1 /* 2 * linux/fs/binfmt_elf.c 3 * 4 * These are the functions used to load ELF format executables as used 5 * on SVr4 machines. Information on the format may be found in the book 6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 7 * Tools". 8 * 9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/fs.h> 15 #include <linux/mm.h> 16 #include <linux/mman.h> 17 #include <linux/errno.h> 18 #include <linux/signal.h> 19 #include <linux/binfmts.h> 20 #include <linux/string.h> 21 #include <linux/file.h> 22 #include <linux/slab.h> 23 #include <linux/personality.h> 24 #include <linux/elfcore.h> 25 #include <linux/init.h> 26 #include <linux/highuid.h> 27 #include <linux/compiler.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/security.h> 31 #include <linux/random.h> 32 #include <linux/elf.h> 33 #include <linux/utsname.h> 34 #include <linux/coredump.h> 35 #include <asm/uaccess.h> 36 #include <asm/param.h> 37 #include <asm/page.h> 38 39 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs); 40 static int load_elf_library(struct file *); 41 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *, 42 int, int, unsigned long); 43 44 /* 45 * If we don't support core dumping, then supply a NULL so we 46 * don't even try. 47 */ 48 #ifdef CONFIG_ELF_CORE 49 static int elf_core_dump(struct coredump_params *cprm); 50 #else 51 #define elf_core_dump NULL 52 #endif 53 54 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 55 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 56 #else 57 #define ELF_MIN_ALIGN PAGE_SIZE 58 #endif 59 60 #ifndef ELF_CORE_EFLAGS 61 #define ELF_CORE_EFLAGS 0 62 #endif 63 64 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) 65 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 66 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 67 68 static struct linux_binfmt elf_format = { 69 .module = THIS_MODULE, 70 .load_binary = load_elf_binary, 71 .load_shlib = load_elf_library, 72 .core_dump = elf_core_dump, 73 .min_coredump = ELF_EXEC_PAGESIZE, 74 }; 75 76 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE) 77 78 static int set_brk(unsigned long start, unsigned long end) 79 { 80 start = ELF_PAGEALIGN(start); 81 end = ELF_PAGEALIGN(end); 82 if (end > start) { 83 unsigned long addr; 84 down_write(¤t->mm->mmap_sem); 85 addr = do_brk(start, end - start); 86 up_write(¤t->mm->mmap_sem); 87 if (BAD_ADDR(addr)) 88 return addr; 89 } 90 current->mm->start_brk = current->mm->brk = end; 91 return 0; 92 } 93 94 /* We need to explicitly zero any fractional pages 95 after the data section (i.e. bss). This would 96 contain the junk from the file that should not 97 be in memory 98 */ 99 static int padzero(unsigned long elf_bss) 100 { 101 unsigned long nbyte; 102 103 nbyte = ELF_PAGEOFFSET(elf_bss); 104 if (nbyte) { 105 nbyte = ELF_MIN_ALIGN - nbyte; 106 if (clear_user((void __user *) elf_bss, nbyte)) 107 return -EFAULT; 108 } 109 return 0; 110 } 111 112 /* Let's use some macros to make this stack manipulation a little clearer */ 113 #ifdef CONFIG_STACK_GROWSUP 114 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 115 #define STACK_ROUND(sp, items) \ 116 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 117 #define STACK_ALLOC(sp, len) ({ \ 118 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 119 old_sp; }) 120 #else 121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 122 #define STACK_ROUND(sp, items) \ 123 (((unsigned long) (sp - items)) &~ 15UL) 124 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) 125 #endif 126 127 #ifndef ELF_BASE_PLATFORM 128 /* 129 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 130 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 131 * will be copied to the user stack in the same manner as AT_PLATFORM. 132 */ 133 #define ELF_BASE_PLATFORM NULL 134 #endif 135 136 static int 137 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec, 138 unsigned long load_addr, unsigned long interp_load_addr) 139 { 140 unsigned long p = bprm->p; 141 int argc = bprm->argc; 142 int envc = bprm->envc; 143 elf_addr_t __user *argv; 144 elf_addr_t __user *envp; 145 elf_addr_t __user *sp; 146 elf_addr_t __user *u_platform; 147 elf_addr_t __user *u_base_platform; 148 elf_addr_t __user *u_rand_bytes; 149 const char *k_platform = ELF_PLATFORM; 150 const char *k_base_platform = ELF_BASE_PLATFORM; 151 unsigned char k_rand_bytes[16]; 152 int items; 153 elf_addr_t *elf_info; 154 int ei_index = 0; 155 const struct cred *cred = current_cred(); 156 struct vm_area_struct *vma; 157 158 /* 159 * In some cases (e.g. Hyper-Threading), we want to avoid L1 160 * evictions by the processes running on the same package. One 161 * thing we can do is to shuffle the initial stack for them. 162 */ 163 164 p = arch_align_stack(p); 165 166 /* 167 * If this architecture has a platform capability string, copy it 168 * to userspace. In some cases (Sparc), this info is impossible 169 * for userspace to get any other way, in others (i386) it is 170 * merely difficult. 171 */ 172 u_platform = NULL; 173 if (k_platform) { 174 size_t len = strlen(k_platform) + 1; 175 176 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 177 if (__copy_to_user(u_platform, k_platform, len)) 178 return -EFAULT; 179 } 180 181 /* 182 * If this architecture has a "base" platform capability 183 * string, copy it to userspace. 184 */ 185 u_base_platform = NULL; 186 if (k_base_platform) { 187 size_t len = strlen(k_base_platform) + 1; 188 189 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 190 if (__copy_to_user(u_base_platform, k_base_platform, len)) 191 return -EFAULT; 192 } 193 194 /* 195 * Generate 16 random bytes for userspace PRNG seeding. 196 */ 197 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 198 u_rand_bytes = (elf_addr_t __user *) 199 STACK_ALLOC(p, sizeof(k_rand_bytes)); 200 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 201 return -EFAULT; 202 203 /* Create the ELF interpreter info */ 204 elf_info = (elf_addr_t *)current->mm->saved_auxv; 205 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 206 #define NEW_AUX_ENT(id, val) \ 207 do { \ 208 elf_info[ei_index++] = id; \ 209 elf_info[ei_index++] = val; \ 210 } while (0) 211 212 #ifdef ARCH_DLINFO 213 /* 214 * ARCH_DLINFO must come first so PPC can do its special alignment of 215 * AUXV. 216 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 217 * ARCH_DLINFO changes 218 */ 219 ARCH_DLINFO; 220 #endif 221 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 222 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 223 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 224 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); 225 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 226 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 227 NEW_AUX_ENT(AT_BASE, interp_load_addr); 228 NEW_AUX_ENT(AT_FLAGS, 0); 229 NEW_AUX_ENT(AT_ENTRY, exec->e_entry); 230 NEW_AUX_ENT(AT_UID, cred->uid); 231 NEW_AUX_ENT(AT_EUID, cred->euid); 232 NEW_AUX_ENT(AT_GID, cred->gid); 233 NEW_AUX_ENT(AT_EGID, cred->egid); 234 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm)); 235 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 236 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 237 if (k_platform) { 238 NEW_AUX_ENT(AT_PLATFORM, 239 (elf_addr_t)(unsigned long)u_platform); 240 } 241 if (k_base_platform) { 242 NEW_AUX_ENT(AT_BASE_PLATFORM, 243 (elf_addr_t)(unsigned long)u_base_platform); 244 } 245 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) { 246 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data); 247 } 248 #undef NEW_AUX_ENT 249 /* AT_NULL is zero; clear the rest too */ 250 memset(&elf_info[ei_index], 0, 251 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]); 252 253 /* And advance past the AT_NULL entry. */ 254 ei_index += 2; 255 256 sp = STACK_ADD(p, ei_index); 257 258 items = (argc + 1) + (envc + 1) + 1; 259 bprm->p = STACK_ROUND(sp, items); 260 261 /* Point sp at the lowest address on the stack */ 262 #ifdef CONFIG_STACK_GROWSUP 263 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 264 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 265 #else 266 sp = (elf_addr_t __user *)bprm->p; 267 #endif 268 269 270 /* 271 * Grow the stack manually; some architectures have a limit on how 272 * far ahead a user-space access may be in order to grow the stack. 