctx->fs_info)) {
626 		ret = -ENOENT;
627 		goto out;
628 	}
629 
630 	if (path->search_commit_root)
631 		root_level = btrfs_header_level(root->commit_root);
632 	else if (ctx->time_seq == BTRFS_SEQ_LAST)
633 		root_level = btrfs_header_level(root->node);
634 	else
635 		root_level = btrfs_old_root_level(root, ctx->time_seq);
636 
637 	if (root_level + 1 == level)
638 		goto out;
639 
640 	/*
641 	 * We can often find data backrefs with an offset that is too large
642 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
643 	 * subtracting a file's offset with the data offset of its
644 	 * corresponding extent data item. This can happen for example in the
645 	 * clone ioctl.
646 	 *
647 	 * So if we detect such case we set the search key's offset to zero to
648 	 * make sure we will find the matching file extent item at
649 	 * add_all_parents(), otherwise we will miss it because the offset
650 	 * taken form the backref is much larger then the offset of the file
651 	 * extent item. This can make us scan a very large number of file
652 	 * extent items, but at least it will not make us miss any.
653 	 *
654 	 * This is an ugly workaround for a behaviour that should have never
655 	 * existed, but it does and a fix for the clone ioctl would touch a lot
656 	 * of places, cause backwards incompatibility and would not fix the
657 	 * problem for extents cloned with older kernels.
658 	 */
659 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
660 	    search_key.offset >= LLONG_MAX)
661 		search_key.offset = 0;
662 	path->lowest_level = level;
663 	if (ctx->time_seq == BTRFS_SEQ_LAST)
664 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
665 	else
666 		ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
667 
668 	btrfs_debug(ctx->fs_info,
669 "search slot in root %llu (level %d, ref count %d) returned %d for key " BTRFS_KEY_FMT,
670 		    ref->root_id, level, ref->count, ret,
671 		    BTRFS_KEY_FMT_VALUE(&ref->key_for_search));
672 	if (ret < 0)
673 		goto out;
674 
675 	eb = path->nodes[level];
676 	while (!eb) {
677 		if (WARN_ON(!level)) {
678 			ret = 1;
679 			goto out;
680 		}
681 		level--;
682 		eb = path->nodes[level];
683 	}
684 
685 	ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
686 out:
687 	btrfs_put_root(root);
688 out_free:
689 	path->lowest_level = 0;
690 	btrfs_release_path(path);
691 	return ret;
692 }
693 
694 static struct extent_inode_elem *
695 unode_aux_to_inode_list(struct ulist_node *node)
696 {
697 	if (!node)
698 		return NULL;
699 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
700 }
701 
702 static void free_leaf_list(struct ulist *ulist)
703 {
704 	struct ulist_node *node;
705 	struct ulist_iterator uiter;
706 
707 	ULIST_ITER_INIT(&uiter);
708 	while ((node = ulist_next(ulist, &uiter)))
709 		free_inode_elem_list(unode_aux_to_inode_list(node));
710 
711 	ulist_free(ulist);
712 }
713 
714 /*
715  * We maintain three separate rbtrees: one for direct refs, one for
716  * indirect refs which have a key, and one for indirect refs which do not
717  * have a key. Each tree does merge on insertion.
718  *
719  * Once all of the references are located, we iterate over the tree of
720  * indirect refs with missing keys. An appropriate key is located and
721  * the ref is moved onto the tree for indirect refs. After all missing
722  * keys are thus located, we iterate over the indirect ref tree, resolve
723  * each reference, and then insert the resolved reference onto the
724  * direct tree (merging there too).
725  *
726  * New backrefs (i.e., for parent nodes) are added to the appropriate
727  * rbtree as they are encountered. The new backrefs are subsequently
728  * resolved as above.
729  */
730 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
731 				 struct btrfs_path *path,
732 				 struct preftrees *preftrees,
733 				 struct share_check *sc)
734 {
735 	int ret = 0;
736 	struct ulist *parents;
737 	struct ulist_node *node;
738 	struct ulist_iterator uiter;
739 	struct rb_node *rnode;
740 
741 	parents = ulist_alloc(GFP_NOFS);
742 	if (!parents)
743 		return -ENOMEM;
744 
745 	/*
746 	 * We could trade memory usage for performance here by iterating
747 	 * the tree, allocating new refs for each insertion, and then
748 	 * freeing the entire indirect tree when we're done.  In some test
749 	 * cases, the tree can grow quite large (~200k objects).
750 	 */
751 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
752 		struct prelim_ref *ref;
753 		int ret2;
754 
755 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
756 		if (WARN(ref->parent,
757 			 "BUG: direct ref found in indirect tree")) {
758 			ret = -EINVAL;
759 			goto out;
760 		}
761 
762 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
763 		preftrees->indirect.count--;
764 
765 		if (ref->count == 0) {
766 			free_pref(ref);
767 			continue;
768 		}
769 
770 		if (sc && ref->root_id != btrfs_root_id(sc->root)) {
771 			free_pref(ref);
772 			ret = BACKREF_FOUND_SHARED;
773 			goto out;
774 		}
775 		ret2 = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
776 		/*
777 		 * we can only tolerate ENOENT,otherwise,we should catch error
778 		 * and return directly.
779 		 */
780 		if (ret2 == -ENOENT) {
781 			prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
782 					  NULL);
783 			continue;
784 		} else if (ret2) {
785 			free_pref(ref);
786 			ret = ret2;
787 			goto out;
788 		}
789 
790 		/* we put the first parent into the ref at hand */
791 		ULIST_ITER_INIT(&uiter);
792 		node = ulist_next(parents, &uiter);
793 		ref->parent = node ? node->val : 0;
794 		ref->inode_list = unode_aux_to_inode_list(node);
795 
796 		/* Add a prelim_ref(s) for any other parent(s). */
797 		while ((node = ulist_next(parents, &uiter))) {
798 			struct prelim_ref *new_ref;
799 
800 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
801 						   GFP_NOFS);
802 			if (!new_ref) {
803 				free_pref(ref);
804 				ret = -ENOMEM;
805 				goto out;
806 			}
807 			memcpy(new_ref, ref, sizeof(*ref));
808 			new_ref->parent = node->val;
809 			new_ref->inode_list = unode_aux_to_inode_list(node);
810 			prelim_ref_insert(ctx->fs_info, &preftrees->direct,
811 					  new_ref, NULL);
812 		}
813 
814 		/*
815 		 * Now it's a direct ref, put it in the direct tree. We must
816 		 * do this last because the ref could be merged/freed here.
817 		 */
818 		prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
819 
820 		ulist_reinit(parents);
821 		cond_resched();
822 	}
823 out:
824 	/*
825 	 * We may have inode lists attached to refs in the parents ulist, so we
826 	 * must free them before freeing the ulist and its refs.
827 	 */
828 	free_leaf_list(parents);
829 	return ret;
830 }
831 
832 /*
833  * read tree blocks and add keys where required.
834  */
835 static int add_missing_keys(struct btrfs_fs_info *fs_info,
836 			    struct preftrees *preftrees, bool lock)
837 {
838 	struct prelim_ref *ref;
839 	struct extent_buffer *eb;
840 	struct preftree *tree = &preftrees->indirect_missing_keys;
841 	struct rb_node *node;
842 
843 	while ((node = rb_first_cached(&tree->root))) {
844 		struct btrfs_tree_parent_check check = { 0 };
845 
846 		ref = rb_entry(node, struct prelim_ref, rbnode);
847 		rb_erase_cached(node, &tree->root);
848 
849 		BUG_ON(ref->parent);	/* should not be a direct ref */
850 		BUG_ON(ref->key_for_search.type);
851 		BUG_ON(!ref->wanted_disk_byte);
852 
853 		check.level = ref->level - 1;
854 		check.owner_root = ref->root_id;
855 
856 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
857 		if (IS_ERR(eb)) {
858 			free_pref(ref);
859 			return PTR_ERR(eb);
860 		}
861 		if (unlikely(!extent_buffer_uptodate(eb))) {
862 			free_pref(ref);
863 			free_extent_buffer(eb);
864 			return -EIO;
865 		}
866 
867 		if (lock)
868 			btrfs_tree_read_lock(eb);
869 		if (btrfs_header_level(eb) == 0)
870 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
871 		else
872 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
873 		if (lock)
874 			btrfs_tree_read_unlock(eb);
875 		free_extent_buffer(eb);
876 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
877 		cond_resched();
878 	}
879 	return 0;
880 }
881 
882 /*
883  * add all currently queued delayed refs from this head whose seq nr is
884  * smaller or equal that seq to the list
885  */
886 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
887 			    struct btrfs_delayed_ref_head *head, u64 seq,
888 			    struct preftrees *preftrees, struct share_check *sc)
889 {
890 	struct btrfs_delayed_ref_node *node;
891 	struct btrfs_key key;
892 	struct rb_node *n;
893 	int count;
894 	int ret = 0;
895 
896 	spin_lock(&head->lock);
897 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
898 		node = rb_entry(n, struct btrfs_delayed_ref_node,
899 				ref_node);
900 		if (node->seq > seq)
901 			continue;
902 
903 		switch (node->action) {
904 		case BTRFS_ADD_DELAYED_EXTENT:
905 		case BTRFS_UPDATE_DELAYED_HEAD:
906 			WARN_ON(1);
907 			continue;
908 		case BTRFS_ADD_DELAYED_REF:
909 			count = node->ref_mod;
910 			break;
911 		case BTRFS_DROP_DELAYED_REF:
912 			count = node->ref_mod * -1;
913 			break;
914 		default:
915 			BUG();
916 		}
917 		switch (node->type) {
918 		case BTRFS_TREE_BLOCK_REF_KEY: {
919 			/* NORMAL INDIRECT METADATA backref */
920 			struct btrfs_key *key_ptr = NULL;
921 			/* The owner of a tree block ref is the level. */
922 			int level = btrfs_delayed_ref_owner(node);
923 
924 			if (head->extent_op && head->extent_op->update_key) {
925 				btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
926 				key_ptr = &key;
927 			}
928 
929 			ret = add_indirect_ref(fs_info, preftrees, node->ref_root,
930 					       key_ptr, level + 1, node->bytenr,
931 					       count, sc, GFP_ATOMIC);
932 			break;
933 		}
934 		case BTRFS_SHARED_BLOCK_REF_KEY: {
935 			/*
936 			 * SHARED DIRECT METADATA backref
937 			 *
938 			 * The owner of a tree block ref is the level.
939 			 */
940 			int level = btrfs_delayed_ref_owner(node);
941 
942 			ret = add_direct_ref(fs_info, preftrees, level + 1,
943 					     node->parent, node->bytenr, count,
944 					     sc, GFP_ATOMIC);
945 			break;
946 		}
947 		case BTRFS_EXTENT_DATA_REF_KEY: {
948 			/* NORMAL INDIRECT DATA backref */
949 			key.objectid = btrfs_delayed_ref_owner(node);
950 			key.type = BTRFS_EXTENT_DATA_KEY;
951 			key.offset = btrfs_delayed_ref_offset(node);
952 
953 			/*
954 			 * If we have a share check context and a reference for
955 			 * another inode, we can't exit immediately. This is
956 			 * because even if this is a BTRFS_ADD_DELAYED_REF
957 			 * reference we may find next a BTRFS_DROP_DELAYED_REF
958 			 * which cancels out this ADD reference.
959 			 *
960 			 * If this is a DROP reference and there was no previous
961 			 * ADD reference, then we need to signal that when we
962 			 * process references from the extent tree (through
963 			 * add_inline_refs() and add_keyed_refs()), we should
964 			 * not exit early if we find a reference for another
965 			 * inode, because one of the delayed DROP references
966 			 * may cancel that reference in the extent tree.
967 			 */
968 			if (sc && count < 0)
969 				sc->have_delayed_delete_refs = true;
970 
971 			ret = add_indirect_ref(fs_info, preftrees, node->ref_root,
972 					       &key, 0, node->bytenr, count, sc,
973 					       GFP_ATOMIC);
974 			break;
975 		}
976 		case BTRFS_SHARED_DATA_REF_KEY: {
977 			/* SHARED DIRECT FULL backref */
978 			ret = add_direct_ref(fs_info, preftrees, 0, node->parent,
979 					     node->bytenr, count, sc,
980 					     GFP_ATOMIC);
981 			break;
982 		}
983 		default:
984 			WARN_ON(1);
985 		}
986 		/*
987 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
988 		 * refs have been checked.
