1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/binfmt_elf.c 4 * 5 * These are the functions used to load ELF format executables as used 6 * on SVr4 machines. Information on the format may be found in the book 7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 8 * Tools". 9 * 10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 11 */ 12 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/fs.h> 16 #include <linux/log2.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/errno.h> 20 #include <linux/signal.h> 21 #include <linux/binfmts.h> 22 #include <linux/string.h> 23 #include <linux/file.h> 24 #include <linux/slab.h> 25 #include <linux/personality.h> 26 #include <linux/elfcore.h> 27 #include <linux/init.h> 28 #include <linux/highuid.h> 29 #include <linux/compiler.h> 30 #include <linux/highmem.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vmalloc.h> 34 #include <linux/security.h> 35 #include <linux/random.h> 36 #include <linux/elf.h> 37 #include <linux/elf-randomize.h> 38 #include <linux/utsname.h> 39 #include <linux/coredump.h> 40 #include <linux/sched.h> 41 #include <linux/sched/coredump.h> 42 #include <linux/sched/task_stack.h> 43 #include <linux/sched/cputime.h> 44 #include <linux/sizes.h> 45 #include <linux/types.h> 46 #include <linux/cred.h> 47 #include <linux/dax.h> 48 #include <linux/uaccess.h> 49 #include <linux/rseq.h> 50 #include <asm/param.h> 51 #include <asm/page.h> 52 53 #ifndef ELF_COMPAT 54 #define ELF_COMPAT 0 55 #endif 56 57 #ifndef user_long_t 58 #define user_long_t long 59 #endif 60 #ifndef user_siginfo_t 61 #define user_siginfo_t siginfo_t 62 #endif 63 64 /* That's for binfmt_elf_fdpic to deal with */ 65 #ifndef elf_check_fdpic 66 #define elf_check_fdpic(ex) false 67 #endif 68 69 static int load_elf_binary(struct linux_binprm *bprm); 70 71 #ifdef CONFIG_USELIB 72 static int load_elf_library(struct file *); 73 #else 74 #define load_elf_library NULL 75 #endif 76 77 /* 78 * If we don't support core dumping, then supply a NULL so we 79 * don't even try. 80 */ 81 #ifdef CONFIG_ELF_CORE 82 static int elf_core_dump(struct coredump_params *cprm); 83 #else 84 #define elf_core_dump NULL 85 #endif 86 87 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 88 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 89 #else 90 #define ELF_MIN_ALIGN PAGE_SIZE 91 #endif 92 93 #ifndef ELF_CORE_EFLAGS 94 #define ELF_CORE_EFLAGS 0 95 #endif 96 97 #define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1)) 98 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 99 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 100 101 static struct linux_binfmt elf_format = { 102 .module = THIS_MODULE, 103 .load_binary = load_elf_binary, 104 .load_shlib = load_elf_library, 105 #ifdef CONFIG_COREDUMP 106 .core_dump = elf_core_dump, 107 .min_coredump = ELF_EXEC_PAGESIZE, 108 #endif 109 }; 110 111 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE)) 112 113 /* 114 * We need to explicitly zero any trailing portion of the page that follows 115 * p_filesz when it ends before the page ends (e.g. bss), otherwise this 116 * memory will contain the junk from the file that should not be present. 117 */ 118 static int padzero(unsigned long address) 119 { 120 unsigned long nbyte; 121 122 nbyte = ELF_PAGEOFFSET(address); 123 if (nbyte) { 124 nbyte = ELF_MIN_ALIGN - nbyte; 125 if (clear_user((void __user *)address, nbyte)) 126 return -EFAULT; 127 } 128 return 0; 129 } 130 131 /* Let's use some macros to make this stack manipulation a little clearer */ 132 #ifdef CONFIG_STACK_GROWSUP 133 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 134 #define STACK_ROUND(sp, items) \ 135 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 136 #define STACK_ALLOC(sp, len) ({ \ 137 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 138 old_sp; }) 139 #else 140 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 141 #define STACK_ROUND(sp, items) \ 142 (((unsigned long) (sp - items)) &~ 15UL) 143 #define STACK_ALLOC(sp, len) (sp -= len) 144 #endif 145 146 #ifndef ELF_BASE_PLATFORM 147 /* 148 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 149 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 150 * will be copied to the user stack in the same manner as AT_PLATFORM. 151 */ 152 #define ELF_BASE_PLATFORM NULL 153 #endif 154 155 static int 156 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec, 157 unsigned long interp_load_addr, 158 unsigned long e_entry, unsigned long phdr_addr) 159 { 160 struct mm_struct *mm = current->mm; 161 unsigned long p = bprm->p; 162 int argc = bprm->argc; 163 int envc = bprm->envc; 164 elf_addr_t __user *sp; 165 elf_addr_t __user *u_platform; 166 elf_addr_t __user *u_base_platform; 167 elf_addr_t __user *u_rand_bytes; 168 const char *k_platform = ELF_PLATFORM; 169 const char *k_base_platform = ELF_BASE_PLATFORM; 170 unsigned char k_rand_bytes[16]; 171 int items; 172 elf_addr_t *elf_info; 173 elf_addr_t flags = 0; 174 int ei_index; 175 const struct cred *cred = current_cred(); 176 struct vm_area_struct *vma; 177 178 /* 179 * In some cases (e.g. Hyper-Threading), we want to avoid L1 180 * evictions by the processes running on the same package. One 181 * thing we can do is to shuffle the initial stack for them. 182 */ 183 184 p = arch_align_stack(p); 185 186 /* 187 * If this architecture has a platform capability string, copy it 188 * to userspace. In some cases (Sparc), this info is impossible 189 * for userspace to get any other way, in others (i386) it is 190 * merely difficult. 191 */ 192 u_platform = NULL; 193 if (k_platform) { 194 size_t len = strlen(k_platform) + 1; 195 196 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 197 if (copy_to_user(u_platform, k_platform, len)) 198 return -EFAULT; 199 } 200 201 /* 202 * If this architecture has a "base" platform capability 203 * string, copy it to userspace. 204 */ 205 u_base_platform = NULL; 206 if (k_base_platform) { 207 size_t len = strlen(k_base_platform) + 1; 208 209 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 210 if (copy_to_user(u_base_platform, k_base_platform, len)) 211 return -EFAULT; 212 } 213 214 /* 215 * Generate 16 random bytes for userspace PRNG seeding. 216 */ 217 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 218 u_rand_bytes = (elf_addr_t __user *) 219 STACK_ALLOC(p, sizeof(k_rand_bytes)); 220 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 221 return -EFAULT; 222 223 /* Create the ELF interpreter info */ 224 elf_info = (elf_addr_t *)mm->saved_auxv; 225 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 226 #define NEW_AUX_ENT(id, val) \ 227 do { \ 228 *elf_info++ = id; \ 229 *elf_info++ = val; \ 230 } while (0) 231 232 #ifdef ARCH_DLINFO 233 /* 234 * ARCH_DLINFO must come first so PPC can do its special alignment of 235 * AUXV. 236 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 237 * ARCH_DLINFO changes 238 */ 239 ARCH_DLINFO; 240 #endif 241 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 242 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 243 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 244 NEW_AUX_ENT(AT_PHDR, phdr_addr); 245 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 246 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 247 NEW_AUX_ENT(AT_BASE, interp_load_addr); 248 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0) 249 flags |= AT_FLAGS_PRESERVE_ARGV0; 250 NEW_AUX_ENT(AT_FLAGS, flags); 251 NEW_AUX_ENT(AT_ENTRY, e_entry); 252 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); 253 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); 254 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); 255 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); 256 NEW_AUX_ENT(AT_SECURE, bprm->secureexec); 257 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 258 #ifdef ELF_HWCAP2 259 