273 */ 274 vma = find_extend_vma(current->mm, bprm->p); 275 if (!vma) 276 return -EFAULT; 277 278 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 279 if (__put_user(argc, sp++)) 280 return -EFAULT; 281 argv = sp; 282 envp = argv + argc + 1; 283 284 /* Populate argv and envp */ 285 p = current->mm->arg_end = current->mm->arg_start; 286 while (argc-- > 0) { 287 size_t len; 288 if (__put_user((elf_addr_t)p, argv++)) 289 return -EFAULT; 290 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 291 if (!len || len > MAX_ARG_STRLEN) 292 return -EINVAL; 293 p += len; 294 } 295 if (__put_user(0, argv)) 296 return -EFAULT; 297 current->mm->arg_end = current->mm->env_start = p; 298 while (envc-- > 0) { 299 size_t len; 300 if (__put_user((elf_addr_t)p, envp++)) 301 return -EFAULT; 302 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 303 if (!len || len > MAX_ARG_STRLEN) 304 return -EINVAL; 305 p += len; 306 } 307 if (__put_user(0, envp)) 308 return -EFAULT; 309 current->mm->env_end = p; 310 311 /* Put the elf_info on the stack in the right place. */ 312 sp = (elf_addr_t __user *)envp + 1; 313 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t))) 314 return -EFAULT; 315 return 0; 316 } 317 318 static unsigned long elf_map(struct file *filep, unsigned long addr, 319 struct elf_phdr *eppnt, int prot, int type, 320 unsigned long total_size) 321 { 322 unsigned long map_addr; 323 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 324 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 325 addr = ELF_PAGESTART(addr); 326 size = ELF_PAGEALIGN(size); 327 328 /* mmap() will return -EINVAL if given a zero size, but a 329 * segment with zero filesize is perfectly valid */ 330 if (!size) 331 return addr; 332 333 down_write(¤t->mm->mmap_sem); 334 /* 335 * total_size is the size of the ELF (interpreter) image. 336 * The _first_ mmap needs to know the full size, otherwise 337 * randomization might put this image into an overlapping 338 * position with the ELF binary image. (since size < total_size) 339 * So we first map the 'big' image - and unmap the remainder at 340 * the end. (which unmap is needed for ELF images with holes.) 341 */ 342 if (total_size) { 343 total_size = ELF_PAGEALIGN(total_size); 344 map_addr = do_mmap(filep, addr, total_size, prot, type, off); 345 if (!BAD_ADDR(map_addr)) 346 do_munmap(current->mm, map_addr+size, total_size-size); 347 } else 348 map_addr = do_mmap(filep, addr, size, prot, type, off); 349 350 up_write(¤t->mm->mmap_sem); 351 return(map_addr); 352 } 353 354 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr) 355 { 356 int i, first_idx = -1, last_idx = -1; 357 358 for (i = 0; i < nr; i++) { 359 if (cmds[i].p_type == PT_LOAD) { 360 last_idx = i; 361 if (first_idx == -1) 362 first_idx = i; 363 } 364 } 365 if (first_idx == -1) 366 return 0; 367 368 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - 369 ELF_PAGESTART(cmds[first_idx].p_vaddr); 370 } 371 372 373 /* This is much more generalized than the library routine read function, 374 so we keep this separate. Technically the library read function 375 is only provided so that we can read a.out libraries that have 376 an ELF header */ 377 378 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 379 struct file *interpreter, unsigned long *interp_map_addr, 380 unsigned long no_base) 381 { 382 struct elf_phdr *elf_phdata; 383 struct elf_phdr *eppnt; 384 unsigned long load_addr = 0; 385 int load_addr_set = 0; 386 unsigned long last_bss = 0, elf_bss = 0; 387 unsigned long error = ~0UL; 388 unsigned long total_size; 389 int retval, i, size; 390 391 /* First of all, some simple consistency checks */ 392 if (interp_elf_ex->e_type != ET_EXEC && 393 interp_elf_ex->e_type != ET_DYN) 394 goto out; 395 if (!elf_check_arch(interp_elf_ex)) 396 goto out; 397 if (!interpreter->f_op || !interpreter->f_op->mmap) 398 goto out; 399 400 /* 401 * If the size of this structure has changed, then punt, since 402 * we will be doing the wrong thing. 403 */ 404 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) 405 goto out; 406 if (interp_elf_ex->e_phnum < 1 || 407 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr)) 408 goto out; 409 410 /* Now read in all of the header information */ 411 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum; 412 if (size > ELF_MIN_ALIGN) 413 goto out; 414 elf_phdata = kmalloc(size, GFP_KERNEL); 415 if (!elf_phdata) 416 goto out; 417 418 retval = kernel_read(interpreter, interp_elf_ex->e_phoff, 419 (char *)elf_phdata, size); 420 error = -EIO; 421 if (retval != size) { 422 if (retval < 0) 423 error = retval; 424 goto out_close; 425 } 426 427 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum); 428 if (!total_size) { 429 error = -EINVAL; 430 goto out_close; 431 } 432 433 eppnt = elf_phdata; 434 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 435 if (eppnt->p_type == PT_LOAD) { 436 int elf_type = MAP_PRIVATE | MAP_DENYWRITE; 437 int elf_prot = 0; 438 unsigned long vaddr = 0; 439 unsigned long k, map_addr; 440 441 if (eppnt->p_flags & PF_R) 442 elf_prot = PROT_READ; 443 if (eppnt->p_flags & PF_W) 444 elf_prot |= PROT_WRITE; 445 if (eppnt->p_flags & PF_X) 446 elf_prot |= PROT_EXEC; 447 vaddr = eppnt->p_vaddr; 448 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 449 elf_type |= MAP_FIXED; 450 else if (no_base && interp_elf_ex->e_type == ET_DYN) 451 load_addr = -vaddr; 452 453 map_addr = elf_map(interpreter, load_addr + vaddr, 454 eppnt, elf_prot, elf_type, total_size); 455 total_size = 0; 456 if (!*interp_map_addr) 457 *interp_map_addr = map_addr; 458 error = map_addr; 459 if (BAD_ADDR(map_addr)) 460 goto out_close; 461 462 if (!load_addr_set && 463 interp_elf_ex->e_type == ET_DYN) { 464 load_addr = map_addr - ELF_PAGESTART(vaddr); 465 load_addr_set = 1; 466 } 467 468 /* 469 * Check to see if the section's size will overflow the 470 * allowed task size. Note that p_filesz must always be 471 * <= p_memsize so it's only necessary to check p_memsz. 472 */ 473 k = load_addr + eppnt->p_vaddr; 474 if (BAD_ADDR(k) || 475 eppnt->p_filesz > eppnt->p_memsz || 476 eppnt->p_memsz > TASK_SIZE || 477 TASK_SIZE - eppnt->p_memsz < k) { 478 error = -ENOMEM; 479 goto out_close; 480 } 481 482 /* 483 * Find the end of the file mapping for this phdr, and 484 * keep track of the largest address we see for this. 485 */ 486 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; 487 if (k > elf_bss) 488 elf_bss = k; 489 490 /* 491 * Do the same thing for the memory mapping - between 492 * elf_bss and last_bss is the bss section. 