989 		 */
990 		if (ret && (ret != BACKREF_FOUND_SHARED))
991 			break;
992 	}
993 	if (!ret)
994 		ret = extent_is_shared(sc);
995 
996 	spin_unlock(&head->lock);
997 	return ret;
998 }
999 
1000 /*
1001  * add all inline backrefs for bytenr to the list
1002  *
1003  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1004  */
1005 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1006 			   struct btrfs_path *path,
1007 			   int *info_level, struct preftrees *preftrees,
1008 			   struct share_check *sc)
1009 {
1010 	int ret = 0;
1011 	int slot;
1012 	struct extent_buffer *leaf;
1013 	struct btrfs_key key;
1014 	struct btrfs_key found_key;
1015 	unsigned long ptr;
1016 	unsigned long end;
1017 	struct btrfs_extent_item *ei;
1018 	u64 flags;
1019 	u64 item_size;
1020 
1021 	/*
1022 	 * enumerate all inline refs
1023 	 */
1024 	leaf = path->nodes[0];
1025 	slot = path->slots[0];
1026 
1027 	item_size = btrfs_item_size(leaf, slot);
1028 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1029 
1030 	if (ctx->check_extent_item) {
1031 		ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1032 		if (ret)
1033 			return ret;
1034 	}
1035 
1036 	flags = btrfs_extent_flags(leaf, ei);
1037 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
1038 
1039 	ptr = (unsigned long)(ei + 1);
1040 	end = (unsigned long)ei + item_size;
1041 
1042 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1043 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1044 		struct btrfs_tree_block_info *info;
1045 
1046 		info = (struct btrfs_tree_block_info *)ptr;
1047 		*info_level = btrfs_tree_block_level(leaf, info);
1048 		ptr += sizeof(struct btrfs_tree_block_info);
1049 		BUG_ON(ptr > end);
1050 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1051 		*info_level = found_key.offset;
1052 	} else {
1053 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1054 	}
1055 
1056 	while (ptr < end) {
1057 		struct btrfs_extent_inline_ref *iref;
1058 		u64 offset;
1059 		int type;
1060 
1061 		iref = (struct btrfs_extent_inline_ref *)ptr;
1062 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
1063 							BTRFS_REF_TYPE_ANY);
1064 		if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1065 			return -EUCLEAN;
1066 
1067 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1068 
1069 		switch (type) {
1070 		case BTRFS_SHARED_BLOCK_REF_KEY:
1071 			ret = add_direct_ref(ctx->fs_info, preftrees,
1072 					     *info_level + 1, offset,
1073 					     ctx->bytenr, 1, NULL, GFP_NOFS);
1074 			break;
1075 		case BTRFS_SHARED_DATA_REF_KEY: {
1076 			struct btrfs_shared_data_ref *sdref;
1077 			int count;
1078 
1079 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1080 			count = btrfs_shared_data_ref_count(leaf, sdref);
1081 
1082 			ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1083 					     ctx->bytenr, count, sc, GFP_NOFS);
1084 			break;
1085 		}
1086 		case BTRFS_TREE_BLOCK_REF_KEY:
1087 			ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
1088 					       NULL, *info_level + 1,
1089 					       ctx->bytenr, 1, NULL, GFP_NOFS);
1090 			break;
1091 		case BTRFS_EXTENT_DATA_REF_KEY: {
1092 			struct btrfs_extent_data_ref *dref;
1093 			int count;
1094 			u64 root;
1095 
1096 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1097 			count = btrfs_extent_data_ref_count(leaf, dref);
1098 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1099 								      dref);
1100 			key.type = BTRFS_EXTENT_DATA_KEY;
1101 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1102 
1103 			if (sc && key.objectid != sc->inum &&
1104 			    !sc->have_delayed_delete_refs) {
1105 				ret = BACKREF_FOUND_SHARED;
1106 				break;
1107 			}
1108 
1109 			root = btrfs_extent_data_ref_root(leaf, dref);
1110 
1111 			if (!ctx->skip_data_ref ||
1112 			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1113 						ctx->user_ctx))
1114 				ret = add_indirect_ref(ctx->fs_info, preftrees,
1115 						       root, &key, 0, ctx->bytenr,
1116 						       count, sc, GFP_NOFS);
1117 			break;
1118 		}
1119 		case BTRFS_EXTENT_OWNER_REF_KEY:
1120 			ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA));
1121 			break;
1122 		default:
1123 			WARN_ON(1);
1124 		}
1125 		if (ret)
1126 			return ret;
1127 		ptr += btrfs_extent_inline_ref_size(type);
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 /*
1134  * add all non-inline backrefs for bytenr to the list
1135  *
1136  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1137  */
1138 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1139 			  struct btrfs_root *extent_root,
1140 			  struct btrfs_path *path,
1141 			  int info_level, struct preftrees *preftrees,
1142 			  struct share_check *sc)
1143 {
1144 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1145 	int ret;
1146 	int slot;
1147 	struct extent_buffer *leaf;
1148 	struct btrfs_key key;
1149 
1150 	while (1) {
1151 		ret = btrfs_next_item(extent_root, path);
1152 		if (ret < 0)
1153 			break;
1154 		if (ret) {
1155 			ret = 0;
1156 			break;
1157 		}
1158 
1159 		slot = path->slots[0];
1160 		leaf = path->nodes[0];
1161 		btrfs_item_key_to_cpu(leaf, &key, slot);
1162 
1163 		if (key.objectid != ctx->bytenr)
1164 			break;
1165 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1166 			continue;
1167 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1168 			break;
1169 
1170 		switch (key.type) {
1171 		case BTRFS_SHARED_BLOCK_REF_KEY:
1172 			/* SHARED DIRECT METADATA backref */
1173 			ret = add_direct_ref(fs_info, preftrees,
1174 					     info_level + 1, key.offset,
1175 					     ctx->bytenr, 1, NULL, GFP_NOFS);
1176 			break;
1177 		case BTRFS_SHARED_DATA_REF_KEY: {
1178 			/* SHARED DIRECT FULL backref */
1179 			struct btrfs_shared_data_ref *sdref;
1180 			int count;
1181 
1182 			sdref = btrfs_item_ptr(leaf, slot,
1183 					      struct btrfs_shared_data_ref);
1184 			count = btrfs_shared_data_ref_count(leaf, sdref);
1185 			ret = add_direct_ref(fs_info, preftrees, 0,
1186 					     key.offset, ctx->bytenr, count,
1187 					     sc, GFP_NOFS);
1188 			break;
1189 		}
1190 		case BTRFS_TREE_BLOCK_REF_KEY:
1191 			/* NORMAL INDIRECT METADATA backref */
1192 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1193 					       NULL, info_level + 1, ctx->bytenr,
1194 					       1, NULL, GFP_NOFS);
1195 			break;
1196 		case BTRFS_EXTENT_DATA_REF_KEY: {
1197 			/* NORMAL INDIRECT DATA backref */
1198 			struct btrfs_extent_data_ref *dref;
1199 			int count;
1200 			u64 root;
1201 
1202 			dref = btrfs_item_ptr(leaf, slot,
1203 					      struct btrfs_extent_data_ref);
1204 			count = btrfs_extent_data_ref_count(leaf, dref);
1205 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1206 								      dref);
1207 			key.type = BTRFS_EXTENT_DATA_KEY;
1208 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1209 
1210 			if (sc && key.objectid != sc->inum &&
1211 			    !sc->have_delayed_delete_refs) {
1212 				ret = BACKREF_FOUND_SHARED;
1213 				break;
1214 			}
1215 
1216 			root = btrfs_extent_data_ref_root(leaf, dref);
1217 
1218 			if (!ctx->skip_data_ref ||
1219 			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1220 						ctx->user_ctx))
1221 				ret = add_indirect_ref(fs_info, preftrees, root,
1222 						       &key, 0, ctx->bytenr,
1223 						       count, sc, GFP_NOFS);
1224 			break;
1225 		}
1226 		default:
1227 			WARN_ON(1);
1228 		}
1229 		if (ret)
1230 			return ret;
1231 
1232 	}
1233 
1234 	return ret;
1235 }
1236 
1237 /*
1238  * The caller has joined a transaction or is holding a read lock on the
1239  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1240  * snapshot field changing while updating or checking the cache.
1241  */
1242 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1243 					struct btrfs_root *root,
1244 					u64 bytenr, int level, bool *is_shared)
1245 {
1246 	const struct btrfs_fs_info *fs_info = root->fs_info;
1247 	struct btrfs_backref_shared_cache_entry *entry;
1248 
1249 	if (!current->journal_info)
1250 		lockdep_assert_held(&fs_info->commit_root_sem);
1251 
1252 	if (!ctx->use_path_cache)
1253 		return false;
1254 
1255 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1256 		return false;
1257 
1258 	/*
1259 	 * Level -1 is used for the data extent, which is not reliable to cache
1260 	 * because its reference count can increase or decrease without us
1261 	 * realizing. We cache results only for extent buffers that lead from
1262 	 * the root node down to the leaf with the file extent item.
1263 	 */
1264 	ASSERT(level >= 0);
1265 
1266 	entry = &ctx->path_cache_entries[level];
1267 
1268 	/* Unused cache entry or being used for some other extent buffer. */
1269 	if (entry->bytenr != bytenr)
1270 		return false;
1271 
1272 	/*
1273 	 * We cached a false result, but the last snapshot generation of the
1274 	 * root changed, so we now have a snapshot. Don't trust the result.
1275 	 */
1276 	if (!entry->is_shared &&
1277 	    entry->gen != btrfs_root_last_snapshot(&root->root_item))
1278 		return false;
1279 
1280 	/*
1281 	 * If we cached a true result and the last generation used for dropping
1282 	 * a root changed, we can not trust the result, because the dropped root
1283 	 * could be a snapshot sharing this extent buffer.
1284 	 */
1285 	if (entry->is_shared &&
1286 	    entry->gen != btrfs_get_last_root_drop_gen(fs_info))
1287 		return false;
1288 
1289 	*is_shared = entry->is_shared;
1290 	/*
1291 	 * If the node at this level is shared, than all nodes below are also
1292 	 * shared. Currently some of the nodes below may be marked as not shared
1293 	 * because we have just switched from one leaf to another, and switched
1294 	 * also other nodes above the leaf and below the current level, so mark
1295 	 * them as shared.
1296 	 */
1297 	if (*is_shared) {
1298 		for (int i = 0; i < level; i++) {
1299 			ctx->path_cache_entries[i].is_shared = true;
1300 			ctx->path_cache_entries[i].gen = entry->gen;
1301 		}
1302 	}
1303 
1304 	return true;
1305 }
1306 
1307 /*
1308  * The caller has joined a transaction or is holding a read lock on the
1309  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1310  * snapshot field changing while updating or checking the cache.
1311  */
1312 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1313 				       struct btrfs_root *root,
1314 				       u64 bytenr, int level, bool is_shared)
1315 {
1316 	const struct btrfs_fs_info *fs_info = root->fs_info;
1317 	struct btrfs_backref_shared_cache_entry *entry;
1318 	u64 gen;
1319 
1320 	if (!current->journal_info)
1321 		lockdep_assert_held(&fs_info->commit_root_sem);
1322 
1323 	if (!ctx->use_path_cache)
1324 		return;
1325 
1326 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1327 		return;
1328 
1329 	/*
1330 	 * Level -1 is used for the data extent, which is not reliable to cache
1331 	 * because its reference count can increase or decrease without us
1332 	 * realizing. We cache results only for extent buffers that lead from
1333 	 * the root node down to the leaf with the file extent item.
1334 	 */
1335 	ASSERT(level >= 0);
1336 
1337 	if (is_shared)
1338 		gen = btrfs_get_last_root_drop_gen(fs_info);
1339 	else
1340 		gen = btrfs_root_last_snapshot(&root->root_item);
1341 
1342 	entry = &ctx->path_cache_entries[level];
1343 	entry->bytenr = bytenr;
1344 	entry->is_shared = is_shared;
1345 	entry->gen = gen;
1346 
1347 	/*
1348 	 * If we found an extent buffer is shared, set the cache result for all
1349 	 * extent buffers below it to true. As nodes in the path are COWed,
1350 	 * their sharedness is moved to their children, and if a leaf is COWed,
1351 	 * then the sharedness of a data extent becomes direct, the refcount of
1352 	 * data extent is increased in the extent item at the extent tree.
1353 	 */
1354 	if (is_shared) {
1355 		for (int i = 0; i < level; i++) {
1356 			entry = &ctx->path_cache_entries[i];
1357 			entry->is_shared = is_shared;
1358 			entry->gen = gen;
1359 		}
1360 	}
1361 }
1362 
1363 /*
1364  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1365  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1366  * indirect refs to their parent bytenr.
1367  * When roots are found, they're added to the roots list
1368  *
1369  * @ctx:     Backref walking context object, must be not NULL.
1370  * @sc:      If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1371  *           shared extent is detected.
1372  *
1373  * Otherwise this returns 0 for success and <0 for an error.
