xref: /linux/fs/binfmt_elf.c (revision ec2212088c42ff7d1362629ec26dda4f3e8bdad3)
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/security.h>
31 #include <linux/random.h>
32 #include <linux/elf.h>
33 #include <linux/utsname.h>
34 #include <linux/coredump.h>
35 #include <asm/uaccess.h>
36 #include <asm/param.h>
37 #include <asm/page.h>
38 
39 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
40 static int load_elf_library(struct file *);
41 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
42 				int, int, unsigned long);
43 
44 /*
45  * If we don't support core dumping, then supply a NULL so we
46  * don't even try.
47  */
48 #ifdef CONFIG_ELF_CORE
49 static int elf_core_dump(struct coredump_params *cprm);
50 #else
51 #define elf_core_dump	NULL
52 #endif
53 
54 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
55 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
56 #else
57 #define ELF_MIN_ALIGN	PAGE_SIZE
58 #endif
59 
60 #ifndef ELF_CORE_EFLAGS
61 #define ELF_CORE_EFLAGS	0
62 #endif
63 
64 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
65 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
66 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
67 
68 static struct linux_binfmt elf_format = {
69 	.module		= THIS_MODULE,
70 	.load_binary	= load_elf_binary,
71 	.load_shlib	= load_elf_library,
72 	.core_dump	= elf_core_dump,
73 	.min_coredump	= ELF_EXEC_PAGESIZE,
74 };
75 
76 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
77 
78 static int set_brk(unsigned long start, unsigned long end)
79 {
80 	start = ELF_PAGEALIGN(start);
81 	end = ELF_PAGEALIGN(end);
82 	if (end > start) {
83 		unsigned long addr;
84 		down_write(&current->mm->mmap_sem);
85 		addr = do_brk(start, end - start);
86 		up_write(&current->mm->mmap_sem);
87 		if (BAD_ADDR(addr))
88 			return addr;
89 	}
90 	current->mm->start_brk = current->mm->brk = end;
91 	return 0;
92 }
93 
94 /* We need to explicitly zero any fractional pages
95    after the data section (i.e. bss).  This would
96    contain the junk from the file that should not
97    be in memory
98  */
99 static int padzero(unsigned long elf_bss)
100 {
101 	unsigned long nbyte;
102 
103 	nbyte = ELF_PAGEOFFSET(elf_bss);
104 	if (nbyte) {
105 		nbyte = ELF_MIN_ALIGN - nbyte;
106 		if (clear_user((void __user *) elf_bss, nbyte))
107 			return -EFAULT;
108 	}
109 	return 0;
110 }
111 
112 /* Let's use some macros to make this stack manipulation a little clearer */
113 #ifdef CONFIG_STACK_GROWSUP
114 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
115 #define STACK_ROUND(sp, items) \
116 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
117 #define STACK_ALLOC(sp, len) ({ \
118 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
119 	old_sp; })
120 #else
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
122 #define STACK_ROUND(sp, items) \
123 	(((unsigned long) (sp - items)) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
125 #endif
126 
127 #ifndef ELF_BASE_PLATFORM
128 /*
129  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
130  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
131  * will be copied to the user stack in the same manner as AT_PLATFORM.
132  */
133 #define ELF_BASE_PLATFORM NULL
134 #endif
135 
136 static int
137 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
138 		unsigned long load_addr, unsigned long interp_load_addr)
139 {
140 	unsigned long p = bprm->p;
141 	int argc = bprm->argc;
142 	int envc = bprm->envc;
143 	elf_addr_t __user *argv;
144 	elf_addr_t __user *envp;
145 	elf_addr_t __user *sp;
146 	elf_addr_t __user *u_platform;
147 	elf_addr_t __user *u_base_platform;
148 	elf_addr_t __user *u_rand_bytes;
149 	const char *k_platform = ELF_PLATFORM;
150 	const char *k_base_platform = ELF_BASE_PLATFORM;
151 	unsigned char k_rand_bytes[16];
152 	int items;
153 	elf_addr_t *elf_info;
154 	int ei_index = 0;
155 	const struct cred *cred = current_cred();
156 	struct vm_area_struct *vma;
157 
158 	/*
159 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
160 	 * evictions by the processes running on the same package. One
161 	 * thing we can do is to shuffle the initial stack for them.
162 	 */
163 
164 	p = arch_align_stack(p);
165 
166 	/*
167 	 * If this architecture has a platform capability string, copy it
168 	 * to userspace.  In some cases (Sparc), this info is impossible
169 	 * for userspace to get any other way, in others (i386) it is
170 	 * merely difficult.
171 	 */
172 	u_platform = NULL;
173 	if (k_platform) {
174 		size_t len = strlen(k_platform) + 1;
175 
176 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
177 		if (__copy_to_user(u_platform, k_platform, len))
178 			return -EFAULT;
179 	}
180 
181 	/*
182 	 * If this architecture has a "base" platform capability
183 	 * string, copy it to userspace.
184 	 */
185 	u_base_platform = NULL;
186 	if (k_base_platform) {
187 		size_t len = strlen(k_base_platform) + 1;
188 
189 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
190 		if (__copy_to_user(u_base_platform, k_base_platform, len))
191 			return -EFAULT;
192 	}
193 
194 	/*
195 	 * Generate 16 random bytes for userspace PRNG seeding.
196 	 */
197 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
198 	u_rand_bytes = (elf_addr_t __user *)
199 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
200 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
201 		return -EFAULT;
202 
203 	/* Create the ELF interpreter info */
204 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
205 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
206 #define NEW_AUX_ENT(id, val) \
207 	do { \
208 		elf_info[ei_index++] = id; \
209 		elf_info[ei_index++] = val; \
210 	} while (0)
211 
212 #ifdef ARCH_DLINFO
213 	/*
214 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
215 	 * AUXV.
216 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
217 	 * ARCH_DLINFO changes
218 	 */
219 	ARCH_DLINFO;
220 #endif
221 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
222 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
223 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
224 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
225 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
226 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
227 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
228 	NEW_AUX_ENT(AT_FLAGS, 0);
229 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
230 	NEW_AUX_ENT(AT_UID, cred->uid);
231 	NEW_AUX_ENT(AT_EUID, cred->euid);
232 	NEW_AUX_ENT(AT_GID, cred->gid);
233 	NEW_AUX_ENT(AT_EGID, cred->egid);
234  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
235 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
236 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
237 	if (k_platform) {
238 		NEW_AUX_ENT(AT_PLATFORM,
239 			    (elf_addr_t)(unsigned long)u_platform);
240 	}
241 	if (k_base_platform) {
242 		NEW_AUX_ENT(AT_BASE_PLATFORM,
243 			    (elf_addr_t)(unsigned long)u_base_platform);
244 	}
245 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
246 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
247 	}
248 #undef NEW_AUX_ENT
249 	/* AT_NULL is zero; clear the rest too */
250 	memset(&elf_info[ei_index], 0,
251 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
252 
253 	/* And advance past the AT_NULL entry.  */
254 	ei_index += 2;
255 
256 	sp = STACK_ADD(p, ei_index);
257 
258 	items = (argc + 1) + (envc + 1) + 1;
259 	bprm->p = STACK_ROUND(sp, items);
260 
261 	/* Point sp at the lowest address on the stack */
262 #ifdef CONFIG_STACK_GROWSUP
263 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
264 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
265 #else
266 	sp = (elf_addr_t __user *)bprm->p;
267 #endif
268 
269 
270 	/*
271 	 * Grow the stack manually; some architectures have a limit on how
272 	 * far ahead a user-space access may be in order to grow the stack.
