xref: /linux/fs/binfmt_elf.c (revision 87c34ed3aba9249cb06d1a1f100cd3618f29268c)
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/security.h>
31 #include <linux/random.h>
32 #include <linux/elf.h>
33 #include <linux/utsname.h>
34 #include <linux/coredump.h>
35 #include <asm/uaccess.h>
36 #include <asm/param.h>
37 #include <asm/page.h>
38 #include <asm/exec.h>
39 
40 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
41 static int load_elf_library(struct file *);
42 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
43 				int, int, unsigned long);
44 
45 /*
46  * If we don't support core dumping, then supply a NULL so we
47  * don't even try.
48  */
49 #ifdef CONFIG_ELF_CORE
50 static int elf_core_dump(struct coredump_params *cprm);
51 #else
52 #define elf_core_dump	NULL
53 #endif
54 
55 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
56 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
57 #else
58 #define ELF_MIN_ALIGN	PAGE_SIZE
59 #endif
60 
61 #ifndef ELF_CORE_EFLAGS
62 #define ELF_CORE_EFLAGS	0
63 #endif
64 
65 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
66 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
67 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
68 
69 static struct linux_binfmt elf_format = {
70 	.module		= THIS_MODULE,
71 	.load_binary	= load_elf_binary,
72 	.load_shlib	= load_elf_library,
73 	.core_dump	= elf_core_dump,
74 	.min_coredump	= ELF_EXEC_PAGESIZE,
75 };
76 
77 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
78 
79 static int set_brk(unsigned long start, unsigned long end)
80 {
81 	start = ELF_PAGEALIGN(start);
82 	end = ELF_PAGEALIGN(end);
83 	if (end > start) {
84 		unsigned long addr;
85 		down_write(&current->mm->mmap_sem);
86 		addr = do_brk(start, end - start);
87 		up_write(&current->mm->mmap_sem);
88 		if (BAD_ADDR(addr))
89 			return addr;
90 	}
91 	current->mm->start_brk = current->mm->brk = end;
92 	return 0;
93 }
94 
95 /* We need to explicitly zero any fractional pages
96    after the data section (i.e. bss).  This would
97    contain the junk from the file that should not
98    be in memory
99  */
100 static int padzero(unsigned long elf_bss)
101 {
102 	unsigned long nbyte;
103 
104 	nbyte = ELF_PAGEOFFSET(elf_bss);
105 	if (nbyte) {
106 		nbyte = ELF_MIN_ALIGN - nbyte;
107 		if (clear_user((void __user *) elf_bss, nbyte))
108 			return -EFAULT;
109 	}
110 	return 0;
111 }
112 
113 /* Let's use some macros to make this stack manipulation a little clearer */
114 #ifdef CONFIG_STACK_GROWSUP
115 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
116 #define STACK_ROUND(sp, items) \
117 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
118 #define STACK_ALLOC(sp, len) ({ \
119 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
120 	old_sp; })
121 #else
122 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
123 #define STACK_ROUND(sp, items) \
124 	(((unsigned long) (sp - items)) &~ 15UL)
125 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
126 #endif
127 
128 #ifndef ELF_BASE_PLATFORM
129 /*
130  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
131  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
132  * will be copied to the user stack in the same manner as AT_PLATFORM.
133  */
134 #define ELF_BASE_PLATFORM NULL
135 #endif
136 
137 static int
138 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
139 		unsigned long load_addr, unsigned long interp_load_addr)
140 {
141 	unsigned long p = bprm->p;
142 	int argc = bprm->argc;
143 	int envc = bprm->envc;
144 	elf_addr_t __user *argv;
145 	elf_addr_t __user *envp;
146 	elf_addr_t __user *sp;
147 	elf_addr_t __user *u_platform;
148 	elf_addr_t __user *u_base_platform;
149 	elf_addr_t __user *u_rand_bytes;
150 	const char *k_platform = ELF_PLATFORM;
151 	const char *k_base_platform = ELF_BASE_PLATFORM;
152 	unsigned char k_rand_bytes[16];
153 	int items;
154 	elf_addr_t *elf_info;
155 	int ei_index = 0;
156 	const struct cred *cred = current_cred();
157 	struct vm_area_struct *vma;
158 
159 	/*
160 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
161 	 * evictions by the processes running on the same package. One
162 	 * thing we can do is to shuffle the initial stack for them.
163 	 */
164 
165 	p = arch_align_stack(p);
166 
167 	/*
168 	 * If this architecture has a platform capability string, copy it
169 	 * to userspace.  In some cases (Sparc), this info is impossible
170 	 * for userspace to get any other way, in others (i386) it is
171 	 * merely difficult.