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2); 260 #endif 261 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 262 if (k_platform) { 263 NEW_AUX_ENT(AT_PLATFORM, 264 (elf_addr_t)(unsigned long)u_platform); 265 } 266 if (k_base_platform) { 267 NEW_AUX_ENT(AT_BASE_PLATFORM, 268 (elf_addr_t)(unsigned long)u_base_platform); 269 } 270 if (bprm->have_execfd) { 271 NEW_AUX_ENT(AT_EXECFD, bprm->execfd); 272 } 273 #ifdef CONFIG_RSEQ 274 NEW_AUX_ENT(AT_RSEQ_FEATURE_SIZE, offsetof(struct rseq, end)); 275 NEW_AUX_ENT(AT_RSEQ_ALIGN, __alignof__(struct rseq)); 276 #endif 277 #undef NEW_AUX_ENT 278 /* AT_NULL is zero; clear the rest too */ 279 memset(elf_info, 0, (char *)mm->saved_auxv + 280 sizeof(mm->saved_auxv) - (char *)elf_info); 281 282 /* And advance past the AT_NULL entry. */ 283 elf_info += 2; 284 285 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv; 286 sp = STACK_ADD(p, ei_index); 287 288 items = (argc + 1) + (envc + 1) + 1; 289 bprm->p = STACK_ROUND(sp, items); 290 291 /* Point sp at the lowest address on the stack */ 292 #ifdef CONFIG_STACK_GROWSUP 293 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 294 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 295 #else 296 sp = (elf_addr_t __user *)bprm->p; 297 #endif 298 299 300 /* 301 * Grow the stack manually; some architectures have a limit on how 302 * far ahead a user-space access may be in order to grow the stack. 303 */ 304 if (mmap_write_lock_killable(mm)) 305 return -EINTR; 306 vma = find_extend_vma_locked(mm, bprm->p); 307 mmap_write_unlock(mm); 308 if (!vma) 309 return -EFAULT; 310 311 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 312 if (put_user(argc, sp++)) 313 return -EFAULT; 314 315 /* Populate list of argv pointers back to argv strings. */ 316 p = mm->arg_end = mm->arg_start; 317 while (argc-- > 0) { 318 size_t len; 319 if (put_user((elf_addr_t)p, sp++)) 320 return -EFAULT; 321 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 322 if (!len || len > MAX_ARG_STRLEN) 323 return -EINVAL; 324 p += len; 325 } 326 if (put_user(0, sp++)) 327 return -EFAULT; 328 mm->arg_end = p; 329 330 /* Populate list of envp pointers back to envp strings. */ 331 mm->env_end = mm->env_start = p; 332 while (envc-- > 0) { 333 size_t len; 334 if (put_user((elf_addr_t)p, sp++)) 335 return -EFAULT; 336 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 337 if (!len || len > MAX_ARG_STRLEN) 338 return -EINVAL; 339 p += len; 340 } 341 if (put_user(0, sp++)) 342 return -EFAULT; 343 mm->env_end = p; 344 345 /* Put the elf_info on the stack in the right place. */ 346 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t))) 347 return -EFAULT; 348 return 0; 349 } 350 351 /* 352 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset" 353 * into memory at "addr". (Note that p_filesz is rounded up to the 354 * next page, so any extra bytes from the file must be wiped.) 355 */ 356 static unsigned long elf_map(struct file *filep, unsigned long addr, 357 const struct elf_phdr *eppnt, int prot, int type, 358 unsigned long total_size) 359 { 360 unsigned long map_addr; 361 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 362 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 363 addr = ELF_PAGESTART(addr); 364 size = ELF_PAGEALIGN(size); 365 366 /* mmap() will return -EINVAL if given a zero size, but a 367 * segment with zero filesize is perfectly valid */ 368 if (!size) 369 return addr; 370 371 /* 372 * total_size is the size of the ELF (interpreter) image. 373 * The _first_ mmap needs to know the full size, otherwise 374 * randomization might put this image into an overlapping 375 * position with the ELF binary image. (since size < total_size) 376 * So we first map the 'big' image - and unmap the remainder at 377 * the end. (which unmap is needed for ELF images with holes.) 378 */ 379 if (total_size) { 380 total_size = ELF_PAGEALIGN(total_size); 381 map_addr = vm_mmap(filep, addr, total_size, prot, type, off); 382 if (!BAD_ADDR(map_addr)) 383 vm_munmap(map_addr+size, total_size-size); 384 } else 385 map_addr = vm_mmap(filep, addr, size, prot, type, off); 386 387 if ((type & MAP_FIXED_NOREPLACE) && 388 PTR_ERR((void *)map_addr) == -EEXIST) 389 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n", 390 task_pid_nr(current), current->comm, (void *)addr); 391 392 return(map_addr); 393 } 394 395 /* 396 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset" 397 * into memory at "addr". Memory from "p_filesz" through "p_memsz" 398 * rounded up to the next page is zeroed. 399 */ 400 static unsigned long elf_load(struct file *filep, unsigned long addr, 401 const struct elf_phdr *eppnt, int prot, int type, 402 unsigned long total_size) 403 { 404 unsigned long zero_start, zero_end; 405 unsigned long map_addr; 406 407 if (eppnt->p_filesz) { 408 map_addr = elf_map(filep, addr, eppnt, prot, type, total_size); 409 if (BAD_ADDR(map_addr)) 410 return map_addr; 411 if (eppnt->p_memsz > eppnt->p_filesz) { 412 zero_start = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) + 413 eppnt->p_filesz; 414 zero_end = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) + 415 eppnt->p_memsz; 416 417 /* 418 * Zero the end of the last mapped page but ignore 419 * any errors if the segment isn't writable. 420 */ 421 if (padzero(zero_start) && (prot & PROT_WRITE)) 422 return -EFAULT; 423 } 424 } else { 425 map_addr = zero_start = ELF_PAGESTART(addr); 426 zero_end = zero_start + ELF_PAGEOFFSET(eppnt->p_vaddr) + 427 eppnt->p_memsz; 428 } 429 if (eppnt->p_memsz > eppnt->p_filesz) { 430 /* 431 * Map the last of the segment. 432 * If the header is requesting these pages to be 433 * executable, honour that (ppc32 needs this). 434 */ 435 int error; 436 437 zero_start = ELF_PAGEALIGN(zero_start); 438 zero_end = ELF_PAGEALIGN(zero_end); 439 440 error = vm_brk_flags(zero_start, zero_end - zero_start, 441 prot & PROT_EXEC ? VM_EXEC : 0); 442 if (error) 443 map_addr = error; 444 } 445 return map_addr; 446 } 447 448 449 static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr) 450 { 451 elf_addr_t min_addr = -1; 452 elf_addr_t max_addr = 0; 453 bool pt_load = false; 454 int i; 455 456 for (i = 0; i < nr; i++) { 457 if (phdr[i].p_type == PT_LOAD) { 458 min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr)); 459 max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz); 460 pt_load = true; 461 } 462 } 463 return pt_load ? (max_addr - min_addr) : 0; 464 } 465 466 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos) 467 { 468 ssize_t rv; 469 470 rv = kernel_read(file, buf, len, &pos); 471 if (unlikely(rv != len)) { 472 return (rv < 0) ? rv : -EIO; 473 } 474 return 0; 475 } 476 477 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr) 478 { 479 unsigned long alignment = 0; 480 int i; 481 482 for (i = 0; i < nr; i++) { 483 if (cmds[i].p_type == PT_LOAD) { 484 unsigned long p_align = cmds[i].p_align; 485 486 /* skip non-power of two alignments as invalid */ 487 if (!is_power_of_2(p_align)) 488 continue; 489 alignment = max(alignment, p_align); 490 } 491 } 492 493 /* ensure we align to at least one page */ 494 return ELF_PAGEALIGN(alignment); 495 } 496 497 /** 498 * load_elf_phdrs() - load ELF program headers 499 * @elf_ex: ELF header of the binary whose program headers should be loaded 500 * @elf_file: the opened ELF binary file 501 * 502 * Loads ELF program headers from the binary file elf_file, which has the ELF 503 * header pointed to by elf_ex, into a newly allocated array. The caller is 504 * responsible for freeing the allocated data. Returns NULL upon failure. 505 */ 506 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex, 507 struct file *elf_file) 508 { 509 struct elf_phdr *elf_phdata = NULL; 510 int retval = -1; 511 unsigned int size; 512 513 /* 514 * If the size of this structure has changed, then punt, since 515 * we will be doing the wrong thing. 