273 	 */
274 	vma = find_extend_vma(current->mm, bprm->p);
275 	if (!vma)
276 		return -EFAULT;
277 
278 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
279 	if (__put_user(argc, sp++))
280 		return -EFAULT;
281 	argv = sp;
282 	envp = argv + argc + 1;
283 
284 	/* Populate argv and envp */
285 	p = current->mm->arg_end = current->mm->arg_start;
286 	while (argc-- > 0) {
287 		size_t len;
288 		if (__put_user((elf_addr_t)p, argv++))
289 			return -EFAULT;
290 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
291 		if (!len || len > MAX_ARG_STRLEN)
292 			return -EINVAL;
293 		p += len;
294 	}
295 	if (__put_user(0, argv))
296 		return -EFAULT;
297 	current->mm->arg_end = current->mm->env_start = p;
298 	while (envc-- > 0) {
299 		size_t len;
300 		if (__put_user((elf_addr_t)p, envp++))
301 			return -EFAULT;
302 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
303 		if (!len || len > MAX_ARG_STRLEN)
304 			return -EINVAL;
305 		p += len;
306 	}
307 	if (__put_user(0, envp))
308 		return -EFAULT;
309 	current->mm->env_end = p;
310 
311 	/* Put the elf_info on the stack in the right place.  */
312 	sp = (elf_addr_t __user *)envp + 1;
313 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
314 		return -EFAULT;
315 	return 0;
316 }
317 
318 static unsigned long elf_map(struct file *filep, unsigned long addr,
319 		struct elf_phdr *eppnt, int prot, int type,
320 		unsigned long total_size)
321 {
322 	unsigned long map_addr;
323 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
324 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
325 	addr = ELF_PAGESTART(addr);
326 	size = ELF_PAGEALIGN(size);
327 
328 	/* mmap() will return -EINVAL if given a zero size, but a
329 	 * segment with zero filesize is perfectly valid */
330 	if (!size)
331 		return addr;
332 
333 	down_write(&current->mm->mmap_sem);
334 	/*
335 	* total_size is the size of the ELF (interpreter) image.
336 	* The _first_ mmap needs to know the full size, otherwise
337 	* randomization might put this image into an overlapping
338 	* position with the ELF binary image. (since size < total_size)
339 	* So we first map the 'big' image - and unmap the remainder at
340 	* the end. (which unmap is needed for ELF images with holes.)
341 	*/
342 	if (total_size) {
343 		total_size = ELF_PAGEALIGN(total_size);
344 		map_addr = do_mmap(filep, addr, total_size, prot, type, off);
345 		if (!BAD_ADDR(map_addr))
346 			do_munmap(current->mm, map_addr+size, total_size-size);
347 	} else
348 		map_addr = do_mmap(filep, addr, size, prot, type, off);
349 
350 	up_write(&current->mm->mmap_sem);
351 	return(map_addr);
352 }
353 
354 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
355 {
356 	int i, first_idx = -1, last_idx = -1;
357 
358 	for (i = 0; i < nr; i++) {
359 		if (cmds[i].p_type == PT_LOAD) {
360 			last_idx = i;
361 			if (first_idx == -1)
362 				first_idx = i;
363 		}
364 	}
365 	if (first_idx == -1)
366 		return 0;
367 
368 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
369 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
370 }
371 
372 
373 /* This is much more generalized than the library routine read function,
374    so we keep this separate.  Technically the library read function
375    is only provided so that we can read a.out libraries that have
376    an ELF header */
377 
378 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
379 		struct file *interpreter, unsigned long *interp_map_addr,
380 		unsigned long no_base)
381 {
382 	struct elf_phdr *elf_phdata;
383 	struct elf_phdr *eppnt;
384 	unsigned long load_addr = 0;
385 	int load_addr_set = 0;
386 	unsigned long last_bss = 0, elf_bss = 0;
387 	unsigned long error = ~0UL;
388 	unsigned long total_size;
389 	int retval, i, size;
390 
391 	/* First of all, some simple consistency checks */
392 	if (interp_elf_ex->e_type != ET_EXEC &&
393 	    interp_elf_ex->e_type != ET_DYN)
394 		goto out;
395 	if (!elf_check_arch(interp_elf_ex))
396 		goto out;
397 	if (!interpreter->f_op || !interpreter->f_op->mmap)
398 		goto out;
399 
400 	/*
401 	 * If the size of this structure has changed, then punt, since
402 	 * we will be doing the wrong thing.
403 	 */
404 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
405 		goto out;
406 	if (interp_elf_ex->e_phnum < 1 ||
407 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
408 		goto out;
409 
410 	/* Now read in all of the header information */
411 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
412 	if (size > ELF_MIN_ALIGN)
413 		goto out;
414 	elf_phdata = kmalloc(size, GFP_KERNEL);
415 	if (!elf_phdata)
416 		goto out;
417 
418 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
419 			     (char *)elf_phdata, size);
420 	error = -EIO;
421 	if (retval != size) {
422 		if (retval < 0)
423 			error = retval;
424 		goto out_close;
425 	}
426 
427 	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
428 	if (!total_size) {
429 		error = -EINVAL;
430 		goto out_close;
431 	}
432 
433 	eppnt = elf_phdata;
434 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
435 		if (eppnt->p_type == PT_LOAD) {
436 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
437 			int elf_prot = 0;
438 			unsigned long vaddr = 0;
439 			unsigned long k, map_addr;
440 
441 			if (eppnt->p_flags & PF_R)
442 		    		elf_prot = PROT_READ;
443 			if (eppnt->p_flags & PF_W)
444 				elf_prot |= PROT_WRITE;
445 			if (eppnt->p_flags & PF_X)
446 				elf_prot |= PROT_EXEC;
447 			vaddr = eppnt->p_vaddr;
448 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
449 				elf_type |= MAP_FIXED;
450 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
451 				load_addr = -vaddr;
452 
453 			map_addr = elf_map(interpreter, load_addr + vaddr,
454 					eppnt, elf_prot, elf_type, total_size);
455 			total_size = 0;
456 			if (!*interp_map_addr)
457 				*interp_map_addr = map_addr;
458 			error = map_addr;
459 			if (BAD_ADDR(map_addr))
460 				goto out_close;
461 
462 			if (!load_addr_set &&
463 			    interp_elf_ex->e_type == ET_DYN) {
464 				load_addr = map_addr - ELF_PAGESTART(vaddr);
465 				load_addr_set = 1;
466 			}
467 
468 			/*
469 			 * Check to see if the section's size will overflow the
470 			 * allowed task size. Note that p_filesz must always be
471 			 * <= p_memsize so it's only necessary to check p_memsz.
472 			 */
473 			k = load_addr + eppnt->p_vaddr;
474 			if (BAD_ADDR(k) ||
475 			    eppnt->p_filesz > eppnt->p_memsz ||
476 			    eppnt->p_memsz > TASK_SIZE ||
477 			    TASK_SIZE - eppnt->p_memsz < k) {
478 				error = -ENOMEM;
479 				goto out_close;
480 			}
481 
482 			/*
483 			 * Find the end of the file mapping for this phdr, and
484 			 * keep track of the largest address we see for this.
485 			 */
486 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
487 			if (k > elf_bss)
488 				elf_bss = k;
489 
490 			/*
491 			 * Do the same thing for the memory mapping - between
492 			 * elf_bss and last_bss is the bss section.
493 			 */
494 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
495 			if (k > last_bss)
496 				last_bss = k;
497 		}
498 	}
499 
500 	if (last_bss > elf_bss) {
501 		/*
502 		 * Now fill out the bss section.  First pad the last page up
503 		 * to the page boundary, and then perform a mmap to make sure
504 		 * that there are zero-mapped pages up to and including the
505 		 * last bss page.
506 		 */
507 		if (padzero(elf_bss)) {
508 			error = -EFAULT;
509 			goto out_close;
510 		}
511 
512 		/* What we have mapped so far */
513 		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
514 
515 		/* Map the last of the bss segment */
516 		down_write(&current->mm->mmap_sem);
517 		error = do_brk(elf_bss, last_bss - elf_bss);
518 		up_write(&current->mm->mmap_sem);
519 		if (BAD_ADDR(error))
520 			goto out_close;
521 	}
522 
523 	error = load_addr;
524 
525 out_close:
526 	kfree(elf_phdata);
527 out:
528 	return error;
529 }
530 
531 /*
532  * These are the functions used to load ELF style executables and shared
533  * libraries.  There is no binary dependent code anywhere else.
