xref: /linux/fs/binfmt_elf.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <linux/sched.h>
37 #include <asm/uaccess.h>
38 #include <asm/param.h>
39 #include <asm/page.h>
40 
41 #ifndef user_long_t
42 #define user_long_t long
43 #endif
44 #ifndef user_siginfo_t
45 #define user_siginfo_t siginfo_t
46 #endif
47 
48 static int load_elf_binary(struct linux_binprm *bprm);
49 static int load_elf_library(struct file *);
50 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
51 				int, int, unsigned long);
52 
53 /*
54  * If we don't support core dumping, then supply a NULL so we
55  * don't even try.
56  */
57 #ifdef CONFIG_ELF_CORE
58 static int elf_core_dump(struct coredump_params *cprm);
59 #else
60 #define elf_core_dump	NULL
61 #endif
62 
63 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
64 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
65 #else
66 #define ELF_MIN_ALIGN	PAGE_SIZE
67 #endif
68 
69 #ifndef ELF_CORE_EFLAGS
70 #define ELF_CORE_EFLAGS	0
71 #endif
72 
73 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
74 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
75 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
76 
77 static struct linux_binfmt elf_format = {
78 	.module		= THIS_MODULE,
79 	.load_binary	= load_elf_binary,
80 	.load_shlib	= load_elf_library,
81 	.core_dump	= elf_core_dump,
82 	.min_coredump	= ELF_EXEC_PAGESIZE,
83 };
84 
85 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
86 
87 static int set_brk(unsigned long start, unsigned long end)
88 {
89 	start = ELF_PAGEALIGN(start);
90 	end = ELF_PAGEALIGN(end);
91 	if (end > start) {
92 		unsigned long addr;
93 		addr = vm_brk(start, end - start);
94 		if (BAD_ADDR(addr))
95 			return addr;
96 	}
97 	current->mm->start_brk = current->mm->brk = end;
98 	return 0;
99 }
100 
101 /* We need to explicitly zero any fractional pages
102    after the data section (i.e. bss).  This would
103    contain the junk from the file that should not
104    be in memory
105  */
106 static int padzero(unsigned long elf_bss)
107 {
108 	unsigned long nbyte;
109 
110 	nbyte = ELF_PAGEOFFSET(elf_bss);
111 	if (nbyte) {
112 		nbyte = ELF_MIN_ALIGN - nbyte;
113 		if (clear_user((void __user *) elf_bss, nbyte))
114 			return -EFAULT;
115 	}
116 	return 0;
117 }
118 
119 /* Let's use some macros to make this stack manipulation a little clearer */
120 #ifdef CONFIG_STACK_GROWSUP
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
122 #define STACK_ROUND(sp, items) \
123 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ \
125 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
126 	old_sp; })
127 #else
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
129 #define STACK_ROUND(sp, items) \
130 	(((unsigned long) (sp - items)) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
132 #endif
133 
134 #ifndef ELF_BASE_PLATFORM
135 /*
136  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
137  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
138  * will be copied to the user stack in the same manner as AT_PLATFORM.
139  */
140 #define ELF_BASE_PLATFORM NULL
141 #endif
142 
143 static int
144 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
145 		unsigned long load_addr, unsigned long interp_load_addr)
146 {
147 	unsigned long p = bprm->p;
148 	int argc = bprm->argc;
149 	int envc = bprm->envc;
150 	elf_addr_t __user *argv;
151 	elf_addr_t __user *envp;
152 	elf_addr_t __user *sp;
153 	elf_addr_t __user *u_platform;
154 	elf_addr_t __user *u_base_platform;
155 	elf_addr_t __user *u_rand_bytes;
156 	const char *k_platform = ELF_PLATFORM;
157 	const char *k_base_platform = ELF_BASE_PLATFORM;
158 	unsigned char k_rand_bytes[16];
159 	int items;
160 	elf_addr_t *elf_info;
161 	int ei_index = 0;
162 	const struct cred *cred = current_cred();
163 	struct vm_area_struct *vma;
164 
165 	/*
166 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
167 	 * evictions by the processes running on the same package. One
168 	 * thing we can do is to shuffle the initial stack for them.
169 	 */
170 
171 	p = arch_align_stack(p);
172 
173 	/*
174 	 * If this architecture has a platform capability string, copy it
175 	 * to userspace.  In some cases (Sparc), this info is impossible
176 	 * for userspace to get any other way, in others (i386) it is
177 	 * merely difficult.
178 	 */
179 	u_platform = NULL;
180 	if (k_platform) {
181 		size_t len = strlen(k_platform) + 1;
182 
183 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
184 		if (__copy_to_user(u_platform, k_platform, len))
185 			return -EFAULT;
186 	}
187 
188 	/*
189 	 * If this architecture has a "base" platform capability
190 	 * string, copy it to userspace.
191 	 */
192 	u_base_platform = NULL;
193 	if (k_base_platform) {
194 		size_t len = strlen(k_base_platform) + 1;
195 
196 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
197 		if (__copy_to_user(u_base_platform, k_base_platform, len))
198 			return -EFAULT;
199 	}
200 
201 	/*
202 	 * Generate 16 random bytes for userspace PRNG seeding.
203 	 */
204 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
205 	u_rand_bytes = (elf_addr_t __user *)
206 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
207 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
208 		return -EFAULT;
209 
210 	/* Create the ELF interpreter info */
211 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
212 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
213 #define NEW_AUX_ENT(id, val) \
214 	do { \
215 		elf_info[ei_index++] = id; \
216 		elf_info[ei_index++] = val; \
217 	} while (0)
218 
219 #ifdef ARCH_DLINFO
220 	/*
221 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
222 	 * AUXV.
223 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
224 	 * ARCH_DLINFO changes
225 	 */
226 	ARCH_DLINFO;
227 #endif
228 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
229 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
230 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
231 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
232 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
233 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
234 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
235 	NEW_AUX_ENT(AT_FLAGS, 0);
236 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
237 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
238 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
239 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
240 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
241  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
242 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
243 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
244 	if (k_platform) {
245 		NEW_AUX_ENT(AT_PLATFORM,
246 			    (elf_addr_t)(unsigned long)u_platform);
247 	}
248 	if (k_base_platform) {
249 		NEW_AUX_ENT(AT_BASE_PLATFORM,
250 			    (elf_addr_t)(unsigned long)u_base_platform);
251 	}
252 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
253 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
254 	}
255 #undef NEW_AUX_ENT
256 	/* AT_NULL is zero; clear the rest too */
257 	memset(&elf_info[ei_index], 0,
258 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
259 
260 	/* And advance past the AT_NULL entry.  */
261 	ei_index += 2;
262 
263 	sp = STACK_ADD(p, ei_index);
264 
265 	items = (argc + 1) + (envc + 1) + 1;
266 	bprm->p = STACK_ROUND(sp, items);
267 
268 	/* Point sp at the lowest address on the stack */
269 #ifdef CONFIG_STACK_GROWSUP
270 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
271 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
272 #else
273 	sp = (elf_addr_t __user *)bprm->p;
274 #endif
275 
276 
277 	/*
278 	 * Grow the stack manually; some architectures have a limit on how
279 	 * far ahead a user-space access may be in order to grow the stack.
280 	 */
281 	vma = find_extend_vma(current->mm, bprm->p);
282 	if (!vma)
283 		return -EFAULT;
284 
285 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
286 	if (__put_user(argc, sp++))
287 		return -EFAULT;
288 	argv = sp;
289 	envp = argv + argc + 1;
290 
291 	/* Populate argv and envp */
292 	p = current->mm->arg_end = current->mm->arg_start;
293 	while (argc-- > 0) {
294 		size_t len;
295 		if (__put_user((elf_addr_t)p, argv++))
296 			return -EFAULT;
297 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
298 		if (!len || len > MAX_ARG_STRLEN)
299 			return -EINVAL;
300 		p += len;
301 	}
302 	if (__put_user(0, argv))
303 		return -EFAULT;
304 	current->mm->arg_end = current->mm->env_start = p;
305 	while (envc-- > 0) {
306 		size_t len;
307 		if (__put_user((elf_addr_t)p, envp++))
308 			return -EFAULT;
309 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
310 		if (!len || len > MAX_ARG_STRLEN)
311 			return -EINVAL;
312 		p += len;
313 	}
314 	if (__put_user(0, envp))
315 		return -EFAULT;
316 	current->mm->env_end = p;
317 
318 	/* Put the elf_info on the stack in the right place.  */
319 	sp = (elf_addr_t __user *)envp + 1;
320 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
321 		return -EFAULT;
322 	return 0;
323 }
324 
325 #ifndef elf_map
326 
327 static unsigned long elf_map(struct file *filep, unsigned long addr,
328 		struct elf_phdr *eppnt, int prot, int type,
329 		unsigned long total_size)
330 {
331 	unsigned long map_addr;
332 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
333 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
334 	addr = ELF_PAGESTART(addr);
335 	size = ELF_PAGEALIGN(size);
336 
337 	/* mmap() will return -EINVAL if given a zero size, but a
338 	 * segment with zero filesize is perfectly valid */
339 	if (!size)
340 		return addr;
341 
342 	/*
343 	* total_size is the size of the ELF (interpreter) image.