172 	 */
173 	u_platform = NULL;
174 	if (k_platform) {
175 		size_t len = strlen(k_platform) + 1;
176 
177 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
178 		if (__copy_to_user(u_platform, k_platform, len))
179 			return -EFAULT;
180 	}
181 
182 	/*
183 	 * If this architecture has a "base" platform capability
184 	 * string, copy it to userspace.
185 	 */
186 	u_base_platform = NULL;
187 	if (k_base_platform) {
188 		size_t len = strlen(k_base_platform) + 1;
189 
190 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
191 		if (__copy_to_user(u_base_platform, k_base_platform, len))
192 			return -EFAULT;
193 	}
194 
195 	/*
196 	 * Generate 16 random bytes for userspace PRNG seeding.
197 	 */
198 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
199 	u_rand_bytes = (elf_addr_t __user *)
200 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
201 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
202 		return -EFAULT;
203 
204 	/* Create the ELF interpreter info */
205 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
206 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
207 #define NEW_AUX_ENT(id, val) \
208 	do { \
209 		elf_info[ei_index++] = id; \
210 		elf_info[ei_index++] = val; \
211 	} while (0)
212 
213 #ifdef ARCH_DLINFO
214 	/*
215 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
216 	 * AUXV.
217 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
218 	 * ARCH_DLINFO changes
219 	 */
220 	ARCH_DLINFO;
221 #endif
222 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
223 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
224 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
225 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
226 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
227 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
228 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
229 	NEW_AUX_ENT(AT_FLAGS, 0);
230 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
231 	NEW_AUX_ENT(AT_UID, cred->uid);
232 	NEW_AUX_ENT(AT_EUID, cred->euid);
233 	NEW_AUX_ENT(AT_GID, cred->gid);
234 	NEW_AUX_ENT(AT_EGID, cred->egid);
235  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
236 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
237 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
238 	if (k_platform) {
239 		NEW_AUX_ENT(AT_PLATFORM,
240 			    (elf_addr_t)(unsigned long)u_platform);
241 	}
242 	if (k_base_platform) {
243 		NEW_AUX_ENT(AT_BASE_PLATFORM,
244 			    (elf_addr_t)(unsigned long)u_base_platform);
245 	}
246 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
247 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
248 	}
249 #undef NEW_AUX_ENT
250 	/* AT_NULL is zero; clear the rest too */
251 	memset(&elf_info[ei_index], 0,
252 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
253 
254 	/* And advance past the AT_NULL entry.  */
255 	ei_index += 2;
256 
257 	sp = STACK_ADD(p, ei_index);
258 
259 	items = (argc + 1) + (envc + 1) + 1;
260 	bprm->p = STACK_ROUND(sp, items);
261 
262 	/* Point sp at the lowest address on the stack */
263 #ifdef CONFIG_STACK_GROWSUP
264 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
265 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
266 #else
267 	sp = (elf_addr_t __user *)bprm->p;
268 #endif
269 
270 
271 	/*
272 	 * Grow the stack manually; some architectures have a limit on how
273 	 * far ahead a user-space access may be in order to grow the stack.
274 	 */
275 	vma = find_extend_vma(current->mm, bprm->p);
276 	if (!vma)
277 		return -EFAULT;
278 
279 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
280 	if (__put_user(argc, sp++))
281 		return -EFAULT;
282 	argv = sp;
283 	envp = argv + argc + 1;
284 
285 	/* Populate argv and envp */
286 	p = current->mm->arg_end = current->mm->arg_start;
287 	while (argc-- > 0) {
288 		size_t len;
289 		if (__put_user((elf_addr_t)p, argv++))
290 			return -EFAULT;
291 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
292 		if (!len || len > MAX_ARG_STRLEN)
293 			return -EINVAL;
294 		p += len;
295 	}
296 	if (__put_user(0, argv))
297 		return -EFAULT;
298 	current->mm->arg_end = current->mm->env_start = p;
299 	while (envc-- > 0) {
300 		size_t len;
301 		if (__put_user((elf_addr_t)p, envp++))
302 			return -EFAULT;
303 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
304 		if (!len || len > MAX_ARG_STRLEN)
305 			return -EINVAL;
306 		p += len;
307 	}
308 	if (__put_user(0, envp))
309 		return -EFAULT;
310 	current->mm->env_end = p;
311 
312 	/* Put the elf_info on the stack in the right place.  */
313 	sp = (elf_addr_t __user *)envp + 1;
314 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
315 		return -EFAULT;
316 	return 0;
317 }
318 
319 static unsigned long elf_map(struct file *filep, unsigned long addr,
320 		struct elf_phdr *eppnt, int prot, int type,
321 		unsigned long total_size)
322 {
323 	unsigned long map_addr;
324 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
325 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
326 	addr = ELF_PAGESTART(addr);
327 	size = ELF_PAGEALIGN(size);
328 
329 	/* mmap() will return -EINVAL if given a zero size, but a
330 	 * segment with zero filesize is perfectly valid */
331 	if (!size)
332 		return addr;
333 
334 	down_write(&current->mm->mmap_sem);
335 	/*
336 	* total_size is the size of the ELF (interpreter) image.