1374  *
1375  * FIXME some caching might speed things up
1376  */
1377 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1378 			     struct share_check *sc)
1379 {
1380 	struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
1381 	struct btrfs_key key;
1382 	struct btrfs_path *path;
1383 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1384 	struct btrfs_delayed_ref_head *head;
1385 	int info_level = 0;
1386 	int ret;
1387 	struct prelim_ref *ref;
1388 	struct rb_node *node;
1389 	struct extent_inode_elem *eie = NULL;
1390 	struct preftrees preftrees = {
1391 		.direct = PREFTREE_INIT,
1392 		.indirect = PREFTREE_INIT,
1393 		.indirect_missing_keys = PREFTREE_INIT
1394 	};
1395 
1396 	/* Roots ulist is not needed when using a sharedness check context. */
1397 	if (sc)
1398 		ASSERT(ctx->roots == NULL);
1399 
1400 	key.objectid = ctx->bytenr;
1401 	if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1402 		key.type = BTRFS_METADATA_ITEM_KEY;
1403 	else
1404 		key.type = BTRFS_EXTENT_ITEM_KEY;
1405 	key.offset = (u64)-1;
1406 
1407 	path = btrfs_alloc_path();
1408 	if (!path)
1409 		return -ENOMEM;
1410 	if (!ctx->trans) {
1411 		path->search_commit_root = true;
1412 		path->skip_locking = true;
1413 	}
1414 
1415 	if (ctx->time_seq == BTRFS_SEQ_LAST)
1416 		path->skip_locking = true;
1417 
1418 again:
1419 	head = NULL;
1420 
1421 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1422 	if (ret < 0)
1423 		goto out;
1424 	if (unlikely(ret == 0)) {
1425 		/*
1426 		 * Key with offset -1 found, there would have to exist an extent
1427 		 * item with such offset, but this is out of the valid range.
1428 		 */
1429 		ret = -EUCLEAN;
1430 		goto out;
1431 	}
1432 
1433 	if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1434 	    ctx->time_seq != BTRFS_SEQ_LAST) {
1435 		/*
1436 		 * We have a specific time_seq we care about and trans which
1437 		 * means we have the path lock, we need to grab the ref head and
1438 		 * lock it so we have a consistent view of the refs at the given
1439 		 * time.
1440 		 */
1441 		delayed_refs = &ctx->trans->transaction->delayed_refs;
1442 		spin_lock(&delayed_refs->lock);
1443 		head = btrfs_find_delayed_ref_head(ctx->fs_info, delayed_refs,
1444 						   ctx->bytenr);
1445 		if (head) {
1446 			if (!mutex_trylock(&head->mutex)) {
1447 				refcount_inc(&head->refs);
1448 				spin_unlock(&delayed_refs->lock);
1449 
1450 				btrfs_release_path(path);
1451 
1452 				/*
1453 				 * Mutex was contended, block until it's
1454 				 * released and try again
1455 				 */
1456 				mutex_lock(&head->mutex);
1457 				mutex_unlock(&head->mutex);
1458 				btrfs_put_delayed_ref_head(head);
1459 				goto again;
1460 			}
1461 			spin_unlock(&delayed_refs->lock);
1462 			ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
1463 					       &preftrees, sc);
1464 			mutex_unlock(&head->mutex);
1465 			if (ret)
1466 				goto out;
1467 		} else {
1468 			spin_unlock(&delayed_refs->lock);
1469 		}
1470 	}
1471 
1472 	if (path->slots[0]) {
1473 		struct extent_buffer *leaf;
1474 		int slot;
1475 
1476 		path->slots[0]--;
1477 		leaf = path->nodes[0];
1478 		slot = path->slots[0];
1479 		btrfs_item_key_to_cpu(leaf, &key, slot);
1480 		if (key.objectid == ctx->bytenr &&
1481 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1482 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1483 			ret = add_inline_refs(ctx, path, &info_level,
1484 					      &preftrees, sc);
1485 			if (ret)
1486 				goto out;
1487 			ret = add_keyed_refs(ctx, root, path, info_level,
1488 					     &preftrees, sc);
1489 			if (ret)
1490 				goto out;
1491 		}
1492 	}
1493 
1494 	/*
1495 	 * If we have a share context and we reached here, it means the extent
1496 	 * is not directly shared (no multiple reference items for it),
1497 	 * otherwise we would have exited earlier with a return value of
1498 	 * BACKREF_FOUND_SHARED after processing delayed references or while
1499 	 * processing inline or keyed references from the extent tree.
1500 	 * The extent may however be indirectly shared through shared subtrees
1501 	 * as a result from creating snapshots, so we determine below what is
1502 	 * its parent node, in case we are dealing with a metadata extent, or
1503 	 * what's the leaf (or leaves), from a fs tree, that has a file extent
1504 	 * item pointing to it in case we are dealing with a data extent.
1505 	 */
1506 	ASSERT(extent_is_shared(sc) == 0);
1507 
1508 	/*
1509 	 * If we are here for a data extent and we have a share_check structure
1510 	 * it means the data extent is not directly shared (does not have
1511 	 * multiple reference items), so we have to check if a path in the fs
1512 	 * tree (going from the root node down to the leaf that has the file
1513 	 * extent item pointing to the data extent) is shared, that is, if any
1514 	 * of the extent buffers in the path is referenced by other trees.
1515 	 */
1516 	if (sc && ctx->bytenr == sc->data_bytenr) {
1517 		/*
1518 		 * If our data extent is from a generation more recent than the
1519 		 * last generation used to snapshot the root, then we know that
1520 		 * it can not be shared through subtrees, so we can skip
1521 		 * resolving indirect references, there's no point in
1522 		 * determining the extent buffers for the path from the fs tree
1523 		 * root node down to the leaf that has the file extent item that
1524 		 * points to the data extent.
1525 		 */
1526 		if (sc->data_extent_gen >
1527 		    btrfs_root_last_snapshot(&sc->root->root_item)) {
1528 			ret = BACKREF_FOUND_NOT_SHARED;
1529 			goto out;
1530 		}
1531 
1532 		/*
1533 		 * If we are only determining if a data extent is shared or not
1534 		 * and the corresponding file extent item is located in the same
1535 		 * leaf as the previous file extent item, we can skip resolving
1536 		 * indirect references for a data extent, since the fs tree path
1537 		 * is the same (same leaf, so same path). We skip as long as the
1538 		 * cached result for the leaf is valid and only if there's only
1539 		 * one file extent item pointing to the data extent, because in
1540 		 * the case of multiple file extent items, they may be located
1541 		 * in different leaves and therefore we have multiple paths.
1542 		 */
1543 		if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1544 		    sc->self_ref_count == 1) {
1545 			bool cached;
1546 			bool is_shared;
1547 
1548 			cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1549 						     sc->ctx->curr_leaf_bytenr,
1550 						     0, &is_shared);
1551 			if (cached) {
1552 				if (is_shared)
1553 					ret = BACKREF_FOUND_SHARED;
1554 				else
1555 					ret = BACKREF_FOUND_NOT_SHARED;
1556 				goto out;
1557 			}
1558 		}
1559 	}
1560 
1561 	btrfs_release_path(path);
1562 
1563 	ret = add_missing_keys(ctx->fs_info, &preftrees, !path->skip_locking);
1564 	if (ret)
1565 		goto out;
1566 
1567 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1568 
1569 	ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
1570 	if (ret)
1571 		goto out;
1572 
1573 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1574 
1575 	/*
1576 	 * This walks the tree of merged and resolved refs. Tree blocks are
1577 	 * read in as needed. Unique entries are added to the ulist, and
1578 	 * the list of found roots is updated.
1579 	 *
1580 	 * We release the entire tree in one go before returning.
1581 	 */
1582 	node = rb_first_cached(&preftrees.direct.root);
1583 	while (node) {
1584 		ref = rb_entry(node, struct prelim_ref, rbnode);
1585 		node = rb_next(&ref->rbnode);
1586 		/*
1587 		 * ref->count < 0 can happen here if there are delayed
1588 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1589 		 * prelim_ref_insert() relies on this when merging
1590 		 * identical refs to keep the overall count correct.
1591 		 * prelim_ref_insert() will merge only those refs
1592 		 * which compare identically.  Any refs having
1593 		 * e.g. different offsets would not be merged,
1594 		 * and would retain their original ref->count < 0.
1595 		 */
1596 		if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1597 			/* no parent == root of tree */
1598 			ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
1599 			if (ret < 0)
1600 				goto out;
1601 		}
1602 		if (ref->count && ref->parent) {
1603 			if (!ctx->skip_inode_ref_list && !ref->inode_list &&
1604 			    ref->level == 0) {
1605 				struct btrfs_tree_parent_check check = { 0 };
1606 				struct extent_buffer *eb;
1607 
1608 				check.level = ref->level;
1609 
1610 				eb = read_tree_block(ctx->fs_info, ref->parent,
1611 						     &check);
1612 				if (IS_ERR(eb)) {
1613 					ret = PTR_ERR(eb);
1614 					goto out;
1615 				}
1616 				if (unlikely(!extent_buffer_uptodate(eb))) {
1617 					free_extent_buffer(eb);
1618 					ret = -EIO;
1619 					goto out;
1620 				}
1621 
1622 				if (!path->skip_locking)
1623 					btrfs_tree_read_lock(eb);
1624 				ret = find_extent_in_eb(ctx, eb, &eie);
1625 				if (!path->skip_locking)
1626 					btrfs_tree_read_unlock(eb);
1627 				free_extent_buffer(eb);
1628 				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1629 				    ret < 0)
1630 					goto out;
1631 				ref->inode_list = eie;
1632 				/*
1633 				 * We transferred the list ownership to the ref,
1634 				 * so set to NULL to avoid a double free in case
1635 				 * an error happens after this.
1636 				 */
1637 				eie = NULL;
1638 			}
1639 			ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
1640 						  ref->inode_list,
1641 						  (void **)&eie, GFP_NOFS);
1642 			if (ret < 0)
1643 				goto out;
1644 			if (!ret && !ctx->skip_inode_ref_list) {
1645 				/*
1646 				 * We've recorded that parent, so we must extend
1647 				 * its inode list here.
1648 				 *
1649 				 * However if there was corruption we may not
1650 				 * have found an eie, return an error in this
1651 				 * case.
1652 				 */
1653 				ASSERT(eie);
1654 				if (unlikely(!eie)) {
1655 					ret = -EUCLEAN;
1656 					goto out;
1657 				}
1658 				while (eie->next)
1659 					eie = eie->next;
1660 				eie->next = ref->inode_list;
1661 			}
1662 			eie = NULL;
1663 			/*
1664 			 * We have transferred the inode list ownership from
1665 			 * this ref to the ref we added to the 'refs' ulist.
1666 			 * So set this ref's inode list to NULL to avoid
1667 			 * use-after-free when our caller uses it or double
1668 			 * frees in case an error happens before we return.
1669 			 */
1670 			ref->inode_list = NULL;
1671 		}
1672 		cond_resched();
1673 	}
1674 
1675 out:
1676 	btrfs_free_path(path);
1677 
1678 	prelim_release(&preftrees.direct);
1679 	prelim_release(&preftrees.indirect);
1680 	prelim_release(&preftrees.indirect_missing_keys);
1681 
1682 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1683 		free_inode_elem_list(eie);
1684 	return ret;
1685 }
1686 
1687 /*
1688  * Finds all leaves with a reference to the specified combination of
1689  * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1690  * added to the ulist at @ctx->refs, and that ulist is allocated by this
1691  * function. The caller should free the ulist with free_leaf_list() if
1692  * @ctx->ignore_extent_item_pos is false, otherwise a simple ulist_free() is
1693  * enough.
1694  *
1695  * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1696  */
1697 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1698 {
1699 	int ret;
1700 
1701 	ASSERT(ctx->refs == NULL);
1702 
1703 	ctx->refs = ulist_alloc(GFP_NOFS);
1704 	if (!ctx->refs)
1705 		return -ENOMEM;
1706 
1707 	ret = find_parent_nodes(ctx, NULL);
1708 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1709 	    (ret < 0 && ret != -ENOENT)) {
1710 		free_leaf_list(ctx->refs);
1711 		ctx->refs = NULL;
1712 		return ret;
1713 	}
1714 
1715 	return 0;
1716 }
1717 
1718 /*
1719  * Walk all backrefs for a given extent to find all roots that reference this
1720  * extent. Walking a backref means finding all extents that reference this
1721  * extent and in turn walk the backrefs of those, too. Naturally this is a
1722  * recursive process, but here it is implemented in an iterative fashion: We
1723  * find all referencing extents for the extent in question and put them on a
1724  * list. In turn, we find all referencing extents for those, further appending
1725  * to the list. The way we iterate the list allows adding more elements after
1726  * the current while iterating. The process stops when we reach the end of the
1727  * list.
1728  *
1729  * Found roots are added to @ctx->roots, which is allocated by this function if
1730  * it points to NULL, in which case the caller is responsible for freeing it
1731  * after it's not needed anymore.
1732  * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1733  * ulist to do temporary work, and frees it before returning.
1734  *
1735  * Returns 0 on success, < 0 on error.