344 	* The _first_ mmap needs to know the full size, otherwise
345 	* randomization might put this image into an overlapping
346 	* position with the ELF binary image. (since size < total_size)
347 	* So we first map the 'big' image - and unmap the remainder at
348 	* the end. (which unmap is needed for ELF images with holes.)
349 	*/
350 	if (total_size) {
351 		total_size = ELF_PAGEALIGN(total_size);
352 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
353 		if (!BAD_ADDR(map_addr))
354 			vm_munmap(map_addr+size, total_size-size);
355 	} else
356 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
357 
358 	return(map_addr);
359 }
360 
361 #endif /* !elf_map */
362 
363 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
364 {
365 	int i, first_idx = -1, last_idx = -1;
366 
367 	for (i = 0; i < nr; i++) {
368 		if (cmds[i].p_type == PT_LOAD) {
369 			last_idx = i;
370 			if (first_idx == -1)
371 				first_idx = i;
372 		}
373 	}
374 	if (first_idx == -1)
375 		return 0;
376 
377 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
378 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
379 }
380 
381 
382 /* This is much more generalized than the library routine read function,
383    so we keep this separate.  Technically the library read function
384    is only provided so that we can read a.out libraries that have
385    an ELF header */
386 
387 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
388 		struct file *interpreter, unsigned long *interp_map_addr,
389 		unsigned long no_base)
390 {
391 	struct elf_phdr *elf_phdata;
392 	struct elf_phdr *eppnt;
393 	unsigned long load_addr = 0;
394 	int load_addr_set = 0;
395 	unsigned long last_bss = 0, elf_bss = 0;
396 	unsigned long error = ~0UL;
397 	unsigned long total_size;
398 	int retval, i, size;
399 
400 	/* First of all, some simple consistency checks */
401 	if (interp_elf_ex->e_type != ET_EXEC &&
402 	    interp_elf_ex->e_type != ET_DYN)
403 		goto out;
404 	if (!elf_check_arch(interp_elf_ex))
405 		goto out;
406 	if (!interpreter->f_op || !interpreter->f_op->mmap)
407 		goto out;
408 
409 	/*
410 	 * If the size of this structure has changed, then punt, since
411 	 * we will be doing the wrong thing.
412 	 */
413 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
414 		goto out;
415 	if (interp_elf_ex->e_phnum < 1 ||
416 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
417 		goto out;
418 
419 	/* Now read in all of the header information */
420 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
421 	if (size > ELF_MIN_ALIGN)
422 		goto out;
423 	elf_phdata = kmalloc(size, GFP_KERNEL);
424 	if (!elf_phdata)
425 		goto out;
426 
427 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
428 			     (char *)elf_phdata, size);
429 	error = -EIO;
430 	if (retval != size) {
431 		if (retval < 0)
432 			error = retval;
433 		goto out_close;
434 	}
435 
436 	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
437 	if (!total_size) {
438 		error = -EINVAL;
439 		goto out_close;
440 	}
441 
442 	eppnt = elf_phdata;
443 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
444 		if (eppnt->p_type == PT_LOAD) {
445 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
446 			int elf_prot = 0;
447 			unsigned long vaddr = 0;
448 			unsigned long k, map_addr;
449 
450 			if (eppnt->p_flags & PF_R)
451 		    		elf_prot = PROT_READ;
452 			if (eppnt->p_flags & PF_W)
453 				elf_prot |= PROT_WRITE;
454 			if (eppnt->p_flags & PF_X)
455 				elf_prot |= PROT_EXEC;
456 			vaddr = eppnt->p_vaddr;
457 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
458 				elf_type |= MAP_FIXED;
459 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
460 				load_addr = -vaddr;
461 
462 			map_addr = elf_map(interpreter, load_addr + vaddr,
463 					eppnt, elf_prot, elf_type, total_size);
464 			total_size = 0;
465 			if (!*interp_map_addr)
466 				*interp_map_addr = map_addr;
467 			error = map_addr;
468 			if (BAD_ADDR(map_addr))
469 				goto out_close;
470 
471 			if (!load_addr_set &&
472 			    interp_elf_ex->e_type == ET_DYN) {
473 				load_addr = map_addr - ELF_PAGESTART(vaddr);
474 				load_addr_set = 1;
475 			}
476 
477 			/*
478 			 * Check to see if the section's size will overflow the
479 			 * allowed task size. Note that p_filesz must always be
480 			 * <= p_memsize so it's only necessary to check p_memsz.
481 			 */
482 			k = load_addr + eppnt->p_vaddr;
483 			if (BAD_ADDR(k) ||
484 			    eppnt->p_filesz > eppnt->p_memsz ||
485 			    eppnt->p_memsz > TASK_SIZE ||
486 			    TASK_SIZE - eppnt->p_memsz < k) {
487 				error = -ENOMEM;
488 				goto out_close;
489 			}
490 
491 			/*
492 			 * Find the end of the file mapping for this phdr, and
493 			 * keep track of the largest address we see for this.
494 			 */
495 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
496 			if (k > elf_bss)
497 				elf_bss = k;
498 
499 			/*
500 			 * Do the same thing for the memory mapping - between
501 			 * elf_bss and last_bss is the bss section.
502 			 */
503 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
504 			if (k > last_bss)
505 				last_bss = k;
506 		}
507 	}
508 
509 	if (last_bss > elf_bss) {
510 		/*
511 		 * Now fill out the bss section.  First pad the last page up
512 		 * to the page boundary, and then perform a mmap to make sure
513 		 * that there are zero-mapped pages up to and including the
514 		 * last bss page.
515 		 */
516 		if (padzero(elf_bss)) {
517 			error = -EFAULT;
518 			goto out_close;
519 		}
520 
521 		/* What we have mapped so far */
522 		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
523 
524 		/* Map the last of the bss segment */
525 		error = vm_brk(elf_bss, last_bss - elf_bss);
526 		if (BAD_ADDR(error))
527 			goto out_close;
528 	}
529 
530 	error = load_addr;
531 
532 out_close:
533 	kfree(elf_phdata);
534 out:
535 	return error;
536 }
537 
538 /*
539  * These are the functions used to load ELF style executables and shared
540  * libraries.  There is no binary dependent code anywhere else.