337 	* The _first_ mmap needs to know the full size, otherwise
338 	* randomization might put this image into an overlapping
339 	* position with the ELF binary image. (since size < total_size)
340 	* So we first map the 'big' image - and unmap the remainder at
341 	* the end. (which unmap is needed for ELF images with holes.)
342 	*/
343 	if (total_size) {
344 		total_size = ELF_PAGEALIGN(total_size);
345 		map_addr = do_mmap(filep, addr, total_size, prot, type, off);
346 		if (!BAD_ADDR(map_addr))
347 			do_munmap(current->mm, map_addr+size, total_size-size);
348 	} else
349 		map_addr = do_mmap(filep, addr, size, prot, type, off);
350 
351 	up_write(&current->mm->mmap_sem);
352 	return(map_addr);
353 }
354 
355 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
356 {
357 	int i, first_idx = -1, last_idx = -1;
358 
359 	for (i = 0; i < nr; i++) {
360 		if (cmds[i].p_type == PT_LOAD) {
361 			last_idx = i;
362 			if (first_idx == -1)
363 				first_idx = i;
364 		}
365 	}
366 	if (first_idx == -1)
367 		return 0;
368 
369 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
370 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
371 }
372 
373 
374 /* This is much more generalized than the library routine read function,
375    so we keep this separate.  Technically the library read function
376    is only provided so that we can read a.out libraries that have
377    an ELF header */
378 
379 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
380 		struct file *interpreter, unsigned long *interp_map_addr,
381 		unsigned long no_base)
382 {
383 	struct elf_phdr *elf_phdata;
384 	struct elf_phdr *eppnt;
385 	unsigned long load_addr = 0;
386 	int load_addr_set = 0;
387 	unsigned long last_bss = 0, elf_bss = 0;
388 	unsigned long error = ~0UL;
389 	unsigned long total_size;
390 	int retval, i, size;
391 
392 	/* First of all, some simple consistency checks */
393 	if (interp_elf_ex->e_type != ET_EXEC &&
394 	    interp_elf_ex->e_type != ET_DYN)
395 		goto out;
396 	if (!elf_check_arch(interp_elf_ex))
397 		goto out;
398 	if (!interpreter->f_op || !interpreter->f_op->mmap)
399 		goto out;
400 
401 	/*
402 	 * If the size of this structure has changed, then punt, since
403 	 * we will be doing the wrong thing.
404 	 */
405 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
406 		goto out;
407 	if (interp_elf_ex->e_phnum < 1 ||
408 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
409 		goto out;
410 
411 	/* Now read in all of the header information */
412 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
413 	if (size > ELF_MIN_ALIGN)
414 		goto out;
415 	elf_phdata = kmalloc(size, GFP_KERNEL);
416 	if (!elf_phdata)
417 		goto out;
418 
419 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
420 			     (char *)elf_phdata, size);
421 	error = -EIO;
422 	if (retval != size) {
423 		if (retval < 0)
424 			error = retval;
425 		goto out_close;
426 	}
427 
428 	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
429 	if (!total_size) {
430 		error = -EINVAL;
431 		goto out_close;
432 	}
433 
434 	eppnt = elf_phdata;
435 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
436 		if (eppnt->p_type == PT_LOAD) {
437 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
438 			int elf_prot = 0;
439 			unsigned long vaddr = 0;
440 			unsigned long k, map_addr;
441 
442 			if (eppnt->p_flags & PF_R)
443 		    		elf_prot = PROT_READ;
444 			if (eppnt->p_flags & PF_W)
445 				elf_prot |= PROT_WRITE;
446 			if (eppnt->p_flags & PF_X)
447 				elf_prot |= PROT_EXEC;
448 			vaddr = eppnt->p_vaddr;
449 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
450 				elf_type |= MAP_FIXED;
451 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
452 				load_addr = -vaddr;
453 
454 			map_addr = elf_map(interpreter, load_addr + vaddr,
455 					eppnt, elf_prot, elf_type, total_size);
456 			total_size = 0;
457 			if (!*interp_map_addr)
458 				*interp_map_addr = map_addr;
459 			error = map_addr;
460 			if (BAD_ADDR(map_addr))
461 				goto out_close;
462 
463 			if (!load_addr_set &&
464 			    interp_elf_ex->e_type == ET_DYN) {
465 				load_addr = map_addr - ELF_PAGESTART(vaddr);
466 				load_addr_set = 1;
467 			}
468 
469 			/*
470 			 * Check to see if the section's size will overflow the
471 			 * allowed task size. Note that p_filesz must always be
472 			 * <= p_memsize so it's only necessary to check p_memsz.