516 */ 517 if (elf_ex->e_phentsize != sizeof(struct elf_phdr)) 518 goto out; 519 520 /* Sanity check the number of program headers... */ 521 /* ...and their total size. */ 522 size = sizeof(struct elf_phdr) * elf_ex->e_phnum; 523 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN) 524 goto out; 525 526 elf_phdata = kmalloc(size, GFP_KERNEL); 527 if (!elf_phdata) 528 goto out; 529 530 /* Read in the program headers */ 531 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff); 532 533 out: 534 if (retval) { 535 kfree(elf_phdata); 536 elf_phdata = NULL; 537 } 538 return elf_phdata; 539 } 540 541 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE 542 543 /** 544 * struct arch_elf_state - arch-specific ELF loading state 545 * 546 * This structure is used to preserve architecture specific data during 547 * the loading of an ELF file, throughout the checking of architecture 548 * specific ELF headers & through to the point where the ELF load is 549 * known to be proceeding (ie. SET_PERSONALITY). 550 * 551 * This implementation is a dummy for architectures which require no 552 * specific state. 553 */ 554 struct arch_elf_state { 555 }; 556 557 #define INIT_ARCH_ELF_STATE {} 558 559 /** 560 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header 561 * @ehdr: The main ELF header 562 * @phdr: The program header to check 563 * @elf: The open ELF file 564 * @is_interp: True if the phdr is from the interpreter of the ELF being 565 * loaded, else false. 566 * @state: Architecture-specific state preserved throughout the process 567 * of loading the ELF. 568 * 569 * Inspects the program header phdr to validate its correctness and/or 570 * suitability for the system. Called once per ELF program header in the 571 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its 572 * interpreter. 573 * 574 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 575 * with that return code. 576 */ 577 static inline int arch_elf_pt_proc(struct elfhdr *ehdr, 578 struct elf_phdr *phdr, 579 struct file *elf, bool is_interp, 580 struct arch_elf_state *state) 581 { 582 /* Dummy implementation, always proceed */ 583 return 0; 584 } 585 586 /** 587 * arch_check_elf() - check an ELF executable 588 * @ehdr: The main ELF header 589 * @has_interp: True if the ELF has an interpreter, else false. 590 * @interp_ehdr: The interpreter's ELF header 591 * @state: Architecture-specific state preserved throughout the process 592 * of loading the ELF. 593 * 594 * Provides a final opportunity for architecture code to reject the loading 595 * of the ELF & cause an exec syscall to return an error. This is called after 596 * all program headers to be checked by arch_elf_pt_proc have been. 597 * 598 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 599 * with that return code. 600 */ 601 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp, 602 struct elfhdr *interp_ehdr, 603 struct arch_elf_state *state) 604 { 605 /* Dummy implementation, always proceed */ 606 return 0; 607 } 608 609 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */ 610 611 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state, 612 bool has_interp, bool is_interp) 613 { 614 int prot = 0; 615 616 if (p_flags & PF_R) 617 prot |= PROT_READ; 618 if (p_flags & PF_W) 619 prot |= PROT_WRITE; 620 if (p_flags & PF_X) 621 prot |= PROT_EXEC; 622 623 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp); 624 } 625 626 /* This is much more generalized than the library routine read function, 627 so we keep this separate. Technically the library read function 628 is only provided so that we can read a.out libraries that have 629 an ELF header */ 630 631 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 632 struct file *interpreter, 633 unsigned long no_base, struct elf_phdr *interp_elf_phdata, 634 struct arch_elf_state *arch_state) 635 { 636 struct elf_phdr *eppnt; 637 unsigned long load_addr = 0; 638 int load_addr_set = 0; 639 unsigned long error = ~0UL; 640 unsigned long total_size; 641 int i; 642 643 /* First of all, some simple consistency checks */ 644 if (interp_elf_ex->e_type != ET_EXEC && 645 interp_elf_ex->e_type != ET_DYN) 646 goto out; 647 if (!elf_check_arch(interp_elf_ex) || 648 elf_check_fdpic(interp_elf_ex)) 649 goto out; 650 if (!interpreter->f_op->mmap) 651 goto out; 652 653 total_size = total_mapping_size(interp_elf_phdata, 654 interp_elf_ex->e_phnum); 655 if (!total_size) { 656 error = -EINVAL; 657 goto out; 658 } 659 660 eppnt = interp_elf_phdata; 661 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 662 if (eppnt->p_type == PT_LOAD) { 663 int elf_type = MAP_PRIVATE; 664 int elf_prot = make_prot(eppnt->p_flags, arch_state, 665 true, true); 666 unsigned long vaddr = 0; 667 unsigned long k, map_addr; 668 669 vaddr = eppnt->p_vaddr; 670 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 671 elf_type |= MAP_FIXED; 672 else if (no_base && interp_elf_ex->e_type == ET_DYN) 673 load_addr = -vaddr; 674 675 map_addr = elf_load(interpreter, load_addr + vaddr, 676 eppnt, elf_prot, elf_type, total_size); 677 total_size = 0; 678 error = map_addr; 679 if (BAD_ADDR(map_addr)) 680 goto out; 681 682 if (!load_addr_set && 683 interp_elf_ex->e_type == ET_DYN) { 684 load_addr = map_addr - ELF_PAGESTART(vaddr); 685 load_addr_set = 1; 686 } 687 688 /* 689 * Check to see if the section's size will overflow the 690 * allowed task size. Note that p_filesz must always be 691 * <= p_memsize so it's only necessary to check p_memsz. 692 */ 693 k = load_addr + eppnt->p_vaddr; 694 if (BAD_ADDR(k) || 695 eppnt->p_filesz > eppnt->p_memsz || 696 eppnt->p_memsz > TASK_SIZE || 697 TASK_SIZE - eppnt->p_memsz < k) { 698 error = -ENOMEM; 699 goto out; 700 } 701 } 702 } 703 704 error = load_addr; 705 out: 706 return error; 707 } 708 709 /* 710 * These are the functions used to load ELF style executables and shared 711 * libraries. There is no binary dependent code anywhere else. 712 */ 713 714 static int parse_elf_property(const char *data, size_t *off, size_t datasz, 715 struct arch_elf_state *arch, 716 bool have_prev_type, u32 *prev_type) 717 { 718 size_t o, step; 719 const struct gnu_property *pr; 720 int ret; 721 722 if (*off == datasz) 723 return -ENOENT; 724 725 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN)) 726 return -EIO; 727 o = *off; 728 datasz -= *off; 729 730 if (datasz < sizeof(*pr)) 731 return -ENOEXEC; 732 pr = (const struct gnu_property *)(data + o); 733 o += sizeof(*pr); 734 datasz -= sizeof(*pr); 735 736 if (pr->pr_datasz > datasz) 737 return -ENOEXEC; 738 739 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN); 740 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN); 741 if (step > datasz) 742 return -ENOEXEC; 743 744 /* Properties are supposed to be unique and sorted on pr_type: */ 745 if (have_prev_type && pr->pr_type <= *prev_type) 746 return -ENOEXEC; 747 *prev_type = pr->pr_type; 748 749 ret = arch_parse_elf_property(pr->pr_type, data + o, 750 pr->pr_datasz, ELF_COMPAT, arch); 751 if (ret) 752 return ret; 753 754 *off = o + step; 755 return 0; 756 } 757 758 #define NOTE_DATA_SZ SZ_1K 759 #define GNU_PROPERTY_TYPE_0_NAME "GNU" 760 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME)) 761 762 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr, 763 struct arch_elf_state *arch) 764 { 765 union { 766 struct elf_note nhdr; 767 char data[NOTE_DATA_SZ]; 768 } note; 769 loff_t pos; 770 ssize_t n; 771 size_t off, datasz; 772 int ret; 773 bool have_prev_type; 774 u32 prev_type; 775 776 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr) 777 return 0; 778 779 /* load_elf_binary() shouldn't call us unless this is true... */ 780 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY)) 781 return -ENOEXEC; 782 783 /* If the properties are crazy large, that's too bad (for now): */ 784 if (phdr->p_filesz > sizeof(note)) 785 return -ENOEXEC; 786 787 pos = phdr->p_offset; 788 n = kernel_read(f, ¬e, phdr->p_filesz, &pos); 789 790 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ); 791 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ) 792 return -EIO; 793 794 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 795 note.nhdr.n_namesz != NOTE_NAME_SZ || 796 strncmp(note.data + sizeof(note.nhdr), 797 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr))) 798 return -ENOEXEC; 799 800 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ, 801 ELF_GNU_PROPERTY_ALIGN); 802 if (off > n) 803 return -ENOEXEC; 804 805 if (note.nhdr.n_descsz > n - off) 806 return -ENOEXEC; 807 datasz = off + note.nhdr.n_descsz; 808 809 have_prev_type = false; 810 do { 811 ret = parse_elf_property(note.data, &off, datasz, arch, 812 have_prev_type, &prev_type); 813 have_prev_type = true; 814 } while (!ret); 815 816 return ret == -ENOENT ? 