534  */
535 
536 #define INTERPRETER_NONE 0
537 #define INTERPRETER_ELF 2
538 
539 #ifndef STACK_RND_MASK
540 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
541 #endif
542 
543 static unsigned long randomize_stack_top(unsigned long stack_top)
544 {
545 	unsigned int random_variable = 0;
546 
547 	if ((current->flags & PF_RANDOMIZE) &&
548 		!(current->personality & ADDR_NO_RANDOMIZE)) {
549 		random_variable = get_random_int() & STACK_RND_MASK;
550 		random_variable <<= PAGE_SHIFT;
551 	}
552 #ifdef CONFIG_STACK_GROWSUP
553 	return PAGE_ALIGN(stack_top) + random_variable;
554 #else
555 	return PAGE_ALIGN(stack_top) - random_variable;
556 #endif
557 }
558 
559 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
560 {
561 	struct file *interpreter = NULL; /* to shut gcc up */
562  	unsigned long load_addr = 0, load_bias = 0;
563 	int load_addr_set = 0;
564 	char * elf_interpreter = NULL;
565 	unsigned long error;
566 	struct elf_phdr *elf_ppnt, *elf_phdata;
567 	unsigned long elf_bss, elf_brk;
568 	int retval, i;
569 	unsigned int size;
570 	unsigned long elf_entry;
571 	unsigned long interp_load_addr = 0;
572 	unsigned long start_code, end_code, start_data, end_data;
573 	unsigned long reloc_func_desc __maybe_unused = 0;
574 	int executable_stack = EXSTACK_DEFAULT;
575 	unsigned long def_flags = 0;
576 	struct {
577 		struct elfhdr elf_ex;
578 		struct elfhdr interp_elf_ex;
579 	} *loc;
580 
581 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
582 	if (!loc) {
583 		retval = -ENOMEM;
584 		goto out_ret;
585 	}
586 
587 	/* Get the exec-header */
588 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
589 
590 	retval = -ENOEXEC;
591 	/* First of all, some simple consistency checks */
592 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
593 		goto out;
594 
595 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
596 		goto out;
597 	if (!elf_check_arch(&loc->elf_ex))
598 		goto out;
599 	if (!bprm->file->f_op || !bprm->file->f_op->mmap)
600 		goto out;
601 
602 	/* Now read in all of the header information */
603 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
604 		goto out;
605 	if (loc->elf_ex.e_phnum < 1 ||
606 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
607 		goto out;
608 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
609 	retval = -ENOMEM;
610 	elf_phdata = kmalloc(size, GFP_KERNEL);
611 	if (!elf_phdata)
612 		goto out;
613 
614 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
615 			     (char *)elf_phdata, size);
616 	if (retval != size) {
617 		if (retval >= 0)
618 			retval = -EIO;
619 		goto out_free_ph;
620 	}
621 
622 	elf_ppnt = elf_phdata;
623 	elf_bss = 0;
624 	elf_brk = 0;
625 
626 	start_code = ~0UL;
627 	end_code = 0;
628 	start_data = 0;
629 	end_data = 0;
630 
631 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
632 		if (elf_ppnt->p_type == PT_INTERP) {
633 			/* This is the program interpreter used for
634 			 * shared libraries - for now assume that this
635 			 * is an a.out format binary
636 			 */
637 			retval = -ENOEXEC;
638 			if (elf_ppnt->p_filesz > PATH_MAX ||
639 			    elf_ppnt->p_filesz < 2)
640 				goto out_free_ph;
641 
642 			retval = -ENOMEM;
643 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
644 						  GFP_KERNEL);
645 			if (!elf_interpreter)
646 				goto out_free_ph;
647 
648 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
649 					     elf_interpreter,
650 					     elf_ppnt->p_filesz);
651 			if (retval != elf_ppnt->p_filesz) {
652 				if (retval >= 0)
653 					retval = -EIO;
654 				goto out_free_interp;
655 			}
656 			/* make sure path is NULL terminated */
657 			retval = -ENOEXEC;
658 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
659 				goto out_free_interp;
660 
661 			interpreter = open_exec(elf_interpreter);
662 			retval = PTR_ERR(interpreter);
663 			if (IS_ERR(interpreter))
664 				goto out_free_interp;
665 
666 			/*
667 			 * If the binary is not readable then enforce
668 			 * mm->dumpable = 0 regardless of the interpreter's
669 			 * permissions.
670 			 */
671 			would_dump(bprm, interpreter);
672 
673 			retval = kernel_read(interpreter, 0, bprm->buf,
674 					     BINPRM_BUF_SIZE);
675 			if (retval != BINPRM_BUF_SIZE) {
676 				if (retval >= 0)
677 					retval = -EIO;
678 				goto out_free_dentry;
679 			}
680 
681 			/* Get the exec headers */
682 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
683 			break;
684 		}
685 		elf_ppnt++;
686 	}
687 
688 	elf_ppnt = elf_phdata;
689 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
690 		if (elf_ppnt->p_type == PT_GNU_STACK) {
691 			if (elf_ppnt->p_flags & PF_X)
692 				executable_stack = EXSTACK_ENABLE_X;
693 			else
694 				executable_stack = EXSTACK_DISABLE_X;
695 			break;
696 		}
697 
698 	/* Some simple consistency checks for the interpreter */
699 	if (elf_interpreter) {
700 		retval = -ELIBBAD;
701 		/* Not an ELF interpreter */
702 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
703 			goto out_free_dentry;
704 		/* Verify the interpreter has a valid arch */
705 		if (!elf_check_arch(&loc->interp_elf_ex))
706 			goto out_free_dentry;
707 	}
708 
709 	/* Flush all traces of the currently running executable */
710 	retval = flush_old_exec(bprm);
711 	if (retval)
712 		goto out_free_dentry;
713 
714 	/* OK, This is the point of no return */
715 	current->mm->def_flags = def_flags;
716 
717 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
718 	   may depend on the personality.  */
719 	SET_PERSONALITY(loc->elf_ex);
720 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
721 		current->personality |= READ_IMPLIES_EXEC;
722 
723 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
724 		current->flags |= PF_RANDOMIZE;
725 
726 	setup_new_exec(bprm);
727 
728 	/* Do this so that we can load the interpreter, if need be.  We will
729 	   change some of these later */
730 	current->mm->free_area_cache = current->mm->mmap_base;
731 	current->mm->cached_hole_size = 0;
732 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
733 				 executable_stack);
734 	if (retval < 0) {
735 		send_sig(SIGKILL, current, 0);
736 		goto out_free_dentry;
737 	}
738 
739 	current->mm->start_stack = bprm->p;
740 
741 	/* Now we do a little grungy work by mmapping the ELF image into
742 	   the correct location in memory. */
743 	for(i = 0, elf_ppnt = elf_phdata;
744 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
745 		int elf_prot = 0, elf_flags;
746 		unsigned long k, vaddr;
747 
748 		if (elf_ppnt->p_type != PT_LOAD)
749 			continue;
750 
751 		if (unlikely (elf_brk > elf_bss)) {
752 			unsigned long nbyte;
753 
754 			/* There was a PT_LOAD segment with p_memsz > p_filesz
755 			   before this one. Map anonymous pages, if needed,
756 			   and clear the area.  */
757 			retval = set_brk(elf_bss + load_bias,
758 					 elf_brk + load_bias);
759 			if (retval) {
760 				send_sig(SIGKILL, current, 0);
761 				goto out_free_dentry;
762 			}
763 			nbyte = ELF_PAGEOFFSET(elf_bss);
764 			if (nbyte) {
765 				nbyte = ELF_MIN_ALIGN - nbyte;
766 				if (nbyte > elf_brk - elf_bss)
767 					nbyte = elf_brk - elf_bss;
768 				if (clear_user((void __user *)elf_bss +
769 							load_bias, nbyte)) {
770 					/*
771 					 * This bss-zeroing can fail if the ELF
772 					 * file specifies odd protections. So
773 					 * we don't check the return value
774 					 */
775 				}
776 			}
777 		}
778 
779 		if (elf_ppnt->p_flags & PF_R)
780 			elf_prot |= PROT_READ;
781 		if (elf_ppnt->p_flags & PF_W)
782 			elf_prot |= PROT_WRITE;
783 		if (elf_ppnt->p_flags & PF_X)
784 			elf_prot |= PROT_EXEC;
785 
786 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
787 
788 		vaddr = elf_ppnt->p_vaddr;
789 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
790 			elf_flags |= MAP_FIXED;
791 		} else if (loc->elf_ex.e_type == ET_DYN) {
792 			/* Try and get dynamic programs out of the way of the
793 			 * default mmap base, as well as whatever program they
794 			 * might try to exec.  This is because the brk will
795 			 * follow the loader, and is not movable.  */
796 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
797 			/* Memory randomization might have been switched off
798 			 * in runtime via sysctl.
799 			 * If that is the case, retain the original non-zero
800 			 * load_bias value in order to establish proper
801 			 * non-randomized mappings.