473 			 */
474 			k = load_addr + eppnt->p_vaddr;
475 			if (BAD_ADDR(k) ||
476 			    eppnt->p_filesz > eppnt->p_memsz ||
477 			    eppnt->p_memsz > TASK_SIZE ||
478 			    TASK_SIZE - eppnt->p_memsz < k) {
479 				error = -ENOMEM;
480 				goto out_close;
481 			}
482 
483 			/*
484 			 * Find the end of the file mapping for this phdr, and
485 			 * keep track of the largest address we see for this.
486 			 */
487 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
488 			if (k > elf_bss)
489 				elf_bss = k;
490 
491 			/*
492 			 * Do the same thing for the memory mapping - between
493 			 * elf_bss and last_bss is the bss section.
494 			 */
495 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
496 			if (k > last_bss)
497 				last_bss = k;
498 		}
499 	}
500 
501 	if (last_bss > elf_bss) {
502 		/*
503 		 * Now fill out the bss section.  First pad the last page up
504 		 * to the page boundary, and then perform a mmap to make sure
505 		 * that there are zero-mapped pages up to and including the
506 		 * last bss page.
507 		 */
508 		if (padzero(elf_bss)) {
509 			error = -EFAULT;
510 			goto out_close;
511 		}
512 
513 		/* What we have mapped so far */
514 		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
515 
516 		/* Map the last of the bss segment */
517 		down_write(&current->mm->mmap_sem);
518 		error = do_brk(elf_bss, last_bss - elf_bss);
519 		up_write(&current->mm->mmap_sem);
520 		if (BAD_ADDR(error))
521 			goto out_close;
522 	}
523 
524 	error = load_addr;
525 
526 out_close:
527 	kfree(elf_phdata);
528 out:
529 	return error;
530 }
531 
532 /*
533  * These are the functions used to load ELF style executables and shared
534  * libraries.  There is no binary dependent code anywhere else.
535  */
536 
537 #define INTERPRETER_NONE 0
538 #define INTERPRETER_ELF 2
539 
540 #ifndef STACK_RND_MASK
541 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
542 #endif
543 
544 static unsigned long randomize_stack_top(unsigned long stack_top)
545 {
546 	unsigned int random_variable = 0;
547 
548 	if ((current->flags & PF_RANDOMIZE) &&
549 		!(current->personality & ADDR_NO_RANDOMIZE)) {
550 		random_variable = get_random_int() & STACK_RND_MASK;
551 		random_variable <<= PAGE_SHIFT;
552 	}
553 #ifdef CONFIG_STACK_GROWSUP
554 	return PAGE_ALIGN(stack_top) + random_variable;
555 #else
556 	return PAGE_ALIGN(stack_top) - random_variable;
557 #endif
558 }
559 
560 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
561 {
562 	struct file *interpreter = NULL; /* to shut gcc up */
563  	unsigned long load_addr = 0, load_bias = 0;
564 	int load_addr_set = 0;
565 	char * elf_interpreter = NULL;
566 	unsigned long error;
567 	struct elf_phdr *elf_ppnt, *elf_phdata;
568 	unsigned long elf_bss, elf_brk;
569 	int retval, i;
570 	unsigned int size;
571 	unsigned long elf_entry;
572 	unsigned long interp_load_addr = 0;
573 	unsigned long start_code, end_code, start_data, end_data;
574 	unsigned long reloc_func_desc __maybe_unused = 0;
575 	int executable_stack = EXSTACK_DEFAULT;
576 	unsigned long def_flags = 0;
577 	struct {
578 		struct elfhdr elf_ex;
579 		struct elfhdr interp_elf_ex;
580 	} *loc;
581 
582 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
583 	if (!loc) {
584 		retval = -ENOMEM;
585 		goto out_ret;
586 	}
587 
588 	/* Get the exec-header */
589 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
590 
591 	retval = -ENOEXEC;
592 	/* First of all, some simple consistency checks */
593 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
594 		goto out;
595 
596 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
597 		goto out;
598 	if (!elf_check_arch(&loc->elf_ex))
599 		goto out;
600 	if (!bprm->file->f_op || !bprm->file->f_op->mmap)
601 		goto out;
602 
603 	/* Now read in all of the header information */
604 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
605 		goto out;
606 	if (loc->elf_ex.e_phnum < 1 ||
607 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
608 		goto out;
609 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
610 	retval = -ENOMEM;
611 	elf_phdata = kmalloc(size, GFP_KERNEL);
612 	if (!elf_phdata)