1736  */
1737 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1738 {
1739 	const u64 orig_bytenr = ctx->bytenr;
1740 	const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list;
1741 	bool roots_ulist_allocated = false;
1742 	struct ulist_iterator uiter;
1743 	int ret = 0;
1744 
1745 	ASSERT(ctx->refs == NULL);
1746 
1747 	ctx->refs = ulist_alloc(GFP_NOFS);
1748 	if (!ctx->refs)
1749 		return -ENOMEM;
1750 
1751 	if (!ctx->roots) {
1752 		ctx->roots = ulist_alloc(GFP_NOFS);
1753 		if (!ctx->roots) {
1754 			ulist_free(ctx->refs);
1755 			ctx->refs = NULL;
1756 			return -ENOMEM;
1757 		}
1758 		roots_ulist_allocated = true;
1759 	}
1760 
1761 	ctx->skip_inode_ref_list = true;
1762 
1763 	ULIST_ITER_INIT(&uiter);
1764 	while (1) {
1765 		struct ulist_node *node;
1766 
1767 		ret = find_parent_nodes(ctx, NULL);
1768 		if (ret < 0 && ret != -ENOENT) {
1769 			if (roots_ulist_allocated) {
1770 				ulist_free(ctx->roots);
1771 				ctx->roots = NULL;
1772 			}
1773 			break;
1774 		}
1775 		ret = 0;
1776 		node = ulist_next(ctx->refs, &uiter);
1777 		if (!node)
1778 			break;
1779 		ctx->bytenr = node->val;
1780 		cond_resched();
1781 	}
1782 
1783 	ulist_free(ctx->refs);
1784 	ctx->refs = NULL;
1785 	ctx->bytenr = orig_bytenr;
1786 	ctx->skip_inode_ref_list = orig_skip_inode_ref_list;
1787 
1788 	return ret;
1789 }
1790 
1791 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1792 			 bool skip_commit_root_sem)
1793 {
1794 	int ret;
1795 
1796 	if (!ctx->trans && !skip_commit_root_sem)
1797 		down_read(&ctx->fs_info->commit_root_sem);
1798 	ret = btrfs_find_all_roots_safe(ctx);
1799 	if (!ctx->trans && !skip_commit_root_sem)
1800 		up_read(&ctx->fs_info->commit_root_sem);
1801 	return ret;
1802 }
1803 
1804 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1805 {
1806 	struct btrfs_backref_share_check_ctx *ctx;
1807 
1808 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1809 	if (!ctx)
1810 		return NULL;
1811 
1812 	ulist_init(&ctx->refs);
1813 
1814 	return ctx;
1815 }
1816 
1817 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1818 {
1819 	if (!ctx)
1820 		return;
1821 
1822 	ulist_release(&ctx->refs);
1823 	kfree(ctx);
1824 }
1825 
1826 /*
1827  * Check if a data extent is shared or not.
1828  *
1829  * @inode:       The inode whose extent we are checking.
1830  * @bytenr:      Logical bytenr of the extent we are checking.
1831  * @extent_gen:  Generation of the extent (file extent item) or 0 if it is
1832  *               not known.
1833  * @ctx:         A backref sharedness check context.
1834  *
1835  * btrfs_is_data_extent_shared uses the backref walking code but will short
1836  * circuit as soon as it finds a root or inode that doesn't match the
1837  * one passed in. This provides a significant performance benefit for
1838  * callers (such as fiemap) which want to know whether the extent is
1839  * shared but do not need a ref count.
1840  *
1841  * This attempts to attach to the running transaction in order to account for
1842  * delayed refs, but continues on even when no running transaction exists.
1843  *
1844  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1845  */
1846 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1847 				u64 extent_gen,
1848 				struct btrfs_backref_share_check_ctx *ctx)
1849 {
1850 	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1851 	struct btrfs_root *root = inode->root;
1852 	struct btrfs_fs_info *fs_info = root->fs_info;
1853 	struct btrfs_trans_handle *trans;
1854 	struct ulist_iterator uiter;
1855 	struct ulist_node *node;
1856 	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1857 	int ret = 0;
1858 	struct share_check shared = {
1859 		.ctx = ctx,
1860 		.root = root,
1861 		.inum = btrfs_ino(inode),
1862 		.data_bytenr = bytenr,
1863 		.data_extent_gen = extent_gen,
1864 		.share_count = 0,
1865 		.self_ref_count = 0,
1866 		.have_delayed_delete_refs = false,
1867 	};
1868 	int level;
1869 	bool leaf_cached;
1870 	bool leaf_is_shared;
1871 
1872 	for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1873 		if (ctx->prev_extents_cache[i].bytenr == bytenr)
1874 			return ctx->prev_extents_cache[i].is_shared;
1875 	}
1876 
1877 	ulist_init(&ctx->refs);
1878 
1879 	trans = btrfs_join_transaction_nostart(root);
1880 	if (IS_ERR(trans)) {
1881 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1882 			ret = PTR_ERR(trans);
1883 			goto out;
1884 		}
1885 		trans = NULL;
1886 		down_read(&fs_info->commit_root_sem);
1887 	} else {
1888 		btrfs_get_tree_mod_seq(fs_info, &elem);
1889 		walk_ctx.time_seq = elem.seq;
1890 	}
1891 
1892 	ctx->use_path_cache = true;
1893 
1894 	/*
1895 	 * We may have previously determined that the current leaf is shared.
1896 	 * If it is, then we have a data extent that is shared due to a shared
1897 	 * subtree (caused by snapshotting) and we don't need to check for data
1898 	 * backrefs. If the leaf is not shared, then we must do backref walking
1899 	 * to determine if the data extent is shared through reflinks.
1900 	 */
1901 	leaf_cached = lookup_backref_shared_cache(ctx, root,
1902 						  ctx->curr_leaf_bytenr, 0,
1903 						  &leaf_is_shared);
1904 	if (leaf_cached && leaf_is_shared) {
1905 		ret = 1;
1906 		goto out_trans;
1907 	}
1908 
1909 	walk_ctx.skip_inode_ref_list = true;
1910 	walk_ctx.trans = trans;
1911 	walk_ctx.fs_info = fs_info;
1912 	walk_ctx.refs = &ctx->refs;
1913 
1914 	/* -1 means we are in the bytenr of the data extent. */
1915 	level = -1;
1916 	ULIST_ITER_INIT(&uiter);
1917 	while (1) {
1918 		const unsigned long prev_ref_count = ctx->refs.nnodes;
1919 
1920 		walk_ctx.bytenr = bytenr;
1921 		ret = find_parent_nodes(&walk_ctx, &shared);
1922 		if (ret == BACKREF_FOUND_SHARED ||
1923 		    ret == BACKREF_FOUND_NOT_SHARED) {
1924 			/* If shared must return 1, otherwise return 0. */
1925 			ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1926 			if (level >= 0)
1927 				store_backref_shared_cache(ctx, root, bytenr,
1928 							   level, ret == 1);
1929 			break;
1930 		}
1931 		if (ret < 0 && ret != -ENOENT)
1932 			break;
1933 		ret = 0;
1934 
1935 		/*
1936 		 * More than one extent buffer (bytenr) may have been added to
1937 		 * the ctx->refs ulist, in which case we have to check multiple
1938 		 * tree paths in case the first one is not shared, so we can not
1939 		 * use the path cache which is made for a single path. Multiple
1940 		 * extent buffers at the current level happen when:
1941 		 *
1942 		 * 1) level -1, the data extent: If our data extent was not
1943 		 *    directly shared (without multiple reference items), then
1944 		 *    it might have a single reference item with a count > 1 for
1945 		 *    the same offset, which means there are 2 (or more) file
1946 		 *    extent items that point to the data extent - this happens
1947 		 *    when a file extent item needs to be split and then one
1948 		 *    item gets moved to another leaf due to a b+tree leaf split
1949 		 *    when inserting some item. In this case the file extent
1950 		 *    items may be located in different leaves and therefore
1951 		 *    some of the leaves may be referenced through shared
1952 		 *    subtrees while others are not. Since our extent buffer
1953 		 *    cache only works for a single path (by far the most common
1954 		 *    case and simpler to deal with), we can not use it if we
1955 		 *    have multiple leaves (which implies multiple paths).
1956 		 *
1957 		 * 2) level >= 0, a tree node/leaf: We can have a mix of direct
1958 		 *    and indirect references on a b+tree node/leaf, so we have
1959 		 *    to check multiple paths, and the extent buffer (the
1960 		 *    current bytenr) may be shared or not. One example is
1961 		 *    during relocation as we may get a shared tree block ref
1962 		 *    (direct ref) and a non-shared tree block ref (indirect
1963 		 *    ref) for the same node/leaf.
1964 		 */
1965 		if ((ctx->refs.nnodes - prev_ref_count) > 1)
1966 			ctx->use_path_cache = false;
1967 
1968 		if (level >= 0)
1969 			store_backref_shared_cache(ctx, root, bytenr,
1970 						   level, false);
1971 		node = ulist_next(&ctx->refs, &uiter);
1972 		if (!node)
1973 			break;
1974 		bytenr = node->val;
1975 		if (ctx->use_path_cache) {
1976 			bool is_shared;
1977 			bool cached;
1978 
1979 			level++;
1980 			cached = lookup_backref_shared_cache(ctx, root, bytenr,
1981 							     level, &is_shared);
1982 			if (cached) {
1983 				ret = (is_shared ? 1 : 0);
1984 				break;
1985 			}
1986 		}
1987 		shared.share_count = 0;
1988 		shared.have_delayed_delete_refs = false;
1989 		cond_resched();
1990 	}
1991 
1992 	/*
1993 	 * If the path cache is disabled, then it means at some tree level we
1994 	 * got multiple parents due to a mix of direct and indirect backrefs or
1995 	 * multiple leaves with file extent items pointing to the same data
1996 	 * extent. We have to invalidate the cache and cache only the sharedness
1997 	 * result for the levels where we got only one node/reference.
1998 	 */
1999 	if (!ctx->use_path_cache) {
2000 		int i = 0;
2001 
2002 		level--;
2003 		if (ret >= 0 && level >= 0) {
2004 			bytenr = ctx->path_cache_entries[level].bytenr;
2005 			ctx->use_path_cache = true;
2006 			store_backref_shared_cache(ctx, root, bytenr, level, ret);
2007 			i = level + 1;
2008 		}
2009 
2010 		for ( ; i < BTRFS_MAX_LEVEL; i++)
2011 			ctx->path_cache_entries[i].bytenr = 0;
2012 	}
2013 
2014 	/*
2015 	 * Cache the sharedness result for the data extent if we know our inode
2016 	 * has more than 1 file extent item that refers to the data extent.
2017 	 */
2018 	if (ret >= 0 && shared.self_ref_count > 1) {
2019 		int slot = ctx->prev_extents_cache_slot;
2020 
2021 		ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2022 		ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2023 
2024 		slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2025 		ctx->prev_extents_cache_slot = slot;
2026 	}
2027 
2028 out_trans:
2029 	if (trans) {
2030 		btrfs_put_tree_mod_seq(fs_info, &elem);
2031 		btrfs_end_transaction(trans);
2032 	} else {
2033 		up_read(&fs_info->commit_root_sem);
2034 	}
2035 out:
2036 	ulist_release(&ctx->refs);
2037 	ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2038 
2039 	return ret;
2040 }
2041 
2042 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2043 			  u64 start_off, struct btrfs_path *path,
2044 			  struct btrfs_inode_extref **ret_extref,
2045 			  u64 *found_off)
2046 {
2047 	int ret, slot;
2048 	struct btrfs_key key;
2049 	struct btrfs_key found_key;
2050 	struct btrfs_inode_extref *extref;
2051 	const struct extent_buffer *leaf;
2052 	unsigned long ptr;
2053 
2054 	key.objectid = inode_objectid;
2055 	key.type = BTRFS_INODE_EXTREF_KEY;
2056 	key.offset = start_off;
2057 
2058 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2059 	if (ret < 0)
2060 		return ret;
2061 
2062 	while (1) {
2063 		leaf = path->nodes[0];
2064 		slot = path->slots[0];
2065 		if (slot >= btrfs_header_nritems(leaf)) {
2066 			/*
2067 			 * If the item at offset is not found,
2068 			 * btrfs_search_slot will point us to the slot
2069 			 * where it should be inserted. In our case
2070 			 * that will be the slot directly before the
2071 			 * next INODE_REF_KEY_V2 item. In the case
2072 			 * that we're pointing to the last slot in a
2073 			 * leaf, we must move one leaf over.
2074 			 */
2075 			ret = btrfs_next_leaf(root, path);
2076 			if (ret) {
2077 				if (ret >= 1)
2078 					ret = -ENOENT;
2079 				break;
2080 			}
2081 			continue;
2082 		}
2083 
2084 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2085 
2086 		/*
2087 		 * Check that we're still looking at an extended ref key for
2088 		 * this particular objectid. If we have different
2089 		 * objectid or type then there are no more to be found
2090 		 * in the tree and we can exit.