541  */
542 
543 #define INTERPRETER_NONE 0
544 #define INTERPRETER_ELF 2
545 
546 #ifndef STACK_RND_MASK
547 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
548 #endif
549 
550 static unsigned long randomize_stack_top(unsigned long stack_top)
551 {
552 	unsigned int random_variable = 0;
553 
554 	if ((current->flags & PF_RANDOMIZE) &&
555 		!(current->personality & ADDR_NO_RANDOMIZE)) {
556 		random_variable = get_random_int() & STACK_RND_MASK;
557 		random_variable <<= PAGE_SHIFT;
558 	}
559 #ifdef CONFIG_STACK_GROWSUP
560 	return PAGE_ALIGN(stack_top) + random_variable;
561 #else
562 	return PAGE_ALIGN(stack_top) - random_variable;
563 #endif
564 }
565 
566 static int load_elf_binary(struct linux_binprm *bprm)
567 {
568 	struct file *interpreter = NULL; /* to shut gcc up */
569  	unsigned long load_addr = 0, load_bias = 0;
570 	int load_addr_set = 0;
571 	char * elf_interpreter = NULL;
572 	unsigned long error;
573 	struct elf_phdr *elf_ppnt, *elf_phdata;
574 	unsigned long elf_bss, elf_brk;
575 	int retval, i;
576 	unsigned int size;
577 	unsigned long elf_entry;
578 	unsigned long interp_load_addr = 0;
579 	unsigned long start_code, end_code, start_data, end_data;
580 	unsigned long reloc_func_desc __maybe_unused = 0;
581 	int executable_stack = EXSTACK_DEFAULT;
582 	unsigned long def_flags = 0;
583 	struct pt_regs *regs = current_pt_regs();
584 	struct {
585 		struct elfhdr elf_ex;
586 		struct elfhdr interp_elf_ex;
587 	} *loc;
588 
589 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
590 	if (!loc) {
591 		retval = -ENOMEM;
592 		goto out_ret;
593 	}
594 
595 	/* Get the exec-header */
596 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
597 
598 	retval = -ENOEXEC;
599 	/* First of all, some simple consistency checks */
600 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
601 		goto out;
602 
603 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
604 		goto out;
605 	if (!elf_check_arch(&loc->elf_ex))
606 		goto out;
607 	if (!bprm->file->f_op || !bprm->file->f_op->mmap)
608 		goto out;
609 
610 	/* Now read in all of the header information */
611 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
612 		goto out;
613 	if (loc->elf_ex.e_phnum < 1 ||
614 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
615 		goto out;
616 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
617 	retval = -ENOMEM;
618 	elf_phdata = kmalloc(size, GFP_KERNEL);
619 	if (!elf_phdata)
620 		goto out;
621 
622 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
623 			     (char *)elf_phdata, size);
624 	if (retval != size) {
625 		if (retval >= 0)
626 			retval = -EIO;
627 		goto out_free_ph;
628 	}
629 
630 	elf_ppnt = elf_phdata;
631 	elf_bss = 0;
632 	elf_brk = 0;
633 
634 	start_code = ~0UL;
635 	end_code = 0;
636 	start_data = 0;
637 	end_data = 0;
638 
639 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
640 		if (elf_ppnt->p_type == PT_INTERP) {
641 			/* This is the program interpreter used for
642 			 * shared libraries - for now assume that this
643 			 * is an a.out format binary
644 			 */
645 			retval = -ENOEXEC;
646 			if (elf_ppnt->p_filesz > PATH_MAX ||
647 			    elf_ppnt->p_filesz < 2)
648 				goto out_free_ph;
649 
650 			retval = -ENOMEM;
651 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
652 						  GFP_KERNEL);
653 			if (!elf_interpreter)
654 				goto out_free_ph;
655 
656 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
657 					     elf_interpreter,
658 					     elf_ppnt->p_filesz);
659 			if (retval != elf_ppnt->p_filesz) {
660 				if (retval >= 0)
661 					retval = -EIO;
662 				goto out_free_interp;
663 			}
664 			/* make sure path is NULL terminated */
665 			retval = -ENOEXEC;
666 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
667 				goto out_free_interp;
668 
669 			interpreter = open_exec(elf_interpreter);
670 			retval = PTR_ERR(interpreter);
671 			if (IS_ERR(interpreter))
672 				goto out_free_interp;
673 
674 			/*
675 			 * If the binary is not readable then enforce
676 			 * mm->dumpable = 0 regardless of the interpreter's
677 			 * permissions.
678 			 */
679 			would_dump(bprm, interpreter);
680 
681 			retval = kernel_read(interpreter, 0, bprm->buf,
682 					     BINPRM_BUF_SIZE);
683 			if (retval != BINPRM_BUF_SIZE) {
684 				if (retval >= 0)
685 					retval = -EIO;
686 				goto out_free_dentry;
687 			}
688 
689 			/* Get the exec headers */
690 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
691 			break;
692 		}
693 		elf_ppnt++;
694 	}
695 
696 	elf_ppnt = elf_phdata;
697 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
698 		if (elf_ppnt->p_type == PT_GNU_STACK) {
699 			if (elf_ppnt->p_flags & PF_X)
700 				executable_stack = EXSTACK_ENABLE_X;
701 			else
702 				executable_stack = EXSTACK_DISABLE_X;
703 			break;
704 		}
705 
706 	/* Some simple consistency checks for the interpreter */
707 	if (elf_interpreter) {
708 		retval = -ELIBBAD;
709 		/* Not an ELF interpreter */
710 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
711 			goto out_free_dentry;
712 		/* Verify the interpreter has a valid arch */
713 		if (!elf_check_arch(&loc->interp_elf_ex))
714 			goto out_free_dentry;
715 	}
716 
717 	/* Flush all traces of the currently running executable */
718 	retval = flush_old_exec(bprm);
719 	if (retval)
720 		goto out_free_dentry;
721 
722 	/* OK, This is the point of no return */
723 	current->mm->def_flags = def_flags;
724 
725 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
726 	   may depend on the personality.  */
727 	SET_PERSONALITY(loc->elf_ex);
728 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
729 		current->personality |= READ_IMPLIES_EXEC;
730 
731 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
732 		current->flags |= PF_RANDOMIZE;
733 
734 	setup_new_exec(bprm);
735 
736 	/* Do this so that we can load the interpreter, if need be.  We will
737 	   change some of these later */
738 	current->mm->free_area_cache = current->mm->mmap_base;
739 	current->mm->cached_hole_size = 0;
740 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
741 				 executable_stack);
742 	if (retval < 0) {
743 		send_sig(SIGKILL, current, 0);
744 		goto out_free_dentry;
745 	}
746 
747 	current->mm->start_stack = bprm->p;
748 
749 	/* Now we do a little grungy work by mmapping the ELF image into
750 	   the correct location in memory. */
751 	for(i = 0, elf_ppnt = elf_phdata;
752 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
753 		int elf_prot = 0, elf_flags;
754 		unsigned long k, vaddr;
755 
756 		if (elf_ppnt->p_type != PT_LOAD)
757 			continue;
758 
759 		if (unlikely (elf_brk > elf_bss)) {
760 			unsigned long nbyte;
761 
762 			/* There was a PT_LOAD segment with p_memsz > p_filesz
763 			   before this one. Map anonymous pages, if needed,
764 			   and clear the area.  */
765 			retval = set_brk(elf_bss + load_bias,
766 					 elf_brk + load_bias);
767 			if (retval) {
768 				send_sig(SIGKILL, current, 0);
769 				goto out_free_dentry;
770 			}
771 			nbyte = ELF_PAGEOFFSET(elf_bss);
772 			if (nbyte) {
773 				nbyte = ELF_MIN_ALIGN - nbyte;
774 				if (nbyte > elf_brk - elf_bss)
775 					nbyte = elf_brk - elf_bss;
776 				if (clear_user((void __user *)elf_bss +
777 							load_bias, nbyte)) {
778 					/*
779 					 * This bss-zeroing can fail if the ELF
780 					 * file specifies odd protections. So
781 					 * we don't check the return value
782 					 */
783 				}
784 			}
785 		}
786 
787 		if (elf_ppnt->p_flags & PF_R)
788 			elf_prot |= PROT_READ;
789 		if (elf_ppnt->p_flags & PF_W)
790 			elf_prot |= PROT_WRITE;
791 		if (elf_ppnt->p_flags & PF_X)
792 			elf_prot |= PROT_EXEC;
793 
794 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
795 
796 		vaddr = elf_ppnt->p_vaddr;
797 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
798 			elf_flags |= MAP_FIXED;
799 		} else if (loc->elf_ex.e_type == ET_DYN) {
800 			/* Try and get dynamic programs out of the way of the
801 			 * default mmap base, as well as whatever program they
802 			 * might try to exec.  This is because the brk will
803 			 * follow the loader, and is not movable.  */
804 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
805 			/* Memory randomization might have been switched off
806 			 * in runtime via sysctl.
807 			 * If that is the case, retain the original non-zero
808 			 * load_bias value in order to establish proper
809 			 * non-randomized mappings.
810 			 */
811 			if (current->flags & PF_RANDOMIZE)
812 				load_bias = 0;
813 			else
814 				load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
815 #else
816 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
817 #endif
818 		}
819 
820 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
821 				elf_prot, elf_flags, 0);
822 		if (BAD_ADDR(error)) {
823 			send_sig(SIGKILL, current, 0);
824 			retval = IS_ERR((void *)error) ?
825 				PTR_ERR((void*)error) : -EINVAL;
826 			goto out_free_dentry;
827 		}
828 
829 		if (!load_addr_set) {
830 			load_addr_set = 1;
831 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
832 			if (loc->elf_ex.e_type == ET_DYN) {
833 				load_bias += error -
834 				             ELF_PAGESTART(load_bias + vaddr);
835 				load_addr += load_bias;
836 				reloc_func_desc = load_bias;
837 			}
838 		}
839 		k = elf_ppnt->p_vaddr;
840 		if (k < start_code)
841 			start_code = k;
842 		if (start_data < k)
843 			start_data = k;
844 
845 		/*
846 		 * Check to see if the section's size will overflow the
847 		 * allowed task size. Note that p_filesz must always be
848 		 * <= p_memsz so it is only necessary to check p_memsz.
849 		 */
850 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
851 		    elf_ppnt->p_memsz > TASK_SIZE ||
852 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
853 			/* set_brk can never work. Avoid overflows. */
854 			send_sig(SIGKILL, current, 0);
855 			retval = -EINVAL;
856 			goto out_free_dentry;
857 		}
858 
859 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
860 
861 		if (k > elf_bss)
862 			elf_bss = k;
863 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
864 			end_code = k;
865 		if (end_data < k)
866 			end_data = k;
867 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
868 		if (k > elf_brk)
869 			elf_brk = k;
870 	}
871 
872 	loc->elf_ex.e_entry += load_bias;
873 	elf_bss += load_bias;
874 	elf_brk += load_bias;
875 	start_code += load_bias;
876 	end_code += load_bias;
877 	start_data += load_bias;
878 	end_data += load_bias;
879 
880 	/* Calling set_brk effectively mmaps the pages that we need
881 	 * for the bss and break sections.  We must do this before
882 	 * mapping in the interpreter, to make sure it doesn't wind
883 	 * up getting placed where the bss needs to go.