613 		goto out;
614 
615 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
616 			     (char *)elf_phdata, size);
617 	if (retval != size) {
618 		if (retval >= 0)
619 			retval = -EIO;
620 		goto out_free_ph;
621 	}
622 
623 	elf_ppnt = elf_phdata;
624 	elf_bss = 0;
625 	elf_brk = 0;
626 
627 	start_code = ~0UL;
628 	end_code = 0;
629 	start_data = 0;
630 	end_data = 0;
631 
632 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
633 		if (elf_ppnt->p_type == PT_INTERP) {
634 			/* This is the program interpreter used for
635 			 * shared libraries - for now assume that this
636 			 * is an a.out format binary
637 			 */
638 			retval = -ENOEXEC;
639 			if (elf_ppnt->p_filesz > PATH_MAX ||
640 			    elf_ppnt->p_filesz < 2)
641 				goto out_free_ph;
642 
643 			retval = -ENOMEM;
644 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
645 						  GFP_KERNEL);
646 			if (!elf_interpreter)
647 				goto out_free_ph;
648 
649 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
650 					     elf_interpreter,
651 					     elf_ppnt->p_filesz);
652 			if (retval != elf_ppnt->p_filesz) {
653 				if (retval >= 0)
654 					retval = -EIO;
655 				goto out_free_interp;
656 			}
657 			/* make sure path is NULL terminated */
658 			retval = -ENOEXEC;
659 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
660 				goto out_free_interp;
661 
662 			interpreter = open_exec(elf_interpreter);
663 			retval = PTR_ERR(interpreter);
664 			if (IS_ERR(interpreter))
665 				goto out_free_interp;
666 
667 			/*
668 			 * If the binary is not readable then enforce
669 			 * mm->dumpable = 0 regardless of the interpreter's
670 			 * permissions.
671 			 */
672 			would_dump(bprm, interpreter);
673 
674 			retval = kernel_read(interpreter, 0, bprm->buf,
675 					     BINPRM_BUF_SIZE);
676 			if (retval != BINPRM_BUF_SIZE) {
677 				if (retval >= 0)
678 					retval = -EIO;
679 				goto out_free_dentry;
680 			}
681 
682 			/* Get the exec headers */
683 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
684 			break;
685 		}
686 		elf_ppnt++;
687 	}
688 
689 	elf_ppnt = elf_phdata;
690 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
691 		if (elf_ppnt->p_type == PT_GNU_STACK) {
692 			if (elf_ppnt->p_flags & PF_X)
693 				executable_stack = EXSTACK_ENABLE_X;
694 			else
695 				executable_stack = EXSTACK_DISABLE_X;
696 			break;
697 		}
698 
699 	/* Some simple consistency checks for the interpreter */
700 	if (elf_interpreter) {
701 		retval = -ELIBBAD;
702 		/* Not an ELF interpreter */
703 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
704 			goto out_free_dentry;
705 		/* Verify the interpreter has a valid arch */
706 		if (!elf_check_arch(&loc->interp_elf_ex))
707 			goto out_free_dentry;
708 	}
709 
710 	/* Flush all traces of the currently running executable */
711 	retval = flush_old_exec(bprm);
712 	if (retval)
713 		goto out_free_dentry;
714 
715 	/* OK, This is the point of no return */
716 	current->mm->def_flags = def_flags;
717 
718 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
719 	   may depend on the personality.  */
720 	SET_PERSONALITY(loc->elf_ex);
721 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
722 		current->personality |= READ_IMPLIES_EXEC;
723 
724 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
725 		current->flags |= PF_RANDOMIZE;
726 
727 	setup_new_exec(bprm);
728 
729 	/* Do this so that we can load the interpreter, if need be.  We will
730 	   change some of these later */
731 	current->mm->free_area_cache = current->mm->mmap_base;
732 	current->mm->cached_hole_size = 0;
733 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
734 				 executable_stack);
735 	if (retval < 0) {
736 		send_sig(SIGKILL, current, 0);
737 		goto out_free_dentry;
738 	}
739 
740 	current->mm->start_stack = bprm->p;
741 
742 	/* Now we do a little grungy work by mmapping the ELF image into
743 	   the correct location in memory. */
744 	for(i = 0, elf_ppnt = elf_phdata;
745 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
746 		int elf_prot = 0, elf_flags;
747 		unsigned long k, vaddr;
748 
749 		if (elf_ppnt->p_type != PT_LOAD)
750 			continue;