2091 		 */
2092 		ret = -ENOENT;
2093 		if (found_key.objectid != inode_objectid)
2094 			break;
2095 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2096 			break;
2097 
2098 		ret = 0;
2099 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2100 		extref = (struct btrfs_inode_extref *)ptr;
2101 		*ret_extref = extref;
2102 		if (found_off)
2103 			*found_off = found_key.offset;
2104 		break;
2105 	}
2106 
2107 	return ret;
2108 }
2109 
2110 /*
2111  * this iterates to turn a name (from iref/extref) into a full filesystem path.
2112  * Elements of the path are separated by '/' and the path is guaranteed to be
2113  * 0-terminated. the path is only given within the current file system.
2114  * Therefore, it never starts with a '/'. the caller is responsible to provide
2115  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2116  * the start point of the resulting string is returned. this pointer is within
2117  * dest, normally.
2118  * in case the path buffer would overflow, the pointer is decremented further
2119  * as if output was written to the buffer, though no more output is actually
2120  * generated. that way, the caller can determine how much space would be
2121  * required for the path to fit into the buffer. in that case, the returned
2122  * value will be smaller than dest. callers must check this!
2123  */
2124 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2125 			u32 name_len, unsigned long name_off,
2126 			struct extent_buffer *eb_in, u64 parent,
2127 			char *dest, u32 size)
2128 {
2129 	int slot;
2130 	u64 next_inum;
2131 	int ret;
2132 	s64 bytes_left = ((s64)size) - 1;
2133 	struct extent_buffer *eb = eb_in;
2134 	struct btrfs_key found_key;
2135 	struct btrfs_inode_ref *iref;
2136 
2137 	if (bytes_left >= 0)
2138 		dest[bytes_left] = '\0';
2139 
2140 	while (1) {
2141 		bytes_left -= name_len;
2142 		if (bytes_left >= 0)
2143 			read_extent_buffer(eb, dest + bytes_left,
2144 					   name_off, name_len);
2145 		if (eb != eb_in) {
2146 			if (!path->skip_locking)
2147 				btrfs_tree_read_unlock(eb);
2148 			free_extent_buffer(eb);
2149 		}
2150 		ret = btrfs_find_item(fs_root, path, parent, 0,
2151 				BTRFS_INODE_REF_KEY, &found_key);
2152 		if (ret > 0)
2153 			ret = -ENOENT;
2154 		if (ret)
2155 			break;
2156 
2157 		next_inum = found_key.offset;
2158 
2159 		/* regular exit ahead */
2160 		if (parent == next_inum)
2161 			break;
2162 
2163 		slot = path->slots[0];
2164 		eb = path->nodes[0];
2165 		/* make sure we can use eb after releasing the path */
2166 		if (eb != eb_in) {
2167 			path->nodes[0] = NULL;
2168 			path->locks[0] = 0;
2169 		}
2170 		btrfs_release_path(path);
2171 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2172 
2173 		name_len = btrfs_inode_ref_name_len(eb, iref);
2174 		name_off = (unsigned long)(iref + 1);
2175 
2176 		parent = next_inum;
2177 		--bytes_left;
2178 		if (bytes_left >= 0)
2179 			dest[bytes_left] = '/';
2180 	}
2181 
2182 	btrfs_release_path(path);
2183 
2184 	if (ret)
2185 		return ERR_PTR(ret);
2186 
2187 	return dest + bytes_left;
2188 }
2189 
2190 /*
2191  * this makes the path point to (logical EXTENT_ITEM *)
2192  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2193  * tree blocks and <0 on error.
2194  */
2195 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2196 			struct btrfs_path *path, struct btrfs_key *found_key,
2197 			u64 *flags_ret)
2198 {
2199 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
2200 	int ret;
2201 	u64 flags;
2202 	u64 size = 0;
2203 	const struct extent_buffer *eb;
2204 	struct btrfs_extent_item *ei;
2205 	struct btrfs_key key;
2206 
2207 	key.objectid = logical;
2208 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2209 		key.type = BTRFS_METADATA_ITEM_KEY;
2210 	else
2211 		key.type = BTRFS_EXTENT_ITEM_KEY;
2212 	key.offset = (u64)-1;
2213 
2214 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2215 	if (ret < 0)
2216 		return ret;
2217 	if (unlikely(ret == 0)) {
2218 		/*
2219 		 * Key with offset -1 found, there would have to exist an extent
2220 		 * item with such offset, but this is out of the valid range.
2221 		 */
2222 		return -EUCLEAN;
2223 	}
2224 
2225 	ret = btrfs_previous_extent_item(extent_root, path, 0);
2226 	if (ret) {
2227 		if (ret > 0)
2228 			ret = -ENOENT;
2229 		return ret;
2230 	}
2231 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
2232 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2233 		size = fs_info->nodesize;
2234 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2235 		size = found_key->offset;
2236 
2237 	if (found_key->objectid > logical ||
2238 	    found_key->objectid + size <= logical) {
2239 		btrfs_debug(fs_info,
2240 			"logical %llu is not within any extent", logical);
2241 		return -ENOENT;
2242 	}
2243 
2244 	eb = path->nodes[0];
2245 
2246 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2247 	flags = btrfs_extent_flags(eb, ei);
2248 
2249 	btrfs_debug(fs_info,
2250 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2251 		 logical, logical - found_key->objectid, found_key->objectid,
2252 		 found_key->offset, flags, btrfs_item_size(eb, path->slots[0]));
2253 
2254 	WARN_ON(!flags_ret);
2255 	if (flags_ret) {
2256 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2257 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2258 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
2259 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
2260 		else
2261 			BUG();
2262 		return 0;
2263 	}
2264 
2265 	return -EIO;
2266 }
2267 
2268 /*
2269  * helper function to iterate extent inline refs. ptr must point to a 0 value
2270  * for the first call and may be modified. it is used to track state.
2271  * if more refs exist, 0 is returned and the next call to
2272  * get_extent_inline_ref must pass the modified ptr parameter to get the
2273  * next ref. after the last ref was processed, 1 is returned.
2274  * returns <0 on error
2275  */
2276 static int get_extent_inline_ref(unsigned long *ptr,
2277 				 const struct extent_buffer *eb,
2278 				 const struct btrfs_key *key,
2279 				 const struct btrfs_extent_item *ei,
2280 				 u32 item_size,
2281 				 struct btrfs_extent_inline_ref **out_eiref,
2282 				 int *out_type)
2283 {
2284 	unsigned long end;
2285 	u64 flags;
2286 	struct btrfs_tree_block_info *info;
2287 
2288 	if (!*ptr) {
2289 		/* first call */
2290 		flags = btrfs_extent_flags(eb, ei);
2291 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2292 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
2293 				/* a skinny metadata extent */
2294 				*out_eiref =
2295 				     (struct btrfs_extent_inline_ref *)(ei + 1);
2296 			} else {
2297 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2298 				info = (struct btrfs_tree_block_info *)(ei + 1);
2299 				*out_eiref =
2300 				   (struct btrfs_extent_inline_ref *)(info + 1);
2301 			}
2302 		} else {
2303 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2304 		}
2305 		*ptr = (unsigned long)*out_eiref;
2306 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2307 			return -ENOENT;
2308 	}
2309 
2310 	end = (unsigned long)ei + item_size;
2311 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2312 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2313 						     BTRFS_REF_TYPE_ANY);
2314 	if (unlikely(*out_type == BTRFS_REF_TYPE_INVALID))
2315 		return -EUCLEAN;
2316 
2317 	*ptr += btrfs_extent_inline_ref_size(*out_type);
2318 	WARN_ON(*ptr > end);
2319 	if (*ptr == end)
2320 		return 1; /* last */
2321 
2322 	return 0;
2323 }
2324 
2325 /*
2326  * reads the tree block backref for an extent. tree level and root are returned
2327  * through out_level and out_root. ptr must point to a 0 value for the first
2328  * call and may be modified (see get_extent_inline_ref comment).
2329  * returns 0 if data was provided, 1 if there was no more data to provide or
2330  * <0 on error.
2331  */
2332 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2333 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
2334 			    u32 item_size, u64 *out_root, u8 *out_level)
2335 {
2336 	int ret;
2337 	int type;
2338 	struct btrfs_extent_inline_ref *eiref;
2339 
2340 	if (*ptr == (unsigned long)-1)
2341 		return 1;
2342 
2343 	while (1) {
2344 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2345 					      &eiref, &type);
2346 		if (ret < 0)
2347 			return ret;
2348 
2349 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2350 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
2351 			break;
2352 
2353 		if (ret == 1)
2354 			return 1;
2355 	}
2356 
2357 	/* we can treat both ref types equally here */
2358 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2359 
2360 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2361 		struct btrfs_tree_block_info *info;
2362 
2363 		info = (struct btrfs_tree_block_info *)(ei + 1);
2364 		*out_level = btrfs_tree_block_level(eb, info);
2365 	} else {
2366 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2367 		*out_level = (u8)key->offset;
2368 	}
2369 
2370 	if (ret == 1)
2371 		*ptr = (unsigned long)-1;
2372 
2373 	return 0;
2374 }
2375 
2376 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2377 			     struct extent_inode_elem *inode_list,
2378 			     u64 root, u64 extent_item_objectid,
2379 			     iterate_extent_inodes_t *iterate, void *ctx)
2380 {
2381 	struct extent_inode_elem *eie;
2382 	int ret = 0;
2383 
2384 	for (eie = inode_list; eie; eie = eie->next) {
2385 		btrfs_debug(fs_info,
2386 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2387 			    extent_item_objectid, eie->inum,
2388 			    eie->offset, root);
2389 		ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2390 		if (ret) {
2391 			btrfs_debug(fs_info,
2392 				    "stopping iteration for %llu due to ret=%d",
2393 				    extent_item_objectid, ret);
2394 			break;
2395 		}
2396 	}
2397 
2398 	return ret;
2399 }
2400 
2401 /*
2402  * calls iterate() for every inode that references the extent identified by
2403  * the given parameters.
2404  * when the iterator function returns a non-zero value, iteration stops.