884 	 */
885 	retval = set_brk(elf_bss, elf_brk);
886 	if (retval) {
887 		send_sig(SIGKILL, current, 0);
888 		goto out_free_dentry;
889 	}
890 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
891 		send_sig(SIGSEGV, current, 0);
892 		retval = -EFAULT; /* Nobody gets to see this, but.. */
893 		goto out_free_dentry;
894 	}
895 
896 	if (elf_interpreter) {
897 		unsigned long interp_map_addr = 0;
898 
899 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
900 					    interpreter,
901 					    &interp_map_addr,
902 					    load_bias);
903 		if (!IS_ERR((void *)elf_entry)) {
904 			/*
905 			 * load_elf_interp() returns relocation
906 			 * adjustment
907 			 */
908 			interp_load_addr = elf_entry;
909 			elf_entry += loc->interp_elf_ex.e_entry;
910 		}
911 		if (BAD_ADDR(elf_entry)) {
912 			force_sig(SIGSEGV, current);
913 			retval = IS_ERR((void *)elf_entry) ?
914 					(int)elf_entry : -EINVAL;
915 			goto out_free_dentry;
916 		}
917 		reloc_func_desc = interp_load_addr;
918 
919 		allow_write_access(interpreter);
920 		fput(interpreter);
921 		kfree(elf_interpreter);
922 	} else {
923 		elf_entry = loc->elf_ex.e_entry;
924 		if (BAD_ADDR(elf_entry)) {
925 			force_sig(SIGSEGV, current);
926 			retval = -EINVAL;
927 			goto out_free_dentry;
928 		}
929 	}
930 
931 	kfree(elf_phdata);
932 
933 	set_binfmt(&elf_format);
934 
935 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
936 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
937 	if (retval < 0) {
938 		send_sig(SIGKILL, current, 0);
939 		goto out;
940 	}
941 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
942 
943 	install_exec_creds(bprm);
944 	retval = create_elf_tables(bprm, &loc->elf_ex,
945 			  load_addr, interp_load_addr);
946 	if (retval < 0) {
947 		send_sig(SIGKILL, current, 0);
948 		goto out;
949 	}
950 	/* N.B. passed_fileno might not be initialized? */
951 	current->mm->end_code = end_code;
952 	current->mm->start_code = start_code;
953 	current->mm->start_data = start_data;
954 	current->mm->end_data = end_data;
955 	current->mm->start_stack = bprm->p;
956 
957 #ifdef arch_randomize_brk
958 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
959 		current->mm->brk = current->mm->start_brk =
960 			arch_randomize_brk(current->mm);
961 #ifdef CONFIG_COMPAT_BRK
962 		current->brk_randomized = 1;
963 #endif
964 	}
965 #endif
966 
967 	if (current->personality & MMAP_PAGE_ZERO) {
968 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
969 		   and some applications "depend" upon this behavior.
970 		   Since we do not have the power to recompile these, we
971 		   emulate the SVr4 behavior. Sigh. */
972 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
973 				MAP_FIXED | MAP_PRIVATE, 0);
974 	}
975 
976 #ifdef ELF_PLAT_INIT
977 	/*
978 	 * The ABI may specify that certain registers be set up in special
979 	 * ways (on i386 %edx is the address of a DT_FINI function, for
980 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
981 	 * that the e_entry field is the address of the function descriptor
982 	 * for the startup routine, rather than the address of the startup
983 	 * routine itself.  This macro performs whatever initialization to
984 	 * the regs structure is required as well as any relocations to the
985 	 * function descriptor entries when executing dynamically links apps.
986 	 */
987 	ELF_PLAT_INIT(regs, reloc_func_desc);
988 #endif
989 
990 	start_thread(regs, elf_entry, bprm->p);
991 	retval = 0;
992 out:
993 	kfree(loc);
994 out_ret:
995 	return retval;
996 
997 	/* error cleanup */
998 out_free_dentry:
999 	allow_write_access(interpreter);
1000 	if (interpreter)
1001 		fput(interpreter);
1002 out_free_interp:
1003 	kfree(elf_interpreter);
1004 out_free_ph:
1005 	kfree(elf_phdata);
1006 	goto out;
1007 }
1008 
1009 /* This is really simpleminded and specialized - we are loading an
1010    a.out library that is given an ELF header. */
1011 static int load_elf_library(struct file *file)
1012 {
1013 	struct elf_phdr *elf_phdata;
1014 	struct elf_phdr *eppnt;
1015 	unsigned long elf_bss, bss, len;
1016 	int retval, error, i, j;
1017 	struct elfhdr elf_ex;
1018 
1019 	error = -ENOEXEC;
1020 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1021 	if (retval != sizeof(elf_ex))
1022 		goto out;
1023 
1024 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1025 		goto out;
1026 
1027 	/* First of all, some simple consistency checks */
1028 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1029 	    !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1030 		goto out;
1031 
1032 	/* Now read in all of the header information */
1033 
1034 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1035 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1036 
1037 	error = -ENOMEM;
1038 	elf_phdata = kmalloc(j, GFP_KERNEL);
1039 	if (!elf_phdata)
1040 		goto out;
1041 
1042 	eppnt = elf_phdata;
1043 	error = -ENOEXEC;
1044 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1045 	if (retval != j)
1046 		goto out_free_ph;
1047 
1048 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1049 		if ((eppnt + i)->p_type == PT_LOAD)
1050 			j++;
1051 	if (j != 1)
1052 		goto out_free_ph;
1053 
1054 	while (eppnt->p_type != PT_LOAD)
1055 		eppnt++;
1056 
1057 	/* Now use mmap to map the library into memory. */
1058 	error = vm_mmap(file,
1059 			ELF_PAGESTART(eppnt->p_vaddr),
1060 			(eppnt->p_filesz +
1061 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1062 			PROT_READ | PROT_WRITE | PROT_EXEC,
1063 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1064 			(eppnt->p_offset -
1065 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1066 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1067 		goto out_free_ph;
1068 
1069 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1070 	if (padzero(elf_bss)) {
1071 		error = -EFAULT;
1072 		goto out_free_ph;
1073 	}
1074 
1075 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1076 			    ELF_MIN_ALIGN - 1);
1077 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1078 	if (bss > len)
1079 		vm_brk(len, bss - len);
1080 	error = 0;
1081 
1082 out_free_ph:
1083 	kfree(elf_phdata);
1084 out:
1085 	return error;
1086 }
1087 
1088 #ifdef CONFIG_ELF_CORE
1089 /*
1090  * ELF core dumper
1091  *
1092  * Modelled on fs/exec.c:aout_core_dump()
1093  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1094  */
1095 
1096 /*
1097  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1098  * that are useful for post-mortem analysis are included in every core dump.
1099  * In that way we ensure that the core dump is fully interpretable later
1100  * without matching up the same kernel and hardware config to see what PC values
1101  * meant. These special mappings include - vDSO, vsyscall, and other
1102  * architecture specific mappings
1103  */
1104 static bool always_dump_vma(struct vm_area_struct *vma)
1105 {
1106 	/* Any vsyscall mappings? */
1107 	if (vma == get_gate_vma(vma->vm_mm))
1108 		return true;
1109 	/*
1110 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1111 	 * such as vDSO sections.
1112 	 */
1113 	if (arch_vma_name(vma))
1114 		return true;
1115 
1116 	return false;
1117 }
1118 
1119 /*
1120  * Decide what to dump of a segment, part, all or none.
1121  */
1122 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1123 				   unsigned long mm_flags)
1124 {
1125 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1126 
1127 	/* always dump the vdso and vsyscall sections */
1128 	if (always_dump_vma(vma))
1129 		goto whole;
1130 
1131 	if (vma->vm_flags & VM_DONTDUMP)
1132 		return 0;
1133 
1134 	/* Hugetlb memory check */
1135 	if (vma->vm_flags & VM_HUGETLB) {
1136 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1137 			goto whole;
1138 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1139 			goto whole;
1140 		return 0;
1141 	}
1142 
1143 	/* Do not dump I/O mapped devices or special mappings */
1144 	if (vma->vm_flags & VM_IO)
1145 		return 0;
1146 
1147 	/* By default, dump shared memory if mapped from an anonymous file. */
1148 	if (vma->vm_flags & VM_SHARED) {
1149 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1150 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1151 			goto whole;
1152 		return 0;
1153 	}
1154 
1155 	/* Dump segments that have been written to.  */
1156 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1157 		goto whole;
1158 	if (vma->vm_file == NULL)
1159 		return 0;
1160 
1161 	if (FILTER(MAPPED_PRIVATE))
1162 		goto whole;
1163 
1164 	/*
1165 	 * If this looks like the beginning of a DSO or executable mapping,
1166 	 * check for an ELF header.  If we find one, dump the first page to
1167 	 * aid in determining what was mapped here.