751 
752 		if (unlikely (elf_brk > elf_bss)) {
753 			unsigned long nbyte;
754 
755 			/* There was a PT_LOAD segment with p_memsz > p_filesz
756 			   before this one. Map anonymous pages, if needed,
757 			   and clear the area.  */
758 			retval = set_brk(elf_bss + load_bias,
759 					 elf_brk + load_bias);
760 			if (retval) {
761 				send_sig(SIGKILL, current, 0);
762 				goto out_free_dentry;
763 			}
764 			nbyte = ELF_PAGEOFFSET(elf_bss);
765 			if (nbyte) {
766 				nbyte = ELF_MIN_ALIGN - nbyte;
767 				if (nbyte > elf_brk - elf_bss)
768 					nbyte = elf_brk - elf_bss;
769 				if (clear_user((void __user *)elf_bss +
770 							load_bias, nbyte)) {
771 					/*
772 					 * This bss-zeroing can fail if the ELF
773 					 * file specifies odd protections. So
774 					 * we don't check the return value
775 					 */
776 				}
777 			}
778 		}
779 
780 		if (elf_ppnt->p_flags & PF_R)
781 			elf_prot |= PROT_READ;
782 		if (elf_ppnt->p_flags & PF_W)
783 			elf_prot |= PROT_WRITE;
784 		if (elf_ppnt->p_flags & PF_X)
785 			elf_prot |= PROT_EXEC;
786 
787 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
788 
789 		vaddr = elf_ppnt->p_vaddr;
790 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
791 			elf_flags |= MAP_FIXED;
792 		} else if (loc->elf_ex.e_type == ET_DYN) {
793 			/* Try and get dynamic programs out of the way of the
794 			 * default mmap base, as well as whatever program they
795 			 * might try to exec.  This is because the brk will
796 			 * follow the loader, and is not movable.  */
797 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
798 			/* Memory randomization might have been switched off
799 			 * in runtime via sysctl.
800 			 * If that is the case, retain the original non-zero
801 			 * load_bias value in order to establish proper
802 			 * non-randomized mappings.
803 			 */
804 			if (current->flags & PF_RANDOMIZE)
805 				load_bias = 0;
806 			else
807 				load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
808 #else
809 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
810 #endif
811 		}
812 
813 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
814 				elf_prot, elf_flags, 0);
815 		if (BAD_ADDR(error)) {
816 			send_sig(SIGKILL, current, 0);
817 			retval = IS_ERR((void *)error) ?
818 				PTR_ERR((void*)error) : -EINVAL;
819 			goto out_free_dentry;
820 		}
821 
822 		if (!load_addr_set) {
823 			load_addr_set = 1;
824 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
825 			if (loc->elf_ex.e_type == ET_DYN) {
826 				load_bias += error -
827 				             ELF_PAGESTART(load_bias + vaddr);
828 				load_addr += load_bias;
829 				reloc_func_desc = load_bias;
830 			}
831 		}
832 		k = elf_ppnt->p_vaddr;
833 		if (k < start_code)
834 			start_code = k;
835 		if (start_data < k)
836 			start_data = k;
837 
838 		/*
839 		 * Check to see if the section's size will overflow the
840 		 * allowed task size. Note that p_filesz must always be
841 		 * <= p_memsz so it is only necessary to check p_memsz.
842 		 */
843 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
844 		    elf_ppnt->p_memsz > TASK_SIZE ||
845 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
846 			/* set_brk can never work. Avoid overflows. */
847 			send_sig(SIGKILL, current, 0);
848 			retval = -EINVAL;
849 			goto out_free_dentry;
850 		}
851 
852 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
853 
854 		if (k > elf_bss)
855 			elf_bss = k;
856 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
857 			end_code = k;
858 		if (end_data < k)
859 			end_data = k;
860 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
861 		if (k > elf_brk)
862 			elf_brk = k;
863 	}
864 
865 	loc->elf_ex.e_entry += load_bias;
866 	elf_bss += load_bias;
867 	elf_brk += load_bias;
868 	start_code += load_bias;
869 	end_code += load_bias;
870 	start_data += load_bias;
871 	end_data += load_bias;
872 
873 	/* Calling set_brk effectively mmaps the pages that we need
874 	 * for the bss and break sections.  We must do this before
875 	 * mapping in the interpreter, to make sure it doesn't wind
876 	 * up getting placed where the bss needs to go.
