xref: /linux/fs/binfmt_elf.c (revision 9ffc93f203c18a70623f21950f1dd473c9ec48cd)
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/security.h>
31 #include <linux/random.h>
32 #include <linux/elf.h>
33 #include <linux/utsname.h>
34 #include <linux/coredump.h>
35 #include <asm/uaccess.h>
36 #include <asm/param.h>
37 #include <asm/page.h>
38 #include <asm/exec.h>
39 
40 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
41 static int load_elf_library(struct file *);
42 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
43 				int, int, unsigned long);
44 
45 /*
46  * If we don't support core dumping, then supply a NULL so we
47  * don't even try.
48  */
49 #ifdef CONFIG_ELF_CORE
50 static int elf_core_dump(struct coredump_params *cprm);
51 #else
52 #define elf_core_dump	NULL
53 #endif
54 
55 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
56 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
57 #else
58 #define ELF_MIN_ALIGN	PAGE_SIZE
59 #endif
60 
61 #ifndef ELF_CORE_EFLAGS
62 #define ELF_CORE_EFLAGS	0
63 #endif
64 
65 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
66 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
67 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
68 
69 static struct linux_binfmt elf_format = {
70 	.module		= THIS_MODULE,
71 	.load_binary	= load_elf_binary,
72 	.load_shlib	= load_elf_library,
73 	.core_dump	= elf_core_dump,
74 	.min_coredump	= ELF_EXEC_PAGESIZE,
75 };
76 
77 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
78 
79 static int set_brk(unsigned long start, unsigned long end)
80 {
81 	start = ELF_PAGEALIGN(start);
82 	end = ELF_PAGEALIGN(end);
83 	if (end > start) {
84 		unsigned long addr;
85 		down_write(&current->mm->mmap_sem);
86 		addr = do_brk(start, end - start);
87 		up_write(&current->mm->mmap_sem);
88 		if (BAD_ADDR(addr))
89 			return addr;
90 	}
91 	current->mm->start_brk = current->mm->brk = end;
92 	return 0;
93 }
94 
95 /* We need to explicitly zero any fractional pages
96    after the data section (i.e. bss).  This would
97    contain the junk from the file that should not
98    be in memory
99  */
100 static int padzero(unsigned long elf_bss)
101 {
102 	unsigned long nbyte;
103 
104 	nbyte = ELF_PAGEOFFSET(elf_bss);
105 	if (nbyte) {
106 		nbyte = ELF_MIN_ALIGN - nbyte;
107 		if (clear_user((void __user *) elf_bss, nbyte))
108 			return -EFAULT;
109 	}
110 	return 0;
111 }
112 
113 /* Let's use some macros to make this stack manipulation a little clearer */
114 #ifdef CONFIG_STACK_GROWSUP
115 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
116 #define STACK_ROUND(sp, items) \
117 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
118 #define STACK_ALLOC(sp, len) ({ \
119 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
120 	old_sp; })
121 #else
122 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
123 #define STACK_ROUND(sp, items) \
124 	(((unsigned long) (sp - items)) &~ 15UL)
125 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
126 #endif
127 
128 #ifndef ELF_BASE_PLATFORM
129 /*
130  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
131  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
132  * will be copied to the user stack in the same manner as AT_PLATFORM.
133  */
134 #define ELF_BASE_PLATFORM NULL
135 #endif
136 
137 static int
138 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
139 		unsigned long load_addr, unsigned long interp_load_addr)
140 {
141 	unsigned long p = bprm->p;
142 	int argc = bprm->argc;
143 	int envc = bprm->envc;
144 	elf_addr_t __user *argv;
145 	elf_addr_t __user *envp;
146 	elf_addr_t __user *sp;
147 	elf_addr_t __user *u_platform;
148 	elf_addr_t __user *u_base_platform;
149 	elf_addr_t __user *u_rand_bytes;
150 	const char *k_platform = ELF_PLATFORM;
151 	const char *k_base_platform = ELF_BASE_PLATFORM;
152 	unsigned char k_rand_bytes[16];
153 	int items;
154 	elf_addr_t *elf_info;
155 	int ei_index = 0;
156 	const struct cred *cred = current_cred();
157 	struct vm_area_struct *vma;
158 
159 	/*
160 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
161 	 * evictions by the processes running on the same package. One
162 	 * thing we can do is to shuffle the initial stack for them.
163 	 */
164 
165 	p = arch_align_stack(p);
166 
167 	/*
168 	 * If this architecture has a platform capability string, copy it
169 	 * to userspace.  In some cases (Sparc), this info is impossible
170 	 * for userspace to get any other way, in others (i386) it is
171 	 * merely difficult.
172 	 */
173 	u_platform = NULL;
174 	if (k_platform) {
175 		size_t len = strlen(k_platform) + 1;
176 
177 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
178 		if (__copy_to_user(u_platform, k_platform, len))
179 			return -EFAULT;
180 	}
181 
182 	/*
183 	 * If this architecture has a "base" platform capability
184 	 * string, copy it to userspace.
185 	 */
186 	u_base_platform = NULL;
187 	if (k_base_platform) {
188 		size_t len = strlen(k_base_platform) + 1;
189 
190 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
191 		if (__copy_to_user(u_base_platform, k_base_platform, len))
192 			return -EFAULT;
193 	}
194 
195 	/*
196 	 * Generate 16 random bytes for userspace PRNG seeding.
197 	 */
198 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
199 	u_rand_bytes = (elf_addr_t __user *)
200 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
201 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
202 		return -EFAULT;
203 
204 	/* Create the ELF interpreter info */
205 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
206 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
207 #define NEW_AUX_ENT(id, val) \
208 	do { \
209 		elf_info[ei_index++] = id; \
210 		elf_info[ei_index++] = val; \
211 	} while (0)
212 
213 #ifdef ARCH_DLINFO
214 	/*
215 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
216 	 * AUXV.
217 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
218 	 * ARCH_DLINFO changes
219 	 */
220 	ARCH_DLINFO;
221 #endif
222 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
223 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
224 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
225 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
226 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
227 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
228 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
229 	NEW_AUX_ENT(AT_FLAGS, 0);
230 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
231 	NEW_AUX_ENT(AT_UID, cred->uid);
232 	NEW_AUX_ENT(AT_EUID, cred->euid);
233 	NEW_AUX_ENT(AT_GID, cred->gid);
234 	NEW_AUX_ENT(AT_EGID, cred->egid);
235  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
236 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
237 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
238 	if (k_platform) {
239 		NEW_AUX_ENT(AT_PLATFORM,
240 			    (elf_addr_t)(unsigned long)u_platform);
241 	}
242 	if (k_base_platform) {
243 		NEW_AUX_ENT(AT_BASE_PLATFORM,
244 			    (elf_addr_t)(unsigned long)u_base_platform);
245 	}
246 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
247 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
248 	}
249 #undef NEW_AUX_ENT
250 	/* AT_NULL is zero; clear the rest too */
251 	memset(&elf_info[ei_index], 0,
252 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
253 
254 	/* And advance past the AT_NULL entry.  */
255 	ei_index += 2;
256 
257 	sp = STACK_ADD(p, ei_index);
258 
259 	items = (argc + 1) + (envc + 1) + 1;
260 	bprm->p = STACK_ROUND(sp, items);
261 
262 	/* Point sp at the lowest address on the stack */
263 #ifdef CONFIG_STACK_GROWSUP
264 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
265 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
266 #else
267 	sp = (elf_addr_t __user *)bprm->p;
268 #endif
269 
270 
271 	/*
272 	 * Grow the stack manually; some architectures have a limit on how
273 	 * far ahead a user-space access may be in order to grow the stack.