802 			 */
803 			if (current->flags & PF_RANDOMIZE)
804 				load_bias = 0;
805 			else
806 				load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
807 #else
808 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
809 #endif
810 		}
811 
812 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
813 				elf_prot, elf_flags, 0);
814 		if (BAD_ADDR(error)) {
815 			send_sig(SIGKILL, current, 0);
816 			retval = IS_ERR((void *)error) ?
817 				PTR_ERR((void*)error) : -EINVAL;
818 			goto out_free_dentry;
819 		}
820 
821 		if (!load_addr_set) {
822 			load_addr_set = 1;
823 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
824 			if (loc->elf_ex.e_type == ET_DYN) {
825 				load_bias += error -
826 				             ELF_PAGESTART(load_bias + vaddr);
827 				load_addr += load_bias;
828 				reloc_func_desc = load_bias;
829 			}
830 		}
831 		k = elf_ppnt->p_vaddr;
832 		if (k < start_code)
833 			start_code = k;
834 		if (start_data < k)
835 			start_data = k;
836 
837 		/*
838 		 * Check to see if the section's size will overflow the
839 		 * allowed task size. Note that p_filesz must always be
840 		 * <= p_memsz so it is only necessary to check p_memsz.
841 		 */
842 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
843 		    elf_ppnt->p_memsz > TASK_SIZE ||
844 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
845 			/* set_brk can never work. Avoid overflows. */
846 			send_sig(SIGKILL, current, 0);
847 			retval = -EINVAL;
848 			goto out_free_dentry;
849 		}
850 
851 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
852 
853 		if (k > elf_bss)
854 			elf_bss = k;
855 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
856 			end_code = k;
857 		if (end_data < k)
858 			end_data = k;
859 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
860 		if (k > elf_brk)
861 			elf_brk = k;
862 	}
863 
864 	loc->elf_ex.e_entry += load_bias;
865 	elf_bss += load_bias;
866 	elf_brk += load_bias;
867 	start_code += load_bias;
868 	end_code += load_bias;
869 	start_data += load_bias;
870 	end_data += load_bias;
871 
872 	/* Calling set_brk effectively mmaps the pages that we need
873 	 * for the bss and break sections.  We must do this before
874 	 * mapping in the interpreter, to make sure it doesn't wind
875 	 * up getting placed where the bss needs to go.
876 	 */
877 	retval = set_brk(elf_bss, elf_brk);
878 	if (retval) {
879 		send_sig(SIGKILL, current, 0);
880 		goto out_free_dentry;
881 	}
882 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
883 		send_sig(SIGSEGV, current, 0);
884 		retval = -EFAULT; /* Nobody gets to see this, but.. */
885 		goto out_free_dentry;
886 	}
887 
888 	if (elf_interpreter) {
889 		unsigned long uninitialized_var(interp_map_addr);
890 
891 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
892 					    interpreter,
893 					    &interp_map_addr,
894 					    load_bias);
895 		if (!IS_ERR((void *)elf_entry)) {
896 			/*
897 			 * load_elf_interp() returns relocation
898 			 * adjustment
899 			 */
900 			interp_load_addr = elf_entry;
901 			elf_entry += loc->interp_elf_ex.e_entry;
902 		}
903 		if (BAD_ADDR(elf_entry)) {
904 			force_sig(SIGSEGV, current);
905 			retval = IS_ERR((void *)elf_entry) ?
906 					(int)elf_entry : -EINVAL;
907 			goto out_free_dentry;
908 		}
909 		reloc_func_desc = interp_load_addr;
910 
911 		allow_write_access(interpreter);
912 		fput(interpreter);
913 		kfree(elf_interpreter);
914 	} else {
915 		elf_entry = loc->elf_ex.e_entry;
916 		if (BAD_ADDR(elf_entry)) {
917 			force_sig(SIGSEGV, current);
918 			retval = -EINVAL;
919 			goto out_free_dentry;
920 		}
921 	}
922 
923 	kfree(elf_phdata);
924 
925 	set_binfmt(&elf_format);
926 
927 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
928 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
929 	if (retval < 0) {
930 		send_sig(SIGKILL, current, 0);
931 		goto out;
932 	}
933 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
934 
935 	install_exec_creds(bprm);
936 	retval = create_elf_tables(bprm, &loc->elf_ex,
937 			  load_addr, interp_load_addr);
938 	if (retval < 0) {
939 		send_sig(SIGKILL, current, 0);
940 		goto out;
941 	}
942 	/* N.B. passed_fileno might not be initialized? */
943 	current->mm->end_code = end_code;
944 	current->mm->start_code = start_code;
945 	current->mm->start_data = start_data;
946 	current->mm->end_data = end_data;
947 	current->mm->start_stack = bprm->p;
948 
949 #ifdef arch_randomize_brk
950 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
951 		current->mm->brk = current->mm->start_brk =
952 			arch_randomize_brk(current->mm);
953 #ifdef CONFIG_COMPAT_BRK
954 		current->brk_randomized = 1;
955 #endif
956 	}
957 #endif
958 
959 	if (current->personality & MMAP_PAGE_ZERO) {
960 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
961 		   and some applications "depend" upon this behavior.
962 		   Since we do not have the power to recompile these, we
963 		   emulate the SVr4 behavior. Sigh. */
964 		down_write(&current->mm->mmap_sem);
965 		error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
966 				MAP_FIXED | MAP_PRIVATE, 0);
967 		up_write(&current->mm->mmap_sem);
968 	}
969 
970 #ifdef ELF_PLAT_INIT
971 	/*
972 	 * The ABI may specify that certain registers be set up in special
973 	 * ways (on i386 %edx is the address of a DT_FINI function, for
974 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
975 	 * that the e_entry field is the address of the function descriptor
976 	 * for the startup routine, rather than the address of the startup
977 	 * routine itself.  This macro performs whatever initialization to
978 	 * the regs structure is required as well as any relocations to the
979 	 * function descriptor entries when executing dynamically links apps.
980 	 */
981 	ELF_PLAT_INIT(regs, reloc_func_desc);
982 #endif
983 
984 	start_thread(regs, elf_entry, bprm->p);
985 	retval = 0;
986 out:
987 	kfree(loc);
988 out_ret:
989 	return retval;
990 
991 	/* error cleanup */
992 out_free_dentry:
993 	allow_write_access(interpreter);
994 	if (interpreter)
995 		fput(interpreter);
996 out_free_interp:
997 	kfree(elf_interpreter);
998 out_free_ph:
999 	kfree(elf_phdata);
1000 	goto out;
1001 }
1002 
1003 /* This is really simpleminded and specialized - we are loading an
1004    a.out library that is given an ELF header. */
1005 static int load_elf_library(struct file *file)
1006 {
1007 	struct elf_phdr *elf_phdata;
1008 	struct elf_phdr *eppnt;
1009 	unsigned long elf_bss, bss, len;
1010 	int retval, error, i, j;
1011 	struct elfhdr elf_ex;
1012 
1013 	error = -ENOEXEC;
1014 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1015 	if (retval != sizeof(elf_ex))
1016 		goto out;
1017 
1018 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1019 		goto out;
1020 
1021 	/* First of all, some simple consistency checks */
1022 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1023 	    !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1024 		goto out;
1025 
1026 	/* Now read in all of the header information */
1027 
1028 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1029 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1030 
1031 	error = -ENOMEM;
1032 	elf_phdata = kmalloc(j, GFP_KERNEL);
1033 	if (!elf_phdata)
1034 		goto out;
1035 
1036 	eppnt = elf_phdata;
1037 	error = -ENOEXEC;
1038 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1039 	if (retval != j)
1040 		goto out_free_ph;
1041 
1042 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1043 		if ((eppnt + i)->p_type == PT_LOAD)
1044 			j++;
1045 	if (j != 1)
1046 		goto out_free_ph;
1047 
1048 	while (eppnt->p_type != PT_LOAD)
1049 		eppnt++;
1050 
1051 	/* Now use mmap to map the library into memory. */
1052 	down_write(&current->mm->mmap_sem);
1053 	error = do_mmap(file,
1054 			ELF_PAGESTART(eppnt->p_vaddr),
1055 			(eppnt->p_filesz +
1056 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1057 			PROT_READ | PROT_WRITE | PROT_EXEC,
1058 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1059 			(eppnt->p_offset -
1060 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1061 	up_write(&current->mm->mmap_sem);
1062 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1063 		goto out_free_ph;
1064 
1065 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1066 	if (padzero(elf_bss)) {
1067 		error = -EFAULT;
1068 		goto out_free_ph;
1069 	}
1070 
1071 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1072 			    ELF_MIN_ALIGN - 1);
1073 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1074 	if (bss > len) {
1075 		down_write(&current->mm->mmap_sem);
1076 		do_brk(len, bss - len);
1077 		up_write(&current->mm->mmap_sem);
1078 	}
1079 	error = 0;
1080 
1081 out_free_ph:
1082 	kfree(elf_phdata);
1083 out:
1084 	return error;
1085 }
1086 
1087 #ifdef CONFIG_ELF_CORE
1088 /*
1089  * ELF core dumper
1090  *
1091  * Modelled on fs/exec.c:aout_core_dump()
1092  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1093  */
1094 
1095 /*
1096  * Decide what to dump of a segment, part, all or none.