1168 	 */
1169 	if (FILTER(ELF_HEADERS) &&
1170 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1171 		u32 __user *header = (u32 __user *) vma->vm_start;
1172 		u32 word;
1173 		mm_segment_t fs = get_fs();
1174 		/*
1175 		 * Doing it this way gets the constant folded by GCC.
1176 		 */
1177 		union {
1178 			u32 cmp;
1179 			char elfmag[SELFMAG];
1180 		} magic;
1181 		BUILD_BUG_ON(SELFMAG != sizeof word);
1182 		magic.elfmag[EI_MAG0] = ELFMAG0;
1183 		magic.elfmag[EI_MAG1] = ELFMAG1;
1184 		magic.elfmag[EI_MAG2] = ELFMAG2;
1185 		magic.elfmag[EI_MAG3] = ELFMAG3;
1186 		/*
1187 		 * Switch to the user "segment" for get_user(),
1188 		 * then put back what elf_core_dump() had in place.
1189 		 */
1190 		set_fs(USER_DS);
1191 		if (unlikely(get_user(word, header)))
1192 			word = 0;
1193 		set_fs(fs);
1194 		if (word == magic.cmp)
1195 			return PAGE_SIZE;
1196 	}
1197 
1198 #undef	FILTER
1199 
1200 	return 0;
1201 
1202 whole:
1203 	return vma->vm_end - vma->vm_start;
1204 }
1205 
1206 /* An ELF note in memory */
1207 struct memelfnote
1208 {
1209 	const char *name;
1210 	int type;
1211 	unsigned int datasz;
1212 	void *data;
1213 };
1214 
1215 static int notesize(struct memelfnote *en)
1216 {
1217 	int sz;
1218 
1219 	sz = sizeof(struct elf_note);
1220 	sz += roundup(strlen(en->name) + 1, 4);
1221 	sz += roundup(en->datasz, 4);
1222 
1223 	return sz;
1224 }
1225 
1226 #define DUMP_WRITE(addr, nr, foffset)	\
1227 	do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1228 
1229 static int alignfile(struct file *file, loff_t *foffset)
1230 {
1231 	static const char buf[4] = { 0, };
1232 	DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1233 	return 1;
1234 }
1235 
1236 static int writenote(struct memelfnote *men, struct file *file,
1237 			loff_t *foffset)
1238 {
1239 	struct elf_note en;
1240 	en.n_namesz = strlen(men->name) + 1;
1241 	en.n_descsz = men->datasz;
1242 	en.n_type = men->type;
1243 
1244 	DUMP_WRITE(&en, sizeof(en), foffset);
1245 	DUMP_WRITE(men->name, en.n_namesz, foffset);
1246 	if (!alignfile(file, foffset))
1247 		return 0;
1248 	DUMP_WRITE(men->data, men->datasz, foffset);
1249 	if (!alignfile(file, foffset))
1250 		return 0;
1251 
1252 	return 1;
1253 }
1254 #undef DUMP_WRITE
1255 
1256 static void fill_elf_header(struct elfhdr *elf, int segs,
1257 			    u16 machine, u32 flags)
1258 {
1259 	memset(elf, 0, sizeof(*elf));
1260 
1261 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1262 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1263 	elf->e_ident[EI_DATA] = ELF_DATA;
1264 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1265 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1266 
1267 	elf->e_type = ET_CORE;
1268 	elf->e_machine = machine;
1269 	elf->e_version = EV_CURRENT;
1270 	elf->e_phoff = sizeof(struct elfhdr);
1271 	elf->e_flags = flags;
1272 	elf->e_ehsize = sizeof(struct elfhdr);
1273 	elf->e_phentsize = sizeof(struct elf_phdr);
1274 	elf->e_phnum = segs;
1275 
1276 	return;
1277 }
1278 
1279 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1280 {
1281 	phdr->p_type = PT_NOTE;
1282 	phdr->p_offset = offset;
1283 	phdr->p_vaddr = 0;
1284 	phdr->p_paddr = 0;
1285 	phdr->p_filesz = sz;
1286 	phdr->p_memsz = 0;
1287 	phdr->p_flags = 0;
1288 	phdr->p_align = 0;
1289 	return;
1290 }
1291 
1292 static void fill_note(struct memelfnote *note, const char *name, int type,
1293 		unsigned int sz, void *data)
1294 {
1295 	note->name = name;
1296 	note->type = type;
1297 	note->datasz = sz;
1298 	note->data = data;
1299 	return;
1300 }
1301 
1302 /*
1303  * fill up all the fields in prstatus from the given task struct, except
1304  * registers which need to be filled up separately.
1305  */
1306 static void fill_prstatus(struct elf_prstatus *prstatus,
1307 		struct task_struct *p, long signr)
1308 {
1309 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1310 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1311 	prstatus->pr_sighold = p->blocked.sig[0];
1312 	rcu_read_lock();
1313 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1314 	rcu_read_unlock();
1315 	prstatus->pr_pid = task_pid_vnr(p);
1316 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1317 	prstatus->pr_sid = task_session_vnr(p);
1318 	if (thread_group_leader(p)) {
1319 		struct task_cputime cputime;
1320 
1321 		/*
1322 		 * This is the record for the group leader.  It shows the
1323 		 * group-wide total, not its individual thread total.
1324 		 */
1325 		thread_group_cputime(p, &cputime);
1326 		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1327 		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1328 	} else {
1329 		cputime_t utime, stime;
1330 
1331 		task_cputime(p, &utime, &stime);
1332 		cputime_to_timeval(utime, &prstatus->pr_utime);
1333 		cputime_to_timeval(stime, &prstatus->pr_stime);
1334 	}
1335 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1336 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1337 }
1338 
1339 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1340 		       struct mm_struct *mm)
1341 {
1342 	const struct cred *cred;
1343 	unsigned int i, len;
1344 
1345 	/* first copy the parameters from user space */
1346 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1347 
1348 	len = mm->arg_end - mm->arg_start;
1349 	if (len >= ELF_PRARGSZ)
1350 		len = ELF_PRARGSZ-1;
1351 	if (copy_from_user(&psinfo->pr_psargs,
1352 		           (const char __user *)mm->arg_start, len))
1353 		return -EFAULT;
1354 	for(i = 0; i < len; i++)
1355 		if (psinfo->pr_psargs[i] == 0)
1356 			psinfo->pr_psargs[i] = ' ';
1357 	psinfo->pr_psargs[len] = 0;
1358 
1359 	rcu_read_lock();
1360 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1361 	rcu_read_unlock();
1362 	psinfo->pr_pid = task_pid_vnr(p);
1363 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1364 	psinfo->pr_sid = task_session_vnr(p);
1365 
1366 	i = p->state ? ffz(~p->state) + 1 : 0;
1367 	psinfo->pr_state = i;
1368 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1369 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1370 	psinfo->pr_nice = task_nice(p);
1371 	psinfo->pr_flag = p->flags;
1372 	rcu_read_lock();
1373 	cred = __task_cred(p);
1374 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1375 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1376 	rcu_read_unlock();
1377 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1378 
1379 	return 0;
1380 }
1381 
1382 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1383 {
1384 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1385 	int i = 0;
1386 	do
1387 		i += 2;
1388 	while (auxv[i - 2] != AT_NULL);
1389 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1390 }
1391 
1392 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1393 		siginfo_t *siginfo)
1394 {
1395 	mm_segment_t old_fs = get_fs();
1396 	set_fs(KERNEL_DS);
1397 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1398 	set_fs(old_fs);
1399 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1400 }
1401 
1402 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1403 /*
1404  * Format of NT_FILE note:
1405  *
1406  * long count     -- how many files are mapped
1407  * long page_size -- units for file_ofs
1408  * array of [COUNT] elements of
1409  *   long start
1410  *   long end
1411  *   long file_ofs
1412  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1413  */
1414 static void fill_files_note(struct memelfnote *note)
1415 {
1416 	struct vm_area_struct *vma;
1417 	unsigned count, size, names_ofs, remaining, n;
1418 	user_long_t *data;
1419 	user_long_t *start_end_ofs;
1420 	char *name_base, *name_curpos;
1421 
1422 	/* *Estimated* file count and total data size needed */
1423 	count = current->mm->map_count;
1424 	size = count * 64;
1425 
1426 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1427  alloc:
1428 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1429 		goto err;
1430 	size = round_up(size, PAGE_SIZE);
1431 	data = vmalloc(size);
1432 	if (!data)
1433 		goto err;
1434 
1435 	start_end_ofs = data + 2;
1436 	name_base = name_curpos = ((char *)data) + names_ofs;
1437 	remaining = size - names_ofs;
1438 	count = 0;
1439 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1440 		struct file *file;
1441 		const char *filename;
1442 
1443 		file = vma->vm_file;
1444 		if (!file)
1445 			continue;
1446 		filename = d_path(&file->f_path, name_curpos, remaining);
1447 		if (IS_ERR(filename)) {
1448 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1449 				vfree(data);
1450 				size = size * 5 / 4;
1451 				goto alloc;
1452 			}
1453 			continue;
1454 		}
1455 
1456 		/* d_path() fills at the end, move name down */
1457 		/* n = strlen(filename) + 1: */
1458 		n = (name_curpos + remaining) - filename;
1459 		remaining = filename - name_curpos;
1460 		memmove(name_curpos, filename, n);
1461 		name_curpos += n;
1462 
1463 		*start_end_ofs++ = vma->vm_start;
1464 		*start_end_ofs++ = vma->vm_end;
1465 		*start_end_ofs++ = vma->vm_pgoff;
1466 		count++;
1467 	}
1468 
1469 	/* Now we know exact count of files, can store it */
1470 	data[0] = count;
1471 	data[1] = PAGE_SIZE;
1472 	/*
1473 	 * Count usually is less than current->mm->map_count,
1474 	 * we need to move filenames down.