493 */ 494 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; 495 if (k > last_bss) 496 last_bss = k; 497 } 498 } 499 500 if (last_bss > elf_bss) { 501 /* 502 * Now fill out the bss section. First pad the last page up 503 * to the page boundary, and then perform a mmap to make sure 504 * that there are zero-mapped pages up to and including the 505 * last bss page. 506 */ 507 if (padzero(elf_bss)) { 508 error = -EFAULT; 509 goto out_close; 510 } 511 512 /* What we have mapped so far */ 513 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1); 514 515 /* Map the last of the bss segment */ 516 down_write(¤t->mm->mmap_sem); 517 error = do_brk(elf_bss, last_bss - elf_bss); 518 up_write(¤t->mm->mmap_sem); 519 if (BAD_ADDR(error)) 520 goto out_close; 521 } 522 523 error = load_addr; 524 525 out_close: 526 kfree(elf_phdata); 527 out: 528 return error; 529 } 530 531 /* 532 * These are the functions used to load ELF style executables and shared 533 * libraries. There is no binary dependent code anywhere else. 534 */ 535 536 #define INTERPRETER_NONE 0 537 #define INTERPRETER_ELF 2 538 539 #ifndef STACK_RND_MASK 540 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 541 #endif 542 543 static unsigned long randomize_stack_top(unsigned long stack_top) 544 { 545 unsigned int random_variable = 0; 546 547 if ((current->flags & PF_RANDOMIZE) && 548 !(current->personality & ADDR_NO_RANDOMIZE)) { 549 random_variable = get_random_int() & STACK_RND_MASK; 550 random_variable <<= PAGE_SHIFT; 551 } 552 #ifdef CONFIG_STACK_GROWSUP 553 return PAGE_ALIGN(stack_top) + random_variable; 554 #else 555 return PAGE_ALIGN(stack_top) - random_variable; 556 #endif 557 } 558 559 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs) 560 { 561 struct file *interpreter = NULL; /* to shut gcc up */ 562 unsigned long load_addr = 0, load_bias = 0; 563 int load_addr_set = 0; 564 char * elf_interpreter = NULL; 565 unsigned long error; 566 struct elf_phdr *elf_ppnt, *elf_phdata; 567 unsigned long elf_bss, elf_brk; 568 int retval, i; 569 unsigned int size; 570 unsigned long elf_entry; 571 unsigned long interp_load_addr = 0; 572 unsigned long start_code, end_code, start_data, end_data; 573 unsigned long reloc_func_desc __maybe_unused = 0; 574 int executable_stack = EXSTACK_DEFAULT; 575 unsigned long def_flags = 0; 576 struct { 577 struct elfhdr elf_ex; 578 struct elfhdr interp_elf_ex; 579 } *loc; 580 581 loc = kmalloc(sizeof(*loc), GFP_KERNEL); 582 if (!loc) { 583 retval = -ENOMEM; 584 goto out_ret; 585 } 586 587 /* Get the exec-header */ 588 loc->elf_ex = *((struct elfhdr *)bprm->buf); 589 590 retval = -ENOEXEC; 591 /* First of all, some simple consistency checks */ 592 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 593 goto out; 594 595 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN) 596 goto out; 597 if (!elf_check_arch(&loc->elf_ex)) 598 goto out; 599 if (!bprm->file->f_op || !bprm->file->f_op->mmap) 600 goto out; 601 602 /* Now read in all of the header information */ 603 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr)) 604 goto out; 605 if (loc->elf_ex.e_phnum < 1 || 606 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr)) 607 goto out; 608 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr); 609 retval = -ENOMEM; 610 elf_phdata = kmalloc(size, GFP_KERNEL); 611 if (!elf_phdata) 612 goto out; 613 614 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff, 615 (char *)elf_phdata, size); 616 if (retval != size) { 617 if (retval >= 0) 618 retval = -EIO; 619 goto out_free_ph; 620 } 621 622 elf_ppnt = elf_phdata; 623 elf_bss = 0; 624 elf_brk = 0; 625 626 start_code = ~0UL; 627 end_code = 0; 628 start_data = 0; 629 end_data = 0; 630 631 for (i = 0; i < loc->elf_ex.e_phnum; i++) { 632 if (elf_ppnt->p_type == PT_INTERP) { 633 /* This is the program interpreter used for 634 * shared libraries - for now assume that this 635 * is an a.out format binary 636 */ 637 retval = -ENOEXEC; 638 if (elf_ppnt->p_filesz > PATH_MAX || 639 elf_ppnt->p_filesz < 2) 640 goto out_free_ph; 641 642 retval = -ENOMEM; 643 elf_interpreter = kmalloc(elf_ppnt->p_filesz, 644 GFP_KERNEL); 645 if (!elf_interpreter) 646 goto out_free_ph; 647 648 retval = kernel_read(bprm->file, elf_ppnt->p_offset, 649 elf_interpreter, 650 elf_ppnt->p_filesz); 651 if (retval != elf_ppnt->p_filesz) { 652 if (retval >= 0) 653 retval = -EIO; 654 goto out_free_interp; 655 } 656 /* make sure path is NULL terminated */ 657 retval = -ENOEXEC; 658 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 659 goto out_free_interp; 660 661 interpreter = open_exec(elf_interpreter); 662 retval = PTR_ERR(interpreter); 663 if (IS_ERR(interpreter)) 664 goto out_free_interp; 665 666 /* 667 * If the binary is not readable then enforce 668 * mm->dumpable = 0 regardless of the interpreter's 669 * permissions. 670 */ 671 would_dump(bprm, interpreter); 672 673 retval = kernel_read(interpreter, 0, bprm->buf, 674 BINPRM_BUF_SIZE); 675 if (retval != BINPRM_BUF_SIZE) { 676 if (retval >= 0) 677 retval = -EIO; 678 goto out_free_dentry; 679 } 680 681 /* Get the exec headers */ 682 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf); 683 break; 684 } 685 elf_ppnt++; 686 } 687 688 elf_ppnt = elf_phdata; 689 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) 690 if (elf_ppnt->p_type == PT_GNU_STACK) { 691 if (elf_ppnt->p_flags & PF_X) 692 executable_stack = EXSTACK_ENABLE_X; 693 else 694 executable_stack = EXSTACK_DISABLE_X; 695 break; 696 } 697 698 /* Some simple consistency checks for the interpreter */ 699 if (elf_interpreter) { 700 retval = -ELIBBAD; 701 /* Not an ELF interpreter */ 702 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 703 goto out_free_dentry; 704 /* Verify the interpreter has a valid arch */ 705 if (!elf_check_arch(&loc->interp_elf_ex)) 706 goto out_free_dentry; 707 } 708 709 /* Flush all traces of the currently running executable */ 710 retval = flush_old_exec(bprm); 711 if (retval) 712 goto out_free_dentry; 713 714 /* OK, This is the point of no return */ 715 current->mm->def_flags = def_flags; 716 717 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 718 may depend on the personality. */ 719 SET_PERSONALITY(loc->elf_ex); 720 if (elf_read_implies_exec(loc->elf_ex, executable_stack)) 721 current->personality |= READ_IMPLIES_EXEC; 722 723 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 724 current->flags |= PF_RANDOMIZE; 725 726 setup_new_exec(bprm); 727 728 /* Do this so that we can load the interpreter, if need be. We will 729 change some of these later */ 730 current->mm->free_area_cache = current->mm->mmap_base; 731 current->mm->cached_hole_size = 0; 732 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 733 executable_stack); 734 if (retval < 0) { 735 send_sig(SIGKILL, current, 0); 736 goto out_free_dentry; 737 } 738 739 current->mm->start_stack = bprm->p; 740 741 /* Now we do a little grungy work by mmapping the ELF image into 742 the correct location in memory. */ 743 for(i = 0, elf_ppnt = elf_phdata; 744 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) { 745 int elf_prot = 0, elf_flags; 746 unsigned long k, vaddr; 747 748 if (elf_ppnt->p_type != PT_LOAD) 749 continue; 750 751 if (unlikely (elf_brk > elf_bss)) { 752 unsigned long nbyte; 753 754 /* There was a PT_LOAD segment with p_memsz > p_filesz 755 before this one. Map anonymous pages, if needed, 756 and clear the area. */ 757 retval = set_brk(elf_bss + load_bias, 758 elf_brk + load_bias); 759 if (retval) { 760 send_sig(SIGKILL, current, 0); 761 goto out_free_dentry; 762 } 763 nbyte = ELF_PAGEOFFSET(elf_bss); 764 if (nbyte) { 765 nbyte = ELF_MIN_ALIGN - nbyte; 766 if (nbyte > elf_brk - elf_bss) 767 nbyte = elf_brk - elf_bss; 768 if (clear_user((void __user *)elf_bss + 769 load_bias, nbyte)) { 770 /* 771 * This bss-zeroing can fail if the ELF 772 * file specifies odd protections. So 773 * we don't check the return value 774 */ 775 } 776 } 777 } 778 779 if (elf_ppnt->p_flags & PF_R) 780 elf_prot |= PROT_READ; 781 if (elf_ppnt->p_flags & PF_W) 782 elf_prot |= PROT_WRITE; 783 if (elf_ppnt->p_flags & PF_X) 784 elf_prot |= PROT_EXEC; 785 786 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE; 787 788 vaddr = elf_ppnt->p_vaddr; 789 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) { 790 elf_flags |= MAP_FIXED; 791 } else if (loc->elf_ex.e_type == ET_DYN) { 792 /* Try and get dynamic programs out of the way of the 793 * default mmap base, as well as whatever program they 794 * might try to exec. This is because the brk will 795 * follow the loader, and is not movable. */ 796 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE 797 /* Memory randomization might have been switched off 798 * in runtime via sysctl. 