0 : ret; 817 } 818 819 static int load_elf_binary(struct linux_binprm *bprm) 820 { 821 struct file *interpreter = NULL; /* to shut gcc up */ 822 unsigned long load_bias = 0, phdr_addr = 0; 823 int first_pt_load = 1; 824 unsigned long error; 825 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL; 826 struct elf_phdr *elf_property_phdata = NULL; 827 unsigned long elf_brk; 828 int retval, i; 829 unsigned long elf_entry; 830 unsigned long e_entry; 831 unsigned long interp_load_addr = 0; 832 unsigned long start_code, end_code, start_data, end_data; 833 unsigned long reloc_func_desc __maybe_unused = 0; 834 int executable_stack = EXSTACK_DEFAULT; 835 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf; 836 struct elfhdr *interp_elf_ex = NULL; 837 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE; 838 struct mm_struct *mm; 839 struct pt_regs *regs; 840 841 retval = -ENOEXEC; 842 /* First of all, some simple consistency checks */ 843 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 844 goto out; 845 846 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN) 847 goto out; 848 if (!elf_check_arch(elf_ex)) 849 goto out; 850 if (elf_check_fdpic(elf_ex)) 851 goto out; 852 if (!bprm->file->f_op->mmap) 853 goto out; 854 855 elf_phdata = load_elf_phdrs(elf_ex, bprm->file); 856 if (!elf_phdata) 857 goto out; 858 859 elf_ppnt = elf_phdata; 860 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) { 861 char *elf_interpreter; 862 863 if (elf_ppnt->p_type == PT_GNU_PROPERTY) { 864 elf_property_phdata = elf_ppnt; 865 continue; 866 } 867 868 if (elf_ppnt->p_type != PT_INTERP) 869 continue; 870 871 /* 872 * This is the program interpreter used for shared libraries - 873 * for now assume that this is an a.out format binary. 874 */ 875 retval = -ENOEXEC; 876 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2) 877 goto out_free_ph; 878 879 retval = -ENOMEM; 880 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL); 881 if (!elf_interpreter) 882 goto out_free_ph; 883 884 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz, 885 elf_ppnt->p_offset); 886 if (retval < 0) 887 goto out_free_interp; 888 /* make sure path is NULL terminated */ 889 retval = -ENOEXEC; 890 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 891 goto out_free_interp; 892 893 interpreter = open_exec(elf_interpreter); 894 kfree(elf_interpreter); 895 retval = PTR_ERR(interpreter); 896 if (IS_ERR(interpreter)) 897 goto out_free_ph; 898 899 /* 900 * If the binary is not readable then enforce mm->dumpable = 0 901 * regardless of the interpreter's permissions. 902 */ 903 would_dump(bprm, interpreter); 904 905 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL); 906 if (!interp_elf_ex) { 907 retval = -ENOMEM; 908 goto out_free_file; 909 } 910 911 /* Get the exec headers */ 912 retval = elf_read(interpreter, interp_elf_ex, 913 sizeof(*interp_elf_ex), 0); 914 if (retval < 0) 915 goto out_free_dentry; 916 917 break; 918 919 out_free_interp: 920 kfree(elf_interpreter); 921 goto out_free_ph; 922 } 923 924 elf_ppnt = elf_phdata; 925 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) 926 switch (elf_ppnt->p_type) { 927 case PT_GNU_STACK: 928 if (elf_ppnt->p_flags & PF_X) 929 executable_stack = EXSTACK_ENABLE_X; 930 else 931 executable_stack = EXSTACK_DISABLE_X; 932 break; 933 934 case PT_LOPROC ... PT_HIPROC: 935 retval = arch_elf_pt_proc(elf_ex, elf_ppnt, 936 bprm->file, false, 937 &arch_state); 938 if (retval) 939 goto out_free_dentry; 940 break; 941 } 942 943 /* Some simple consistency checks for the interpreter */ 944 if (interpreter) { 945 retval = -ELIBBAD; 946 /* Not an ELF interpreter */ 947 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 948 goto out_free_dentry; 949 /* Verify the interpreter has a valid arch */ 950 if (!elf_check_arch(interp_elf_ex) || 951 elf_check_fdpic(interp_elf_ex)) 952 goto out_free_dentry; 953 954 /* Load the interpreter program headers */ 955 interp_elf_phdata = load_elf_phdrs(interp_elf_ex, 956 interpreter); 957 if (!interp_elf_phdata) 958 goto out_free_dentry; 959 960 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */ 961 elf_property_phdata = NULL; 962 elf_ppnt = interp_elf_phdata; 963 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++) 964 switch (elf_ppnt->p_type) { 965 case PT_GNU_PROPERTY: 966 elf_property_phdata = elf_ppnt; 967 break; 968 969 case PT_LOPROC ... PT_HIPROC: 970 retval = arch_elf_pt_proc(interp_elf_ex, 971 elf_ppnt, interpreter, 972 true, &arch_state); 973 if (retval) 974 goto out_free_dentry; 975 break; 976 } 977 } 978 979 retval = parse_elf_properties(interpreter ?: bprm->file, 980 elf_property_phdata, &arch_state); 981 if (retval) 982 goto out_free_dentry; 983 984 /* 985 * Allow arch code to reject the ELF at this point, whilst it's 986 * still possible to return an error to the code that invoked 987 * the exec syscall. 988 */ 989 retval = arch_check_elf(elf_ex, 990 !!interpreter, interp_elf_ex, 991 &arch_state); 992 if (retval) 993 goto out_free_dentry; 994 995 /* Flush all traces of the currently running executable */ 996 retval = begin_new_exec(bprm); 997 if (retval) 998 goto out_free_dentry; 999 1000 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 1001 may depend on the personality. */ 1002 SET_PERSONALITY2(*elf_ex, &arch_state); 1003 if (elf_read_implies_exec(*elf_ex, executable_stack)) 1004 current->personality |= READ_IMPLIES_EXEC; 1005 1006 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1007 current->flags |= PF_RANDOMIZE; 1008 1009 setup_new_exec(bprm); 1010 1011 /* Do this so that we can load the interpreter, if need be. We will 1012 change some of these later */ 1013 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 1014 executable_stack); 1015 if (retval < 0) 1016 goto out_free_dentry; 1017 1018 elf_brk = 0; 1019 1020 start_code = ~0UL; 1021 end_code = 0; 1022 start_data = 0; 1023 end_data = 0; 1024 1025 /* Now we do a little grungy work by mmapping the ELF image into 1026 the correct location in memory. */ 1027 for(i = 0, elf_ppnt = elf_phdata; 1028 i < elf_ex->e_phnum; i++, elf_ppnt++) { 1029 int elf_prot, elf_flags; 1030 unsigned long k, vaddr; 1031 unsigned long total_size = 0; 1032 unsigned long alignment; 1033 1034 if (elf_ppnt->p_type != PT_LOAD) 1035 continue; 1036 1037 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state, 1038 !!interpreter, false); 1039 1040 elf_flags = MAP_PRIVATE; 1041 1042 vaddr = elf_ppnt->p_vaddr; 1043 /* 1044 * The first time through the loop, first_pt_load is true: 1045 * layout will be calculated. Once set, use MAP_FIXED since 1046 * we know we've already safely mapped the entire region with 1047 * MAP_FIXED_NOREPLACE in the once-per-binary logic following. 1048 */ 1049 if (!first_pt_load) { 1050 elf_flags |= MAP_FIXED; 1051 } else if (elf_ex->e_type == ET_EXEC) { 1052 /* 1053 * This logic is run once for the first LOAD Program 1054 * Header for ET_EXEC binaries. No special handling 1055 * is needed. 