1097  */
1098 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1099 				   unsigned long mm_flags)
1100 {
1101 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1102 
1103 	/* The vma can be set up to tell us the answer directly.  */
1104 	if (vma->vm_flags & VM_ALWAYSDUMP)
1105 		goto whole;
1106 
1107 	/* Hugetlb memory check */
1108 	if (vma->vm_flags & VM_HUGETLB) {
1109 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1110 			goto whole;
1111 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1112 			goto whole;
1113 	}
1114 
1115 	/* Do not dump I/O mapped devices or special mappings */
1116 	if (vma->vm_flags & (VM_IO | VM_RESERVED))
1117 		return 0;
1118 
1119 	/* By default, dump shared memory if mapped from an anonymous file. */
1120 	if (vma->vm_flags & VM_SHARED) {
1121 		if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1122 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1123 			goto whole;
1124 		return 0;
1125 	}
1126 
1127 	/* Dump segments that have been written to.  */
1128 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1129 		goto whole;
1130 	if (vma->vm_file == NULL)
1131 		return 0;
1132 
1133 	if (FILTER(MAPPED_PRIVATE))
1134 		goto whole;
1135 
1136 	/*
1137 	 * If this looks like the beginning of a DSO or executable mapping,
1138 	 * check for an ELF header.  If we find one, dump the first page to
1139 	 * aid in determining what was mapped here.
1140 	 */
1141 	if (FILTER(ELF_HEADERS) &&
1142 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1143 		u32 __user *header = (u32 __user *) vma->vm_start;
1144 		u32 word;
1145 		mm_segment_t fs = get_fs();
1146 		/*
1147 		 * Doing it this way gets the constant folded by GCC.
1148 		 */
1149 		union {
1150 			u32 cmp;
1151 			char elfmag[SELFMAG];
1152 		} magic;
1153 		BUILD_BUG_ON(SELFMAG != sizeof word);
1154 		magic.elfmag[EI_MAG0] = ELFMAG0;
1155 		magic.elfmag[EI_MAG1] = ELFMAG1;
1156 		magic.elfmag[EI_MAG2] = ELFMAG2;
1157 		magic.elfmag[EI_MAG3] = ELFMAG3;
1158 		/*
1159 		 * Switch to the user "segment" for get_user(),
1160 		 * then put back what elf_core_dump() had in place.
1161 		 */
1162 		set_fs(USER_DS);
1163 		if (unlikely(get_user(word, header)))
1164 			word = 0;
1165 		set_fs(fs);
1166 		if (word == magic.cmp)
1167 			return PAGE_SIZE;
1168 	}
1169 
1170 #undef	FILTER
1171 
1172 	return 0;
1173 
1174 whole:
1175 	return vma->vm_end - vma->vm_start;
1176 }
1177 
1178 /* An ELF note in memory */
1179 struct memelfnote
1180 {
1181 	const char *name;
1182 	int type;
1183 	unsigned int datasz;
1184 	void *data;
1185 };
1186 
1187 static int notesize(struct memelfnote *en)
1188 {
1189 	int sz;
1190 
1191 	sz = sizeof(struct elf_note);
1192 	sz += roundup(strlen(en->name) + 1, 4);
1193 	sz += roundup(en->datasz, 4);
1194 
1195 	return sz;
1196 }
1197 
1198 #define DUMP_WRITE(addr, nr, foffset)	\
1199 	do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1200 
1201 static int alignfile(struct file *file, loff_t *foffset)
1202 {
1203 	static const char buf[4] = { 0, };
1204 	DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1205 	return 1;
1206 }
1207 
1208 static int writenote(struct memelfnote *men, struct file *file,
1209 			loff_t *foffset)
1210 {
1211 	struct elf_note en;
1212 	en.n_namesz = strlen(men->name) + 1;
1213 	en.n_descsz = men->datasz;
1214 	en.n_type = men->type;
1215 
1216 	DUMP_WRITE(&en, sizeof(en), foffset);
1217 	DUMP_WRITE(men->name, en.n_namesz, foffset);
1218 	if (!alignfile(file, foffset))
1219 		return 0;
1220 	DUMP_WRITE(men->data, men->datasz, foffset);
1221 	if (!alignfile(file, foffset))
1222 		return 0;
1223 
1224 	return 1;
1225 }
1226 #undef DUMP_WRITE
1227 
1228 static void fill_elf_header(struct elfhdr *elf, int segs,
1229 			    u16 machine, u32 flags, u8 osabi)
1230 {
1231 	memset(elf, 0, sizeof(*elf));
1232 
1233 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1234 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1235 	elf->e_ident[EI_DATA] = ELF_DATA;
1236 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1237 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1238 
1239 	elf->e_type = ET_CORE;
1240 	elf->e_machine = machine;
1241 	elf->e_version = EV_CURRENT;
1242 	elf->e_phoff = sizeof(struct elfhdr);
1243 	elf->e_flags = flags;
1244 	elf->e_ehsize = sizeof(struct elfhdr);
1245 	elf->e_phentsize = sizeof(struct elf_phdr);
1246 	elf->e_phnum = segs;
1247 
1248 	return;
1249 }
1250 
1251 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1252 {
1253 	phdr->p_type = PT_NOTE;
1254 	phdr->p_offset = offset;
1255 	phdr->p_vaddr = 0;
1256 	phdr->p_paddr = 0;
1257 	phdr->p_filesz = sz;
1258 	phdr->p_memsz = 0;
1259 	phdr->p_flags = 0;
1260 	phdr->p_align = 0;
1261 	return;
1262 }
1263 
1264 static void fill_note(struct memelfnote *note, const char *name, int type,
1265 		unsigned int sz, void *data)
1266 {
1267 	note->name = name;
1268 	note->type = type;
1269 	note->datasz = sz;
1270 	note->data = data;
1271 	return;
1272 }
1273 
1274 /*
1275  * fill up all the fields in prstatus from the given task struct, except
1276  * registers which need to be filled up separately.
1277  */
1278 static void fill_prstatus(struct elf_prstatus *prstatus,
1279 		struct task_struct *p, long signr)
1280 {
1281 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1282 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1283 	prstatus->pr_sighold = p->blocked.sig[0];
1284 	rcu_read_lock();
1285 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1286 	rcu_read_unlock();
1287 	prstatus->pr_pid = task_pid_vnr(p);
1288 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1289 	prstatus->pr_sid = task_session_vnr(p);
1290 	if (thread_group_leader(p)) {
1291 		struct task_cputime cputime;
1292 
1293 		/*
1294 		 * This is the record for the group leader.  It shows the
1295 		 * group-wide total, not its individual thread total.