274 	 */
275 	vma = find_extend_vma(current->mm, bprm->p);
276 	if (!vma)
277 		return -EFAULT;
278 
279 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
280 	if (__put_user(argc, sp++))
281 		return -EFAULT;
282 	argv = sp;
283 	envp = argv + argc + 1;
284 
285 	/* Populate argv and envp */
286 	p = current->mm->arg_end = current->mm->arg_start;
287 	while (argc-- > 0) {
288 		size_t len;
289 		if (__put_user((elf_addr_t)p, argv++))
290 			return -EFAULT;
291 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
292 		if (!len || len > MAX_ARG_STRLEN)
293 			return -EINVAL;
294 		p += len;
295 	}
296 	if (__put_user(0, argv))
297 		return -EFAULT;
298 	current->mm->arg_end = current->mm->env_start = p;
299 	while (envc-- > 0) {
300 		size_t len;
301 		if (__put_user((elf_addr_t)p, envp++))
302 			return -EFAULT;
303 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
304 		if (!len || len > MAX_ARG_STRLEN)
305 			return -EINVAL;
306 		p += len;
307 	}
308 	if (__put_user(0, envp))
309 		return -EFAULT;
310 	current->mm->env_end = p;
311 
312 	/* Put the elf_info on the stack in the right place.  */
313 	sp = (elf_addr_t __user *)envp + 1;
314 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
315 		return -EFAULT;
316 	return 0;
317 }
318 
319 static unsigned long elf_map(struct file *filep, unsigned long addr,
320 		struct elf_phdr *eppnt, int prot, int type,
321 		unsigned long total_size)
322 {
323 	unsigned long map_addr;
324 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
325 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
326 	addr = ELF_PAGESTART(addr);
327 	size = ELF_PAGEALIGN(size);
328 
329 	/* mmap() will return -EINVAL if given a zero size, but a
330 	 * segment with zero filesize is perfectly valid */
331 	if (!size)
332 		return addr;
333 
334 	down_write(&current->mm->mmap_sem);
335 	/*
336 	* total_size is the size of the ELF (interpreter) image.
337 	* The _first_ mmap needs to know the full size, otherwise
338 	* randomization might put this image into an overlapping
339 	* position with the ELF binary image. (since size < total_size)
340 	* So we first map the 'big' image - and unmap the remainder at
341 	* the end. (which unmap is needed for ELF images with holes.)
342 	*/
343 	if (total_size) {
344 		total_size = ELF_PAGEALIGN(total_size);
345 		map_addr = do_mmap(filep, addr, total_size, prot, type, off);
346 		if (!BAD_ADDR(map_addr))
347 			do_munmap(current->mm, map_addr+size, total_size-size);
348 	} else
349 		map_addr = do_mmap(filep, addr, size, prot, type, off);
350 
351 	up_write(&current->mm->mmap_sem);
352 	return(map_addr);
353 }
354 
355 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
356 {
357 	int i, first_idx = -1, last_idx = -1;
358 
359 	for (i = 0; i < nr; i++) {
360 		if (cmds[i].p_type == PT_LOAD) {
361 			last_idx = i;
362 			if (first_idx == -1)
363 				first_idx = i;
364 		}
365 	}
366 	if (first_idx == -1)
367 		return 0;
368 
369 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
370 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
371 }
372 
373 
374 /* This is much more generalized than the library routine read function,
375    so we keep this separate.  Technically the library read function
376    is only provided so that we can read a.out libraries that have
377    an ELF header */
378 
379 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
380 		struct file *interpreter, unsigned long *interp_map_addr,
381 		unsigned long no_base)
382 {
383 	struct elf_phdr *elf_phdata;
384 	struct elf_phdr *eppnt;
385 	unsigned long load_addr = 0;
386 	int load_addr_set = 0;
387 	unsigned long last_bss = 0, elf_bss = 0;
388 	unsigned long error = ~0UL;
389 	unsigned long total_size;
390 	int retval, i, size;
391 
392 	/* First of all, some simple consistency checks */
393 	if (interp_elf_ex->e_type != ET_EXEC &&
394 	    interp_elf_ex->e_type != ET_DYN)
395 		goto out;
396 	if (!elf_check_arch(interp_elf_ex))
397 		goto out;
398 	if (!interpreter->f_op || !interpreter->f_op->mmap)
399 		goto out;
400 
401 	/*
402 	 * If the size of this structure has changed, then punt, since
403 	 * we will be doing the wrong thing.
404 	 */
405 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
406 		goto out;
407 	if (interp_elf_ex->e_phnum < 1 ||
408 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
409 		goto out;
410 
411 	/* Now read in all of the header information */
412 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
413 	if (size > ELF_MIN_ALIGN)
414 		goto out;
415 	elf_phdata = kmalloc(size, GFP_KERNEL);
416 	if (!elf_phdata)
417 		goto out;
418 
419 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
420 			     (char *)elf_phdata, size);
421 	error = -EIO;
422 	if (retval != size) {
423 		if (retval < 0)
424 			error = retval;
425 		goto out_close;
426 	}
427 
428 	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
429 	if (!total_size) {
430 		error = -EINVAL;
431 		goto out_close;
432 	}
433 
434 	eppnt = elf_phdata;
435 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
436 		if (eppnt->p_type == PT_LOAD) {
437 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
438 			int elf_prot = 0;
439 			unsigned long vaddr = 0;
440 			unsigned long k, map_addr;
441 
442 			if (eppnt->p_flags & PF_R)
443 		    		elf_prot = PROT_READ;
444 			if (eppnt->p_flags & PF_W)
445 				elf_prot |= PROT_WRITE;
446 			if (eppnt->p_flags & PF_X)
447 				elf_prot |= PROT_EXEC;
448 			vaddr = eppnt->p_vaddr;
449 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
450 				elf_type |= MAP_FIXED;
451 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
452 				load_addr = -vaddr;
453 
454 			map_addr = elf_map(interpreter, load_addr + vaddr,
455 					eppnt, elf_prot, elf_type, total_size);
456 			total_size = 0;
457 			if (!*interp_map_addr)
458 				*interp_map_addr = map_addr;
459 			error = map_addr;
460 			if (BAD_ADDR(map_addr))
461 				goto out_close;
462 
463 			if (!load_addr_set &&
464 			    interp_elf_ex->e_type == ET_DYN) {
465 				load_addr = map_addr - ELF_PAGESTART(vaddr);
466 				load_addr_set = 1;
467 			}
468 
469 			/*
470 			 * Check to see if the section's size will overflow the
471 			 * allowed task size. Note that p_filesz must always be
472 			 * <= p_memsize so it's only necessary to check p_memsz.
473 			 */
474 			k = load_addr + eppnt->p_vaddr;
475 			if (BAD_ADDR(k) ||
476 			    eppnt->p_filesz > eppnt->p_memsz ||
477 			    eppnt->p_memsz > TASK_SIZE ||
478 			    TASK_SIZE - eppnt->p_memsz < k) {
479 				error = -ENOMEM;
480 				goto out_close;
481 			}
482 
483 			/*
484 			 * Find the end of the file mapping for this phdr, and
485 			 * keep track of the largest address we see for this.
486 			 */
487 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
488 			if (k > elf_bss)
489 				elf_bss = k;
490 
491 			/*
492 			 * Do the same thing for the memory mapping - between
493 			 * elf_bss and last_bss is the bss section.
494 			 */
495 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
496 			if (k > last_bss)
497 				last_bss = k;
498 		}
499 	}
500 
501 	if (last_bss > elf_bss) {
502 		/*
503 		 * Now fill out the bss section.  First pad the last page up
504 		 * to the page boundary, and then perform a mmap to make sure
505 		 * that there are zero-mapped pages up to and including the
506 		 * last bss page.
507 		 */
508 		if (padzero(elf_bss)) {
509 			error = -EFAULT;
510 			goto out_close;
511 		}
512 
513 		/* What we have mapped so far */
514 		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
515 
516 		/* Map the last of the bss segment */
517 		down_write(&current->mm->mmap_sem);
518 		error = do_brk(elf_bss, last_bss - elf_bss);
519 		up_write(&current->mm->mmap_sem);
520 		if (BAD_ADDR(error))
521 			goto out_close;
522 	}
523 
524 	error = load_addr;
525 
526 out_close:
527 	kfree(elf_phdata);
528 out:
529 	return error;
530 }
531 
532 /*
533  * These are the functions used to load ELF style executables and shared
534  * libraries.  There is no binary dependent code anywhere else.