877 	 */
878 	retval = set_brk(elf_bss, elf_brk);
879 	if (retval) {
880 		send_sig(SIGKILL, current, 0);
881 		goto out_free_dentry;
882 	}
883 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
884 		send_sig(SIGSEGV, current, 0);
885 		retval = -EFAULT; /* Nobody gets to see this, but.. */
886 		goto out_free_dentry;
887 	}
888 
889 	if (elf_interpreter) {
890 		unsigned long uninitialized_var(interp_map_addr);
891 
892 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
893 					    interpreter,
894 					    &interp_map_addr,
895 					    load_bias);
896 		if (!IS_ERR((void *)elf_entry)) {
897 			/*
898 			 * load_elf_interp() returns relocation
899 			 * adjustment
900 			 */
901 			interp_load_addr = elf_entry;
902 			elf_entry += loc->interp_elf_ex.e_entry;
903 		}
904 		if (BAD_ADDR(elf_entry)) {
905 			force_sig(SIGSEGV, current);
906 			retval = IS_ERR((void *)elf_entry) ?
907 					(int)elf_entry : -EINVAL;
908 			goto out_free_dentry;
909 		}
910 		reloc_func_desc = interp_load_addr;
911 
912 		allow_write_access(interpreter);
913 		fput(interpreter);
914 		kfree(elf_interpreter);
915 	} else {
916 		elf_entry = loc->elf_ex.e_entry;
917 		if (BAD_ADDR(elf_entry)) {
918 			force_sig(SIGSEGV, current);
919 			retval = -EINVAL;
920 			goto out_free_dentry;
921 		}
922 	}
923 
924 	kfree(elf_phdata);
925 
926 	set_binfmt(&elf_format);
927 
928 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
929 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
930 	if (retval < 0) {
931 		send_sig(SIGKILL, current, 0);
932 		goto out;
933 	}
934 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
935 
936 	install_exec_creds(bprm);
937 	retval = create_elf_tables(bprm, &loc->elf_ex,
938 			  load_addr, interp_load_addr);
939 	if (retval < 0) {
940 		send_sig(SIGKILL, current, 0);
941 		goto out;
942 	}
943 	/* N.B. passed_fileno might not be initialized? */
944 	current->mm->end_code = end_code;
945 	current->mm->start_code = start_code;
946 	current->mm->start_data = start_data;
947 	current->mm->end_data = end_data;
948 	current->mm->start_stack = bprm->p;
949 
950 #ifdef arch_randomize_brk
951 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
952 		current->mm->brk = current->mm->start_brk =
953 			arch_randomize_brk(current->mm);
954 #ifdef CONFIG_COMPAT_BRK
955 		current->brk_randomized = 1;
956 #endif
957 	}
958 #endif
959 
960 	if (current->personality & MMAP_PAGE_ZERO) {
961 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
962 		   and some applications "depend" upon this behavior.
963 		   Since we do not have the power to recompile these, we
964 		   emulate the SVr4 behavior. Sigh. */
965 		down_write(&current->mm->mmap_sem);
966 		error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
967 				MAP_FIXED | MAP_PRIVATE, 0);
968 		up_write(&current->mm->mmap_sem);
969 	}
970 
971 #ifdef ELF_PLAT_INIT
972 	/*
973 	 * The ABI may specify that certain registers be set up in special
974 	 * ways (on i386 %edx is the address of a DT_FINI function, for
975 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
976 	 * that the e_entry field is the address of the function descriptor
977 	 * for the startup routine, rather than the address of the startup
978 	 * routine itself.  This macro performs whatever initialization to
979 	 * the regs structure is required as well as any relocations to the
980 	 * function descriptor entries when executing dynamically links apps.