1296 		 */
1297 		thread_group_cputime(p, &cputime);
1298 		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1299 		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1300 	} else {
1301 		cputime_to_timeval(p->utime, &prstatus->pr_utime);
1302 		cputime_to_timeval(p->stime, &prstatus->pr_stime);
1303 	}
1304 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1305 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1306 }
1307 
1308 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1309 		       struct mm_struct *mm)
1310 {
1311 	const struct cred *cred;
1312 	unsigned int i, len;
1313 
1314 	/* first copy the parameters from user space */
1315 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1316 
1317 	len = mm->arg_end - mm->arg_start;
1318 	if (len >= ELF_PRARGSZ)
1319 		len = ELF_PRARGSZ-1;
1320 	if (copy_from_user(&psinfo->pr_psargs,
1321 		           (const char __user *)mm->arg_start, len))
1322 		return -EFAULT;
1323 	for(i = 0; i < len; i++)
1324 		if (psinfo->pr_psargs[i] == 0)
1325 			psinfo->pr_psargs[i] = ' ';
1326 	psinfo->pr_psargs[len] = 0;
1327 
1328 	rcu_read_lock();
1329 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1330 	rcu_read_unlock();
1331 	psinfo->pr_pid = task_pid_vnr(p);
1332 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1333 	psinfo->pr_sid = task_session_vnr(p);
1334 
1335 	i = p->state ? ffz(~p->state) + 1 : 0;
1336 	psinfo->pr_state = i;
1337 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1338 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1339 	psinfo->pr_nice = task_nice(p);
1340 	psinfo->pr_flag = p->flags;
1341 	rcu_read_lock();
1342 	cred = __task_cred(p);
1343 	SET_UID(psinfo->pr_uid, cred->uid);
1344 	SET_GID(psinfo->pr_gid, cred->gid);
1345 	rcu_read_unlock();
1346 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1347 
1348 	return 0;
1349 }
1350 
1351 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1352 {
1353 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1354 	int i = 0;
1355 	do
1356 		i += 2;
1357 	while (auxv[i - 2] != AT_NULL);
1358 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1359 }
1360 
1361 #ifdef CORE_DUMP_USE_REGSET
1362 #include <linux/regset.h>
1363 
1364 struct elf_thread_core_info {
1365 	struct elf_thread_core_info *next;
1366 	struct task_struct *task;
1367 	struct elf_prstatus prstatus;
1368 	struct memelfnote notes[0];
1369 };
1370 
1371 struct elf_note_info {
1372 	struct elf_thread_core_info *thread;
1373 	struct memelfnote psinfo;
1374 	struct memelfnote auxv;
1375 	size_t size;
1376 	int thread_notes;
1377 };
1378 
1379 /*
1380  * When a regset has a writeback hook, we call it on each thread before
1381  * dumping user memory.  On register window machines, this makes sure the
1382  * user memory backing the register data is up to date before we read it.
1383  */
1384 static void do_thread_regset_writeback(struct task_struct *task,
1385 				       const struct user_regset *regset)
1386 {
1387 	if (regset->writeback)
1388 		regset->writeback(task, regset, 1);
1389 }
1390 
1391 static int fill_thread_core_info(struct elf_thread_core_info *t,
1392 				 const struct user_regset_view *view,
1393 				 long signr, size_t *total)
1394 {
1395 	unsigned int i;
1396 
1397 	/*
1398 	 * NT_PRSTATUS is the one special case, because the regset data
1399 	 * goes into the pr_reg field inside the note contents, rather
1400 	 * than being the whole note contents.  We fill the reset in here.
1401 	 * We assume that regset 0 is NT_PRSTATUS.
1402 	 */
1403 	fill_prstatus(&t->prstatus, t->task, signr);
1404 	(void) view->regsets[0].get(t->task, &view->regsets[0],
1405 				    0, sizeof(t->prstatus.pr_reg),
1406 				    &t->prstatus.pr_reg, NULL);
1407 
1408 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1409 		  sizeof(t->prstatus), &t->prstatus);
1410 	*total += notesize(&t->notes[0]);
1411 
1412 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1413 
1414 	/*
1415 	 * Each other regset might generate a note too.  For each regset
1416 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1417 	 * all zero and we'll know to skip writing it later.
1418 	 */
1419 	for (i = 1; i < view->n; ++i) {
1420 		const struct user_regset *regset = &view->regsets[i];
1421 		do_thread_regset_writeback(t->task, regset);
1422 		if (regset->core_note_type && regset->get &&
1423 		    (!regset->active || regset->active(t->task, regset))) {
1424 			int ret;
1425 			size_t size = regset->n * regset->size;
1426 			void *data = kmalloc(size, GFP_KERNEL);
1427 			if (unlikely(!data))
1428 				return 0;
1429 			ret = regset->get(t->task, regset,
1430 					  0, size, data, NULL);
1431 			if (unlikely(ret))
1432 				kfree(data);
1433 			else {
1434 				if (regset->core_note_type != NT_PRFPREG)
1435 					fill_note(&t->notes[i], "LINUX",
1436 						  regset->core_note_type,
1437 						  size, data);
1438 				else {
1439 					t->prstatus.pr_fpvalid = 1;
1440 					fill_note(&t->notes[i], "CORE",
1441 						  NT_PRFPREG, size, data);
1442 				}
1443 				*total += notesize(&t->notes[i]);
1444 			}
1445 		}
1446 	}
1447 
1448 	return 1;
1449 }
1450 
1451 static int fill_note_info(struct elfhdr *elf, int phdrs,
1452 			  struct elf_note_info *info,
1453 			  long signr, struct pt_regs *regs)
1454 {
1455 	struct task_struct *dump_task = current;
1456 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1457 	struct elf_thread_core_info *t;
1458 	struct elf_prpsinfo *psinfo;
1459 	struct core_thread *ct;
1460 	unsigned int i;
1461 
1462 	info->size = 0;
1463 	info->thread = NULL;
1464 
1465 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1466 	if (psinfo == NULL)
1467 		return 0;
1468 
1469 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1470 
1471 	/*
1472 	 * Figure out how many notes we're going to need for each thread.
1473 	 */
1474 	info->thread_notes = 0;
1475 	for (i = 0; i < view->n; ++i)
1476 		if (view->regsets[i].core_note_type != 0)
1477 			++info->thread_notes;
1478 
1479 	/*
1480 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1481 	 * since it is our one special case.
1482 	 */
1483 	if (unlikely(info->thread_notes == 0) ||
1484 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1485 		WARN_ON(1);
1486 		return 0;
1487 	}
1488 
1489 	/*
1490 	 * Initialize the ELF file header.
1491 	 */
1492 	fill_elf_header(elf, phdrs,
1493 			view->e_machine, view->e_flags, view->ei_osabi);
1494 
1495 	/*
1496 	 * Allocate a structure for each thread.
1497 	 */
1498 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1499 		t = kzalloc(offsetof(struct elf_thread_core_info,
1500 				     notes[info->thread_notes]),
1501 			    GFP_KERNEL);
1502 		if (unlikely(!t))
1503 			return 0;
1504 
1505 		t->task = ct->task;
1506 		if (ct->task == dump_task || !info->thread) {
1507 			t->next = info->thread;
1508 			info->thread = t;
1509 		} else {
1510 			/*
1511 			 * Make sure to keep the original task at
1512 			 * the head of the list.
1513 			 */
1514 			t->next = info->thread->next;
1515 			info->thread->next = t;
1516 		}
1517 	}
1518 
1519 	/*
1520 	 * Now fill in each thread's information.
1521 	 */
1522 	for (t = info->thread; t != NULL; t = t->next)
1523 		if (!fill_thread_core_info(t, view, signr, &info->size))
1524 			return 0;
1525 
1526 	/*
1527 	 * Fill in the two process-wide notes.
1528 	 */
1529 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1530 	info->size += notesize(&info->psinfo);
1531 
1532 	fill_auxv_note(&info->auxv, current->mm);
1533 	info->size += notesize(&info->auxv);
1534 
1535 	return 1;
1536 }
1537 
1538 static size_t get_note_info_size(struct elf_note_info *info)
1539 {
1540 	return info->size;
1541 }
1542 
1543 /*
1544  * Write all the notes for each thread.  When writing the first thread, the
1545  * process-wide notes are interleaved after the first thread-specific note.