799 * If that is the case, retain the original non-zero 800 * load_bias value in order to establish proper 801 * non-randomized mappings. 802 */ 803 if (current->flags & PF_RANDOMIZE) 804 load_bias = 0; 805 else 806 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); 807 #else 808 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); 809 #endif 810 } 811 812 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, 813 elf_prot, elf_flags, 0); 814 if (BAD_ADDR(error)) { 815 send_sig(SIGKILL, current, 0); 816 retval = IS_ERR((void *)error) ? 817 PTR_ERR((void*)error) : -EINVAL; 818 goto out_free_dentry; 819 } 820 821 if (!load_addr_set) { 822 load_addr_set = 1; 823 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); 824 if (loc->elf_ex.e_type == ET_DYN) { 825 load_bias += error - 826 ELF_PAGESTART(load_bias + vaddr); 827 load_addr += load_bias; 828 reloc_func_desc = load_bias; 829 } 830 } 831 k = elf_ppnt->p_vaddr; 832 if (k < start_code) 833 start_code = k; 834 if (start_data < k) 835 start_data = k; 836 837 /* 838 * Check to see if the section's size will overflow the 839 * allowed task size. Note that p_filesz must always be 840 * <= p_memsz so it is only necessary to check p_memsz. 841 */ 842 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 843 elf_ppnt->p_memsz > TASK_SIZE || 844 TASK_SIZE - elf_ppnt->p_memsz < k) { 845 /* set_brk can never work. Avoid overflows. */ 846 send_sig(SIGKILL, current, 0); 847 retval = -EINVAL; 848 goto out_free_dentry; 849 } 850 851 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 852 853 if (k > elf_bss) 854 elf_bss = k; 855 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 856 end_code = k; 857 if (end_data < k) 858 end_data = k; 859 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 860 if (k > elf_brk) 861 elf_brk = k; 862 } 863 864 loc->elf_ex.e_entry += load_bias; 865 elf_bss += load_bias; 866 elf_brk += load_bias; 867 start_code += load_bias; 868 end_code += load_bias; 869 start_data += load_bias; 870 end_data += load_bias; 871 872 /* Calling set_brk effectively mmaps the pages that we need 873 * for the bss and break sections. We must do this before 874 * mapping in the interpreter, to make sure it doesn't wind 875 * up getting placed where the bss needs to go. 876 */ 877 retval = set_brk(elf_bss, elf_brk); 878 if (retval) { 879 send_sig(SIGKILL, current, 0); 880 goto out_free_dentry; 881 } 882 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { 883 send_sig(SIGSEGV, current, 0); 884 retval = -EFAULT; /* Nobody gets to see this, but.. */ 885 goto out_free_dentry; 886 } 887 888 if (elf_interpreter) { 889 unsigned long uninitialized_var(interp_map_addr); 890 891 elf_entry = load_elf_interp(&loc->interp_elf_ex, 892 interpreter, 893 &interp_map_addr, 894 load_bias); 895 if (!IS_ERR((void *)elf_entry)) { 896 /* 897 * load_elf_interp() returns relocation 898 * adjustment 899 */ 900 interp_load_addr = elf_entry; 901 elf_entry += loc->interp_elf_ex.e_entry; 902 } 903 if (BAD_ADDR(elf_entry)) { 904 force_sig(SIGSEGV, current); 905 retval = IS_ERR((void *)elf_entry) ? 906 (int)elf_entry : -EINVAL; 907 goto out_free_dentry; 908 } 909 reloc_func_desc = interp_load_addr; 910 911 allow_write_access(interpreter); 912 fput(interpreter); 913 kfree(elf_interpreter); 914 } else { 915 elf_entry = loc->elf_ex.e_entry; 916 if (BAD_ADDR(elf_entry)) { 917 force_sig(SIGSEGV, current); 918 retval = -EINVAL; 919 goto out_free_dentry; 920 } 921 } 922 923 kfree(elf_phdata); 924 925 set_binfmt(&elf_format); 926 927 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 928 retval = arch_setup_additional_pages(bprm, !!elf_interpreter); 929 if (retval < 0) { 930 send_sig(SIGKILL, current, 0); 931 goto out; 932 } 933 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 934 935 install_exec_creds(bprm); 936 retval = create_elf_tables(bprm, &loc->elf_ex, 937 load_addr, interp_load_addr); 938 if (retval < 0) { 939 send_sig(SIGKILL, current, 0); 940 goto out; 941 } 942 /* N.B. passed_fileno might not be initialized? */ 943 current->mm->end_code = end_code; 944 current->mm->start_code = start_code; 945 current->mm->start_data = start_data; 946 current->mm->end_data = end_data; 947 current->mm->start_stack = bprm->p; 948 949 #ifdef arch_randomize_brk 950 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { 951 current->mm->brk = current->mm->start_brk = 952 arch_randomize_brk(current->mm); 953 #ifdef CONFIG_COMPAT_BRK 954 current->brk_randomized = 1; 955 #endif 956 } 957 #endif 958 959 if (current->personality & MMAP_PAGE_ZERO) { 960 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 961 and some applications "depend" upon this behavior. 962 Since we do not have the power to recompile these, we 963 emulate the SVr4 behavior. Sigh. */ 964 down_write(¤t->mm->mmap_sem); 965 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 966 MAP_FIXED | MAP_PRIVATE, 0); 967 up_write(¤t->mm->mmap_sem); 968 } 969 970 #ifdef ELF_PLAT_INIT 971 /* 972 * The ABI may specify that certain registers be set up in special 973 * ways (on i386 %edx is the address of a DT_FINI function, for 974 * example. In addition, it may also specify (eg, PowerPC64 ELF) 975 * that the e_entry field is the address of the function descriptor 976 * for the startup routine, rather than the address of the startup 977 * routine itself. This macro performs whatever initialization to 978 * the regs structure is required as well as any relocations to the 979 * function descriptor entries when executing dynamically links apps. 980 */ 981 ELF_PLAT_INIT(regs, reloc_func_desc); 982 #endif 983 984 start_thread(regs, elf_entry, bprm->p); 985 retval = 0; 986 out: 987 kfree(loc); 988 out_ret: 989 return retval; 990 991 /* error cleanup */ 992 out_free_dentry: 993 allow_write_access(interpreter); 994 if (interpreter) 995 fput(interpreter); 996 out_free_interp: 997 kfree(elf_interpreter); 998 out_free_ph: 999 kfree(elf_phdata); 1000 goto out; 1001 } 1002 1003 /* This is really simpleminded and specialized - we are loading an 1004 a.out library that is given an ELF header. */ 1005 static int load_elf_library(struct file *file) 1006 { 1007 struct elf_phdr *elf_phdata; 1008 struct elf_phdr *eppnt; 1009 unsigned long elf_bss, bss, len; 1010 int retval, error, i, j; 1011 struct elfhdr elf_ex; 1012 1013 error = -ENOEXEC; 1014 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex)); 1015 if (retval != sizeof(elf_ex)) 1016 goto out; 1017 1018 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1019 goto out; 1020 1021 /* First of all, some simple consistency checks */ 1022 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1023 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap) 