535  */
536 
537 #define INTERPRETER_NONE 0
538 #define INTERPRETER_ELF 2
539 
540 #ifndef STACK_RND_MASK
541 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
542 #endif
543 
544 static unsigned long randomize_stack_top(unsigned long stack_top)
545 {
546 	unsigned int random_variable = 0;
547 
548 	if ((current->flags & PF_RANDOMIZE) &&
549 		!(current->personality & ADDR_NO_RANDOMIZE)) {
550 		random_variable = get_random_int() & STACK_RND_MASK;
551 		random_variable <<= PAGE_SHIFT;
552 	}
553 #ifdef CONFIG_STACK_GROWSUP
554 	return PAGE_ALIGN(stack_top) + random_variable;
555 #else
556 	return PAGE_ALIGN(stack_top) - random_variable;
557 #endif
558 }
559 
560 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
561 {
562 	struct file *interpreter = NULL; /* to shut gcc up */
563  	unsigned long load_addr = 0, load_bias = 0;
564 	int load_addr_set = 0;
565 	char * elf_interpreter = NULL;
566 	unsigned long error;
567 	struct elf_phdr *elf_ppnt, *elf_phdata;
568 	unsigned long elf_bss, elf_brk;
569 	int retval, i;
570 	unsigned int size;
571 	unsigned long elf_entry;
572 	unsigned long interp_load_addr = 0;
573 	unsigned long start_code, end_code, start_data, end_data;
574 	unsigned long reloc_func_desc __maybe_unused = 0;
575 	int executable_stack = EXSTACK_DEFAULT;
576 	unsigned long def_flags = 0;
577 	struct {
578 		struct elfhdr elf_ex;
579 		struct elfhdr interp_elf_ex;
580 	} *loc;
581 
582 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
583 	if (!loc) {
584 		retval = -ENOMEM;
585 		goto out_ret;
586 	}
587 
588 	/* Get the exec-header */
589 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
590 
591 	retval = -ENOEXEC;
592 	/* First of all, some simple consistency checks */
593 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
594 		goto out;
595 
596 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
597 		goto out;
598 	if (!elf_check_arch(&loc->elf_ex))
599 		goto out;
600 	if (!bprm->file->f_op || !bprm->file->f_op->mmap)
601 		goto out;
602 
603 	/* Now read in all of the header information */
604 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
605 		goto out;
606 	if (loc->elf_ex.e_phnum < 1 ||
607 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
608 		goto out;
609 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
610 	retval = -ENOMEM;
611 	elf_phdata = kmalloc(size, GFP_KERNEL);
612 	if (!elf_phdata)
613 		goto out;
614 
615 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
616 			     (char *)elf_phdata, size);
617 	if (retval != size) {
618 		if (retval >= 0)
619 			retval = -EIO;
620 		goto out_free_ph;
621 	}
622 
623 	elf_ppnt = elf_phdata;
624 	elf_bss = 0;
625 	elf_brk = 0;
626 
627 	start_code = ~0UL;
628 	end_code = 0;
629 	start_data = 0;
630 	end_data = 0;
631 
632 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
633 		if (elf_ppnt->p_type == PT_INTERP) {
634 			/* This is the program interpreter used for
635 			 * shared libraries - for now assume that this
636 			 * is an a.out format binary
637 			 */
638 			retval = -ENOEXEC;
639 			if (elf_ppnt->p_filesz > PATH_MAX ||
640 			    elf_ppnt->p_filesz < 2)
641 				goto out_free_ph;
642 
643 			retval = -ENOMEM;
644 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
645 						  GFP_KERNEL);
646 			if (!elf_interpreter)
647 				goto out_free_ph;
648 
649 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
650 					     elf_interpreter,
651 					     elf_ppnt->p_filesz);
652 			if (retval != elf_ppnt->p_filesz) {
653 				if (retval >= 0)
654 					retval = -EIO;
655 				goto out_free_interp;
656 			}
657 			/* make sure path is NULL terminated */
658 			retval = -ENOEXEC;
659 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
660 				goto out_free_interp;
661 
662 			interpreter = open_exec(elf_interpreter);
663 			retval = PTR_ERR(interpreter);
664 			if (IS_ERR(interpreter))
665 				goto out_free_interp;
666 
667 			/*
668 			 * If the binary is not readable then enforce
669 			 * mm->dumpable = 0 regardless of the interpreter's
670 			 * permissions.
671 			 */
672 			would_dump(bprm, interpreter);
673 
674 			retval = kernel_read(interpreter, 0, bprm->buf,
675 					     BINPRM_BUF_SIZE);
676 			if (retval != BINPRM_BUF_SIZE) {
677 				if (retval >= 0)
678 					retval = -EIO;
679 				goto out_free_dentry;
680 			}
681 
682 			/* Get the exec headers */
683 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
684 			break;
685 		}
686 		elf_ppnt++;
687 	}
688 
689 	elf_ppnt = elf_phdata;
690 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
691 		if (elf_ppnt->p_type == PT_GNU_STACK) {
692 			if (elf_ppnt->p_flags & PF_X)
693 				executable_stack = EXSTACK_ENABLE_X;
694 			else
695 				executable_stack = EXSTACK_DISABLE_X;
696 			break;
697 		}
698 
699 	/* Some simple consistency checks for the interpreter */
700 	if (elf_interpreter) {
701 		retval = -ELIBBAD;
702 		/* Not an ELF interpreter */
703 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
704 			goto out_free_dentry;
705 		/* Verify the interpreter has a valid arch */
706 		if (!elf_check_arch(&loc->interp_elf_ex))
707 			goto out_free_dentry;
708 	}
709 
710 	/* Flush all traces of the currently running executable */
711 	retval = flush_old_exec(bprm);
712 	if (retval)
713 		goto out_free_dentry;
714 
715 	/* OK, This is the point of no return */
716 	current->mm->def_flags = def_flags;
717 
718 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
719 	   may depend on the personality.  */
720 	SET_PERSONALITY(loc->elf_ex);
721 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
722 		current->personality |= READ_IMPLIES_EXEC;
723 
724 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
725 		current->flags |= PF_RANDOMIZE;
726 
727 	setup_new_exec(bprm);
728 
729 	/* Do this so that we can load the interpreter, if need be.  We will
730 	   change some of these later */
731 	current->mm->free_area_cache = current->mm->mmap_base;
732 	current->mm->cached_hole_size = 0;
733 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
734 				 executable_stack);
735 	if (retval < 0) {
736 		send_sig(SIGKILL, current, 0);
737 		goto out_free_dentry;
738 	}
739 
740 	current->mm->start_stack = bprm->p;
741 
742 	/* Now we do a little grungy work by mmapping the ELF image into
743 	   the correct location in memory. */
744 	for(i = 0, elf_ppnt = elf_phdata;
745 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
746 		int elf_prot = 0, elf_flags;
747 		unsigned long k, vaddr;
748 
749 		if (elf_ppnt->p_type != PT_LOAD)
750 			continue;
751 
752 		if (unlikely (elf_brk > elf_bss)) {
753 			unsigned long nbyte;
754 
755 			/* There was a PT_LOAD segment with p_memsz > p_filesz
756 			   before this one. Map anonymous pages, if needed,
757 			   and clear the area.  */
758 			retval = set_brk(elf_bss + load_bias,
759 					 elf_brk + load_bias);
760 			if (retval) {
761 				send_sig(SIGKILL, current, 0);
762 				goto out_free_dentry;
763 			}
764 			nbyte = ELF_PAGEOFFSET(elf_bss);
765 			if (nbyte) {
766 				nbyte = ELF_MIN_ALIGN - nbyte;
767 				if (nbyte > elf_brk - elf_bss)
768 					nbyte = elf_brk - elf_bss;
769 				if (clear_user((void __user *)elf_bss +
770 							load_bias, nbyte)) {
771 					/*
772 					 * This bss-zeroing can fail if the ELF
773 					 * file specifies odd protections. So
774 					 * we don't check the return value
775 					 */
776 				}
777 			}
778 		}
779 
780 		if (elf_ppnt->p_flags & PF_R)
781 			elf_prot |= PROT_READ;
782 		if (elf_ppnt->p_flags & PF_W)
783 			elf_prot |= PROT_WRITE;
784 		if (elf_ppnt->p_flags & PF_X)
785 			elf_prot |= PROT_EXEC;
786 
787 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
788 
789 		vaddr = elf_ppnt->p_vaddr;
790 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
791 			elf_flags |= MAP_FIXED;
792 		} else if (loc->elf_ex.e_type == ET_DYN) {
793 			/* Try and get dynamic programs out of the way of the
794 			 * default mmap base, as well as whatever program they
795 			 * might try to exec.  This is because the brk will
796 			 * follow the loader, and is not movable.  */
797 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
798 			/* Memory randomization might have been switched off
799 			 * in runtime via sysctl.
800 			 * If that is the case, retain the original non-zero
801 			 * load_bias value in order to establish proper
802 			 * non-randomized mappings.