1056 */ 1057 elf_flags |= MAP_FIXED_NOREPLACE; 1058 } else if (elf_ex->e_type == ET_DYN) { 1059 /* 1060 * This logic is run once for the first LOAD Program 1061 * Header for ET_DYN binaries to calculate the 1062 * randomization (load_bias) for all the LOAD 1063 * Program Headers. 1064 * 1065 * There are effectively two types of ET_DYN 1066 * binaries: programs (i.e. PIE: ET_DYN with INTERP) 1067 * and loaders (ET_DYN without INTERP, since they 1068 * _are_ the ELF interpreter). The loaders must 1069 * be loaded away from programs since the program 1070 * may otherwise collide with the loader (especially 1071 * for ET_EXEC which does not have a randomized 1072 * position). For example to handle invocations of 1073 * "./ld.so someprog" to test out a new version of 1074 * the loader, the subsequent program that the 1075 * loader loads must avoid the loader itself, so 1076 * they cannot share the same load range. Sufficient 1077 * room for the brk must be allocated with the 1078 * loader as well, since brk must be available with 1079 * the loader. 1080 * 1081 * Therefore, programs are loaded offset from 1082 * ELF_ET_DYN_BASE and loaders are loaded into the 1083 * independently randomized mmap region (0 load_bias 1084 * without MAP_FIXED nor MAP_FIXED_NOREPLACE). 1085 */ 1086 if (interpreter) { 1087 load_bias = ELF_ET_DYN_BASE; 1088 if (current->flags & PF_RANDOMIZE) 1089 load_bias += arch_mmap_rnd(); 1090 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum); 1091 if (alignment) 1092 load_bias &= ~(alignment - 1); 1093 elf_flags |= MAP_FIXED_NOREPLACE; 1094 } else 1095 load_bias = 0; 1096 1097 /* 1098 * Since load_bias is used for all subsequent loading 1099 * calculations, we must lower it by the first vaddr 1100 * so that the remaining calculations based on the 1101 * ELF vaddrs will be correctly offset. The result 1102 * is then page aligned. 1103 */ 1104 load_bias = ELF_PAGESTART(load_bias - vaddr); 1105 1106 /* 1107 * Calculate the entire size of the ELF mapping 1108 * (total_size), used for the initial mapping, 1109 * due to load_addr_set which is set to true later 1110 * once the initial mapping is performed. 1111 * 1112 * Note that this is only sensible when the LOAD 1113 * segments are contiguous (or overlapping). If 1114 * used for LOADs that are far apart, this would 1115 * cause the holes between LOADs to be mapped, 1116 * running the risk of having the mapping fail, 1117 * as it would be larger than the ELF file itself. 1118 * 1119 * As a result, only ET_DYN does this, since 1120 * some ET_EXEC (e.g. ia64) may have large virtual 1121 * memory holes between LOADs. 1122 * 1123 */ 1124 total_size = total_mapping_size(elf_phdata, 1125 elf_ex->e_phnum); 1126 if (!total_size) { 1127 retval = -EINVAL; 1128 goto out_free_dentry; 1129 } 1130 } 1131 1132 error = elf_load(bprm->file, load_bias + vaddr, elf_ppnt, 1133 elf_prot, elf_flags, total_size); 1134 if (BAD_ADDR(error)) { 1135 retval = IS_ERR_VALUE(error) ? 1136 PTR_ERR((void*)error) : -EINVAL; 1137 goto out_free_dentry; 1138 } 1139 1140 if (first_pt_load) { 1141 first_pt_load = 0; 1142 if (elf_ex->e_type == ET_DYN) { 1143 load_bias += error - 1144 ELF_PAGESTART(load_bias + vaddr); 1145 reloc_func_desc = load_bias; 1146 } 1147 } 1148 1149 /* 1150 * Figure out which segment in the file contains the Program 1151 * Header table, and map to the associated memory address. 1152 */ 1153 if (elf_ppnt->p_offset <= elf_ex->e_phoff && 1154 elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) { 1155 phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset + 1156 elf_ppnt->p_vaddr; 1157 } 1158 1159 k = elf_ppnt->p_vaddr; 1160 if ((elf_ppnt->p_flags & PF_X) && k < start_code) 1161 start_code = k; 1162 if (start_data < k) 1163 start_data = k; 1164 1165 /* 1166 * Check to see if the section's size will overflow the 1167 * allowed task size. Note that p_filesz must always be 1168 * <= p_memsz so it is only necessary to check p_memsz. 1169 */ 1170 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 1171 elf_ppnt->p_memsz > TASK_SIZE || 1172 TASK_SIZE - elf_ppnt->p_memsz < k) { 1173 /* set_brk can never work. Avoid overflows. */ 1174 retval = -EINVAL; 1175 goto out_free_dentry; 1176 } 1177 1178 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 1179 1180 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 1181 end_code = k; 1182 if (end_data < k) 1183 end_data = k; 1184 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 1185 if (k > elf_brk) 1186 elf_brk = k; 1187 } 1188 1189 e_entry = elf_ex->e_entry + load_bias; 1190 phdr_addr += load_bias; 1191 elf_brk += load_bias; 1192 start_code += load_bias; 1193 end_code += load_bias; 1194 start_data += load_bias; 1195 end_data += load_bias; 1196 1197 current->mm->start_brk = current->mm->brk = ELF_PAGEALIGN(elf_brk); 1198 1199 if (interpreter) { 1200 elf_entry = load_elf_interp(interp_elf_ex, 1201 interpreter, 1202 load_bias, interp_elf_phdata, 1203 &arch_state); 1204 if (!IS_ERR_VALUE(elf_entry)) { 1205 /* 1206 * load_elf_interp() returns relocation 1207 * adjustment 1208 */ 1209 interp_load_addr = elf_entry; 1210 elf_entry += interp_elf_ex->e_entry; 1211 } 1212 if (BAD_ADDR(elf_entry)) { 1213 retval = IS_ERR_VALUE(elf_entry) ? 1214 (int)elf_entry : -EINVAL; 1215 goto out_free_dentry; 1216 } 1217 reloc_func_desc = interp_load_addr; 1218 1219 allow_write_access(interpreter); 1220 fput(interpreter); 1221 1222 kfree(interp_elf_ex); 1223 kfree(interp_elf_phdata); 1224 } else { 1225 elf_entry = e_entry; 1226 if (BAD_ADDR(elf_entry)) { 1227 retval = -EINVAL; 1228 goto out_free_dentry; 1229 } 1230 } 1231 1232 kfree(elf_phdata); 1233 1234 set_binfmt(&elf_format); 1235 1236 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 1237 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter); 1238 if (retval < 0) 1239 goto out; 1240 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 1241 1242 retval = create_elf_tables(bprm, elf_ex, interp_load_addr, 1243 e_entry, phdr_addr); 1244 if (retval < 0) 1245 goto out; 1246 1247 mm = current->mm; 1248 mm->end_code = end_code; 1249 mm->start_code = start_code; 1250 mm->start_data = start_data; 1251 mm->end_data = end_data; 1252 mm->start_stack = bprm->p; 1253 1254 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { 1255 /* 1256 * For architectures with ELF randomization, when executing 1257 * a loader directly (i.e. no interpreter listed in ELF 1258 * headers), move the brk area out of the mmap region 1259 * (since it grows up, and may collide early with the stack 1260 * growing down), and into the unused ELF_ET_DYN_BASE region. 1261 */ 1262 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && 1263 elf_ex->e_type == ET_DYN && !interpreter) { 1264 mm->brk = mm->start_brk = ELF_ET_DYN_BASE; 1265 } 1266 1267 mm->brk = mm->start_brk = arch_randomize_brk(mm); 1268 #ifdef compat_brk_randomized 1269 current->brk_randomized = 1; 1270 #endif 1271 } 1272 1273 if (current->personality & MMAP_PAGE_ZERO) { 1274 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 1275 and some applications "depend" upon this behavior. 