1024 goto out; 1025 1026 /* Now read in all of the header information */ 1027 1028 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1029 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1030 1031 error = -ENOMEM; 1032 elf_phdata = kmalloc(j, GFP_KERNEL); 1033 if (!elf_phdata) 1034 goto out; 1035 1036 eppnt = elf_phdata; 1037 error = -ENOEXEC; 1038 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j); 1039 if (retval != j) 1040 goto out_free_ph; 1041 1042 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1043 if ((eppnt + i)->p_type == PT_LOAD) 1044 j++; 1045 if (j != 1) 1046 goto out_free_ph; 1047 1048 while (eppnt->p_type != PT_LOAD) 1049 eppnt++; 1050 1051 /* Now use mmap to map the library into memory. */ 1052 down_write(¤t->mm->mmap_sem); 1053 error = do_mmap(file, 1054 ELF_PAGESTART(eppnt->p_vaddr), 1055 (eppnt->p_filesz + 1056 ELF_PAGEOFFSET(eppnt->p_vaddr)), 1057 PROT_READ | PROT_WRITE | PROT_EXEC, 1058 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, 1059 (eppnt->p_offset - 1060 ELF_PAGEOFFSET(eppnt->p_vaddr))); 1061 up_write(¤t->mm->mmap_sem); 1062 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1063 goto out_free_ph; 1064 1065 elf_bss = eppnt->p_vaddr + eppnt->p_filesz; 1066 if (padzero(elf_bss)) { 1067 error = -EFAULT; 1068 goto out_free_ph; 1069 } 1070 1071 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr + 1072 ELF_MIN_ALIGN - 1); 1073 bss = eppnt->p_memsz + eppnt->p_vaddr; 1074 if (bss > len) { 1075 down_write(¤t->mm->mmap_sem); 1076 do_brk(len, bss - len); 1077 up_write(¤t->mm->mmap_sem); 1078 } 1079 error = 0; 1080 1081 out_free_ph: 1082 kfree(elf_phdata); 1083 out: 1084 return error; 1085 } 1086 1087 #ifdef CONFIG_ELF_CORE 1088 /* 1089 * ELF core dumper 1090 * 1091 * Modelled on fs/exec.c:aout_core_dump() 1092 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1093 */ 1094 1095 /* 1096 * Decide what to dump of a segment, part, all or none. 1097 */ 1098 static unsigned long vma_dump_size(struct vm_area_struct *vma, 1099 unsigned long mm_flags) 1100 { 1101 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) 1102 1103 /* The vma can be set up to tell us the answer directly. */ 1104 if (vma->vm_flags & VM_ALWAYSDUMP) 1105 goto whole; 1106 1107 /* Hugetlb memory check */ 1108 if (vma->vm_flags & VM_HUGETLB) { 1109 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) 1110 goto whole; 1111 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) 1112 goto whole; 1113 } 1114 1115 /* Do not dump I/O mapped devices or special mappings */ 1116 if (vma->vm_flags & (VM_IO | VM_RESERVED)) 1117 return 0; 1118 1119 /* By default, dump shared memory if mapped from an anonymous file. */ 1120 if (vma->vm_flags & VM_SHARED) { 1121 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ? 1122 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) 1123 goto whole; 1124 return 0; 1125 } 1126 1127 /* Dump segments that have been written to. */ 1128 if (vma->anon_vma && FILTER(ANON_PRIVATE)) 1129 goto whole; 1130 if (vma->vm_file == NULL) 1131 return 0; 1132 1133 if (FILTER(MAPPED_PRIVATE)) 1134 goto whole; 1135 1136 /* 1137 * If this looks like the beginning of a DSO or executable mapping, 1138 * check for an ELF header. If we find one, dump the first page to 1139 * aid in determining what was mapped here. 1140 */ 1141 if (FILTER(ELF_HEADERS) && 1142 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) { 1143 u32 __user *header = (u32 __user *) vma->vm_start; 1144 u32 word; 1145 mm_segment_t fs = get_fs(); 1146 /* 1147 * Doing it this way gets the constant folded by GCC. 1148 */ 1149 union { 1150 u32 cmp; 1151 char elfmag[SELFMAG]; 1152 } magic; 1153 BUILD_BUG_ON(SELFMAG != sizeof word); 1154 magic.elfmag[EI_MAG0] = ELFMAG0; 1155 magic.elfmag[EI_MAG1] = ELFMAG1; 1156 magic.elfmag[EI_MAG2] = ELFMAG2; 1157 magic.elfmag[EI_MAG3] = ELFMAG3; 1158 /* 1159 * Switch to the user "segment" for get_user(), 1160 * then put back what elf_core_dump() had in place. 1161 */ 1162 set_fs(USER_DS); 1163 if (unlikely(get_user(word, header))) 1164 word = 0; 1165 set_fs(fs); 1166 if (word == magic.cmp) 1167 return PAGE_SIZE; 1168 } 1169 1170 #undef FILTER 1171 1172 return 0; 1173 1174 whole: 1175 return vma->vm_end - vma->vm_start; 1176 } 1177 1178 /* An ELF note in memory */ 1179 struct memelfnote 1180 { 1181 const char *name; 1182 int type; 1183 unsigned int datasz; 1184 void *data; 1185 }; 1186 1187 static int notesize(struct memelfnote *en) 1188 { 1189 int sz; 1190 1191 sz = sizeof(struct elf_note); 1192 sz += roundup(strlen(en->name) + 1, 4); 1193 sz += roundup(en->datasz, 4); 1194 1195 return sz; 1196 } 1197 1198 #define DUMP_WRITE(addr, nr, foffset) \ 1199 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0) 1200 1201 static int alignfile(struct file *file, loff_t *foffset) 1202 { 1203 static const char buf[4] = { 0, }; 1204 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset); 1205 return 1; 1206 } 1207 1208 static int writenote(struct memelfnote *men, struct file *file, 1209 loff_t *foffset) 1210 { 1211 struct elf_note en; 1212 en.n_namesz = strlen(men->name) + 1; 1213 en.n_descsz = men->datasz; 1214 en.n_type = men->type; 1215 1216 DUMP_WRITE(&en, sizeof(en), foffset); 1217 DUMP_WRITE(men->name, en.n_namesz, foffset); 1218 if (!alignfile(file, foffset)) 1219 return 0; 1220 DUMP_WRITE(men->data, men->datasz, foffset); 1221 if (!alignfile(file, foffset)) 1222 return 0; 1223 1224 return 1; 1225 } 1226 #undef DUMP_WRITE 1227 1228 static void fill_elf_header(struct elfhdr *elf, int segs, 1229 u16 machine, u32 flags, u8 osabi) 1230 { 1231 memset(elf, 0, sizeof(*elf)); 1232 1233 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1234 elf->e_ident[EI_CLASS] = ELF_CLASS; 1235 elf->e_ident[EI_DATA] = ELF_DATA; 1236 elf->e_ident[EI_VERSION] = EV_CURRENT; 1237 elf->e_ident[EI_OSABI] = ELF_OSABI; 1238 1239 elf->e_type = ET_CORE; 1240 elf->e_machine = machine; 1241 elf->e_version = EV_CURRENT; 1242 elf->e_phoff = sizeof(struct elfhdr); 1243 elf->e_flags = flags; 1244 elf->e_ehsize = sizeof(struct elfhdr); 1245 elf->e_phentsize = sizeof(struct elf_phdr); 1246 elf->e_phnum = segs; 1247 1248 return; 1249 } 1250 1251 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1252 { 1253 phdr->p_type = PT_NOTE; 1254 phdr->p_offset = offset; 1255 phdr->p_vaddr = 0; 1256 phdr->p_paddr = 0; 1257 phdr->p_filesz = sz; 1258 phdr->p_memsz = 0; 1259 phdr->p_flags = 0; 1260 phdr->p_align = 0; 1261 return; 1262 } 1263 1264 static void fill_note(struct memelfnote *note, const char *name, int type, 1265 unsigned int sz, void *data) 1266 { 1267 note->name = name; 1268 note->type = type; 1269 note->datasz = sz; 1270 note->data = data; 1271 return; 1272 } 1273 1274 /* 1275 * fill up all the fields in prstatus from the given task struct, except 1276 * registers which need to be filled up separately. 1277 */ 1278 static void fill_prstatus(struct elf_prstatus *prstatus, 1279 struct task_struct *p, long signr) 1280 { 1281 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1282 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1283 prstatus->pr_sighold = p->blocked.sig[0]; 1284 rcu_read_lock(); 1285 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1286 rcu_read_unlock(); 1287 prstatus->pr_pid = task_pid_vnr(p); 1288 prstatus->pr_pgrp = task_pgrp_vnr(p); 1289 prstatus->pr_sid = task_session_vnr(p); 1290 if (thread_group_leader(p)) { 1291 struct task_cputime cputime; 1292 1293 /* 1294 * This is the record for the group leader. It shows the 1295 * group-wide total, not its individual thread total. 