803 			 */
804 			if (current->flags & PF_RANDOMIZE)
805 				load_bias = 0;
806 			else
807 				load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
808 #else
809 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
810 #endif
811 		}
812 
813 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
814 				elf_prot, elf_flags, 0);
815 		if (BAD_ADDR(error)) {
816 			send_sig(SIGKILL, current, 0);
817 			retval = IS_ERR((void *)error) ?
818 				PTR_ERR((void*)error) : -EINVAL;
819 			goto out_free_dentry;
820 		}
821 
822 		if (!load_addr_set) {
823 			load_addr_set = 1;
824 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
825 			if (loc->elf_ex.e_type == ET_DYN) {
826 				load_bias += error -
827 				             ELF_PAGESTART(load_bias + vaddr);
828 				load_addr += load_bias;
829 				reloc_func_desc = load_bias;
830 			}
831 		}
832 		k = elf_ppnt->p_vaddr;
833 		if (k < start_code)
834 			start_code = k;
835 		if (start_data < k)
836 			start_data = k;
837 
838 		/*
839 		 * Check to see if the section's size will overflow the
840 		 * allowed task size. Note that p_filesz must always be
841 		 * <= p_memsz so it is only necessary to check p_memsz.
842 		 */
843 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
844 		    elf_ppnt->p_memsz > TASK_SIZE ||
845 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
846 			/* set_brk can never work. Avoid overflows. */
847 			send_sig(SIGKILL, current, 0);
848 			retval = -EINVAL;
849 			goto out_free_dentry;
850 		}
851 
852 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
853 
854 		if (k > elf_bss)
855 			elf_bss = k;
856 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
857 			end_code = k;
858 		if (end_data < k)
859 			end_data = k;
860 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
861 		if (k > elf_brk)
862 			elf_brk = k;
863 	}
864 
865 	loc->elf_ex.e_entry += load_bias;
866 	elf_bss += load_bias;
867 	elf_brk += load_bias;
868 	start_code += load_bias;
869 	end_code += load_bias;
870 	start_data += load_bias;
871 	end_data += load_bias;
872 
873 	/* Calling set_brk effectively mmaps the pages that we need
874 	 * for the bss and break sections.  We must do this before
875 	 * mapping in the interpreter, to make sure it doesn't wind
876 	 * up getting placed where the bss needs to go.
877 	 */
878 	retval = set_brk(elf_bss, elf_brk);
879 	if (retval) {
880 		send_sig(SIGKILL, current, 0);
881 		goto out_free_dentry;
882 	}
883 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
884 		send_sig(SIGSEGV, current, 0);
885 		retval = -EFAULT; /* Nobody gets to see this, but.. */
886 		goto out_free_dentry;
887 	}
888 
889 	if (elf_interpreter) {
890 		unsigned long uninitialized_var(interp_map_addr);
891 
892 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
893 					    interpreter,
894 					    &interp_map_addr,
895 					    load_bias);
896 		if (!IS_ERR((void *)elf_entry)) {
897 			/*
898 			 * load_elf_interp() returns relocation
899 			 * adjustment
900 			 */
901 			interp_load_addr = elf_entry;
902 			elf_entry += loc->interp_elf_ex.e_entry;
903 		}
904 		if (BAD_ADDR(elf_entry)) {
905 			force_sig(SIGSEGV, current);
906 			retval = IS_ERR((void *)elf_entry) ?
907 					(int)elf_entry : -EINVAL;
908 			goto out_free_dentry;
909 		}
910 		reloc_func_desc = interp_load_addr;
911 
912 		allow_write_access(interpreter);
913 		fput(interpreter);
914 		kfree(elf_interpreter);
915 	} else {
916 		elf_entry = loc->elf_ex.e_entry;
917 		if (BAD_ADDR(elf_entry)) {
918 			force_sig(SIGSEGV, current);
919 			retval = -EINVAL;
920 			goto out_free_dentry;
921 		}
922 	}
923 
924 	kfree(elf_phdata);
925 
926 	set_binfmt(&elf_format);
927 
928 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
929 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
930 	if (retval < 0) {
931 		send_sig(SIGKILL, current, 0);
932 		goto out;
933 	}
934 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
935 
936 	install_exec_creds(bprm);
937 	retval = create_elf_tables(bprm, &loc->elf_ex,
938 			  load_addr, interp_load_addr);
939 	if (retval < 0) {
940 		send_sig(SIGKILL, current, 0);
941 		goto out;
942 	}
943 	/* N.B. passed_fileno might not be initialized? */
944 	current->mm->end_code = end_code;
945 	current->mm->start_code = start_code;
946 	current->mm->start_data = start_data;
947 	current->mm->end_data = end_data;
948 	current->mm->start_stack = bprm->p;
949 
950 #ifdef arch_randomize_brk
951 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
952 		current->mm->brk = current->mm->start_brk =
953 			arch_randomize_brk(current->mm);
954 #ifdef CONFIG_COMPAT_BRK
955 		current->brk_randomized = 1;
956 #endif
957 	}
958 #endif
959 
960 	if (current->personality & MMAP_PAGE_ZERO) {
961 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
962 		   and some applications "depend" upon this behavior.
963 		   Since we do not have the power to recompile these, we
964 		   emulate the SVr4 behavior. Sigh. */
965 		down_write(&current->mm->mmap_sem);
966 		error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
967 				MAP_FIXED | MAP_PRIVATE, 0);
968 		up_write(&current->mm->mmap_sem);
969 	}
970 
971 #ifdef ELF_PLAT_INIT
972 	/*
973 	 * The ABI may specify that certain registers be set up in special
974 	 * ways (on i386 %edx is the address of a DT_FINI function, for
975 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
976 	 * that the e_entry field is the address of the function descriptor
977 	 * for the startup routine, rather than the address of the startup
978 	 * routine itself.  This macro performs whatever initialization to
979 	 * the regs structure is required as well as any relocations to the
980 	 * function descriptor entries when executing dynamically links apps.
981 	 */
982 	ELF_PLAT_INIT(regs, reloc_func_desc);
983 #endif
984 
985 	start_thread(regs, elf_entry, bprm->p);
986 	retval = 0;
987 out:
988 	kfree(loc);
989 out_ret:
990 	return retval;
991 
992 	/* error cleanup */
993 out_free_dentry:
994 	allow_write_access(interpreter);
995 	if (interpreter)
996 		fput(interpreter);
997 out_free_interp:
998 	kfree(elf_interpreter);
999 out_free_ph:
1000 	kfree(elf_phdata);
1001 	goto out;
1002 }
1003 
1004 /* This is really simpleminded and specialized - we are loading an
1005    a.out library that is given an ELF header. */
1006 static int load_elf_library(struct file *file)
1007 {
1008 	struct elf_phdr *elf_phdata;
1009 	struct elf_phdr *eppnt;
1010 	unsigned long elf_bss, bss, len;
1011 	int retval, error, i, j;
1012 	struct elfhdr elf_ex;
1013 
1014 	error = -ENOEXEC;
1015 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1016 	if (retval != sizeof(elf_ex))
1017 		goto out;
1018 
1019 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1020 		goto out;
1021 
1022 	/* First of all, some simple consistency checks */
1023 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1024 	    !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1025 		goto out;
1026 
1027 	/* Now read in all of the header information */
1028 
1029 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1030 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1031 
1032 	error = -ENOMEM;
1033 	elf_phdata = kmalloc(j, GFP_KERNEL);
1034 	if (!elf_phdata)
1035 		goto out;
1036 
1037 	eppnt = elf_phdata;
1038 	error = -ENOEXEC;
1039 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1040 	if (retval != j)
1041 		goto out_free_ph;
1042 
1043 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1044 		if ((eppnt + i)->p_type == PT_LOAD)
1045 			j++;
1046 	if (j != 1)
1047 		goto out_free_ph;
1048 
1049 	while (eppnt->p_type != PT_LOAD)
1050 		eppnt++;
1051 
1052 	/* Now use mmap to map the library into memory. */
1053 	down_write(&current->mm->mmap_sem);
1054 	error = do_mmap(file,
1055 			ELF_PAGESTART(eppnt->p_vaddr),
1056 			(eppnt->p_filesz +
1057 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1058 			PROT_READ | PROT_WRITE | PROT_EXEC,
1059 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1060 			(eppnt->p_offset -
1061 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1062 	up_write(&current->mm->mmap_sem);
1063 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1064 		goto out_free_ph;
1065 
1066 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1067 	if (padzero(elf_bss)) {
1068 		error = -EFAULT;
1069 		goto out_free_ph;
1070 	}
1071 
1072 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1073 			    ELF_MIN_ALIGN - 1);
1074 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1075 	if (bss > len) {
1076 		down_write(&current->mm->mmap_sem);
1077 		do_brk(len, bss - len);
1078 		up_write(&current->mm->mmap_sem);
1079 	}
1080 	error = 0;
1081 
1082 out_free_ph:
1083 	kfree(elf_phdata);
1084 out:
1085 	return error;
1086 }
1087 
1088 #ifdef CONFIG_ELF_CORE
1089 /*
1090  * ELF core dumper
1091  *
1092  * Modelled on fs/exec.c:aout_core_dump()
1093  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1094  */
1095 
1096 /*
1097  * Decide what to dump of a segment, part, all or none.