2405  */
2406 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2407 			  bool search_commit_root,
2408 			  iterate_extent_inodes_t *iterate, void *user_ctx)
2409 {
2410 	int ret;
2411 	struct ulist *refs;
2412 	struct ulist_node *ref_node;
2413 	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2414 	struct ulist_iterator ref_uiter;
2415 
2416 	btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2417 		    ctx->bytenr);
2418 
2419 	ASSERT(ctx->trans == NULL);
2420 	ASSERT(ctx->roots == NULL);
2421 
2422 	if (!search_commit_root) {
2423 		struct btrfs_trans_handle *trans;
2424 
2425 		trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
2426 		if (IS_ERR(trans)) {
2427 			if (PTR_ERR(trans) != -ENOENT &&
2428 			    PTR_ERR(trans) != -EROFS)
2429 				return PTR_ERR(trans);
2430 			trans = NULL;
2431 		}
2432 		ctx->trans = trans;
2433 	}
2434 
2435 	if (ctx->trans) {
2436 		btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2437 		ctx->time_seq = seq_elem.seq;
2438 	} else {
2439 		down_read(&ctx->fs_info->commit_root_sem);
2440 	}
2441 
2442 	ret = btrfs_find_all_leafs(ctx);
2443 	if (ret)
2444 		goto out;
2445 	refs = ctx->refs;
2446 	ctx->refs = NULL;
2447 
2448 	ULIST_ITER_INIT(&ref_uiter);
2449 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2450 		const u64 leaf_bytenr = ref_node->val;
2451 		struct ulist_node *root_node;
2452 		struct ulist_iterator root_uiter;
2453 		struct extent_inode_elem *inode_list;
2454 
2455 		inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2456 
2457 		if (ctx->cache_lookup) {
2458 			const u64 *root_ids;
2459 			int root_count;
2460 			bool cached;
2461 
2462 			cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2463 						   &root_ids, &root_count);
2464 			if (cached) {
2465 				for (int i = 0; i < root_count; i++) {
2466 					ret = iterate_leaf_refs(ctx->fs_info,
2467 								inode_list,
2468 								root_ids[i],
2469 								leaf_bytenr,
2470 								iterate,
2471 								user_ctx);
2472 					if (ret)
2473 						break;
2474 				}
2475 				continue;
2476 			}
2477 		}
2478 
2479 		if (!ctx->roots) {
2480 			ctx->roots = ulist_alloc(GFP_NOFS);
2481 			if (!ctx->roots) {
2482 				ret = -ENOMEM;
2483 				break;
2484 			}
2485 		}
2486 
2487 		ctx->bytenr = leaf_bytenr;
2488 		ret = btrfs_find_all_roots_safe(ctx);
2489 		if (ret)
2490 			break;
2491 
2492 		if (ctx->cache_store)
2493 			ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2494 
2495 		ULIST_ITER_INIT(&root_uiter);
2496 		while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2497 			btrfs_debug(ctx->fs_info,
2498 				    "root %llu references leaf %llu, data list %#llx",
2499 				    root_node->val, ref_node->val,
2500 				    ref_node->aux);
2501 			ret = iterate_leaf_refs(ctx->fs_info, inode_list,
2502 						root_node->val, ctx->bytenr,
2503 						iterate, user_ctx);
2504 		}
2505 		ulist_reinit(ctx->roots);
2506 	}
2507 
2508 	free_leaf_list(refs);
2509 out:
2510 	if (ctx->trans) {
2511 		btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2512 		btrfs_end_transaction(ctx->trans);
2513 		ctx->trans = NULL;
2514 	} else {
2515 		up_read(&ctx->fs_info->commit_root_sem);
2516 	}
2517 
2518 	ulist_free(ctx->roots);
2519 	ctx->roots = NULL;
2520 
2521 	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2522 		ret = 0;
2523 
2524 	return ret;
2525 }
2526 
2527 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2528 {
2529 	struct btrfs_data_container *inodes = ctx;
2530 	const size_t c = 3 * sizeof(u64);
2531 
2532 	if (inodes->bytes_left >= c) {
2533 		inodes->bytes_left -= c;
2534 		inodes->val[inodes->elem_cnt] = inum;
2535 		inodes->val[inodes->elem_cnt + 1] = offset;
2536 		inodes->val[inodes->elem_cnt + 2] = root;
2537 		inodes->elem_cnt += 3;
2538 	} else {
2539 		inodes->bytes_missing += c - inodes->bytes_left;
2540 		inodes->bytes_left = 0;
2541 		inodes->elem_missed += 3;
2542 	}
2543 
2544 	return 0;
2545 }
2546 
2547 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2548 				void *ctx, bool ignore_offset)
2549 {
2550 	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2551 	int ret;
2552 	u64 flags = 0;
2553 	struct btrfs_key found_key;
2554 	struct btrfs_path *path;
2555 
2556 	path = btrfs_alloc_path();
2557 	if (!path)
2558 		return -ENOMEM;
2559 
2560 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2561 	btrfs_free_path(path);
2562 	if (ret < 0)
2563 		return ret;
2564 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2565 		return -EINVAL;
2566 
2567 	walk_ctx.bytenr = found_key.objectid;
2568 	if (ignore_offset)
2569 		walk_ctx.ignore_extent_item_pos = true;
2570 	else
2571 		walk_ctx.extent_item_pos = logical - found_key.objectid;
2572 	walk_ctx.fs_info = fs_info;
2573 
2574 	return iterate_extent_inodes(&walk_ctx, false, build_ino_list, ctx);
2575 }
2576 
2577 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2578 			 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2579 
2580 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2581 {
2582 	int ret = 0;
2583 	int slot;
2584 	u32 cur;
2585 	u32 len;
2586 	u32 name_len;
2587 	u64 parent = 0;
2588 	int found = 0;
2589 	struct btrfs_root *fs_root = ipath->fs_root;
2590 	struct btrfs_path *path = ipath->btrfs_path;
2591 	struct extent_buffer *eb;
2592 	struct btrfs_inode_ref *iref;
2593 	struct btrfs_key found_key;
2594 
2595 	while (!ret) {
2596 		ret = btrfs_find_item(fs_root, path, inum,
2597 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2598 				&found_key);
2599 
2600 		if (ret < 0)
2601 			break;
2602 		if (ret) {
2603 			ret = found ? 0 : -ENOENT;
2604 			break;
2605 		}
2606 		++found;
2607 
2608 		parent = found_key.offset;
2609 		slot = path->slots[0];
2610 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2611 		if (!eb) {
2612 			ret = -ENOMEM;
2613 			break;
2614 		}
2615 		btrfs_release_path(path);
2616 
2617 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2618 
2619 		for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2620 			name_len = btrfs_inode_ref_name_len(eb, iref);
2621 			/* path must be released before calling iterate()! */
2622 			btrfs_debug(fs_root->fs_info,
2623 				"following ref at offset %u for inode %llu in tree %llu",
2624 				cur, found_key.objectid,
2625 				btrfs_root_id(fs_root));
2626 			ret = inode_to_path(parent, name_len,
2627 				      (unsigned long)(iref + 1), eb, ipath);
2628 			if (ret)
2629 				break;
2630 			len = sizeof(*iref) + name_len;
2631 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2632 		}
2633 		free_extent_buffer(eb);
2634 	}
2635 
2636 	btrfs_release_path(path);
2637 
2638 	return ret;
2639 }
2640 
2641 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2642 {
2643 	int ret;
2644 	int slot;
2645 	u64 offset = 0;
2646 	u64 parent;
2647 	int found = 0;
2648 	struct btrfs_root *fs_root = ipath->fs_root;
2649 	struct btrfs_path *path = ipath->btrfs_path;
2650 	struct extent_buffer *eb;
2651 	struct btrfs_inode_extref *extref;
2652 	u32 item_size;
2653 	u32 cur_offset;
2654 	unsigned long ptr;
2655 
2656 	while (1) {
2657 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2658 					    &offset);
2659 		if (ret < 0)
2660 			break;
2661 		if (ret) {
2662 			ret = found ? 0 : -ENOENT;
2663 			break;
2664 		}
2665 		++found;
2666 
2667 		slot = path->slots[0];
2668 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2669 		if (!eb) {
2670 			ret = -ENOMEM;
2671 			break;
2672 		}
2673 		btrfs_release_path(path);
2674 
2675 		item_size = btrfs_item_size(eb, slot);
2676 		ptr = btrfs_item_ptr_offset(eb, slot);
2677 		cur_offset = 0;
2678 
2679 		while (cur_offset < item_size) {
2680 			u32 name_len;
2681 
2682 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2683 			parent = btrfs_inode_extref_parent(eb, extref);
2684 			name_len = btrfs_inode_extref_name_len(eb, extref);
2685 			ret = inode_to_path(parent, name_len,
2686 				      (unsigned long)&extref->name, eb, ipath);
2687 			if (ret)
2688 				break;
2689 
2690 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2691 			cur_offset += sizeof(*extref);
2692 		}
2693 		free_extent_buffer(eb);
2694 
2695 		offset++;
2696 	}
2697 
2698 	btrfs_release_path(path);
2699 
2700 	return ret;
2701 }
2702 
2703 /*
2704  * returns 0 if the path could be dumped (probably truncated)
2705  * returns <0 in case of an error
2706  */
2707 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2708 			 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2709 {
2710 	char *fspath;
2711 	char *fspath_min;
2712 	int i = ipath->fspath->elem_cnt;
2713 	const int s_ptr = sizeof(char *);
2714 	u32 bytes_left;
2715 
2716 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2717 					ipath->fspath->bytes_left - s_ptr : 0;
2718 
2719 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2720 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2721 				   name_off, eb, inum, fspath_min, bytes_left);
2722 	if (IS_ERR(fspath))
2723 		return PTR_ERR(fspath);
2724 
2725 	if (fspath > fspath_min) {
2726 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2727 		++ipath->fspath->elem_cnt;
2728 		ipath->fspath->bytes_left = fspath - fspath_min;
2729 	} else {
2730 		++ipath->fspath->elem_missed;
2731 		ipath->fspath->bytes_missing += fspath_min - fspath;
2732 		ipath->fspath->bytes_left = 0;
2733 	}
2734 
2735 	return 0;
2736 }
2737 
2738 /*
2739  * this dumps all file system paths to the inode into the ipath struct, provided
2740  * is has been created large enough. each path is zero-terminated and accessed
2741  * from ipath->fspath->val[i].
2742  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2743  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2744  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2745  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2746  * have been needed to return all paths.
2747  */
2748 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2749 {
2750 	int ret;
2751 	int found_refs = 0;
2752 
2753 	ret = iterate_inode_refs(inum, ipath);
2754 	if (!ret)
2755 		++found_refs;
2756 	else if (ret != -ENOENT)
2757 		return ret;
2758 
2759 	ret = iterate_inode_extrefs(inum, ipath);
2760 	if (ret == -ENOENT && found_refs)
2761 		return 0;
2762 
2763 	return ret;
2764 }
2765 
2766 struct btrfs_data_container *init_data_container(u32 total_bytes)
2767 {
2768 	struct btrfs_data_container *data;
2769 	size_t alloc_bytes;
2770 
2771 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2772 	data = kvzalloc(alloc_bytes, GFP_KERNEL);
2773 	if (!data)
2774 		return ERR_PTR(-ENOMEM);
2775 
2776 	if (total_bytes >= sizeof(*data))
2777 		data->bytes_left = total_bytes - sizeof(*data);
2778 	else
2779 		data->bytes_missing = sizeof(*data) - total_bytes;
2780 
2781 	return data;
2782 }
2783 
2784 /*
2785  * allocates space to return multiple file system paths for an inode.
2786  * total_bytes to allocate are passed, note that space usable for actual path
2787  * information will be total_bytes - sizeof(struct inode_fs_paths).
2788  * the returned pointer must be freed with __free_inode_fs_paths() in the end.
2789  */
2790 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2791 					struct btrfs_path *path)
2792 {
2793 	struct inode_fs_paths *ifp;
2794 	struct btrfs_data_container *fspath;
2795 
2796 	fspath = init_data_container(total_bytes);
2797 	if (IS_ERR(fspath))
2798 		return ERR_CAST(fspath);
2799 
2800 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2801 	if (!ifp) {
2802 		kvfree(fspath);
2803 		return ERR_PTR(-ENOMEM);
2804 	}
2805 
2806 	ifp->btrfs_path = path;
2807 	ifp->fspath = fspath;
2808 	ifp->fs_root = fs_root;
2809 
2810 	return ifp;
2811 }
2812 
2813 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2814 {
2815 	struct btrfs_backref_iter *ret;
2816 
2817 	ret = kzalloc(sizeof(*ret), GFP_NOFS);
2818 	if (!ret)
2819 		return NULL;
2820 
2821 	ret->path = btrfs_alloc_path();
2822 	if (!ret->path) {
2823 		kfree(ret);
2824 		return NULL;
2825 	}
2826 
2827 	/* Current backref iterator only supports iteration in commit root */
2828 	ret->path->search_commit_root = true;
2829 	ret->path->skip_locking = true;
2830 	ret->fs_info = fs_info;
2831 
2832 	return ret;
2833 }
2834 
2835 static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
2836 {
2837 	iter->bytenr = 0;
2838 	iter->item_ptr = 0;
2839 	iter->cur_ptr = 0;
2840 	iter->end_ptr = 0;
2841 	btrfs_release_path(iter->path);
2842 	memset(&iter->cur_key, 0, sizeof(iter->cur_key));
2843 }
2844 
2845 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2846 {
2847 	struct btrfs_fs_info *fs_info = iter->fs_info;
2848 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2849 	struct btrfs_path *path = iter->path;
2850 	struct btrfs_extent_item *ei;
2851 	struct btrfs_key key;
2852 	int ret;
2853 
2854 	key.objectid = bytenr;
2855 	key.type = BTRFS_METADATA_ITEM_KEY;
2856 	key.offset = (u64)-1;
2857 	iter->bytenr = bytenr;
2858 
2859 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2860 	if (ret < 0)
2861 		return ret;
2862 	if (unlikely(ret == 0)) {
2863 		/*
2864 		 * Key with offset -1 found, there would have to exist an extent
2865 		 * item with such offset, but this is out of the valid range.
2866 		 */
2867 		ret = -EUCLEAN;
2868 		goto release;
2869 	}
2870 	if (unlikely(path->slots[0] == 0)) {
2871 		DEBUG_WARN();
2872 		ret = -EUCLEAN;
2873 		goto release;
2874 	}
2875 	path->slots[0]--;
2876 
2877 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2878 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2879 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2880 		ret = -ENOENT;
2881 		goto release;
2882 	}
2883 	memcpy(&iter->cur_key, &key, sizeof(key));
2884 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2885 						    path->slots[0]);
2886 	iter->end_ptr = (u32)(iter->item_ptr +
2887 			btrfs_item_size(path->nodes[0], path->slots[0]));
2888 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2889 			    struct btrfs_extent_item);
2890 
2891 	/*
2892 	 * Only support iteration on tree backref yet.
2893 	 *
2894 	 * This is an extra precaution for non skinny-metadata, where
2895 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2896 	 * extent flags to determine if it's a tree block.
2897 	 */
2898 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2899 		ret = -ENOTSUPP;
2900 		goto release;
2901 	}
2902 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2903 
2904 	/* If there is no inline backref, go search for keyed backref */
2905 	if (iter->cur_ptr >= iter->end_ptr) {
2906 		ret = btrfs_next_item(extent_root, path);
2907 
2908 		/* No inline nor keyed ref */
2909 		if (ret > 0) {
2910 			ret = -ENOENT;
2911 			goto release;
2912 		}
2913 		if (ret < 0)
2914 			goto release;
2915 
2916 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2917 				path->slots[0]);
2918 		if (iter->cur_key.objectid != bytenr ||
2919 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2920 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2921 			ret = -ENOENT;
2922 			goto release;
2923 		}
2924 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2925 							   path->slots[0]);
2926 		iter->item_ptr = iter->cur_ptr;
2927 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2928 				      path->nodes[0], path->slots[0]));
2929 	}
2930 
2931 	return 0;
2932 release:
2933 	btrfs_backref_iter_release(iter);
2934 	return ret;
2935 }
2936 
2937 static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter)
2938 {
2939 	if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
2940 	    iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
2941 		return true;
2942 	return false;
2943 }
2944 
2945 /*
2946  * Go to the next backref item of current bytenr, can be either inlined or
2947  * keyed.