1276 Since we do not have the power to recompile these, we 1277 emulate the SVr4 behavior. Sigh. */ 1278 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 1279 MAP_FIXED | MAP_PRIVATE, 0); 1280 } 1281 1282 regs = current_pt_regs(); 1283 #ifdef ELF_PLAT_INIT 1284 /* 1285 * The ABI may specify that certain registers be set up in special 1286 * ways (on i386 %edx is the address of a DT_FINI function, for 1287 * example. In addition, it may also specify (eg, PowerPC64 ELF) 1288 * that the e_entry field is the address of the function descriptor 1289 * for the startup routine, rather than the address of the startup 1290 * routine itself. This macro performs whatever initialization to 1291 * the regs structure is required as well as any relocations to the 1292 * function descriptor entries when executing dynamically links apps. 1293 */ 1294 ELF_PLAT_INIT(regs, reloc_func_desc); 1295 #endif 1296 1297 finalize_exec(bprm); 1298 START_THREAD(elf_ex, regs, elf_entry, bprm->p); 1299 retval = 0; 1300 out: 1301 return retval; 1302 1303 /* error cleanup */ 1304 out_free_dentry: 1305 kfree(interp_elf_ex); 1306 kfree(interp_elf_phdata); 1307 out_free_file: 1308 allow_write_access(interpreter); 1309 if (interpreter) 1310 fput(interpreter); 1311 out_free_ph: 1312 kfree(elf_phdata); 1313 goto out; 1314 } 1315 1316 #ifdef CONFIG_USELIB 1317 /* This is really simpleminded and specialized - we are loading an 1318 a.out library that is given an ELF header. */ 1319 static int load_elf_library(struct file *file) 1320 { 1321 struct elf_phdr *elf_phdata; 1322 struct elf_phdr *eppnt; 1323 int retval, error, i, j; 1324 struct elfhdr elf_ex; 1325 1326 error = -ENOEXEC; 1327 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0); 1328 if (retval < 0) 1329 goto out; 1330 1331 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1332 goto out; 1333 1334 /* First of all, some simple consistency checks */ 1335 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1336 !elf_check_arch(&elf_ex) || !file->f_op->mmap) 1337 goto out; 1338 if (elf_check_fdpic(&elf_ex)) 1339 goto out; 1340 1341 /* Now read in all of the header information */ 1342 1343 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1344 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1345 1346 error = -ENOMEM; 1347 elf_phdata = kmalloc(j, GFP_KERNEL); 1348 if (!elf_phdata) 1349 goto out; 1350 1351 eppnt = elf_phdata; 1352 error = -ENOEXEC; 1353 retval = elf_read(file, eppnt, j, elf_ex.e_phoff); 1354 if (retval < 0) 1355 goto out_free_ph; 1356 1357 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1358 if ((eppnt + i)->p_type == PT_LOAD) 1359 j++; 1360 if (j != 1) 1361 goto out_free_ph; 1362 1363 while (eppnt->p_type != PT_LOAD) 1364 eppnt++; 1365 1366 /* Now use mmap to map the library into memory. */ 1367 error = elf_load(file, ELF_PAGESTART(eppnt->p_vaddr), 1368 eppnt, 1369 PROT_READ | PROT_WRITE | PROT_EXEC, 1370 MAP_FIXED_NOREPLACE | MAP_PRIVATE, 1371 0); 1372 1373 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1374 goto out_free_ph; 1375 1376 error = 0; 1377 1378 out_free_ph: 1379 kfree(elf_phdata); 1380 out: 1381 return error; 1382 } 1383 #endif /* #ifdef CONFIG_USELIB */ 1384 1385 #ifdef CONFIG_ELF_CORE 1386 /* 1387 * ELF core dumper 1388 * 1389 * Modelled on fs/exec.c:aout_core_dump() 1390 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1391 */ 1392 1393 /* An ELF note in memory */ 1394 struct memelfnote 1395 { 1396 const char *name; 1397 int type; 1398 unsigned int datasz; 1399 void *data; 1400 }; 1401 1402 static int notesize(struct memelfnote *en) 1403 { 1404 int sz; 1405 1406 sz = sizeof(struct elf_note); 1407 sz += roundup(strlen(en->name) + 1, 4); 1408 sz += roundup(en->datasz, 4); 1409 1410 return sz; 1411 } 1412 1413 static int writenote(struct memelfnote *men, struct coredump_params *cprm) 1414 { 1415 struct elf_note en; 1416 en.n_namesz = strlen(men->name) + 1; 1417 en.n_descsz = men->datasz; 1418 en.n_type = men->type; 1419 1420 return dump_emit(cprm, &en, sizeof(en)) && 1421 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) && 1422 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4); 1423 } 1424 1425 static void fill_elf_header(struct elfhdr *elf, int segs, 1426 u16 machine, u32 flags) 1427 { 1428 memset(elf, 0, sizeof(*elf)); 1429 1430 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1431 elf->e_ident[EI_CLASS] = ELF_CLASS; 1432 elf->e_ident[EI_DATA] = ELF_DATA; 1433 elf->e_ident[EI_VERSION] = EV_CURRENT; 1434 elf->e_ident[EI_OSABI] = ELF_OSABI; 1435 1436 elf->e_type = ET_CORE; 1437 elf->e_machine = machine; 1438 elf->e_version = EV_CURRENT; 1439 elf->e_phoff = sizeof(struct elfhdr); 1440 elf->e_flags = flags; 1441 elf->e_ehsize = sizeof(struct elfhdr); 1442 elf->e_phentsize = sizeof(struct elf_phdr); 1443 elf->e_phnum = segs; 1444 } 1445 1446 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1447 { 1448 phdr->p_type = PT_NOTE; 1449 phdr->p_offset = offset; 1450 phdr->p_vaddr = 0; 1451 phdr->p_paddr = 0; 1452 phdr->p_filesz = sz; 1453 phdr->p_memsz = 0; 1454 phdr->p_flags = 0; 1455 phdr->p_align = 4; 1456 } 1457 1458 static void fill_note(struct memelfnote *note, const char *name, int type, 1459 unsigned int sz, void *data) 1460 { 1461 note->name = name; 1462 note->type = type; 1463 note->datasz = sz; 1464 note->data = data; 1465 } 1466 1467 /* 1468 * fill up all the fields in prstatus from the given task struct, except 1469 * registers which need to be filled up separately. 1470 */ 1471 static void fill_prstatus(struct elf_prstatus_common *prstatus, 1472 struct task_struct *p, long signr) 1473 { 1474 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1475 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1476 prstatus->pr_sighold = p->blocked.sig[0]; 1477 rcu_read_lock(); 1478 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1479 rcu_read_unlock(); 1480 prstatus->pr_pid = task_pid_vnr(p); 1481 prstatus->pr_pgrp = task_pgrp_vnr(p); 1482 prstatus->pr_sid = task_session_vnr(p); 1483 if (thread_group_leader(p)) { 1484 struct task_cputime cputime; 1485 1486 /* 1487 * This is the record for the group leader. It shows the 1488 * group-wide total, not its individual thread total. 1489 */ 1490 thread_group_cputime(p, &cputime); 1491 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime); 1492 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime); 1493 } else { 1494 u64 utime, stime; 1495 1496 task_cputime(p, &utime, &stime); 1497 prstatus->pr_utime = ns_to_kernel_old_timeval(utime); 1498 prstatus->pr_stime = ns_to_kernel_old_timeval(stime); 1499 } 1500 1501 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime); 1502 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime); 1503 } 1504 1505 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1506 struct mm_struct *mm) 1507 { 1508 const struct cred *cred; 1509 unsigned int i, len; 1510 unsigned int state; 1511 1512 /* first copy the parameters from user space */ 1513 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1514 1515 len = mm->arg_end - mm->arg_start; 1516 if (len >= ELF_PRARGSZ) 1517 len = ELF_PRARGSZ-1; 1518 if (copy_from_user(&psinfo->pr_psargs, 1519 (const char __user *)mm->arg_start, len)) 1520 return -EFAULT; 1521 for(i = 0; i < len; i++) 1522 if (psinfo->pr_psargs[i] == 0) 1523 psinfo->pr_psargs[i] = ' '; 1524 psinfo->pr_psargs[len] = 0; 1525 1526 rcu_read_lock(); 1527 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1528 rcu_read_unlock(); 1529 psinfo->pr_pid = task_pid_vnr(p); 1530 psinfo->pr_pgrp = task_pgrp_vnr(p); 1531 psinfo->pr_sid = task_session_vnr(p); 1532 1533 state = READ_ONCE(p->__state); 1534 i = state ? ffz(~state) + 1 : 0; 1535 psinfo->pr_state = i; 1536 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1537 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1538 psinfo->pr_nice = task_nice(p); 1539 psinfo->pr_flag = p->flags; 1540 rcu_read_lock(); 1541 cred = __task_cred(p); 1542 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); 1543 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); 1544 rcu_read_unlock(); 1545 get_task_comm(psinfo->pr_fname, p); 1546 1547 return 0; 1548 } 1549 1550 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1551 { 1552 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1553 int i = 0; 1554 do 1555 i += 2; 1556 while (auxv[i - 2] != AT_NULL); 1557 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1558 } 1559 1560 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, 1561 const kernel_siginfo_t *siginfo) 1562 { 1563 copy_siginfo_to_external(csigdata, siginfo); 1564 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata); 1565 } 1566 1567 #define MAX_FILE_NOTE_SIZE (4*1024*1024) 1568 /* 1569 * Format of NT_FILE note: 1570 * 1571 * long count -- how many files are mapped 1572 * long page_size -- units for file_ofs 1573 * array of [COUNT] elements of 1574 * long start 1575 * long end 1576 * long file_ofs 1577 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... 