1098  */
1099 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1100 				   unsigned long mm_flags)
1101 {
1102 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1103 
1104 	/* The vma can be set up to tell us the answer directly.  */
1105 	if (vma->vm_flags & VM_ALWAYSDUMP)
1106 		goto whole;
1107 
1108 	/* Hugetlb memory check */
1109 	if (vma->vm_flags & VM_HUGETLB) {
1110 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1111 			goto whole;
1112 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1113 			goto whole;
1114 	}
1115 
1116 	/* Do not dump I/O mapped devices or special mappings */
1117 	if (vma->vm_flags & (VM_IO | VM_RESERVED))
1118 		return 0;
1119 
1120 	/* By default, dump shared memory if mapped from an anonymous file. */
1121 	if (vma->vm_flags & VM_SHARED) {
1122 		if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1123 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1124 			goto whole;
1125 		return 0;
1126 	}
1127 
1128 	/* Dump segments that have been written to.  */
1129 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1130 		goto whole;
1131 	if (vma->vm_file == NULL)
1132 		return 0;
1133 
1134 	if (FILTER(MAPPED_PRIVATE))
1135 		goto whole;
1136 
1137 	/*
1138 	 * If this looks like the beginning of a DSO or executable mapping,
1139 	 * check for an ELF header.  If we find one, dump the first page to
1140 	 * aid in determining what was mapped here.
1141 	 */
1142 	if (FILTER(ELF_HEADERS) &&
1143 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1144 		u32 __user *header = (u32 __user *) vma->vm_start;
1145 		u32 word;
1146 		mm_segment_t fs = get_fs();
1147 		/*
1148 		 * Doing it this way gets the constant folded by GCC.
1149 		 */
1150 		union {
1151 			u32 cmp;
1152 			char elfmag[SELFMAG];
1153 		} magic;
1154 		BUILD_BUG_ON(SELFMAG != sizeof word);
1155 		magic.elfmag[EI_MAG0] = ELFMAG0;
1156 		magic.elfmag[EI_MAG1] = ELFMAG1;
1157 		magic.elfmag[EI_MAG2] = ELFMAG2;
1158 		magic.elfmag[EI_MAG3] = ELFMAG3;
1159 		/*
1160 		 * Switch to the user "segment" for get_user(),
1161 		 * then put back what elf_core_dump() had in place.
1162 		 */
1163 		set_fs(USER_DS);
1164 		if (unlikely(get_user(word, header)))
1165 			word = 0;
1166 		set_fs(fs);
1167 		if (word == magic.cmp)
1168 			return PAGE_SIZE;
1169 	}
1170 
1171 #undef	FILTER
1172 
1173 	return 0;
1174 
1175 whole:
1176 	return vma->vm_end - vma->vm_start;
1177 }
1178 
1179 /* An ELF note in memory */
1180 struct memelfnote
1181 {
1182 	const char *name;
1183 	int type;
1184 	unsigned int datasz;
1185 	void *data;
1186 };
1187 
1188 static int notesize(struct memelfnote *en)
1189 {
1190 	int sz;
1191 
1192 	sz = sizeof(struct elf_note);
1193 	sz += roundup(strlen(en->name) + 1, 4);
1194 	sz += roundup(en->datasz, 4);
1195 
1196 	return sz;
1197 }
1198 
1199 #define DUMP_WRITE(addr, nr, foffset)	\
1200 	do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1201 
1202 static int alignfile(struct file *file, loff_t *foffset)
1203 {
1204 	static const char buf[4] = { 0, };
1205 	DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1206 	return 1;
1207 }
1208 
1209 static int writenote(struct memelfnote *men, struct file *file,
1210 			loff_t *foffset)
1211 {
1212 	struct elf_note en;
1213 	en.n_namesz = strlen(men->name) + 1;
1214 	en.n_descsz = men->datasz;
1215 	en.n_type = men->type;
1216 
1217 	DUMP_WRITE(&en, sizeof(en), foffset);
1218 	DUMP_WRITE(men->name, en.n_namesz, foffset);
1219 	if (!alignfile(file, foffset))
1220 		return 0;
1221 	DUMP_WRITE(men->data, men->datasz, foffset);
1222 	if (!alignfile(file, foffset))
1223 		return 0;
1224 
1225 	return 1;
1226 }
1227 #undef DUMP_WRITE
1228 
1229 static void fill_elf_header(struct elfhdr *elf, int segs,
1230 			    u16 machine, u32 flags, u8 osabi)
1231 {
1232 	memset(elf, 0, sizeof(*elf));
1233 
1234 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1235 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1236 	elf->e_ident[EI_DATA] = ELF_DATA;
1237 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1238 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1239 
1240 	elf->e_type = ET_CORE;
1241 	elf->e_machine = machine;
1242 	elf->e_version = EV_CURRENT;
1243 	elf->e_phoff = sizeof(struct elfhdr);
1244 	elf->e_flags = flags;
1245 	elf->e_ehsize = sizeof(struct elfhdr);
1246 	elf->e_phentsize = sizeof(struct elf_phdr);
1247 	elf->e_phnum = segs;
1248 
1249 	return;
1250 }
1251 
1252 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1253 {
1254 	phdr->p_type = PT_NOTE;
1255 	phdr->p_offset = offset;
1256 	phdr->p_vaddr = 0;
1257 	phdr->p_paddr = 0;
1258 	phdr->p_filesz = sz;
1259 	phdr->p_memsz = 0;
1260 	phdr->p_flags = 0;
1261 	phdr->p_align = 0;
1262 	return;
1263 }
1264 
1265 static void fill_note(struct memelfnote *note, const char *name, int type,
1266 		unsigned int sz, void *data)
1267 {
1268 	note->name = name;
1269 	note->type = type;
1270 	note->datasz = sz;
1271 	note->data = data;
1272 	return;
1273 }
1274 
1275 /*
1276  * fill up all the fields in prstatus from the given task struct, except
1277  * registers which need to be filled up separately.
1278  */
1279 static void fill_prstatus(struct elf_prstatus *prstatus,
1280 		struct task_struct *p, long signr)
1281 {
1282 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1283 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1284 	prstatus->pr_sighold = p->blocked.sig[0];
1285 	rcu_read_lock();
1286 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1287 	rcu_read_unlock();
1288 	prstatus->pr_pid = task_pid_vnr(p);
1289 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1290 	prstatus->pr_sid = task_session_vnr(p);
1291 	if (thread_group_leader(p)) {
1292 		struct task_cputime cputime;
1293 
1294 		/*
1295 		 * This is the record for the group leader.  It shows the
1296 		 * group-wide total, not its individual thread total.