1546  */
1547 static int write_note_info(struct elf_note_info *info,
1548 			   struct file *file, loff_t *foffset)
1549 {
1550 	bool first = 1;
1551 	struct elf_thread_core_info *t = info->thread;
1552 
1553 	do {
1554 		int i;
1555 
1556 		if (!writenote(&t->notes[0], file, foffset))
1557 			return 0;
1558 
1559 		if (first && !writenote(&info->psinfo, file, foffset))
1560 			return 0;
1561 		if (first && !writenote(&info->auxv, file, foffset))
1562 			return 0;
1563 
1564 		for (i = 1; i < info->thread_notes; ++i)
1565 			if (t->notes[i].data &&
1566 			    !writenote(&t->notes[i], file, foffset))
1567 				return 0;
1568 
1569 		first = 0;
1570 		t = t->next;
1571 	} while (t);
1572 
1573 	return 1;
1574 }
1575 
1576 static void free_note_info(struct elf_note_info *info)
1577 {
1578 	struct elf_thread_core_info *threads = info->thread;
1579 	while (threads) {
1580 		unsigned int i;
1581 		struct elf_thread_core_info *t = threads;
1582 		threads = t->next;
1583 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1584 		for (i = 1; i < info->thread_notes; ++i)
1585 			kfree(t->notes[i].data);
1586 		kfree(t);
1587 	}
1588 	kfree(info->psinfo.data);
1589 }
1590 
1591 #else
1592 
1593 /* Here is the structure in which status of each thread is captured. */
1594 struct elf_thread_status
1595 {
1596 	struct list_head list;
1597 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1598 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1599 	struct task_struct *thread;
1600 #ifdef ELF_CORE_COPY_XFPREGS
1601 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1602 #endif
1603 	struct memelfnote notes[3];
1604 	int num_notes;
1605 };
1606 
1607 /*
1608  * In order to add the specific thread information for the elf file format,
1609  * we need to keep a linked list of every threads pr_status and then create
1610  * a single section for them in the final core file.
1611  */
1612 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1613 {
1614 	int sz = 0;
1615 	struct task_struct *p = t->thread;
1616 	t->num_notes = 0;
1617 
1618 	fill_prstatus(&t->prstatus, p, signr);
1619 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1620 
1621 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1622 		  &(t->prstatus));
1623 	t->num_notes++;
1624 	sz += notesize(&t->notes[0]);
1625 
1626 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1627 								&t->fpu))) {
1628 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1629 			  &(t->fpu));
1630 		t->num_notes++;
1631 		sz += notesize(&t->notes[1]);
1632 	}
1633 
1634 #ifdef ELF_CORE_COPY_XFPREGS
1635 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1636 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1637 			  sizeof(t->xfpu), &t->xfpu);
1638 		t->num_notes++;
1639 		sz += notesize(&t->notes[2]);
1640 	}
1641 #endif
1642 	return sz;
1643 }
1644 
1645 struct elf_note_info {
1646 	struct memelfnote *notes;
1647 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1648 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1649 	struct list_head thread_list;
1650 	elf_fpregset_t *fpu;
1651 #ifdef ELF_CORE_COPY_XFPREGS
1652 	elf_fpxregset_t *xfpu;
1653 #endif
1654 	int thread_status_size;
1655 	int numnote;
1656 };
1657 
1658 static int elf_note_info_init(struct elf_note_info *info)
1659 {
1660 	memset(info, 0, sizeof(*info));
1661 	INIT_LIST_HEAD(&info->thread_list);
1662 
1663 	/* Allocate space for six ELF notes */
1664 	info->notes = kmalloc(6 * sizeof(struct memelfnote), GFP_KERNEL);
1665 	if (!info->notes)
1666 		return 0;
1667 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1668 	if (!info->psinfo)
1669 		goto notes_free;
1670 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1671 	if (!info->prstatus)
1672 		goto psinfo_free;
1673 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1674 	if (!info->fpu)
1675 		goto prstatus_free;
1676 #ifdef ELF_CORE_COPY_XFPREGS
1677 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1678 	if (!info->xfpu)
1679 		goto fpu_free;
1680 #endif
1681 	return 1;
1682 #ifdef ELF_CORE_COPY_XFPREGS
1683  fpu_free:
1684 	kfree(info->fpu);
1685 #endif
1686  prstatus_free:
1687 	kfree(info->prstatus);
1688  psinfo_free:
1689 	kfree(info->psinfo);
1690  notes_free:
1691 	kfree(info->notes);
1692 	return 0;
1693 }
1694 
1695 static int fill_note_info(struct elfhdr *elf, int phdrs,
1696 			  struct elf_note_info *info,
1697 			  long signr, struct pt_regs *regs)
1698 {
1699 	struct list_head *t;
1700 
1701 	if (!elf_note_info_init(info))
1702 		return 0;
1703 
1704 	if (signr) {
1705 		struct core_thread *ct;
1706 		struct elf_thread_status *ets;
1707 
1708 		for (ct = current->mm->core_state->dumper.next;
1709 						ct; ct = ct->next) {
1710 			ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1711 			if (!ets)
1712 				return 0;
1713 
1714 			ets->thread = ct->task;
1715 			list_add(&ets->list, &info->thread_list);
1716 		}
1717 
1718 		list_for_each(t, &info->thread_list) {
1719 			int sz;
1720 
1721 			ets = list_entry(t, struct elf_thread_status, list);
1722 			sz = elf_dump_thread_status(signr, ets);
1723 			info->thread_status_size += sz;
1724 		}
1725 	}
1726 	/* now collect the dump for the current */
1727 	memset(info->prstatus, 0, sizeof(*info->prstatus));
1728 	fill_prstatus(info->prstatus, current, signr);
1729 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1730 
1731 	/* Set up header */
1732 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1733 
1734 	/*
1735 	 * Set up the notes in similar form to SVR4 core dumps made
1736 	 * with info from their /proc.
1737 	 */
1738 
1739 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1740 		  sizeof(*info->prstatus), info->prstatus);
1741 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1742 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1743 		  sizeof(*info->psinfo), info->psinfo);
1744 
1745 	info->numnote = 2;
1746 
1747 	fill_auxv_note(&info->notes[info->numnote++], current->mm);
1748 
1749 	/* Try to dump the FPU. */
1750 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1751 							       info->fpu);
1752 	if (info->prstatus->pr_fpvalid)
1753 		fill_note(info->notes + info->numnote++,
1754 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1755 #ifdef ELF_CORE_COPY_XFPREGS
1756 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
1757 		fill_note(info->notes + info->numnote++,
1758 			  "LINUX", ELF_CORE_XFPREG_TYPE,
1759 			  sizeof(*info->xfpu), info->xfpu);
1760 #endif
1761 
1762 	return 1;
1763 }
1764 
1765 static size_t get_note_info_size(struct elf_note_info *info)
1766 {
1767 	int sz = 0;
1768 	int i;
1769 
1770 	for (i = 0; i < info->numnote; i++)
1771 		sz += notesize(info->notes + i);
1772 
1773 	sz += info->thread_status_size;
1774 
1775 	return sz;
1776 }
1777 
1778 static int write_note_info(struct elf_note_info *info,
1779 			   struct file *file, loff_t *foffset)
1780 {
1781 	int i;
1782 	struct list_head *t;
1783 
1784 	for (i = 0; i < info->numnote; i++)
1785 		if (!writenote(info->notes + i, file, foffset))
1786 			return 0;
1787 
1788 	/* write out the thread status notes section */
1789 	list_for_each(t, &info->thread_list) {
1790 		struct elf_thread_status *tmp =
1791 				list_entry(t, struct elf_thread_status, list);
1792 
1793 		for (i = 0; i < tmp->num_notes; i++)
1794 			if (!writenote(&tmp->notes[i], file, foffset))
1795 				return 0;
1796 	}
1797 
1798 	return 1;
1799 }
1800 
1801 static void free_note_info(struct elf_note_info *info)
1802 {
1803 	while (!list_empty(&info->thread_list)) {
1804 		struct list_head *tmp = info->thread_list.next;
1805 		list_del(tmp);
1806 		kfree(list_entry(tmp, struct elf_thread_status, list));
1807 	}
1808 
1809 	kfree(info->prstatus);
1810 	kfree(info->psinfo);
1811 	kfree(info->notes);
1812 	kfree(info->fpu);
1813 #ifdef ELF_CORE_COPY_XFPREGS
1814 	kfree(info->xfpu);
1815 #endif
1816 }
1817 
1818 #endif
1819 
1820 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1821 					struct vm_area_struct *gate_vma)
1822 {
1823 	struct vm_area_struct *ret = tsk->mm->mmap;
1824 
1825 	if (ret)
1826 		return ret;
1827 	return gate_vma;
1828 }
1829 /*
1830  * Helper function for iterating across a vma list.  It ensures that the caller
1831  * will visit `gate_vma' prior to terminating the search.