1296 */ 1297 thread_group_cputime(p, &cputime); 1298 cputime_to_timeval(cputime.utime, &prstatus->pr_utime); 1299 cputime_to_timeval(cputime.stime, &prstatus->pr_stime); 1300 } else { 1301 cputime_to_timeval(p->utime, &prstatus->pr_utime); 1302 cputime_to_timeval(p->stime, &prstatus->pr_stime); 1303 } 1304 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime); 1305 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime); 1306 } 1307 1308 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1309 struct mm_struct *mm) 1310 { 1311 const struct cred *cred; 1312 unsigned int i, len; 1313 1314 /* first copy the parameters from user space */ 1315 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1316 1317 len = mm->arg_end - mm->arg_start; 1318 if (len >= ELF_PRARGSZ) 1319 len = ELF_PRARGSZ-1; 1320 if (copy_from_user(&psinfo->pr_psargs, 1321 (const char __user *)mm->arg_start, len)) 1322 return -EFAULT; 1323 for(i = 0; i < len; i++) 1324 if (psinfo->pr_psargs[i] == 0) 1325 psinfo->pr_psargs[i] = ' '; 1326 psinfo->pr_psargs[len] = 0; 1327 1328 rcu_read_lock(); 1329 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1330 rcu_read_unlock(); 1331 psinfo->pr_pid = task_pid_vnr(p); 1332 psinfo->pr_pgrp = task_pgrp_vnr(p); 1333 psinfo->pr_sid = task_session_vnr(p); 1334 1335 i = p->state ? ffz(~p->state) + 1 : 0; 1336 psinfo->pr_state = i; 1337 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1338 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1339 psinfo->pr_nice = task_nice(p); 1340 psinfo->pr_flag = p->flags; 1341 rcu_read_lock(); 1342 cred = __task_cred(p); 1343 SET_UID(psinfo->pr_uid, cred->uid); 1344 SET_GID(psinfo->pr_gid, cred->gid); 1345 rcu_read_unlock(); 1346 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); 1347 1348 return 0; 1349 } 1350 1351 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1352 { 1353 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1354 int i = 0; 1355 do 1356 i += 2; 1357 while (auxv[i - 2] != AT_NULL); 1358 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1359 } 1360 1361 #ifdef CORE_DUMP_USE_REGSET 1362 #include <linux/regset.h> 1363 1364 struct elf_thread_core_info { 1365 struct elf_thread_core_info *next; 1366 struct task_struct *task; 1367 struct elf_prstatus prstatus; 1368 struct memelfnote notes[0]; 1369 }; 1370 1371 struct elf_note_info { 1372 struct elf_thread_core_info *thread; 1373 struct memelfnote psinfo; 1374 struct memelfnote auxv; 1375 size_t size; 1376 int thread_notes; 1377 }; 1378 1379 /* 1380 * When a regset has a writeback hook, we call it on each thread before 1381 * dumping user memory. On register window machines, this makes sure the 1382 * user memory backing the register data is up to date before we read it. 1383 */ 1384 static void do_thread_regset_writeback(struct task_struct *task, 1385 const struct user_regset *regset) 1386 { 1387 if (regset->writeback) 1388 regset->writeback(task, regset, 1); 1389 } 1390 1391 static int fill_thread_core_info(struct elf_thread_core_info *t, 1392 const struct user_regset_view *view, 1393 long signr, size_t *total) 1394 { 1395 unsigned int i; 1396 1397 /* 1398 * NT_PRSTATUS is the one special case, because the regset data 1399 * goes into the pr_reg field inside the note contents, rather 1400 * than being the whole note contents. We fill the reset in here. 1401 * We assume that regset 0 is NT_PRSTATUS. 1402 */ 1403 fill_prstatus(&t->prstatus, t->task, signr); 1404 (void) view->regsets[0].get(t->task, &view->regsets[0], 1405 0, sizeof(t->prstatus.pr_reg), 1406 &t->prstatus.pr_reg, NULL); 1407 1408 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1409 sizeof(t->prstatus), &t->prstatus); 1410 *total += notesize(&t->notes[0]); 1411 1412 do_thread_regset_writeback(t->task, &view->regsets[0]); 1413 1414 /* 1415 * Each other regset might generate a note too. For each regset 1416 * that has no core_note_type or is inactive, we leave t->notes[i] 1417 * all zero and we'll know to skip writing it later. 1418 */ 1419 for (i = 1; i < view->n; ++i) { 1420 const struct user_regset *regset = &view->regsets[i]; 1421 do_thread_regset_writeback(t->task, regset); 1422 if (regset->core_note_type && regset->get && 1423 (!regset->active || regset->active(t->task, regset))) { 1424 int ret; 1425 size_t size = regset->n * regset->size; 1426 void *data = kmalloc(size, GFP_KERNEL); 1427 if (unlikely(!data)) 1428 return 0; 1429 ret = regset->get(t->task, regset, 1430 0, size, data, NULL); 1431 if (unlikely(ret)) 1432 kfree(data); 1433 else { 1434 if (regset->core_note_type != NT_PRFPREG) 1435 fill_note(&t->notes[i], "LINUX", 1436 regset->core_note_type, 1437 size, data); 1438 else { 1439 t->prstatus.pr_fpvalid = 1; 1440 fill_note(&t->notes[i], "CORE", 1441 NT_PRFPREG, size, data); 1442 } 1443 *total += notesize(&t->notes[i]); 1444 } 1445 } 1446 } 1447 1448 return 1; 1449 } 1450 1451 static int fill_note_info(struct elfhdr *elf, int phdrs, 1452 struct elf_note_info *info, 1453 long signr, struct pt_regs *regs) 1454 { 1455 struct task_struct *dump_task = current; 1456 const struct user_regset_view *view = task_user_regset_view(dump_task); 1457 struct elf_thread_core_info *t; 1458 struct elf_prpsinfo *psinfo; 1459 struct core_thread *ct; 1460 unsigned int i; 1461 1462 info->size = 0; 1463 info->thread = NULL; 1464 1465 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1466 if (psinfo == NULL) 1467 return 0; 1468 1469 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1470 1471 /* 1472 * Figure out how many notes we're going to need for each thread. 1473 */ 1474 info->thread_notes = 0; 1475 for (i = 0; i < view->n; ++i) 1476 if (view->regsets[i].core_note_type != 0) 1477 ++info->thread_notes; 1478 1479 /* 1480 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1481 * since it is our one special case. 1482 */ 1483 if (unlikely(info->thread_notes == 0) || 1484 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1485 WARN_ON(1); 1486 return 0; 1487 } 1488 1489 /* 1490 * Initialize the ELF file header. 1491 */ 1492 fill_elf_header(elf, phdrs, 1493 view->e_machine, view->e_flags, view->ei_osabi); 1494 1495 /* 1496 * Allocate a structure for each thread. 1497 */ 1498 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) { 1499 t = kzalloc(offsetof(struct elf_thread_core_info, 1500 notes[info->thread_notes]), 1501 GFP_KERNEL); 1502 if (unlikely(!t)) 1503 return 0; 1504 1505 t->task = ct->task; 1506 if (ct->task == dump_task || !info->thread) { 1507 t->next = info->thread; 1508 info->thread = t; 1509 } else { 1510 /* 1511 * Make sure to keep the original task at 1512 * the head of the list. 1513 */ 1514 t->next = info->thread->next; 1515 info->thread->next = t; 1516 } 1517 } 1518 1519 /* 1520 * Now fill in each thread's information. 1521 */ 1522 for (t = info->thread; t != NULL; t = t->next) 1523 if (!fill_thread_core_info(t, view, signr, &info->size)) 1524 return 0; 1525 1526 /* 1527 * Fill in the two process-wide notes. 