1297 		 */
1298 		thread_group_cputime(p, &cputime);
1299 		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1300 		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1301 	} else {
1302 		cputime_to_timeval(p->utime, &prstatus->pr_utime);
1303 		cputime_to_timeval(p->stime, &prstatus->pr_stime);
1304 	}
1305 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1306 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1307 }
1308 
1309 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1310 		       struct mm_struct *mm)
1311 {
1312 	const struct cred *cred;
1313 	unsigned int i, len;
1314 
1315 	/* first copy the parameters from user space */
1316 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1317 
1318 	len = mm->arg_end - mm->arg_start;
1319 	if (len >= ELF_PRARGSZ)
1320 		len = ELF_PRARGSZ-1;
1321 	if (copy_from_user(&psinfo->pr_psargs,
1322 		           (const char __user *)mm->arg_start, len))
1323 		return -EFAULT;
1324 	for(i = 0; i < len; i++)
1325 		if (psinfo->pr_psargs[i] == 0)
1326 			psinfo->pr_psargs[i] = ' ';
1327 	psinfo->pr_psargs[len] = 0;
1328 
1329 	rcu_read_lock();
1330 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1331 	rcu_read_unlock();
1332 	psinfo->pr_pid = task_pid_vnr(p);
1333 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1334 	psinfo->pr_sid = task_session_vnr(p);
1335 
1336 	i = p->state ? ffz(~p->state) + 1 : 0;
1337 	psinfo->pr_state = i;
1338 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1339 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1340 	psinfo->pr_nice = task_nice(p);
1341 	psinfo->pr_flag = p->flags;
1342 	rcu_read_lock();
1343 	cred = __task_cred(p);
1344 	SET_UID(psinfo->pr_uid, cred->uid);
1345 	SET_GID(psinfo->pr_gid, cred->gid);
1346 	rcu_read_unlock();
1347 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1348 
1349 	return 0;
1350 }
1351 
1352 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1353 {
1354 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1355 	int i = 0;
1356 	do
1357 		i += 2;
1358 	while (auxv[i - 2] != AT_NULL);
1359 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1360 }
1361 
1362 #ifdef CORE_DUMP_USE_REGSET
1363 #include <linux/regset.h>
1364 
1365 struct elf_thread_core_info {
1366 	struct elf_thread_core_info *next;
1367 	struct task_struct *task;
1368 	struct elf_prstatus prstatus;
1369 	struct memelfnote notes[0];
1370 };
1371 
1372 struct elf_note_info {
1373 	struct elf_thread_core_info *thread;
1374 	struct memelfnote psinfo;
1375 	struct memelfnote auxv;
1376 	size_t size;
1377 	int thread_notes;
1378 };
1379 
1380 /*
1381  * When a regset has a writeback hook, we call it on each thread before
1382  * dumping user memory.  On register window machines, this makes sure the
1383  * user memory backing the register data is up to date before we read it.
1384  */
1385 static void do_thread_regset_writeback(struct task_struct *task,
1386 				       const struct user_regset *regset)
1387 {
1388 	if (regset->writeback)
1389 		regset->writeback(task, regset, 1);
1390 }
1391 
1392 static int fill_thread_core_info(struct elf_thread_core_info *t,
1393 				 const struct user_regset_view *view,
1394 				 long signr, size_t *total)
1395 {
1396 	unsigned int i;
1397 
1398 	/*
1399 	 * NT_PRSTATUS is the one special case, because the regset data
1400 	 * goes into the pr_reg field inside the note contents, rather
1401 	 * than being the whole note contents.  We fill the reset in here.
1402 	 * We assume that regset 0 is NT_PRSTATUS.
1403 	 */
1404 	fill_prstatus(&t->prstatus, t->task, signr);
1405 	(void) view->regsets[0].get(t->task, &view->regsets[0],
1406 				    0, sizeof(t->prstatus.pr_reg),
1407 				    &t->prstatus.pr_reg, NULL);
1408 
1409 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1410 		  sizeof(t->prstatus), &t->prstatus);
1411 	*total += notesize(&t->notes[0]);
1412 
1413 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1414 
1415 	/*
1416 	 * Each other regset might generate a note too.  For each regset
1417 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1418 	 * all zero and we'll know to skip writing it later.
1419 	 */
1420 	for (i = 1; i < view->n; ++i) {
1421 		const struct user_regset *regset = &view->regsets[i];
1422 		do_thread_regset_writeback(t->task, regset);
1423 		if (regset->core_note_type && regset->get &&
1424 		    (!regset->active || regset->active(t->task, regset))) {
1425 			int ret;
1426 			size_t size = regset->n * regset->size;
1427 			void *data = kmalloc(size, GFP_KERNEL);
1428 			if (unlikely(!data))
1429 				return 0;
1430 			ret = regset->get(t->task, regset,
1431 					  0, size, data, NULL);
1432 			if (unlikely(ret))
1433 				kfree(data);
1434 			else {
1435 				if (regset->core_note_type != NT_PRFPREG)
1436 					fill_note(&t->notes[i], "LINUX",
1437 						  regset->core_note_type,
1438 						  size, data);
1439 				else {
1440 					t->prstatus.pr_fpvalid = 1;
1441 					fill_note(&t->notes[i], "CORE",
1442 						  NT_PRFPREG, size, data);
1443 				}
1444 				*total += notesize(&t->notes[i]);
1445 			}
1446 		}
1447 	}
1448 
1449 	return 1;
1450 }
1451 
1452 static int fill_note_info(struct elfhdr *elf, int phdrs,
1453 			  struct elf_note_info *info,
1454 			  long signr, struct pt_regs *regs)
1455 {
1456 	struct task_struct *dump_task = current;
1457 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1458 	struct elf_thread_core_info *t;
1459 	struct elf_prpsinfo *psinfo;
1460 	struct core_thread *ct;
1461 	unsigned int i;
1462 
1463 	info->size = 0;
1464 	info->thread = NULL;
1465 
1466 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1467 	if (psinfo == NULL)
1468 		return 0;
1469 
1470 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1471 
1472 	/*
1473 	 * Figure out how many notes we're going to need for each thread.
1474 	 */
1475 	info->thread_notes = 0;
1476 	for (i = 0; i < view->n; ++i)
1477 		if (view->regsets[i].core_note_type != 0)
1478 			++info->thread_notes;
1479 
1480 	/*
1481 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1482 	 * since it is our one special case.
1483 	 */
1484 	if (unlikely(info->thread_notes == 0) ||
1485 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1486 		WARN_ON(1);
1487 		return 0;
1488 	}
1489 
1490 	/*
1491 	 * Initialize the ELF file header.
1492 	 */
1493 	fill_elf_header(elf, phdrs,
1494 			view->e_machine, view->e_flags, view->ei_osabi);
1495 
1496 	/*
1497 	 * Allocate a structure for each thread.
1498 	 */
1499 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1500 		t = kzalloc(offsetof(struct elf_thread_core_info,
1501 				     notes[info->thread_notes]),
1502 			    GFP_KERNEL);
1503 		if (unlikely(!t))
1504 			return 0;
1505 
1506 		t->task = ct->task;
1507 		if (ct->task == dump_task || !info->thread) {
1508 			t->next = info->thread;
1509 			info->thread = t;
1510 		} else {
1511 			/*
1512 			 * Make sure to keep the original task at
1513 			 * the head of the list.
1514 			 */
1515 			t->next = info->thread->next;
1516 			info->thread->next = t;
1517 		}
1518 	}
1519 
1520 	/*
1521 	 * Now fill in each thread's information.
1522 	 */
1523 	for (t = info->thread; t != NULL; t = t->next)
1524 		if (!fill_thread_core_info(t, view, signr, &info->size))
1525 			return 0;
1526 
1527 	/*
1528 	 * Fill in the two process-wide notes.
1529 	 */
1530 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1531 	info->size += notesize(&info->psinfo);
1532 
1533 	fill_auxv_note(&info->auxv, current->mm);
1534 	info->size += notesize(&info->auxv);
1535 
1536 	return 1;
1537 }
1538 
1539 static size_t get_note_info_size(struct elf_note_info *info)
1540 {
1541 	return info->size;
1542 }
1543 
1544 /*
1545  * Write all the notes for each thread.  When writing the first thread, the
1546  * process-wide notes are interleaved after the first thread-specific note.