1832  */
1833 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1834 					struct vm_area_struct *gate_vma)
1835 {
1836 	struct vm_area_struct *ret;
1837 
1838 	ret = this_vma->vm_next;
1839 	if (ret)
1840 		return ret;
1841 	if (this_vma == gate_vma)
1842 		return NULL;
1843 	return gate_vma;
1844 }
1845 
1846 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1847 			     elf_addr_t e_shoff, int segs)
1848 {
1849 	elf->e_shoff = e_shoff;
1850 	elf->e_shentsize = sizeof(*shdr4extnum);
1851 	elf->e_shnum = 1;
1852 	elf->e_shstrndx = SHN_UNDEF;
1853 
1854 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1855 
1856 	shdr4extnum->sh_type = SHT_NULL;
1857 	shdr4extnum->sh_size = elf->e_shnum;
1858 	shdr4extnum->sh_link = elf->e_shstrndx;
1859 	shdr4extnum->sh_info = segs;
1860 }
1861 
1862 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
1863 				     unsigned long mm_flags)
1864 {
1865 	struct vm_area_struct *vma;
1866 	size_t size = 0;
1867 
1868 	for (vma = first_vma(current, gate_vma); vma != NULL;
1869 	     vma = next_vma(vma, gate_vma))
1870 		size += vma_dump_size(vma, mm_flags);
1871 	return size;
1872 }
1873 
1874 /*
1875  * Actual dumper
1876  *
1877  * This is a two-pass process; first we find the offsets of the bits,
1878  * and then they are actually written out.  If we run out of core limit
1879  * we just truncate.
1880  */
1881 static int elf_core_dump(struct coredump_params *cprm)
1882 {
1883 	int has_dumped = 0;
1884 	mm_segment_t fs;
1885 	int segs;
1886 	size_t size = 0;
1887 	struct vm_area_struct *vma, *gate_vma;
1888 	struct elfhdr *elf = NULL;
1889 	loff_t offset = 0, dataoff, foffset;
1890 	struct elf_note_info info;
1891 	struct elf_phdr *phdr4note = NULL;
1892 	struct elf_shdr *shdr4extnum = NULL;
1893 	Elf_Half e_phnum;
1894 	elf_addr_t e_shoff;
1895 
1896 	/*
1897 	 * We no longer stop all VM operations.
1898 	 *
1899 	 * This is because those proceses that could possibly change map_count
1900 	 * or the mmap / vma pages are now blocked in do_exit on current
1901 	 * finishing this core dump.
1902 	 *
1903 	 * Only ptrace can touch these memory addresses, but it doesn't change
1904 	 * the map_count or the pages allocated. So no possibility of crashing
1905 	 * exists while dumping the mm->vm_next areas to the core file.
1906 	 */
1907 
1908 	/* alloc memory for large data structures: too large to be on stack */
1909 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1910 	if (!elf)
1911 		goto out;
1912 	/*
1913 	 * The number of segs are recored into ELF header as 16bit value.
1914 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1915 	 */
1916 	segs = current->mm->map_count;
1917 	segs += elf_core_extra_phdrs();
1918 
1919 	gate_vma = get_gate_vma(current->mm);
1920 	if (gate_vma != NULL)
1921 		segs++;
1922 
1923 	/* for notes section */
1924 	segs++;
1925 
1926 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
1927 	 * this, kernel supports extended numbering. Have a look at
1928 	 * include/linux/elf.h for further information. */
1929 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
1930 
1931 	/*
1932 	 * Collect all the non-memory information about the process for the
1933 	 * notes.  This also sets up the file header.
1934 	 */
1935 	if (!fill_note_info(elf, e_phnum, &info, cprm->signr, cprm->regs))
1936 		goto cleanup;
1937 
1938 	has_dumped = 1;
1939 	current->flags |= PF_DUMPCORE;
1940 
1941 	fs = get_fs();
1942 	set_fs(KERNEL_DS);
1943 
1944 	offset += sizeof(*elf);				/* Elf header */
1945 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
1946 	foffset = offset;
1947 
1948 	/* Write notes phdr entry */
1949 	{
1950 		size_t sz = get_note_info_size(&info);
1951 
1952 		sz += elf_coredump_extra_notes_size();
1953 
1954 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
1955 		if (!phdr4note)
1956 			goto end_coredump;
1957 
1958 		fill_elf_note_phdr(phdr4note, sz, offset);
1959 		offset += sz;
1960 	}
1961 
1962 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1963 
1964 	offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
1965 	offset += elf_core_extra_data_size();
1966 	e_shoff = offset;
1967 
1968 	if (e_phnum == PN_XNUM) {
1969 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
1970 		if (!shdr4extnum)
1971 			goto end_coredump;
1972 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
1973 	}
1974 
1975 	offset = dataoff;
1976 
1977 	size += sizeof(*elf);
1978 	if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
1979 		goto end_coredump;
1980 
1981 	size += sizeof(*phdr4note);
1982 	if (size > cprm->limit
1983 	    || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
1984 		goto end_coredump;
1985 
1986 	/* Write program headers for segments dump */
1987 	for (vma = first_vma(current, gate_vma); vma != NULL;
1988 			vma = next_vma(vma, gate_vma)) {
1989 		struct elf_phdr phdr;
1990 
1991 		phdr.p_type = PT_LOAD;
1992 		phdr.p_offset = offset;
1993 		phdr.p_vaddr = vma->vm_start;
1994 		phdr.p_paddr = 0;
1995 		phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
1996 		phdr.p_memsz = vma->vm_end - vma->vm_start;
1997 		offset += phdr.p_filesz;
1998 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
1999 		if (vma->vm_flags & VM_WRITE)
2000 			phdr.p_flags |= PF_W;
2001 		if (vma->vm_flags & VM_EXEC)
2002 			phdr.p_flags |= PF_X;
2003 		phdr.p_align = ELF_EXEC_PAGESIZE;
2004 
2005 		size += sizeof(phdr);
2006 		if (size > cprm->limit
2007 		    || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2008 			goto end_coredump;
2009 	}
2010 
2011 	if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2012 		goto end_coredump;
2013 
2014  	/* write out the notes section */
2015 	if (!write_note_info(&info, cprm->file, &foffset))
2016 		goto end_coredump;
2017 
2018 	if (elf_coredump_extra_notes_write(cprm->file, &foffset))
2019 		goto end_coredump;
2020 
2021 	/* Align to page */
2022 	if (!dump_seek(cprm->file, dataoff - foffset))
2023 		goto end_coredump;
2024 
2025 	for (vma = first_vma(current, gate_vma); vma != NULL;
2026 			vma = next_vma(vma, gate_vma)) {
2027 		unsigned long addr;
2028 		unsigned long end;
2029 
2030 		end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2031 
2032 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2033 			struct page *page;
2034 			int stop;
2035 
2036 			page = get_dump_page(addr);
2037 			if (page) {
2038 				void *kaddr = kmap(page);
2039 				stop = ((size += PAGE_SIZE) > cprm->limit) ||
2040 					!dump_write(cprm->file, kaddr,
2041 						    PAGE_SIZE);
2042 				kunmap(page);
2043 				page_cache_release(page);
2044 			} else
2045 				stop = !dump_seek(cprm->file, PAGE_SIZE);
2046 			if (stop)
2047 				goto end_coredump;
2048 		}
2049 	}
2050 
2051 	if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2052 		goto end_coredump;
2053 
2054 	if (e_phnum == PN_XNUM) {
2055 		size += sizeof(*shdr4extnum);
2056 		if (size > cprm->limit
2057 		    || !dump_write(cprm->file, shdr4extnum,
2058 				   sizeof(*shdr4extnum)))
2059 			goto end_coredump;
2060 	}
2061 
2062 end_coredump:
2063 	set_fs(fs);
2064 
2065 cleanup:
2066 	free_note_info(&info);
2067 	kfree(shdr4extnum);
2068 	kfree(phdr4note);
2069 	kfree(elf);
2070 out:
2071 	return has_dumped;
2072 }
2073 
2074 #endif		/* CONFIG_ELF_CORE */
2075 
2076 static int __init init_elf_binfmt(void)
2077 {
2078 	register_binfmt(&elf_format);
2079 	return 0;
2080 }
2081 
2082 static void __exit exit_elf_binfmt(void)
2083 {
2084 	/* Remove the COFF and ELF loaders. */
2085 	unregister_binfmt(&elf_format);
2086 }
2087 
2088 core_initcall(init_elf_binfmt);
2089 module_exit(exit_elf_binfmt);
2090 MODULE_LICENSE("GPL");
2091