1475 	 */
1476 	n = current->mm->map_count - count;
1477 	if (n != 0) {
1478 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1479 		memmove(name_base - shift_bytes, name_base,
1480 			name_curpos - name_base);
1481 		name_curpos -= shift_bytes;
1482 	}
1483 
1484 	size = name_curpos - (char *)data;
1485 	fill_note(note, "CORE", NT_FILE, size, data);
1486  err: ;
1487 }
1488 
1489 #ifdef CORE_DUMP_USE_REGSET
1490 #include <linux/regset.h>
1491 
1492 struct elf_thread_core_info {
1493 	struct elf_thread_core_info *next;
1494 	struct task_struct *task;
1495 	struct elf_prstatus prstatus;
1496 	struct memelfnote notes[0];
1497 };
1498 
1499 struct elf_note_info {
1500 	struct elf_thread_core_info *thread;
1501 	struct memelfnote psinfo;
1502 	struct memelfnote signote;
1503 	struct memelfnote auxv;
1504 	struct memelfnote files;
1505 	user_siginfo_t csigdata;
1506 	size_t size;
1507 	int thread_notes;
1508 };
1509 
1510 /*
1511  * When a regset has a writeback hook, we call it on each thread before
1512  * dumping user memory.  On register window machines, this makes sure the
1513  * user memory backing the register data is up to date before we read it.
1514  */
1515 static void do_thread_regset_writeback(struct task_struct *task,
1516 				       const struct user_regset *regset)
1517 {
1518 	if (regset->writeback)
1519 		regset->writeback(task, regset, 1);
1520 }
1521 
1522 #ifndef PR_REG_SIZE
1523 #define PR_REG_SIZE(S) sizeof(S)
1524 #endif
1525 
1526 #ifndef PRSTATUS_SIZE
1527 #define PRSTATUS_SIZE(S) sizeof(S)
1528 #endif
1529 
1530 #ifndef PR_REG_PTR
1531 #define PR_REG_PTR(S) (&((S)->pr_reg))
1532 #endif
1533 
1534 #ifndef SET_PR_FPVALID
1535 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1536 #endif
1537 
1538 static int fill_thread_core_info(struct elf_thread_core_info *t,
1539 				 const struct user_regset_view *view,
1540 				 long signr, size_t *total)
1541 {
1542 	unsigned int i;
1543 
1544 	/*
1545 	 * NT_PRSTATUS is the one special case, because the regset data
1546 	 * goes into the pr_reg field inside the note contents, rather
1547 	 * than being the whole note contents.  We fill the reset in here.
1548 	 * We assume that regset 0 is NT_PRSTATUS.
1549 	 */
1550 	fill_prstatus(&t->prstatus, t->task, signr);
1551 	(void) view->regsets[0].get(t->task, &view->regsets[0],
1552 				    0, PR_REG_SIZE(t->prstatus.pr_reg),
1553 				    PR_REG_PTR(&t->prstatus), NULL);
1554 
1555 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1556 		  PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1557 	*total += notesize(&t->notes[0]);
1558 
1559 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1560 
1561 	/*
1562 	 * Each other regset might generate a note too.  For each regset
1563 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1564 	 * all zero and we'll know to skip writing it later.
1565 	 */
1566 	for (i = 1; i < view->n; ++i) {
1567 		const struct user_regset *regset = &view->regsets[i];
1568 		do_thread_regset_writeback(t->task, regset);
1569 		if (regset->core_note_type && regset->get &&
1570 		    (!regset->active || regset->active(t->task, regset))) {
1571 			int ret;
1572 			size_t size = regset->n * regset->size;
1573 			void *data = kmalloc(size, GFP_KERNEL);
1574 			if (unlikely(!data))
1575 				return 0;
1576 			ret = regset->get(t->task, regset,
1577 					  0, size, data, NULL);
1578 			if (unlikely(ret))
1579 				kfree(data);
1580 			else {
1581 				if (regset->core_note_type != NT_PRFPREG)
1582 					fill_note(&t->notes[i], "LINUX",
1583 						  regset->core_note_type,
1584 						  size, data);
1585 				else {
1586 					SET_PR_FPVALID(&t->prstatus, 1);
1587 					fill_note(&t->notes[i], "CORE",
1588 						  NT_PRFPREG, size, data);
1589 				}
1590 				*total += notesize(&t->notes[i]);
1591 			}
1592 		}
1593 	}
1594 
1595 	return 1;
1596 }
1597 
1598 static int fill_note_info(struct elfhdr *elf, int phdrs,
1599 			  struct elf_note_info *info,
1600 			  siginfo_t *siginfo, struct pt_regs *regs)
1601 {
1602 	struct task_struct *dump_task = current;
1603 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1604 	struct elf_thread_core_info *t;
1605 	struct elf_prpsinfo *psinfo;
1606 	struct core_thread *ct;
1607 	unsigned int i;
1608 
1609 	info->size = 0;
1610 	info->thread = NULL;
1611 
1612 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1613 	if (psinfo == NULL) {
1614 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1615 		return 0;
1616 	}
1617 
1618 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1619 
1620 	/*
1621 	 * Figure out how many notes we're going to need for each thread.
1622 	 */
1623 	info->thread_notes = 0;
1624 	for (i = 0; i < view->n; ++i)
1625 		if (view->regsets[i].core_note_type != 0)
1626 			++info->thread_notes;
1627 
1628 	/*
1629 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1630 	 * since it is our one special case.
1631 	 */
1632 	if (unlikely(info->thread_notes == 0) ||
1633 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1634 		WARN_ON(1);
1635 		return 0;
1636 	}
1637 
1638 	/*
1639 	 * Initialize the ELF file header.
1640 	 */
1641 	fill_elf_header(elf, phdrs,
1642 			view->e_machine, view->e_flags);
1643 
1644 	/*
1645 	 * Allocate a structure for each thread.
1646 	 */
1647 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1648 		t = kzalloc(offsetof(struct elf_thread_core_info,
1649 				     notes[info->thread_notes]),
1650 			    GFP_KERNEL);
1651 		if (unlikely(!t))
1652 			return 0;
1653 
1654 		t->task = ct->task;
1655 		if (ct->task == dump_task || !info->thread) {
1656 			t->next = info->thread;
1657 			info->thread = t;
1658 		} else {
1659 			/*
1660 			 * Make sure to keep the original task at
1661 			 * the head of the list.
1662 			 */
1663 			t->next = info->thread->next;
1664 			info->thread->next = t;
1665 		}
1666 	}
1667 
1668 	/*
1669 	 * Now fill in each thread's information.
1670 	 */
1671 	for (t = info->thread; t != NULL; t = t->next)
1672 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1673 			return 0;
1674 
1675 	/*
1676 	 * Fill in the two process-wide notes.
1677 	 */
1678 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1679 	info->size += notesize(&info->psinfo);
1680 
1681 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1682 	info->size += notesize(&info->signote);
1683 
1684 	fill_auxv_note(&info->auxv, current->mm);
1685 	info->size += notesize(&info->auxv);
1686 
1687 	fill_files_note(&info->files);
1688 	info->size += notesize(&info->files);
1689 
1690 	return 1;
1691 }
1692 
1693 static size_t get_note_info_size(struct elf_note_info *info)
1694 {
1695 	return info->size;
1696 }
1697 
1698 /*
1699  * Write all the notes for each thread.  When writing the first thread, the
1700  * process-wide notes are interleaved after the first thread-specific note.