1528 */ 1529 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1530 info->size += notesize(&info->psinfo); 1531 1532 fill_auxv_note(&info->auxv, current->mm); 1533 info->size += notesize(&info->auxv); 1534 1535 return 1; 1536 } 1537 1538 static size_t get_note_info_size(struct elf_note_info *info) 1539 { 1540 return info->size; 1541 } 1542 1543 /* 1544 * Write all the notes for each thread. When writing the first thread, the 1545 * process-wide notes are interleaved after the first thread-specific note. 1546 */ 1547 static int write_note_info(struct elf_note_info *info, 1548 struct file *file, loff_t *foffset) 1549 { 1550 bool first = 1; 1551 struct elf_thread_core_info *t = info->thread; 1552 1553 do { 1554 int i; 1555 1556 if (!writenote(&t->notes[0], file, foffset)) 1557 return 0; 1558 1559 if (first && !writenote(&info->psinfo, file, foffset)) 1560 return 0; 1561 if (first && !writenote(&info->auxv, file, foffset)) 1562 return 0; 1563 1564 for (i = 1; i < info->thread_notes; ++i) 1565 if (t->notes[i].data && 1566 !writenote(&t->notes[i], file, foffset)) 1567 return 0; 1568 1569 first = 0; 1570 t = t->next; 1571 } while (t); 1572 1573 return 1; 1574 } 1575 1576 static void free_note_info(struct elf_note_info *info) 1577 { 1578 struct elf_thread_core_info *threads = info->thread; 1579 while (threads) { 1580 unsigned int i; 1581 struct elf_thread_core_info *t = threads; 1582 threads = t->next; 1583 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1584 for (i = 1; i < info->thread_notes; ++i) 1585 kfree(t->notes[i].data); 1586 kfree(t); 1587 } 1588 kfree(info->psinfo.data); 1589 } 1590 1591 #else 1592 1593 /* Here is the structure in which status of each thread is captured. */ 1594 struct elf_thread_status 1595 { 1596 struct list_head list; 1597 struct elf_prstatus prstatus; /* NT_PRSTATUS */ 1598 elf_fpregset_t fpu; /* NT_PRFPREG */ 1599 struct task_struct *thread; 1600 #ifdef ELF_CORE_COPY_XFPREGS 1601 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 1602 #endif 1603 struct memelfnote notes[3]; 1604 int num_notes; 1605 }; 1606 1607 /* 1608 * In order to add the specific thread information for the elf file format, 1609 * we need to keep a linked list of every threads pr_status and then create 1610 * a single section for them in the final core file. 1611 */ 1612 static int elf_dump_thread_status(long signr, struct elf_thread_status *t) 1613 { 1614 int sz = 0; 1615 struct task_struct *p = t->thread; 1616 t->num_notes = 0; 1617 1618 fill_prstatus(&t->prstatus, p, signr); 1619 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1620 1621 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1622 &(t->prstatus)); 1623 t->num_notes++; 1624 sz += notesize(&t->notes[0]); 1625 1626 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, 1627 &t->fpu))) { 1628 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), 1629 &(t->fpu)); 1630 t->num_notes++; 1631 sz += notesize(&t->notes[1]); 1632 } 1633 1634 #ifdef ELF_CORE_COPY_XFPREGS 1635 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) { 1636 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE, 1637 sizeof(t->xfpu), &t->xfpu); 1638 t->num_notes++; 1639 sz += notesize(&t->notes[2]); 1640 } 1641 #endif 1642 return sz; 1643 } 1644 1645 struct elf_note_info { 1646 struct memelfnote *notes; 1647 struct elf_prstatus *prstatus; /* NT_PRSTATUS */ 1648 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 1649 struct list_head thread_list; 1650 elf_fpregset_t *fpu; 1651 #ifdef ELF_CORE_COPY_XFPREGS 1652 elf_fpxregset_t *xfpu; 1653 #endif 1654 int thread_status_size; 1655 int numnote; 1656 }; 1657 1658 static int elf_note_info_init(struct elf_note_info *info) 1659 { 1660 memset(info, 0, sizeof(*info)); 1661 INIT_LIST_HEAD(&info->thread_list); 1662 1663 /* Allocate space for six ELF notes */ 1664 info->notes = kmalloc(6 * sizeof(struct memelfnote), GFP_KERNEL); 1665 if (!info->notes) 1666 return 0; 1667 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); 1668 if (!info->psinfo) 1669 goto notes_free; 1670 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); 1671 if (!info->prstatus) 1672 goto psinfo_free; 1673 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); 1674 if (!info->fpu) 1675 goto prstatus_free; 1676 #ifdef ELF_CORE_COPY_XFPREGS 1677 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL); 1678 if (!info->xfpu) 1679 goto fpu_free; 1680 #endif 1681 return 1; 1682 #ifdef ELF_CORE_COPY_XFPREGS 1683 fpu_free: 1684 kfree(info->fpu); 1685 #endif 1686 prstatus_free: 1687 kfree(info->prstatus); 1688 psinfo_free: 1689 kfree(info->psinfo); 1690 notes_free: 1691 kfree(info->notes); 1692 return 0; 1693 } 1694 1695 static int fill_note_info(struct elfhdr *elf, int phdrs, 1696 struct elf_note_info *info, 1697 long signr, struct pt_regs *regs) 1698 { 1699 struct list_head *t; 1700 1701 if (!elf_note_info_init(info)) 1702 return 0; 1703 1704 if (signr) { 1705 struct core_thread *ct; 1706 struct elf_thread_status *ets; 1707 1708 for (ct = current->mm->core_state->dumper.next; 1709 ct; ct = ct->next) { 1710 ets = kzalloc(sizeof(*ets), GFP_KERNEL); 1711 if (!ets) 1712 return 0; 1713 1714 ets->thread = ct->task; 1715 list_add(&ets->list, &info->thread_list); 1716 } 1717 1718 list_for_each(t, &info->thread_list) { 1719 int sz; 1720 1721 ets = list_entry(t, struct elf_thread_status, list); 1722 sz = elf_dump_thread_status(signr, ets); 1723 info->thread_status_size += sz; 1724 } 1725 } 1726 /* now collect the dump for the current */ 1727 memset(info->prstatus, 0, sizeof(*info->prstatus)); 1728 fill_prstatus(info->prstatus, current, signr); 1729 elf_core_copy_regs(&info->prstatus->pr_reg, regs); 1730 1731 /* Set up header */ 1732 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI); 1733 1734 /* 1735 * Set up the notes in similar form to SVR4 core dumps made 1736 * with info from their /proc. 1737 */ 1738 1739 fill_note(info->notes + 0, "CORE", NT_PRSTATUS, 1740 sizeof(*info->prstatus), info->prstatus); 1741 fill_psinfo(info->psinfo, current->group_leader, current->mm); 1742 fill_note(info->notes + 1, "CORE", NT_PRPSINFO, 1743 sizeof(*info->psinfo), info->psinfo); 1744 1745 info->numnote = 2; 1746 1747 fill_auxv_note(&info->notes[info->numnote++], current->mm); 1748 1749 /* Try to dump the FPU. */ 1750 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, 1751 info->fpu); 1752 if (info->prstatus->pr_fpvalid) 1753 fill_note(info->notes + info->numnote++, 1754 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); 1755 #ifdef ELF_CORE_COPY_XFPREGS 1756 if (elf_core_copy_task_xfpregs(current, info->xfpu)) 1757 fill_note(info->notes + info->numnote++, 1758 "LINUX", ELF_CORE_XFPREG_TYPE, 1759 sizeof(*info->xfpu), info->xfpu); 1760 #endif 1761 1762 return 1; 1763 } 1764 1765 static size_t get_note_info_size(struct elf_note_info *info) 1766 { 1767 int sz = 0; 1768 int i; 1769 1770 for (i = 0; i < info->numnote; i++) 1771 sz += notesize(info->notes + i); 1772 1773 sz += info->thread_status_size; 1774 1775 return sz; 1776 } 1777 1778 static int write_note_info(struct elf_note_info *info, 1779 struct file *file, loff_t *foffset) 1780 { 1781 int i; 1782 struct list_head *t; 1783 1784 for (i = 0; i < info->numnote; i++) 1785 if (!writenote(info->notes + i, file, foffset)) 1786 return 0; 1787 1788 /* write out the thread status notes section */ 1789 list_for_each(t, &info->thread_list) { 1790 struct elf_thread_status *tmp = 1791 list_entry(t, struct elf_thread_status, list); 1792 1793 for (i = 0; i < tmp->num_notes; i++) 1794 if (!writenote(&tmp->notes[i], file, foffset)) 1795 return 0; 1796 } 1797 1798 return 1; 1799 } 1800 1801 static void free_note_info(struct elf_note_info *info) 1802 { 1803 while (!list_empty(&info->thread_list)) { 1804 struct list_head *tmp = info->thread_list.next; 1805 list_del(tmp); 1806 kfree(list_entry(tmp, struct elf_thread_status, list)); 1807 } 1808 1809 kfree(info->prstatus); 1810 kfree(info->psinfo); 1811 kfree(info->notes); 1812 kfree(info->fpu); 1813 #ifdef ELF_CORE_COPY_XFPREGS 1814 kfree(info->xfpu); 1815 #endif 1816 } 1817 1818 #endif 1819 1820 static struct vm_area_struct *first_vma(struct task_struct *tsk, 1821 struct vm_area_struct *gate_vma) 1822 { 1823 struct vm_area_struct *ret = tsk->mm->mmap; 1824 1825 if (ret) 1826 return ret; 1827 return gate_vma; 1828 } 1829 /* 1830 * Helper function for iterating across a vma list. It ensures that the caller 1831 * will visit `gate_vma' prior to terminating the search. 