1547  */
1548 static int write_note_info(struct elf_note_info *info,
1549 			   struct file *file, loff_t *foffset)
1550 {
1551 	bool first = 1;
1552 	struct elf_thread_core_info *t = info->thread;
1553 
1554 	do {
1555 		int i;
1556 
1557 		if (!writenote(&t->notes[0], file, foffset))
1558 			return 0;
1559 
1560 		if (first && !writenote(&info->psinfo, file, foffset))
1561 			return 0;
1562 		if (first && !writenote(&info->auxv, file, foffset))
1563 			return 0;
1564 
1565 		for (i = 1; i < info->thread_notes; ++i)
1566 			if (t->notes[i].data &&
1567 			    !writenote(&t->notes[i], file, foffset))
1568 				return 0;
1569 
1570 		first = 0;
1571 		t = t->next;
1572 	} while (t);
1573 
1574 	return 1;
1575 }
1576 
1577 static void free_note_info(struct elf_note_info *info)
1578 {
1579 	struct elf_thread_core_info *threads = info->thread;
1580 	while (threads) {
1581 		unsigned int i;
1582 		struct elf_thread_core_info *t = threads;
1583 		threads = t->next;
1584 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1585 		for (i = 1; i < info->thread_notes; ++i)
1586 			kfree(t->notes[i].data);
1587 		kfree(t);
1588 	}
1589 	kfree(info->psinfo.data);
1590 }
1591 
1592 #else
1593 
1594 /* Here is the structure in which status of each thread is captured. */
1595 struct elf_thread_status
1596 {
1597 	struct list_head list;
1598 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1599 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1600 	struct task_struct *thread;
1601 #ifdef ELF_CORE_COPY_XFPREGS
1602 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1603 #endif
1604 	struct memelfnote notes[3];
1605 	int num_notes;
1606 };
1607 
1608 /*
1609  * In order to add the specific thread information for the elf file format,
1610  * we need to keep a linked list of every threads pr_status and then create
1611  * a single section for them in the final core file.
1612  */
1613 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1614 {
1615 	int sz = 0;
1616 	struct task_struct *p = t->thread;
1617 	t->num_notes = 0;
1618 
1619 	fill_prstatus(&t->prstatus, p, signr);
1620 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1621 
1622 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1623 		  &(t->prstatus));
1624 	t->num_notes++;
1625 	sz += notesize(&t->notes[0]);
1626 
1627 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1628 								&t->fpu))) {
1629 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1630 			  &(t->fpu));
1631 		t->num_notes++;
1632 		sz += notesize(&t->notes[1]);
1633 	}
1634 
1635 #ifdef ELF_CORE_COPY_XFPREGS
1636 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1637 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1638 			  sizeof(t->xfpu), &t->xfpu);
1639 		t->num_notes++;
1640 		sz += notesize(&t->notes[2]);
1641 	}
1642 #endif
1643 	return sz;
1644 }
1645 
1646 struct elf_note_info {
1647 	struct memelfnote *notes;
1648 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1649 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1650 	struct list_head thread_list;
1651 	elf_fpregset_t *fpu;
1652 #ifdef ELF_CORE_COPY_XFPREGS
1653 	elf_fpxregset_t *xfpu;
1654 #endif
1655 	int thread_status_size;
1656 	int numnote;
1657 };
1658 
1659 static int elf_note_info_init(struct elf_note_info *info)
1660 {
1661 	memset(info, 0, sizeof(*info));
1662 	INIT_LIST_HEAD(&info->thread_list);
1663 
1664 	/* Allocate space for six ELF notes */
1665 	info->notes = kmalloc(6 * sizeof(struct memelfnote), GFP_KERNEL);
1666 	if (!info->notes)
1667 		return 0;
1668 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1669 	if (!info->psinfo)
1670 		goto notes_free;
1671 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1672 	if (!info->prstatus)
1673 		goto psinfo_free;
1674 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1675 	if (!info->fpu)
1676 		goto prstatus_free;
1677 #ifdef ELF_CORE_COPY_XFPREGS
1678 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1679 	if (!info->xfpu)
1680 		goto fpu_free;
1681 #endif
1682 	return 1;
1683 #ifdef ELF_CORE_COPY_XFPREGS
1684  fpu_free:
1685 	kfree(info->fpu);
1686 #endif
1687  prstatus_free:
1688 	kfree(info->prstatus);
1689  psinfo_free:
1690 	kfree(info->psinfo);
1691  notes_free:
1692 	kfree(info->notes);
1693 	return 0;
1694 }
1695 
1696 static int fill_note_info(struct elfhdr *elf, int phdrs,
1697 			  struct elf_note_info *info,
1698 			  long signr, struct pt_regs *regs)
1699 {
1700 	struct list_head *t;
1701 
1702 	if (!elf_note_info_init(info))
1703 		return 0;
1704 
1705 	if (signr) {
1706 		struct core_thread *ct;
1707 		struct elf_thread_status *ets;
1708 
1709 		for (ct = current->mm->core_state->dumper.next;
1710 						ct; ct = ct->next) {
1711 			ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1712 			if (!ets)
1713 				return 0;
1714 
1715 			ets->thread = ct->task;
1716 			list_add(&ets->list, &info->thread_list);
1717 		}
1718 
1719 		list_for_each(t, &info->thread_list) {
1720 			int sz;
1721 
1722 			ets = list_entry(t, struct elf_thread_status, list);
1723 			sz = elf_dump_thread_status(signr, ets);
1724 			info->thread_status_size += sz;
1725 		}
1726 	}
1727 	/* now collect the dump for the current */
1728 	memset(info->prstatus, 0, sizeof(*info->prstatus));
1729 	fill_prstatus(info->prstatus, current, signr);
1730 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1731 
1732 	/* Set up header */
1733 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1734 
1735 	/*
1736 	 * Set up the notes in similar form to SVR4 core dumps made
1737 	 * with info from their /proc.
1738 	 */
1739 
1740 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1741 		  sizeof(*info->prstatus), info->prstatus);
1742 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1743 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1744 		  sizeof(*info->psinfo), info->psinfo);
1745 
1746 	info->numnote = 2;
1747 
1748 	fill_auxv_note(&info->notes[info->numnote++], current->mm);
1749 
1750 	/* Try to dump the FPU. */
1751 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1752 							       info->fpu);
1753 	if (info->prstatus->pr_fpvalid)
1754 		fill_note(info->notes + info->numnote++,
1755 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1756 #ifdef ELF_CORE_COPY_XFPREGS
1757 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
1758 		fill_note(info->notes + info->numnote++,
1759 			  "LINUX", ELF_CORE_XFPREG_TYPE,
1760 			  sizeof(*info->xfpu), info->xfpu);
1761 #endif
1762 
1763 	return 1;
1764 }
1765 
1766 static size_t get_note_info_size(struct elf_note_info *info)
1767 {
1768 	int sz = 0;
1769 	int i;
1770 
1771 	for (i = 0; i < info->numnote; i++)
1772 		sz += notesize(info->notes + i);
1773 
1774 	sz += info->thread_status_size;
1775 
1776 	return sz;
1777 }
1778 
1779 static int write_note_info(struct elf_note_info *info,
1780 			   struct file *file, loff_t *foffset)
1781 {
1782 	int i;
1783 	struct list_head *t;
1784 
1785 	for (i = 0; i < info->numnote; i++)
1786 		if (!writenote(info->notes + i, file, foffset))
1787 			return 0;
1788 
1789 	/* write out the thread status notes section */
1790 	list_for_each(t, &info->thread_list) {
1791 		struct elf_thread_status *tmp =
1792 				list_entry(t, struct elf_thread_status, list);
1793 
1794 		for (i = 0; i < tmp->num_notes; i++)
1795 			if (!writenote(&tmp->notes[i], file, foffset))
1796 				return 0;
1797 	}
1798 
1799 	return 1;
1800 }
1801 
1802 static void free_note_info(struct elf_note_info *info)
1803 {
1804 	while (!list_empty(&info->thread_list)) {
1805 		struct list_head *tmp = info->thread_list.next;
1806 		list_del(tmp);
1807 		kfree(list_entry(tmp, struct elf_thread_status, list));
1808 	}
1809 
1810 	kfree(info->prstatus);
1811 	kfree(info->psinfo);
1812 	kfree(info->notes);
1813 	kfree(info->fpu);
1814 #ifdef ELF_CORE_COPY_XFPREGS
1815 	kfree(info->xfpu);
1816 #endif
1817 }
1818 
1819 #endif
1820 
1821 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1822 					struct vm_area_struct *gate_vma)
1823 {
1824 	struct vm_area_struct *ret = tsk->mm->mmap;
1825 
1826 	if (ret)
1827 		return ret;
1828 	return gate_vma;
1829 }
1830 /*
1831  * Helper function for iterating across a vma list.  It ensures that the caller
1832  * will visit `gate_vma' prior to terminating the search.