1701  */
1702 static int write_note_info(struct elf_note_info *info,
1703 			   struct file *file, loff_t *foffset)
1704 {
1705 	bool first = 1;
1706 	struct elf_thread_core_info *t = info->thread;
1707 
1708 	do {
1709 		int i;
1710 
1711 		if (!writenote(&t->notes[0], file, foffset))
1712 			return 0;
1713 
1714 		if (first && !writenote(&info->psinfo, file, foffset))
1715 			return 0;
1716 		if (first && !writenote(&info->signote, file, foffset))
1717 			return 0;
1718 		if (first && !writenote(&info->auxv, file, foffset))
1719 			return 0;
1720 		if (first && !writenote(&info->files, file, foffset))
1721 			return 0;
1722 
1723 		for (i = 1; i < info->thread_notes; ++i)
1724 			if (t->notes[i].data &&
1725 			    !writenote(&t->notes[i], file, foffset))
1726 				return 0;
1727 
1728 		first = 0;
1729 		t = t->next;
1730 	} while (t);
1731 
1732 	return 1;
1733 }
1734 
1735 static void free_note_info(struct elf_note_info *info)
1736 {
1737 	struct elf_thread_core_info *threads = info->thread;
1738 	while (threads) {
1739 		unsigned int i;
1740 		struct elf_thread_core_info *t = threads;
1741 		threads = t->next;
1742 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1743 		for (i = 1; i < info->thread_notes; ++i)
1744 			kfree(t->notes[i].data);
1745 		kfree(t);
1746 	}
1747 	kfree(info->psinfo.data);
1748 	vfree(info->files.data);
1749 }
1750 
1751 #else
1752 
1753 /* Here is the structure in which status of each thread is captured. */
1754 struct elf_thread_status
1755 {
1756 	struct list_head list;
1757 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1758 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1759 	struct task_struct *thread;
1760 #ifdef ELF_CORE_COPY_XFPREGS
1761 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1762 #endif
1763 	struct memelfnote notes[3];
1764 	int num_notes;
1765 };
1766 
1767 /*
1768  * In order to add the specific thread information for the elf file format,
1769  * we need to keep a linked list of every threads pr_status and then create
1770  * a single section for them in the final core file.
1771  */
1772 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1773 {
1774 	int sz = 0;
1775 	struct task_struct *p = t->thread;
1776 	t->num_notes = 0;
1777 
1778 	fill_prstatus(&t->prstatus, p, signr);
1779 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1780 
1781 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1782 		  &(t->prstatus));
1783 	t->num_notes++;
1784 	sz += notesize(&t->notes[0]);
1785 
1786 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1787 								&t->fpu))) {
1788 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1789 			  &(t->fpu));
1790 		t->num_notes++;
1791 		sz += notesize(&t->notes[1]);
1792 	}
1793 
1794 #ifdef ELF_CORE_COPY_XFPREGS
1795 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1796 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1797 			  sizeof(t->xfpu), &t->xfpu);
1798 		t->num_notes++;
1799 		sz += notesize(&t->notes[2]);
1800 	}
1801 #endif
1802 	return sz;
1803 }
1804 
1805 struct elf_note_info {
1806 	struct memelfnote *notes;
1807 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1808 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1809 	struct list_head thread_list;
1810 	elf_fpregset_t *fpu;
1811 #ifdef ELF_CORE_COPY_XFPREGS
1812 	elf_fpxregset_t *xfpu;
1813 #endif
1814 	user_siginfo_t csigdata;
1815 	int thread_status_size;
1816 	int numnote;
1817 };
1818 
1819 static int elf_note_info_init(struct elf_note_info *info)
1820 {
1821 	memset(info, 0, sizeof(*info));
1822 	INIT_LIST_HEAD(&info->thread_list);
1823 
1824 	/* Allocate space for ELF notes */
1825 	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1826 	if (!info->notes)
1827 		return 0;
1828 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1829 	if (!info->psinfo)
1830 		return 0;
1831 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1832 	if (!info->prstatus)
1833 		return 0;
1834 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1835 	if (!info->fpu)
1836 		return 0;
1837 #ifdef ELF_CORE_COPY_XFPREGS
1838 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1839 	if (!info->xfpu)
1840 		return 0;
1841 #endif
1842 	return 1;
1843 }
1844 
1845 static int fill_note_info(struct elfhdr *elf, int phdrs,
1846 			  struct elf_note_info *info,
1847 			  siginfo_t *siginfo, struct pt_regs *regs)
1848 {
1849 	struct list_head *t;
1850 
1851 	if (!elf_note_info_init(info))
1852 		return 0;
1853 
1854 	if (siginfo->si_signo) {
1855 		struct core_thread *ct;
1856 		struct elf_thread_status *ets;
1857 
1858 		for (ct = current->mm->core_state->dumper.next;
1859 						ct; ct = ct->next) {
1860 			ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1861 			if (!ets)
1862 				return 0;
1863 
1864 			ets->thread = ct->task;
1865 			list_add(&ets->list, &info->thread_list);
1866 		}
1867 
1868 		list_for_each(t, &info->thread_list) {
1869 			int sz;
1870 
1871 			ets = list_entry(t, struct elf_thread_status, list);
1872 			sz = elf_dump_thread_status(siginfo->si_signo, ets);
1873 			info->thread_status_size += sz;
1874 		}
1875 	}
1876 	/* now collect the dump for the current */
1877 	memset(info->prstatus, 0, sizeof(*info->prstatus));
1878 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
1879 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1880 
1881 	/* Set up header */
1882 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1883 
1884 	/*
1885 	 * Set up the notes in similar form to SVR4 core dumps made
1886 	 * with info from their /proc.
1887 	 */
1888 
1889 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1890 		  sizeof(*info->prstatus), info->prstatus);
1891 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1892 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1893 		  sizeof(*info->psinfo), info->psinfo);
1894 
1895 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1896 	fill_auxv_note(info->notes + 3, current->mm);
1897 	fill_files_note(info->notes + 4);
1898 
1899 	info->numnote = 5;
1900 
1901 	/* Try to dump the FPU. */
1902 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1903 							       info->fpu);
1904 	if (info->prstatus->pr_fpvalid)
1905 		fill_note(info->notes + info->numnote++,
1906 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1907 #ifdef ELF_CORE_COPY_XFPREGS
1908 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
1909 		fill_note(info->notes + info->numnote++,
1910 			  "LINUX", ELF_CORE_XFPREG_TYPE,
1911 			  sizeof(*info->xfpu), info->xfpu);
1912 #endif
1913 
1914 	return 1;
1915 }
1916 
1917 static size_t get_note_info_size(struct elf_note_info *info)
1918 {
1919 	int sz = 0;
1920 	int i;
1921 
1922 	for (i = 0; i < info->numnote; i++)
1923 		sz += notesize(info->notes + i);
1924 
1925 	sz += info->thread_status_size;
1926 
1927 	return sz;
1928 }
1929 
1930 static int write_note_info(struct elf_note_info *info,
1931 			   struct file *file, loff_t *foffset)
1932 {
1933 	int i;
1934 	struct list_head *t;
1935 
1936 	for (i = 0; i < info->numnote; i++)
1937 		if (!writenote(info->notes + i, file, foffset))
1938 			return 0;
1939 
1940 	/* write out the thread status notes section */
1941 	list_for_each(t, &info->thread_list) {
1942 		struct elf_thread_status *tmp =
1943 				list_entry(t, struct elf_thread_status, list);
1944 
1945 		for (i = 0; i < tmp->num_notes; i++)
1946 			if (!writenote(&tmp->notes[i], file, foffset))
1947 				return 0;
1948 	}
1949 
1950 	return 1;
1951 }
1952 
1953 static void free_note_info(struct elf_note_info *info)
1954 {
1955 	while (!list_empty(&info->thread_list)) {
1956 		struct list_head *tmp = info->thread_list.next;
1957 		list_del(tmp);
1958 		kfree(list_entry(tmp, struct elf_thread_status, list));
1959 	}
1960 
1961 	/* Free data allocated by fill_files_note(): */
1962 	vfree(info->notes[4].data);
1963 
1964 	kfree(info->prstatus);
1965 	kfree(info->psinfo);
1966 	kfree(info->notes);
1967 	kfree(info->fpu);
1968 #ifdef ELF_CORE_COPY_XFPREGS
1969 	kfree(info->xfpu);
1970 #endif
1971 }
1972 
1973 #endif
1974 
1975 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1976 					struct vm_area_struct *gate_vma)
1977 {
1978 	struct vm_area_struct *ret = tsk->mm->mmap;
1979 
1980 	if (ret)
1981 		return ret;
1982 	return gate_vma;
1983 }
1984 /*
1985  * Helper function for iterating across a vma list.  It ensures that the caller
1986  * will visit `gate_vma' prior to terminating the search.