1832 */ 1833 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, 1834 struct vm_area_struct *gate_vma) 1835 { 1836 struct vm_area_struct *ret; 1837 1838 ret = this_vma->vm_next; 1839 if (ret) 1840 return ret; 1841 if (this_vma == gate_vma) 1842 return NULL; 1843 return gate_vma; 1844 } 1845 1846 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, 1847 elf_addr_t e_shoff, int segs) 1848 { 1849 elf->e_shoff = e_shoff; 1850 elf->e_shentsize = sizeof(*shdr4extnum); 1851 elf->e_shnum = 1; 1852 elf->e_shstrndx = SHN_UNDEF; 1853 1854 memset(shdr4extnum, 0, sizeof(*shdr4extnum)); 1855 1856 shdr4extnum->sh_type = SHT_NULL; 1857 shdr4extnum->sh_size = elf->e_shnum; 1858 shdr4extnum->sh_link = elf->e_shstrndx; 1859 shdr4extnum->sh_info = segs; 1860 } 1861 1862 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma, 1863 unsigned long mm_flags) 1864 { 1865 struct vm_area_struct *vma; 1866 size_t size = 0; 1867 1868 for (vma = first_vma(current, gate_vma); vma != NULL; 1869 vma = next_vma(vma, gate_vma)) 1870 size += vma_dump_size(vma, mm_flags); 1871 return size; 1872 } 1873 1874 /* 1875 * Actual dumper 1876 * 1877 * This is a two-pass process; first we find the offsets of the bits, 1878 * and then they are actually written out. If we run out of core limit 1879 * we just truncate. 1880 */ 1881 static int elf_core_dump(struct coredump_params *cprm) 1882 { 1883 int has_dumped = 0; 1884 mm_segment_t fs; 1885 int segs; 1886 size_t size = 0; 1887 struct vm_area_struct *vma, *gate_vma; 1888 struct elfhdr *elf = NULL; 1889 loff_t offset = 0, dataoff, foffset; 1890 struct elf_note_info info; 1891 struct elf_phdr *phdr4note = NULL; 1892 struct elf_shdr *shdr4extnum = NULL; 1893 Elf_Half e_phnum; 1894 elf_addr_t e_shoff; 1895 1896 /* 1897 * We no longer stop all VM operations. 1898 * 1899 * This is because those proceses that could possibly change map_count 1900 * or the mmap / vma pages are now blocked in do_exit on current 1901 * finishing this core dump. 1902 * 1903 * Only ptrace can touch these memory addresses, but it doesn't change 1904 * the map_count or the pages allocated. So no possibility of crashing 1905 * exists while dumping the mm->vm_next areas to the core file. 1906 */ 1907 1908 /* alloc memory for large data structures: too large to be on stack */ 1909 elf = kmalloc(sizeof(*elf), GFP_KERNEL); 1910 if (!elf) 1911 goto out; 1912 /* 1913 * The number of segs are recored into ELF header as 16bit value. 1914 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. 1915 */ 1916 segs = current->mm->map_count; 1917 segs += elf_core_extra_phdrs(); 1918 1919 gate_vma = get_gate_vma(current->mm); 1920 if (gate_vma != NULL) 1921 segs++; 1922 1923 /* for notes section */ 1924 segs++; 1925 1926 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid 1927 * this, kernel supports extended numbering. Have a look at 1928 * include/linux/elf.h for further information. */ 1929 e_phnum = segs > PN_XNUM ? PN_XNUM : segs; 1930 1931 /* 1932 * Collect all the non-memory information about the process for the 1933 * notes. This also sets up the file header. 1934 */ 1935 if (!fill_note_info(elf, e_phnum, &info, cprm->signr, cprm->regs)) 1936 goto cleanup; 1937 1938 has_dumped = 1; 1939 current->flags |= PF_DUMPCORE; 1940 1941 fs = get_fs(); 1942 set_fs(KERNEL_DS); 1943 1944 offset += sizeof(*elf); /* Elf header */ 1945 offset += segs * sizeof(struct elf_phdr); /* Program headers */ 1946 foffset = offset; 1947 1948 /* Write notes phdr entry */ 1949 { 1950 size_t sz = get_note_info_size(&info); 1951 1952 sz += elf_coredump_extra_notes_size(); 1953 1954 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); 1955 if (!phdr4note) 1956 goto end_coredump; 1957 1958 fill_elf_note_phdr(phdr4note, sz, offset); 1959 offset += sz; 1960 } 1961 1962 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 1963 1964 offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags); 1965 offset += elf_core_extra_data_size(); 1966 e_shoff = offset; 1967 1968 if (e_phnum == PN_XNUM) { 1969 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); 1970 if (!shdr4extnum) 1971 goto end_coredump; 1972 fill_extnum_info(elf, shdr4extnum, e_shoff, segs); 1973 } 1974 1975 offset = dataoff; 1976 1977 size += sizeof(*elf); 1978 if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf))) 1979 goto end_coredump; 1980 1981 size += sizeof(*phdr4note); 1982 if (size > cprm->limit 1983 || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note))) 1984 goto end_coredump; 1985 1986 /* Write program headers for segments dump */ 1987 for (vma = first_vma(current, gate_vma); vma != NULL; 1988 vma = next_vma(vma, gate_vma)) { 1989 struct elf_phdr phdr; 1990 1991 phdr.p_type = PT_LOAD; 1992 phdr.p_offset = offset; 1993 phdr.p_vaddr = vma->vm_start; 1994 phdr.p_paddr = 0; 1995 phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags); 1996 phdr.p_memsz = vma->vm_end - vma->vm_start; 1997 offset += phdr.p_filesz; 1998 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; 1999 if (vma->vm_flags & VM_WRITE) 2000 phdr.p_flags |= PF_W; 2001 if (vma->vm_flags & VM_EXEC) 2002 phdr.p_flags |= PF_X; 2003 phdr.p_align = ELF_EXEC_PAGESIZE; 2004 2005 size += sizeof(phdr); 2006 if (size > cprm->limit 2007 || !dump_write(cprm->file, &phdr, sizeof(phdr))) 2008 goto end_coredump; 2009 } 2010 2011 if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit)) 2012 goto end_coredump; 2013 2014 /* write out the notes section */ 2015 if (!write_note_info(&info, cprm->file, &foffset)) 2016 goto end_coredump; 2017 2018 if (elf_coredump_extra_notes_write(cprm->file, &foffset)) 2019 goto end_coredump; 2020 2021 /* Align to page */ 2022 if (!dump_seek(cprm->file, dataoff - foffset)) 2023 goto end_coredump; 2024 2025 for (vma = first_vma(current, gate_vma); vma != NULL; 2026 vma = next_vma(vma, gate_vma)) { 2027 unsigned long addr; 2028 unsigned long end; 2029 2030 end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags); 2031 2032 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) { 2033 struct page *page; 2034 int stop; 2035 2036 page = get_dump_page(addr); 2037 if (page) { 2038 void *kaddr = kmap(page); 2039 stop = ((size += PAGE_SIZE) > cprm->limit) || 2040 !dump_write(cprm->file, kaddr, 2041 PAGE_SIZE); 2042 kunmap(page); 2043 page_cache_release(page); 2044 } else 2045 stop = !dump_seek(cprm->file, PAGE_SIZE); 2046 if (stop) 2047 goto end_coredump; 2048 } 2049 } 2050 2051 if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit)) 2052 goto end_coredump; 2053 2054 if (e_phnum == PN_XNUM) { 2055 size += sizeof(*shdr4extnum); 2056 if (size > cprm->limit 2057 || !dump_write(cprm->file, shdr4extnum, 2058 sizeof(*shdr4extnum))) 2059 goto end_coredump; 2060 } 2061 2062 end_coredump: 2063 set_fs(fs); 2064 2065 cleanup: 2066 free_note_info(&info); 2067 kfree(shdr4extnum); 2068 kfree(phdr4note); 2069 kfree(elf); 2070 out: 2071 return has_dumped; 2072 } 2073 2074 #endif /* CONFIG_ELF_CORE */ 2075 2076 static int __init init_elf_binfmt(void) 2077 { 2078 register_binfmt(&elf_format); 2079 return 0; 2080 } 2081 2082 static void __exit exit_elf_binfmt(void) 2083 { 2084 /* Remove the COFF and ELF loaders. */ 2085 unregister_binfmt(&elf_format); 2086 } 2087 2088 core_initcall(init_elf_binfmt); 2089 module_exit(exit_elf_binfmt); 2090 MODULE_LICENSE("GPL"); 2091