1833  */
1834 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1835 					struct vm_area_struct *gate_vma)
1836 {
1837 	struct vm_area_struct *ret;
1838 
1839 	ret = this_vma->vm_next;
1840 	if (ret)
1841 		return ret;
1842 	if (this_vma == gate_vma)
1843 		return NULL;
1844 	return gate_vma;
1845 }
1846 
1847 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1848 			     elf_addr_t e_shoff, int segs)
1849 {
1850 	elf->e_shoff = e_shoff;
1851 	elf->e_shentsize = sizeof(*shdr4extnum);
1852 	elf->e_shnum = 1;
1853 	elf->e_shstrndx = SHN_UNDEF;
1854 
1855 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1856 
1857 	shdr4extnum->sh_type = SHT_NULL;
1858 	shdr4extnum->sh_size = elf->e_shnum;
1859 	shdr4extnum->sh_link = elf->e_shstrndx;
1860 	shdr4extnum->sh_info = segs;
1861 }
1862 
1863 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
1864 				     unsigned long mm_flags)
1865 {
1866 	struct vm_area_struct *vma;
1867 	size_t size = 0;
1868 
1869 	for (vma = first_vma(current, gate_vma); vma != NULL;
1870 	     vma = next_vma(vma, gate_vma))
1871 		size += vma_dump_size(vma, mm_flags);
1872 	return size;
1873 }
1874 
1875 /*
1876  * Actual dumper
1877  *
1878  * This is a two-pass process; first we find the offsets of the bits,
1879  * and then they are actually written out.  If we run out of core limit
1880  * we just truncate.
1881  */
1882 static int elf_core_dump(struct coredump_params *cprm)
1883 {
1884 	int has_dumped = 0;
1885 	mm_segment_t fs;
1886 	int segs;
1887 	size_t size = 0;
1888 	struct vm_area_struct *vma, *gate_vma;
1889 	struct elfhdr *elf = NULL;
1890 	loff_t offset = 0, dataoff, foffset;
1891 	struct elf_note_info info;
1892 	struct elf_phdr *phdr4note = NULL;
1893 	struct elf_shdr *shdr4extnum = NULL;
1894 	Elf_Half e_phnum;
1895 	elf_addr_t e_shoff;
1896 
1897 	/*
1898 	 * We no longer stop all VM operations.
1899 	 *
1900 	 * This is because those proceses that could possibly change map_count
1901 	 * or the mmap / vma pages are now blocked in do_exit on current
1902 	 * finishing this core dump.
1903 	 *
1904 	 * Only ptrace can touch these memory addresses, but it doesn't change
1905 	 * the map_count or the pages allocated. So no possibility of crashing
1906 	 * exists while dumping the mm->vm_next areas to the core file.
1907 	 */
1908 
1909 	/* alloc memory for large data structures: too large to be on stack */
1910 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1911 	if (!elf)
1912 		goto out;
1913 	/*
1914 	 * The number of segs are recored into ELF header as 16bit value.
1915 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1916 	 */
1917 	segs = current->mm->map_count;
1918 	segs += elf_core_extra_phdrs();
1919 
1920 	gate_vma = get_gate_vma(current->mm);
1921 	if (gate_vma != NULL)
1922 		segs++;
1923 
1924 	/* for notes section */
1925 	segs++;
1926 
1927 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
1928 	 * this, kernel supports extended numbering. Have a look at
1929 	 * include/linux/elf.h for further information. */
1930 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
1931 
1932 	/*
1933 	 * Collect all the non-memory information about the process for the
1934 	 * notes.  This also sets up the file header.
1935 	 */
1936 	if (!fill_note_info(elf, e_phnum, &info, cprm->signr, cprm->regs))
1937 		goto cleanup;
1938 
1939 	has_dumped = 1;
1940 	current->flags |= PF_DUMPCORE;
1941 
1942 	fs = get_fs();
1943 	set_fs(KERNEL_DS);
1944 
1945 	offset += sizeof(*elf);				/* Elf header */
1946 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
1947 	foffset = offset;
1948 
1949 	/* Write notes phdr entry */
1950 	{
1951 		size_t sz = get_note_info_size(&info);
1952 
1953 		sz += elf_coredump_extra_notes_size();
1954 
1955 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
1956 		if (!phdr4note)
1957 			goto end_coredump;
1958 
1959 		fill_elf_note_phdr(phdr4note, sz, offset);
1960 		offset += sz;
1961 	}
1962 
1963 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1964 
1965 	offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
1966 	offset += elf_core_extra_data_size();
1967 	e_shoff = offset;
1968 
1969 	if (e_phnum == PN_XNUM) {
1970 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
1971 		if (!shdr4extnum)
1972 			goto end_coredump;
1973 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
1974 	}
1975 
1976 	offset = dataoff;
1977 
1978 	size += sizeof(*elf);
1979 	if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
1980 		goto end_coredump;
1981 
1982 	size += sizeof(*phdr4note);
1983 	if (size > cprm->limit
1984 	    || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
1985 		goto end_coredump;
1986 
1987 	/* Write program headers for segments dump */
1988 	for (vma = first_vma(current, gate_vma); vma != NULL;
1989 			vma = next_vma(vma, gate_vma)) {
1990 		struct elf_phdr phdr;
1991 
1992 		phdr.p_type = PT_LOAD;
1993 		phdr.p_offset = offset;
1994 		phdr.p_vaddr = vma->vm_start;
1995 		phdr.p_paddr = 0;
1996 		phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
1997 		phdr.p_memsz = vma->vm_end - vma->vm_start;
1998 		offset += phdr.p_filesz;
1999 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2000 		if (vma->vm_flags & VM_WRITE)
2001 			phdr.p_flags |= PF_W;
2002 		if (vma->vm_flags & VM_EXEC)
2003 			phdr.p_flags |= PF_X;
2004 		phdr.p_align = ELF_EXEC_PAGESIZE;
2005 
2006 		size += sizeof(phdr);
2007 		if (size > cprm->limit
2008 		    || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2009 			goto end_coredump;
2010 	}
2011 
2012 	if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2013 		goto end_coredump;
2014 
2015  	/* write out the notes section */
2016 	if (!write_note_info(&info, cprm->file, &foffset))
2017 		goto end_coredump;
2018 
2019 	if (elf_coredump_extra_notes_write(cprm->file, &foffset))
2020 		goto end_coredump;
2021 
2022 	/* Align to page */
2023 	if (!dump_seek(cprm->file, dataoff - foffset))
2024 		goto end_coredump;
2025 
2026 	for (vma = first_vma(current, gate_vma); vma != NULL;
2027 			vma = next_vma(vma, gate_vma)) {
2028 		unsigned long addr;
2029 		unsigned long end;
2030 
2031 		end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2032 
2033 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2034 			struct page *page;
2035 			int stop;
2036 
2037 			page = get_dump_page(addr);
2038 			if (page) {
2039 				void *kaddr = kmap(page);
2040 				stop = ((size += PAGE_SIZE) > cprm->limit) ||
2041 					!dump_write(cprm->file, kaddr,
2042 						    PAGE_SIZE);
2043 				kunmap(page);
2044 				page_cache_release(page);
2045 			} else
2046 				stop = !dump_seek(cprm->file, PAGE_SIZE);
2047 			if (stop)
2048 				goto end_coredump;
2049 		}
2050 	}
2051 
2052 	if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2053 		goto end_coredump;
2054 
2055 	if (e_phnum == PN_XNUM) {
2056 		size += sizeof(*shdr4extnum);
2057 		if (size > cprm->limit
2058 		    || !dump_write(cprm->file, shdr4extnum,
2059 				   sizeof(*shdr4extnum)))
2060 			goto end_coredump;
2061 	}
2062 
2063 end_coredump:
2064 	set_fs(fs);
2065 
2066 cleanup:
2067 	free_note_info(&info);
2068 	kfree(shdr4extnum);
2069 	kfree(phdr4note);
2070 	kfree(elf);
2071 out:
2072 	return has_dumped;
2073 }
2074 
2075 #endif		/* CONFIG_ELF_CORE */
2076 
2077 static int __init init_elf_binfmt(void)
2078 {
2079 	register_binfmt(&elf_format);
2080 	return 0;
2081 }
2082 
2083 static void __exit exit_elf_binfmt(void)
2084 {
2085 	/* Remove the COFF and ELF loaders. */
2086 	unregister_binfmt(&elf_format);
2087 }
2088 
2089 core_initcall(init_elf_binfmt);
2090 module_exit(exit_elf_binfmt);
2091 MODULE_LICENSE("GPL");
2092