2948  *
2949  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2950  *
2951  * Return 0 if we get next backref without problem.
2952  * Return >0 if there is no extra backref for this bytenr.
2953  * Return <0 if there is something wrong happened.
2954  */
2955 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2956 {
2957 	struct extent_buffer *eb = iter->path->nodes[0];
2958 	struct btrfs_root *extent_root;
2959 	struct btrfs_path *path = iter->path;
2960 	struct btrfs_extent_inline_ref *iref;
2961 	int ret;
2962 	u32 size;
2963 
2964 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2965 		/* We're still inside the inline refs */
2966 		ASSERT(iter->cur_ptr < iter->end_ptr);
2967 
2968 		if (btrfs_backref_has_tree_block_info(iter)) {
2969 			/* First tree block info */
2970 			size = sizeof(struct btrfs_tree_block_info);
2971 		} else {
2972 			/* Use inline ref type to determine the size */
2973 			int type;
2974 
2975 			iref = (struct btrfs_extent_inline_ref *)
2976 				((unsigned long)iter->cur_ptr);
2977 			type = btrfs_extent_inline_ref_type(eb, iref);
2978 
2979 			size = btrfs_extent_inline_ref_size(type);
2980 		}
2981 		iter->cur_ptr += size;
2982 		if (iter->cur_ptr < iter->end_ptr)
2983 			return 0;
2984 
2985 		/* All inline items iterated, fall through */
2986 	}
2987 
2988 	/* We're at keyed items, there is no inline item, go to the next one */
2989 	extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2990 	ret = btrfs_next_item(extent_root, iter->path);
2991 	if (ret)
2992 		return ret;
2993 
2994 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2995 	if (iter->cur_key.objectid != iter->bytenr ||
2996 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2997 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2998 		return 1;
2999 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
3000 					path->slots[0]);
3001 	iter->cur_ptr = iter->item_ptr;
3002 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
3003 						path->slots[0]);
3004 	return 0;
3005 }
3006 
3007 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
3008 			      struct btrfs_backref_cache *cache, bool is_reloc)
3009 {
3010 	int i;
3011 
3012 	cache->rb_root = RB_ROOT;
3013 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3014 		INIT_LIST_HEAD(&cache->pending[i]);
3015 	INIT_LIST_HEAD(&cache->pending_edge);
3016 	INIT_LIST_HEAD(&cache->useless_node);
3017 	cache->fs_info = fs_info;
3018 	cache->is_reloc = is_reloc;
3019 }
3020 
3021 struct btrfs_backref_node *btrfs_backref_alloc_node(
3022 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
3023 {
3024 	struct btrfs_backref_node *node;
3025 
3026 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3027 	node = kzalloc(sizeof(*node), GFP_NOFS);
3028 	if (!node)
3029 		return node;
3030 
3031 	INIT_LIST_HEAD(&node->list);
3032 	INIT_LIST_HEAD(&node->upper);
3033 	INIT_LIST_HEAD(&node->lower);
3034 	RB_CLEAR_NODE(&node->rb_node);
3035 	cache->nr_nodes++;
3036 	node->level = level;
3037 	node->bytenr = bytenr;
3038 
3039 	return node;
3040 }
3041 
3042 void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
3043 			     struct btrfs_backref_node *node)
3044 {
3045 	if (node) {
3046 		ASSERT(list_empty(&node->list));
3047 		ASSERT(list_empty(&node->lower));
3048 		ASSERT(node->eb == NULL);
3049 		cache->nr_nodes--;
3050 		btrfs_put_root(node->root);
3051 		kfree(node);
3052 	}
3053 }
3054 
3055 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3056 		struct btrfs_backref_cache *cache)
3057 {
3058 	struct btrfs_backref_edge *edge;
3059 
3060 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
3061 	if (edge)
3062 		cache->nr_edges++;
3063 	return edge;
3064 }
3065 
3066 void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
3067 			     struct btrfs_backref_edge *edge)
3068 {
3069 	if (edge) {
3070 		cache->nr_edges--;
3071 		kfree(edge);
3072 	}
3073 }
3074 
3075 void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node)
3076 {
3077 	if (node->locked) {
3078 		btrfs_tree_unlock(node->eb);
3079 		node->locked = 0;
3080 	}
3081 }
3082 
3083 void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node)
3084 {
3085 	if (node->eb) {
3086 		btrfs_backref_unlock_node_buffer(node);
3087 		free_extent_buffer(node->eb);
3088 		node->eb = NULL;
3089 	}
3090 }
3091 
3092 /*
3093  * Drop the backref node from cache without cleaning up its children
3094  * edges.
3095  *
3096  * This can only be called on node without parent edges.
3097  * The children edges are still kept as is.
3098  */
3099 void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
3100 			     struct btrfs_backref_node *node)
3101 {
3102 	ASSERT(list_empty(&node->upper));
3103 
3104 	btrfs_backref_drop_node_buffer(node);
3105 	list_del_init(&node->list);
3106 	list_del_init(&node->lower);
3107 	if (!RB_EMPTY_NODE(&node->rb_node))
3108 		rb_erase(&node->rb_node, &tree->rb_root);
3109 	btrfs_backref_free_node(tree, node);
3110 }
3111 
3112 /*
3113  * Drop the backref node from cache, also cleaning up all its
3114  * upper edges and any uncached nodes in the path.
3115  *
3116  * This cleanup happens bottom up, thus the node should either
3117  * be the lowest node in the cache or a detached node.
3118  */
3119 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3120 				struct btrfs_backref_node *node)
3121 {
3122 	struct btrfs_backref_edge *edge;
3123 
3124 	if (!node)
3125 		return;
3126 
3127 	while (!list_empty(&node->upper)) {
3128 		edge = list_first_entry(&node->upper, struct btrfs_backref_edge,
3129 					list[LOWER]);
3130 		list_del(&edge->list[LOWER]);
3131 		list_del(&edge->list[UPPER]);
3132 		btrfs_backref_free_edge(cache, edge);
3133 	}
3134 
3135 	btrfs_backref_drop_node(cache, node);
3136 }
3137 
3138 /*
3139  * Release all nodes/edges from current cache
3140  */
3141 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3142 {
3143 	struct btrfs_backref_node *node;
3144 
3145 	while ((node = rb_entry_safe(rb_first(&cache->rb_root),
3146 				     struct btrfs_backref_node, rb_node)))
3147 		btrfs_backref_cleanup_node(cache, node);
3148 
3149 	ASSERT(list_empty(&cache->pending_edge));
3150 	ASSERT(list_empty(&cache->useless_node));
3151 	ASSERT(!cache->nr_nodes);
3152 	ASSERT(!cache->nr_edges);
3153 }
3154 
3155 static void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
3156 				    struct btrfs_backref_node *lower,
3157 				    struct btrfs_backref_node *upper)
3158 {
3159 	ASSERT(upper && lower && upper->level == lower->level + 1);
3160 	edge->node[LOWER] = lower;
3161 	edge->node[UPPER] = upper;
3162 	list_add_tail(&edge->list[LOWER], &lower->upper);
3163 }
3164 /*
3165  * Handle direct tree backref
3166  *
3167  * Direct tree backref means, the backref item shows its parent bytenr
3168  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3169  *
3170  * @ref_key:	The converted backref key.
3171  *		For keyed backref, it's the item key.
3172  *		For inlined backref, objectid is the bytenr,
3173  *		type is btrfs_inline_ref_type, offset is
3174  *		btrfs_inline_ref_offset.
3175  */
3176 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3177 				      struct btrfs_key *ref_key,
3178 				      struct btrfs_backref_node *cur)
3179 {
3180 	struct btrfs_backref_edge *edge;
3181 	struct btrfs_backref_node *upper;
3182 	struct rb_node *rb_node;
3183 
3184 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3185 
3186 	/* Only reloc root uses backref pointing to itself */
3187 	if (ref_key->objectid == ref_key->offset) {
3188 		struct btrfs_root *root;
3189 
3190 		cur->is_reloc_root = 1;
3191 		/* Only reloc backref cache cares about a specific root */
3192 		if (cache->is_reloc) {
3193 			root = find_reloc_root(cache->fs_info, cur->bytenr);
3194 			if (!root)
3195 				return -ENOENT;
3196 			cur->root = root;
3197 		} else {
3198 			/*
3199 			 * For generic purpose backref cache, reloc root node
3200 			 * is useless.
3201 			 */
3202 			list_add(&cur->list, &cache->useless_node);
3203 		}
3204 		return 0;
3205 	}
3206 
3207 	edge = btrfs_backref_alloc_edge(cache);
3208 	if (!edge)
3209 		return -ENOMEM;
3210 
3211 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3212 	if (!rb_node) {
3213 		/* Parent node not yet cached */
3214 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3215 					   cur->level + 1);
3216 		if (!upper) {
3217 			btrfs_backref_free_edge(cache, edge);
3218 			return -ENOMEM;
3219 		}
3220 
3221 		/*
3222 		 *  Backrefs for the upper level block isn't cached, add the
3223 		 *  block to pending list
3224 		 */
3225 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3226 	} else {
3227 		/* Parent node already cached */
3228 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3229 		ASSERT(upper->checked);
3230 		INIT_LIST_HEAD(&edge->list[UPPER]);
3231 	}
3232 	btrfs_backref_link_edge(edge, cur, upper);
3233 	return 0;
3234 }
3235 
3236 /*
3237  * Handle indirect tree backref
3238  *
3239  * Indirect tree backref means, we only know which tree the node belongs to.
3240  * We still need to do a tree search to find out the parents. This is for
3241  * TREE_BLOCK_REF backref (keyed or inlined).
3242  *
3243  * @trans:	Transaction handle.
3244  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
3245  * @tree_key:	The first key of this tree block.
3246  * @path:	A clean (released) path, to avoid allocating path every time
3247  *		the function get called.
3248  */
3249 static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans,
3250 					struct btrfs_backref_cache *cache,
3251 					struct btrfs_path *path,
3252 					struct btrfs_key *ref_key,
3253 					struct btrfs_key *tree_key,
3254 					struct btrfs_backref_node *cur)
3255 {
3256 	struct btrfs_fs_info *fs_info = cache->fs_info;
3257 	struct btrfs_backref_node *upper;
3258 	struct btrfs_backref_node *lower;
3259 	struct btrfs_backref_edge *edge;
3260 	struct extent_buffer *eb;
3261 	struct btrfs_root *root;
3262 	struct rb_node *rb_node;
3263 	int level;
3264 	bool need_check = true;
3265 	int ret;
3266 
3267 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
3268 	if (IS_ERR(root))
3269 		return PTR_ERR(root);
3270 
3271 	/* We shouldn't be using backref cache for non-shareable roots. */
3272 	if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
3273 		btrfs_put_root(root);
3274 		return -EUCLEAN;
3275 	}
3276 
3277 	if (btrfs_root_level(&root->root_item) == cur->level) {
3278 		/* Tree root */
3279 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3280 		/*
3281 		 * For reloc backref cache, we may ignore reloc root.  But for
3282 		 * general purpose backref cache, we can't rely on
3283 		 * btrfs_should_ignore_reloc_root() as it may conflict with
3284 		 * current running relocation and lead to missing root.
3285 		 *
3286 		 * For general purpose backref cache, reloc root detection is
3287 		 * completely relying on direct backref (key->offset is parent
3288 		 * bytenr), thus only do such check for reloc cache.