1578 */ 1579 static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm) 1580 { 1581 unsigned count, size, names_ofs, remaining, n; 1582 user_long_t *data; 1583 user_long_t *start_end_ofs; 1584 char *name_base, *name_curpos; 1585 int i; 1586 1587 /* *Estimated* file count and total data size needed */ 1588 count = cprm->vma_count; 1589 if (count > UINT_MAX / 64) 1590 return -EINVAL; 1591 size = count * 64; 1592 1593 names_ofs = (2 + 3 * count) * sizeof(data[0]); 1594 alloc: 1595 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */ 1596 return -EINVAL; 1597 size = round_up(size, PAGE_SIZE); 1598 /* 1599 * "size" can be 0 here legitimately. 1600 * Let it ENOMEM and omit NT_FILE section which will be empty anyway. 1601 */ 1602 data = kvmalloc(size, GFP_KERNEL); 1603 if (ZERO_OR_NULL_PTR(data)) 1604 return -ENOMEM; 1605 1606 start_end_ofs = data + 2; 1607 name_base = name_curpos = ((char *)data) + names_ofs; 1608 remaining = size - names_ofs; 1609 count = 0; 1610 for (i = 0; i < cprm->vma_count; i++) { 1611 struct core_vma_metadata *m = &cprm->vma_meta[i]; 1612 struct file *file; 1613 const char *filename; 1614 1615 file = m->file; 1616 if (!file) 1617 continue; 1618 filename = file_path(file, name_curpos, remaining); 1619 if (IS_ERR(filename)) { 1620 if (PTR_ERR(filename) == -ENAMETOOLONG) { 1621 kvfree(data); 1622 size = size * 5 / 4; 1623 goto alloc; 1624 } 1625 continue; 1626 } 1627 1628 /* file_path() fills at the end, move name down */ 1629 /* n = strlen(filename) + 1: */ 1630 n = (name_curpos + remaining) - filename; 1631 remaining = filename - name_curpos; 1632 memmove(name_curpos, filename, n); 1633 name_curpos += n; 1634 1635 *start_end_ofs++ = m->start; 1636 *start_end_ofs++ = m->end; 1637 *start_end_ofs++ = m->pgoff; 1638 count++; 1639 } 1640 1641 /* Now we know exact count of files, can store it */ 1642 data[0] = count; 1643 data[1] = PAGE_SIZE; 1644 /* 1645 * Count usually is less than mm->map_count, 1646 * we need to move filenames down. 1647 */ 1648 n = cprm->vma_count - count; 1649 if (n != 0) { 1650 unsigned shift_bytes = n * 3 * sizeof(data[0]); 1651 memmove(name_base - shift_bytes, name_base, 1652 name_curpos - name_base); 1653 name_curpos -= shift_bytes; 1654 } 1655 1656 size = name_curpos - (char *)data; 1657 fill_note(note, "CORE", NT_FILE, size, data); 1658 return 0; 1659 } 1660 1661 #include <linux/regset.h> 1662 1663 struct elf_thread_core_info { 1664 struct elf_thread_core_info *next; 1665 struct task_struct *task; 1666 struct elf_prstatus prstatus; 1667 struct memelfnote notes[]; 1668 }; 1669 1670 struct elf_note_info { 1671 struct elf_thread_core_info *thread; 1672 struct memelfnote psinfo; 1673 struct memelfnote signote; 1674 struct memelfnote auxv; 1675 struct memelfnote files; 1676 user_siginfo_t csigdata; 1677 size_t size; 1678 int thread_notes; 1679 }; 1680 1681 #ifdef CORE_DUMP_USE_REGSET 1682 /* 1683 * When a regset has a writeback hook, we call it on each thread before 1684 * dumping user memory. On register window machines, this makes sure the 1685 * user memory backing the register data is up to date before we read it. 1686 */ 1687 static void do_thread_regset_writeback(struct task_struct *task, 1688 const struct user_regset *regset) 1689 { 1690 if (regset->writeback) 1691 regset->writeback(task, regset, 1); 1692 } 1693 1694 #ifndef PRSTATUS_SIZE 1695 #define PRSTATUS_SIZE sizeof(struct elf_prstatus) 1696 #endif 1697 1698 #ifndef SET_PR_FPVALID 1699 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1) 1700 #endif 1701 1702 static int fill_thread_core_info(struct elf_thread_core_info *t, 1703 const struct user_regset_view *view, 1704 long signr, struct elf_note_info *info) 1705 { 1706 unsigned int note_iter, view_iter; 1707 1708 /* 1709 * NT_PRSTATUS is the one special case, because the regset data 1710 * goes into the pr_reg field inside the note contents, rather 1711 * than being the whole note contents. We fill the regset in here. 1712 * We assume that regset 0 is NT_PRSTATUS. 1713 */ 1714 fill_prstatus(&t->prstatus.common, t->task, signr); 1715 regset_get(t->task, &view->regsets[0], 1716 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg); 1717 1718 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1719 PRSTATUS_SIZE, &t->prstatus); 1720 info->size += notesize(&t->notes[0]); 1721 1722 do_thread_regset_writeback(t->task, &view->regsets[0]); 1723 1724 /* 1725 * Each other regset might generate a note too. For each regset 1726 * that has no core_note_type or is inactive, skip it. 1727 */ 1728 note_iter = 1; 1729 for (view_iter = 1; view_iter < view->n; ++view_iter) { 1730 const struct user_regset *regset = &view->regsets[view_iter]; 1731 int note_type = regset->core_note_type; 1732 bool is_fpreg = note_type == NT_PRFPREG; 1733 void *data; 1734 int ret; 1735 1736 do_thread_regset_writeback(t->task, regset); 1737 if (!note_type) // not for coredumps 1738 continue; 1739 if (regset->active && regset->active(t->task, regset) <= 0) 1740 continue; 1741 1742 ret = regset_get_alloc(t->task, regset, ~0U, &data); 1743 if (ret < 0) 1744 continue; 1745 1746 if (WARN_ON_ONCE(note_iter >= info->thread_notes)) 1747 break; 1748 1749 if (is_fpreg) 1750 SET_PR_FPVALID(&t->prstatus); 1751 1752 fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX", 1753 note_type, ret, data); 1754 1755 info->size += notesize(&t->notes[note_iter]); 1756 note_iter++; 1757 } 1758 1759 return 1; 1760 } 1761 #else 1762 static int fill_thread_core_info(struct elf_thread_core_info *t, 1763 const struct user_regset_view *view, 1764 long signr, struct elf_note_info *info) 1765 { 1766 struct task_struct *p = t->task; 1767 elf_fpregset_t *fpu; 1768 1769 fill_prstatus(&t->prstatus.common, p, signr); 1770 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1771 1772 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1773 &(t->prstatus)); 1774 info->size += notesize(&t->notes[0]); 1775 1776 fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL); 1777 if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) { 1778 kfree(fpu); 1779 return 1; 1780 } 1781 1782 t->prstatus.pr_fpvalid = 1; 1783 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu); 1784 info->size += notesize(&t->notes[1]); 1785 1786 return 1; 1787 } 1788 #endif 1789 1790 static int fill_note_info(struct elfhdr *elf, int phdrs, 1791 struct elf_note_info *info, 1792 struct coredump_params *cprm) 1793 { 1794 struct task_struct *dump_task = current; 1795 const struct user_regset_view *view; 1796 struct elf_thread_core_info *t; 1797 struct elf_prpsinfo *psinfo; 1798 struct core_thread *ct; 1799 1800 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1801 if (!psinfo) 1802 return 0; 1803 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1804 1805 #ifdef CORE_DUMP_USE_REGSET 1806 view = task_user_regset_view(dump_task); 1807 1808 /* 1809 * Figure out how many notes we're going to need for each thread. 1810 */ 1811 info->thread_notes = 0; 1812 for (int i = 0; i < view->n; ++i) 1813 if (view->regsets[i].core_note_type != 0) 1814 ++info->thread_notes; 1815 1816 /* 1817 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1818 * since it is our one special case. 1819 */ 1820 if (unlikely(info->thread_notes == 0) || 1821 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1822 WARN_ON(1); 1823 return 0; 1824 } 1825 1826 /* 1827 * Initialize the ELF file header. 