1987  */
1988 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1989 					struct vm_area_struct *gate_vma)
1990 {
1991 	struct vm_area_struct *ret;
1992 
1993 	ret = this_vma->vm_next;
1994 	if (ret)
1995 		return ret;
1996 	if (this_vma == gate_vma)
1997 		return NULL;
1998 	return gate_vma;
1999 }
2000 
2001 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2002 			     elf_addr_t e_shoff, int segs)
2003 {
2004 	elf->e_shoff = e_shoff;
2005 	elf->e_shentsize = sizeof(*shdr4extnum);
2006 	elf->e_shnum = 1;
2007 	elf->e_shstrndx = SHN_UNDEF;
2008 
2009 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2010 
2011 	shdr4extnum->sh_type = SHT_NULL;
2012 	shdr4extnum->sh_size = elf->e_shnum;
2013 	shdr4extnum->sh_link = elf->e_shstrndx;
2014 	shdr4extnum->sh_info = segs;
2015 }
2016 
2017 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
2018 				     unsigned long mm_flags)
2019 {
2020 	struct vm_area_struct *vma;
2021 	size_t size = 0;
2022 
2023 	for (vma = first_vma(current, gate_vma); vma != NULL;
2024 	     vma = next_vma(vma, gate_vma))
2025 		size += vma_dump_size(vma, mm_flags);
2026 	return size;
2027 }
2028 
2029 /*
2030  * Actual dumper
2031  *
2032  * This is a two-pass process; first we find the offsets of the bits,
2033  * and then they are actually written out.  If we run out of core limit
2034  * we just truncate.
2035  */
2036 static int elf_core_dump(struct coredump_params *cprm)
2037 {
2038 	int has_dumped = 0;
2039 	mm_segment_t fs;
2040 	int segs;
2041 	size_t size = 0;
2042 	struct vm_area_struct *vma, *gate_vma;
2043 	struct elfhdr *elf = NULL;
2044 	loff_t offset = 0, dataoff, foffset;
2045 	struct elf_note_info info;
2046 	struct elf_phdr *phdr4note = NULL;
2047 	struct elf_shdr *shdr4extnum = NULL;
2048 	Elf_Half e_phnum;
2049 	elf_addr_t e_shoff;
2050 
2051 	/*
2052 	 * We no longer stop all VM operations.
2053 	 *
2054 	 * This is because those proceses that could possibly change map_count
2055 	 * or the mmap / vma pages are now blocked in do_exit on current
2056 	 * finishing this core dump.
2057 	 *
2058 	 * Only ptrace can touch these memory addresses, but it doesn't change
2059 	 * the map_count or the pages allocated. So no possibility of crashing
2060 	 * exists while dumping the mm->vm_next areas to the core file.
2061 	 */
2062 
2063 	/* alloc memory for large data structures: too large to be on stack */
2064 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2065 	if (!elf)
2066 		goto out;
2067 	/*
2068 	 * The number of segs are recored into ELF header as 16bit value.
2069 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2070 	 */
2071 	segs = current->mm->map_count;
2072 	segs += elf_core_extra_phdrs();
2073 
2074 	gate_vma = get_gate_vma(current->mm);
2075 	if (gate_vma != NULL)
2076 		segs++;
2077 
2078 	/* for notes section */
2079 	segs++;
2080 
2081 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2082 	 * this, kernel supports extended numbering. Have a look at
2083 	 * include/linux/elf.h for further information. */
2084 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2085 
2086 	/*
2087 	 * Collect all the non-memory information about the process for the
2088 	 * notes.  This also sets up the file header.
2089 	 */
2090 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2091 		goto cleanup;
2092 
2093 	has_dumped = 1;
2094 	current->flags |= PF_DUMPCORE;
2095 
2096 	fs = get_fs();
2097 	set_fs(KERNEL_DS);
2098 
2099 	offset += sizeof(*elf);				/* Elf header */
2100 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2101 	foffset = offset;
2102 
2103 	/* Write notes phdr entry */
2104 	{
2105 		size_t sz = get_note_info_size(&info);
2106 
2107 		sz += elf_coredump_extra_notes_size();
2108 
2109 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2110 		if (!phdr4note)
2111 			goto end_coredump;
2112 
2113 		fill_elf_note_phdr(phdr4note, sz, offset);
2114 		offset += sz;
2115 	}
2116 
2117 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2118 
2119 	offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
2120 	offset += elf_core_extra_data_size();
2121 	e_shoff = offset;
2122 
2123 	if (e_phnum == PN_XNUM) {
2124 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2125 		if (!shdr4extnum)
2126 			goto end_coredump;
2127 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2128 	}
2129 
2130 	offset = dataoff;
2131 
2132 	size += sizeof(*elf);
2133 	if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
2134 		goto end_coredump;
2135 
2136 	size += sizeof(*phdr4note);
2137 	if (size > cprm->limit
2138 	    || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
2139 		goto end_coredump;
2140 
2141 	/* Write program headers for segments dump */
2142 	for (vma = first_vma(current, gate_vma); vma != NULL;
2143 			vma = next_vma(vma, gate_vma)) {
2144 		struct elf_phdr phdr;
2145 
2146 		phdr.p_type = PT_LOAD;
2147 		phdr.p_offset = offset;
2148 		phdr.p_vaddr = vma->vm_start;
2149 		phdr.p_paddr = 0;
2150 		phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
2151 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2152 		offset += phdr.p_filesz;
2153 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2154 		if (vma->vm_flags & VM_WRITE)
2155 			phdr.p_flags |= PF_W;
2156 		if (vma->vm_flags & VM_EXEC)
2157 			phdr.p_flags |= PF_X;
2158 		phdr.p_align = ELF_EXEC_PAGESIZE;
2159 
2160 		size += sizeof(phdr);
2161 		if (size > cprm->limit
2162 		    || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2163 			goto end_coredump;
2164 	}
2165 
2166 	if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2167 		goto end_coredump;
2168 
2169  	/* write out the notes section */
2170 	if (!write_note_info(&info, cprm->file, &foffset))
2171 		goto end_coredump;
2172 
2173 	if (elf_coredump_extra_notes_write(cprm->file, &foffset))
2174 		goto end_coredump;
2175 
2176 	/* Align to page */
2177 	if (!dump_seek(cprm->file, dataoff - foffset))
2178 		goto end_coredump;
2179 
2180 	for (vma = first_vma(current, gate_vma); vma != NULL;
2181 			vma = next_vma(vma, gate_vma)) {
2182 		unsigned long addr;
2183 		unsigned long end;
2184 
2185 		end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2186 
2187 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2188 			struct page *page;
2189 			int stop;
2190 
2191 			page = get_dump_page(addr);
2192 			if (page) {
2193 				void *kaddr = kmap(page);
2194 				stop = ((size += PAGE_SIZE) > cprm->limit) ||
2195 					!dump_write(cprm->file, kaddr,
2196 						    PAGE_SIZE);
2197 				kunmap(page);
2198 				page_cache_release(page);
2199 			} else
2200 				stop = !dump_seek(cprm->file, PAGE_SIZE);
2201 			if (stop)
2202 				goto end_coredump;
2203 		}
2204 	}
2205 
2206 	if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2207 		goto end_coredump;
2208 
2209 	if (e_phnum == PN_XNUM) {
2210 		size += sizeof(*shdr4extnum);
2211 		if (size > cprm->limit
2212 		    || !dump_write(cprm->file, shdr4extnum,
2213 				   sizeof(*shdr4extnum)))
2214 			goto end_coredump;
2215 	}
2216 
2217 end_coredump:
2218 	set_fs(fs);
2219 
2220 cleanup:
2221 	free_note_info(&info);
2222 	kfree(shdr4extnum);
2223 	kfree(phdr4note);
2224 	kfree(elf);
2225 out:
2226 	return has_dumped;
2227 }
2228 
2229 #endif		/* CONFIG_ELF_CORE */
2230 
2231 static int __init init_elf_binfmt(void)
2232 {
2233 	register_binfmt(&elf_format);
2234 	return 0;
2235 }
2236 
2237 static void __exit exit_elf_binfmt(void)
2238 {
2239 	/* Remove the COFF and ELF loaders. */
2240 	unregister_binfmt(&elf_format);
2241 }
2242 
2243 core_initcall(init_elf_binfmt);
2244 module_exit(exit_elf_binfmt);
2245 MODULE_LICENSE("GPL");
2246