3289 		 */
3290 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3291 			btrfs_put_root(root);
3292 			list_add(&cur->list, &cache->useless_node);
3293 		} else {
3294 			cur->root = root;
3295 		}
3296 		return 0;
3297 	}
3298 
3299 	level = cur->level + 1;
3300 
3301 	/* Search the tree to find parent blocks referring to the block */
3302 	path->search_commit_root = true;
3303 	path->skip_locking = true;
3304 	path->lowest_level = level;
3305 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3306 	path->lowest_level = 0;
3307 	if (ret < 0) {
3308 		btrfs_put_root(root);
3309 		return ret;
3310 	}
3311 	if (ret > 0 && path->slots[level] > 0)
3312 		path->slots[level]--;
3313 
3314 	eb = path->nodes[level];
3315 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3316 		btrfs_err(fs_info,
3317 "couldn't find block (%llu) (level %d) in tree (%llu) with key " BTRFS_KEY_FMT,
3318 			  cur->bytenr, level - 1, btrfs_root_id(root),
3319 			  BTRFS_KEY_FMT_VALUE(tree_key));
3320 		btrfs_put_root(root);
3321 		ret = -ENOENT;
3322 		goto out;
3323 	}
3324 	lower = cur;
3325 
3326 	/* Add all nodes and edges in the path */
3327 	for (; level < BTRFS_MAX_LEVEL; level++) {
3328 		if (!path->nodes[level]) {
3329 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
3330 			       lower->bytenr);
3331 			/* Same as previous should_ignore_reloc_root() call */
3332 			if (btrfs_should_ignore_reloc_root(root) &&
3333 			    cache->is_reloc) {
3334 				btrfs_put_root(root);
3335 				list_add(&lower->list, &cache->useless_node);
3336 			} else {
3337 				lower->root = root;
3338 			}
3339 			break;
3340 		}
3341 
3342 		edge = btrfs_backref_alloc_edge(cache);
3343 		if (!edge) {
3344 			btrfs_put_root(root);
3345 			ret = -ENOMEM;
3346 			goto out;
3347 		}
3348 
3349 		eb = path->nodes[level];
3350 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
3351 		if (!rb_node) {
3352 			upper = btrfs_backref_alloc_node(cache, eb->start,
3353 							 lower->level + 1);
3354 			if (!upper) {
3355 				btrfs_put_root(root);
3356 				btrfs_backref_free_edge(cache, edge);
3357 				ret = -ENOMEM;
3358 				goto out;
3359 			}
3360 			upper->owner = btrfs_header_owner(eb);
3361 
3362 			/* We shouldn't be using backref cache for non shareable roots. */
3363 			if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
3364 				btrfs_put_root(root);
3365 				btrfs_backref_free_edge(cache, edge);
3366 				btrfs_backref_free_node(cache, upper);
3367 				ret = -EUCLEAN;
3368 				goto out;
3369 			}
3370 
3371 			/*
3372 			 * If we know the block isn't shared we can avoid
3373 			 * checking its backrefs.
3374 			 */
3375 			if (btrfs_block_can_be_shared(trans, root, eb))
3376 				upper->checked = 0;
3377 			else
3378 				upper->checked = 1;
3379 
3380 			/*
3381 			 * Add the block to pending list if we need to check its
3382 			 * backrefs, we only do this once while walking up a
3383 			 * tree as we will catch anything else later on.
3384 			 */
3385 			if (!upper->checked && need_check) {
3386 				need_check = false;
3387 				list_add_tail(&edge->list[UPPER],
3388 					      &cache->pending_edge);
3389 			} else {
3390 				if (upper->checked)
3391 					need_check = true;
3392 				INIT_LIST_HEAD(&edge->list[UPPER]);
3393 			}
3394 		} else {
3395 			upper = rb_entry(rb_node, struct btrfs_backref_node,
3396 					 rb_node);
3397 			ASSERT(upper->checked);
3398 			INIT_LIST_HEAD(&edge->list[UPPER]);
3399 			if (!upper->owner)
3400 				upper->owner = btrfs_header_owner(eb);
3401 		}
3402 		btrfs_backref_link_edge(edge, lower, upper);
3403 
3404 		if (rb_node) {
3405 			btrfs_put_root(root);
3406 			break;
3407 		}
3408 		lower = upper;
3409 		upper = NULL;
3410 	}
3411 out:
3412 	btrfs_release_path(path);
3413 	return ret;
3414 }
3415 
3416 /*
3417  * Add backref node @cur into @cache.
3418  *
3419  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3420  *	 links aren't yet bi-directional. Needs to finish such links.
3421  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
3422  *
3423  * @trans:	Transaction handle.
3424  * @path:	Released path for indirect tree backref lookup
3425  * @iter:	Released backref iter for extent tree search
3426  * @node_key:	The first key of the tree block
3427  */
3428 int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
3429 				struct btrfs_backref_cache *cache,
3430 				struct btrfs_path *path,
3431 				struct btrfs_backref_iter *iter,
3432 				struct btrfs_key *node_key,
3433 				struct btrfs_backref_node *cur)
3434 {
3435 	struct btrfs_backref_edge *edge;
3436 	struct btrfs_backref_node *exist;
3437 	int ret;
3438 
3439 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
3440 	if (ret < 0)
3441 		return ret;
3442 	/*
3443 	 * We skip the first btrfs_tree_block_info, as we don't use the key
3444 	 * stored in it, but fetch it from the tree block
3445 	 */
3446 	if (btrfs_backref_has_tree_block_info(iter)) {
3447 		ret = btrfs_backref_iter_next(iter);
3448 		if (ret < 0)
3449 			goto out;
3450 		/* No extra backref? This means the tree block is corrupted */
3451 		if (unlikely(ret > 0)) {
3452 			ret = -EUCLEAN;
3453 			goto out;
3454 		}
3455 	}
3456 	WARN_ON(cur->checked);
3457 	if (!list_empty(&cur->upper)) {
3458 		/*
3459 		 * The backref was added previously when processing backref of
3460 		 * type BTRFS_TREE_BLOCK_REF_KEY
3461 		 */
3462 		ASSERT(list_is_singular(&cur->upper));
3463 		edge = list_first_entry(&cur->upper, struct btrfs_backref_edge,
3464 					list[LOWER]);
3465 		ASSERT(list_empty(&edge->list[UPPER]));
3466 		exist = edge->node[UPPER];
3467 		/*
3468 		 * Add the upper level block to pending list if we need check
3469 		 * its backrefs
3470 		 */
3471 		if (!exist->checked)
3472 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3473 	} else {
3474 		exist = NULL;
3475 	}
3476 
3477 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3478 		struct extent_buffer *eb;
3479 		struct btrfs_key key;
3480 		int type;
3481 
3482 		cond_resched();
3483 		eb = iter->path->nodes[0];
3484 
3485 		key.objectid = iter->bytenr;
3486 		if (btrfs_backref_iter_is_inline_ref(iter)) {
3487 			struct btrfs_extent_inline_ref *iref;
3488 
3489 			/* Update key for inline backref */
3490 			iref = (struct btrfs_extent_inline_ref *)
3491 				((unsigned long)iter->cur_ptr);
3492 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3493 							BTRFS_REF_TYPE_BLOCK);
3494 			if (unlikely(type == BTRFS_REF_TYPE_INVALID)) {
3495 				ret = -EUCLEAN;
3496 				goto out;
3497 			}
3498 			key.type = type;
3499 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3500 		} else {
3501 			key.type = iter->cur_key.type;
3502 			key.offset = iter->cur_key.offset;
3503 		}
3504 
3505 		/*
3506 		 * Parent node found and matches current inline ref, no need to
3507 		 * rebuild this node for this inline ref
3508 		 */
3509 		if (exist &&
3510 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3511 		      exist->owner == key.offset) ||
3512 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3513 		      exist->bytenr == key.offset))) {
3514 			exist = NULL;
3515 			continue;
3516 		}
3517 
3518 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3519 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3520 			ret = handle_direct_tree_backref(cache, &key, cur);
3521 			if (ret < 0)
3522 				goto out;
3523 		} else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) {
3524 			/*
3525 			 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref
3526 			 * offset means the root objectid. We need to search
3527 			 * the tree to get its parent bytenr.
3528 			 */
3529 			ret = handle_indirect_tree_backref(trans, cache, path,
3530 							   &key, node_key, cur);
3531 			if (ret < 0)
3532 				goto out;
3533 		}
3534 		/*
3535 		 * Unrecognized tree backref items (if it can pass tree-checker)
3536 		 * would be ignored.
3537 		 */
3538 	}
3539 	ret = 0;
3540 	cur->checked = 1;
3541 	WARN_ON(exist);
3542 out:
3543 	btrfs_backref_iter_release(iter);
3544 	return ret;
3545 }
3546 
3547 /*
3548  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3549  */
3550 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3551 				     struct btrfs_backref_node *start)
3552 {
3553 	struct list_head *useless_node = &cache->useless_node;
3554 	struct btrfs_backref_edge *edge;
3555 	struct rb_node *rb_node;
3556 	LIST_HEAD(pending_edge);
3557 
3558 	ASSERT(start->checked);
3559 
3560 	rb_node = rb_simple_insert(&cache->rb_root, &start->simple_node);
3561 	if (rb_node)
3562 		btrfs_backref_panic(cache->fs_info, start->bytenr, -EEXIST);
3563 
3564 	/*
3565 	 * Use breadth first search to iterate all related edges.
3566 	 *
3567 	 * The starting points are all the edges of this node
3568 	 */
3569 	list_for_each_entry(edge, &start->upper, list[LOWER])
3570 		list_add_tail(&edge->list[UPPER], &pending_edge);
3571 
3572 	while (!list_empty(&pending_edge)) {
3573 		struct btrfs_backref_node *upper;
3574 		struct btrfs_backref_node *lower;
3575 
3576 		edge = list_first_entry(&pending_edge,
3577 				struct btrfs_backref_edge, list[UPPER]);
3578 		list_del_init(&edge->list[UPPER]);
3579 		upper = edge->node[UPPER];
3580 		lower = edge->node[LOWER];
3581 
3582 		/* Parent is detached, no need to keep any edges */
3583 		if (upper->detached) {
3584 			list_del(&edge->list[LOWER]);
3585 			btrfs_backref_free_edge(cache, edge);
3586 
3587 			/* Lower node is orphan, queue for cleanup */
3588 			if (list_empty(&lower->upper))
3589 				list_add(&lower->list, useless_node);
3590 			continue;
3591 		}
3592 
3593 		/*
3594 		 * All new nodes added in current build_backref_tree() haven't
3595 		 * been linked to the cache rb tree.
3596 		 * So if we have upper->rb_node populated, this means a cache
3597 		 * hit. We only need to link the edge, as @upper and all its
3598 		 * parents have already been linked.
3599 		 */
3600 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3601 			list_add_tail(&edge->list[UPPER], &upper->lower);
3602 			continue;
3603 		}
3604 
3605 		/* Sanity check, we shouldn't have any unchecked nodes */
3606 		if (unlikely(!upper->checked)) {
3607 			DEBUG_WARN("we should not have any unchecked nodes");
3608 			return -EUCLEAN;
3609 		}
3610 
3611 		rb_node = rb_simple_insert(&cache->rb_root, &upper->simple_node);
3612 		if (unlikely(rb_node)) {
3613 			btrfs_backref_panic(cache->fs_info, upper->bytenr, -EEXIST);
3614 			return -EUCLEAN;
3615 		}
3616 
3617 		list_add_tail(&edge->list[UPPER], &upper->lower);
3618 
3619 		/*
3620 		 * Also queue all the parent edges of this uncached node
3621 		 * to finish the upper linkage
3622 		 */
3623 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3624 			list_add_tail(&edge->list[UPPER], &pending_edge);
3625 	}
3626 	return 0;
3627 }
3628 
3629 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3630 				 struct btrfs_backref_node *node)
3631 {
3632 	struct btrfs_backref_node *lower;
3633 	struct btrfs_backref_node *upper;
3634 	struct btrfs_backref_edge *edge;
3635 
3636 	while (!list_empty(&cache->useless_node)) {
3637 		lower = list_first_entry(&cache->useless_node,
3638 				   struct btrfs_backref_node, list);
3639 		list_del_init(&lower->list);
3640 	}
3641 	while (!list_empty(&cache->pending_edge)) {
3642 		edge = list_first_entry(&cache->pending_edge,
3643 				struct btrfs_backref_edge, list[UPPER]);
3644 		list_del(&edge->list[UPPER]);
3645 		list_del(&edge->list[LOWER]);
3646 		lower = edge->node[LOWER];
3647 		upper = edge->node[UPPER];
3648 		btrfs_backref_free_edge(cache, edge);
3649 
3650 		/*
3651 		 * Lower is no longer linked to any upper backref nodes and
3652 		 * isn't in the cache, we can free it ourselves.
3653 		 */
3654 		if (list_empty(&lower->upper) &&
3655 		    RB_EMPTY_NODE(&lower->rb_node))
3656 			list_add(&lower->list, &cache->useless_node);
3657 
3658 		if (!RB_EMPTY_NODE(&upper->rb_node))
3659 			continue;
3660 
3661 		/* Add this guy's upper edges to the list to process */
3662 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3663 			list_add_tail(&edge->list[UPPER],
3664 				      &cache->pending_edge);
3665 		if (list_empty(&upper->upper))
3666 			list_add(&upper->list, &cache->useless_node);
3667 	}
3668 
3669 	while (!list_empty(&cache->useless_node)) {
3670 		lower = list_first_entry(&cache->useless_node,
3671 				   struct btrfs_backref_node, list);
3672 		list_del_init(&lower->list);
3673 		if (lower == node)
3674 			node = NULL;
3675 		btrfs_backref_drop_node(cache, lower);
3676 	}
3677 
3678 	btrfs_backref_cleanup_node(cache, node);
3679 	ASSERT(list_empty(&cache->useless_node) &&
3680 	       list_empty(&cache->pending_edge));
3681 }
3682