1828 */ 1829 fill_elf_header(elf, phdrs, 1830 view->e_machine, view->e_flags); 1831 #else 1832 view = NULL; 1833 info->thread_notes = 2; 1834 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS); 1835 #endif 1836 1837 /* 1838 * Allocate a structure for each thread. 1839 */ 1840 info->thread = kzalloc(offsetof(struct elf_thread_core_info, 1841 notes[info->thread_notes]), 1842 GFP_KERNEL); 1843 if (unlikely(!info->thread)) 1844 return 0; 1845 1846 info->thread->task = dump_task; 1847 for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) { 1848 t = kzalloc(offsetof(struct elf_thread_core_info, 1849 notes[info->thread_notes]), 1850 GFP_KERNEL); 1851 if (unlikely(!t)) 1852 return 0; 1853 1854 t->task = ct->task; 1855 t->next = info->thread->next; 1856 info->thread->next = t; 1857 } 1858 1859 /* 1860 * Now fill in each thread's information. 1861 */ 1862 for (t = info->thread; t != NULL; t = t->next) 1863 if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info)) 1864 return 0; 1865 1866 /* 1867 * Fill in the two process-wide notes. 1868 */ 1869 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1870 info->size += notesize(&info->psinfo); 1871 1872 fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo); 1873 info->size += notesize(&info->signote); 1874 1875 fill_auxv_note(&info->auxv, current->mm); 1876 info->size += notesize(&info->auxv); 1877 1878 if (fill_files_note(&info->files, cprm) == 0) 1879 info->size += notesize(&info->files); 1880 1881 return 1; 1882 } 1883 1884 /* 1885 * Write all the notes for each thread. When writing the first thread, the 1886 * process-wide notes are interleaved after the first thread-specific note. 1887 */ 1888 static int write_note_info(struct elf_note_info *info, 1889 struct coredump_params *cprm) 1890 { 1891 bool first = true; 1892 struct elf_thread_core_info *t = info->thread; 1893 1894 do { 1895 int i; 1896 1897 if (!writenote(&t->notes[0], cprm)) 1898 return 0; 1899 1900 if (first && !writenote(&info->psinfo, cprm)) 1901 return 0; 1902 if (first && !writenote(&info->signote, cprm)) 1903 return 0; 1904 if (first && !writenote(&info->auxv, cprm)) 1905 return 0; 1906 if (first && info->files.data && 1907 !writenote(&info->files, cprm)) 1908 return 0; 1909 1910 for (i = 1; i < info->thread_notes; ++i) 1911 if (t->notes[i].data && 1912 !writenote(&t->notes[i], cprm)) 1913 return 0; 1914 1915 first = false; 1916 t = t->next; 1917 } while (t); 1918 1919 return 1; 1920 } 1921 1922 static void free_note_info(struct elf_note_info *info) 1923 { 1924 struct elf_thread_core_info *threads = info->thread; 1925 while (threads) { 1926 unsigned int i; 1927 struct elf_thread_core_info *t = threads; 1928 threads = t->next; 1929 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1930 for (i = 1; i < info->thread_notes; ++i) 1931 kfree(t->notes[i].data); 1932 kfree(t); 1933 } 1934 kfree(info->psinfo.data); 1935 kvfree(info->files.data); 1936 } 1937 1938 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, 1939 elf_addr_t e_shoff, int segs) 1940 { 1941 elf->e_shoff = e_shoff; 1942 elf->e_shentsize = sizeof(*shdr4extnum); 1943 elf->e_shnum = 1; 1944 elf->e_shstrndx = SHN_UNDEF; 1945 1946 memset(shdr4extnum, 0, sizeof(*shdr4extnum)); 1947 1948 shdr4extnum->sh_type = SHT_NULL; 1949 shdr4extnum->sh_size = elf->e_shnum; 1950 shdr4extnum->sh_link = elf->e_shstrndx; 1951 shdr4extnum->sh_info = segs; 1952 } 1953 1954 /* 1955 * Actual dumper 1956 * 1957 * This is a two-pass process; first we find the offsets of the bits, 1958 * and then they are actually written out. If we run out of core limit 1959 * we just truncate. 1960 */ 1961 static int elf_core_dump(struct coredump_params *cprm) 1962 { 1963 int has_dumped = 0; 1964 int segs, i; 1965 struct elfhdr elf; 1966 loff_t offset = 0, dataoff; 1967 struct elf_note_info info = { }; 1968 struct elf_phdr *phdr4note = NULL; 1969 struct elf_shdr *shdr4extnum = NULL; 1970 Elf_Half e_phnum; 1971 elf_addr_t e_shoff; 1972 1973 /* 1974 * The number of segs are recored into ELF header as 16bit value. 1975 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. 1976 */ 1977 segs = cprm->vma_count + elf_core_extra_phdrs(cprm); 1978 1979 /* for notes section */ 1980 segs++; 1981 1982 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid 1983 * this, kernel supports extended numbering. Have a look at 1984 * include/linux/elf.h for further information. */ 1985 e_phnum = segs > PN_XNUM ? PN_XNUM : segs; 1986 1987 /* 1988 * Collect all the non-memory information about the process for the 1989 * notes. This also sets up the file header. 1990 */ 1991 if (!fill_note_info(&elf, e_phnum, &info, cprm)) 1992 goto end_coredump; 1993 1994 has_dumped = 1; 1995 1996 offset += sizeof(elf); /* ELF header */ 1997 offset += segs * sizeof(struct elf_phdr); /* Program headers */ 1998 1999 /* Write notes phdr entry */ 2000 { 2001 size_t sz = info.size; 2002 2003 /* For cell spufs */ 2004 sz += elf_coredump_extra_notes_size(); 2005 2006 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); 2007 if (!phdr4note) 2008 goto end_coredump; 2009 2010 fill_elf_note_phdr(phdr4note, sz, offset); 2011 offset += sz; 2012 } 2013 2014 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 2015 2016 offset += cprm->vma_data_size; 2017 offset += elf_core_extra_data_size(cprm); 2018 e_shoff = offset; 2019 2020 if (e_phnum == PN_XNUM) { 2021 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); 2022 if (!shdr4extnum) 2023 goto end_coredump; 2024 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs); 2025 } 2026 2027 offset = dataoff; 2028 2029 if (!dump_emit(cprm, &elf, sizeof(elf))) 2030 goto end_coredump; 2031 2032 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note))) 2033 goto end_coredump; 2034 2035 /* Write program headers for segments dump */ 2036 for (i = 0; i < cprm->vma_count; i++) { 2037 struct core_vma_metadata *meta = cprm->vma_meta + i; 2038 struct elf_phdr phdr; 2039 2040 phdr.p_type = PT_LOAD; 2041 phdr.p_offset = offset; 2042 phdr.p_vaddr = meta->start; 2043 phdr.p_paddr = 0; 2044 phdr.p_filesz = meta->dump_size; 2045 phdr.p_memsz = meta->end - meta->start; 2046 offset += phdr.p_filesz; 2047 phdr.p_flags = 0; 2048 if (meta->flags & VM_READ) 2049 phdr.p_flags |= PF_R; 2050 if (meta->flags & VM_WRITE) 2051 phdr.p_flags |= PF_W; 2052 if (meta->flags & VM_EXEC) 2053 phdr.p_flags |= PF_X; 2054 phdr.p_align = ELF_EXEC_PAGESIZE; 2055 2056 if (!dump_emit(cprm, &phdr, sizeof(phdr))) 2057 goto end_coredump; 2058 } 2059 2060 if (!elf_core_write_extra_phdrs(cprm, offset)) 2061 goto end_coredump; 2062 2063 /* write out the notes section */ 2064 if (!write_note_info(&info, cprm)) 2065 goto end_coredump; 2066 2067 /* For cell spufs */ 2068 if (elf_coredump_extra_notes_write(cprm)) 2069 goto end_coredump; 2070 2071 /* Align to page */ 2072 dump_skip_to(cprm, dataoff); 2073 2074 for (i = 0; i < cprm->vma_count; i++) { 2075 struct core_vma_metadata *meta = cprm->vma_meta + i; 2076 2077 if (!dump_user_range(cprm, meta->start, meta->dump_size)) 2078 goto end_coredump; 2079 } 2080 2081 if (!elf_core_write_extra_data(cprm)) 2082 goto end_coredump; 2083 2084 if (e_phnum == PN_XNUM) { 2085 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum))) 2086 goto end_coredump; 2087 } 2088 2089 end_coredump: 2090 free_note_info(&info); 2091 kfree(shdr4extnum); 2092 kfree(phdr4note); 2093 return has_dumped; 2094 } 2095 2096 #endif /* CONFIG_ELF_CORE */ 2097 2098 static int __init init_elf_binfmt(void) 2099 { 2100 register_binfmt(&elf_format); 2101 return 0; 2102 } 2103 2104 static void __exit exit_elf_binfmt(void) 2105 { 2106 /* Remove the COFF and ELF loaders. */ 2107 unregister_binfmt(&elf_format); 2108 } 2109 2110 core_initcall(init_elf_binfmt); 2111 module_exit(exit_elf_binfmt); 2112 2113 #ifdef CONFIG_BINFMT_ELF_KUNIT_TEST 2114 #include "binfmt_elf_test.c" 2115 #endif 2116