981 	 */
982 	ELF_PLAT_INIT(regs, reloc_func_desc);
983 #endif
984 
985 	start_thread(regs, elf_entry, bprm->p);
986 	retval = 0;
987 out:
988 	kfree(loc);
989 out_ret:
990 	return retval;
991 
992 	/* error cleanup */
993 out_free_dentry:
994 	allow_write_access(interpreter);
995 	if (interpreter)
996 		fput(interpreter);
997 out_free_interp:
998 	kfree(elf_interpreter);
999 out_free_ph:
1000 	kfree(elf_phdata);
1001 	goto out;
1002 }
1003 
1004 /* This is really simpleminded and specialized - we are loading an
1005    a.out library that is given an ELF header. */
1006 static int load_elf_library(struct file *file)
1007 {
1008 	struct elf_phdr *elf_phdata;
1009 	struct elf_phdr *eppnt;
1010 	unsigned long elf_bss, bss, len;
1011 	int retval, error, i, j;
1012 	struct elfhdr elf_ex;
1013 
1014 	error = -ENOEXEC;
1015 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1016 	if (retval != sizeof(elf_ex))
1017 		goto out;
1018 
1019 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1020 		goto out;
1021 
1022 	/* First of all, some simple consistency checks */
1023 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1024 	    !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1025 		goto out;
1026 
1027 	/* Now read in all of the header information */
1028 
1029 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1030 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1031 
1032 	error = -ENOMEM;
1033 	elf_phdata = kmalloc(j, GFP_KERNEL);
1034 	if (!elf_phdata)
1035 		goto out;
1036 
1037 	eppnt = elf_phdata;
1038 	error = -ENOEXEC;
1039 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1040 	if (retval != j)
1041 		goto out_free_ph;
1042 
1043 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1044 		if ((eppnt + i)->p_type == PT_LOAD)
1045 			j++;
1046 	if (j != 1)
1047 		goto out_free_ph;
1048 
1049 	while (eppnt->p_type != PT_LOAD)
1050 		eppnt++;
1051 
1052 	/* Now use mmap to map the library into memory. */
1053 	down_write(&current->mm->mmap_sem);
1054 	error = do_mmap(file,
1055 			ELF_PAGESTART(eppnt->p_vaddr),
1056 			(eppnt->p_filesz +
1057 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1058 			PROT_READ | PROT_WRITE | PROT_EXEC,
1059 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1060 			(eppnt->p_offset -
1061 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1062 	up_write(&current->mm->mmap_sem);
1063 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1064 		goto out_free_ph;
1065 
1066 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1067 	if (padzero(elf_bss)) {
1068 		error = -EFAULT;
1069 		goto out_free_ph;
1070 	}
1071 
1072 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1073 			    ELF_MIN_ALIGN - 1);
1074 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1075 	if (bss > len) {
1076 		down_write(&current->mm->mmap_sem);
1077 		do_brk(len, bss - len);
1078 		up_write(&current->mm->mmap_sem);
1079 	}
1080 	error = 0;
1081 
1082 out_free_ph:
1083 	kfree(elf_phdata);
1084 out:
1085 	return error;
1086 }
1087 
1088 #ifdef CONFIG_ELF_CORE
1089 /*
1090  * ELF core dumper
1091  *
1092  * Modelled on fs/exec.c:aout_core_dump()
1093  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1094  */
1095 
1096 /*
1097  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1098  * that are useful for post-mortem analysis are included in every core dump.
1099  * In that way we ensure that the core dump is fully interpretable later
1100  * without matching up the same kernel and hardware config to see what PC values
1101  * meant. These special mappings include - vDSO, vsyscall, and other
1102  * architecture specific mappings
1103  */
1104 static bool always_dump_vma(struct vm_area_struct *vma)
1105 {
1106 	/* Any vsyscall mappings? */
1107 	if (vma == get_gate_vma(vma->vm_mm))
1108 		return true;
1109 	/*
1110 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1111 	 * such as vDSO sections.
1112 	 */
1113 	if (arch_vma_name(vma))
1114 		return true;
1115 
1116 	return false;
1117 }
1118 
1119 /*
1120  * Decide what to dump of a segment, part, all or none.
1121  */
1122 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1123 				   unsigned long mm_flags)
1124 {
1125 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1126 
1127 	/* always dump the vdso and vsyscall sections */
1128 	if (always_dump_vma(vma))
1129 		goto whole;
1130 
1131 	if (vma->vm_flags & VM_NODUMP)
1132 		return 0;
1133 
1134 	/* Hugetlb memory check */
1135 	if (vma->vm_flags & VM_HUGETLB) {
1136 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1137 			goto whole;
1138 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1139 			goto whole;
1140 	}
1141 
1142 	/* Do not dump I/O mapped devices or special mappings */
1143 	if (vma->vm_flags & (VM_IO | VM_RESERVED))
1144 		return 0;
1145 
1146 	/* By default, dump shared memory if mapped from an anonymous file. */
1147 	if (vma->vm_flags & VM_SHARED) {
1148 		if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1149 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1150 			goto whole;
1151 		return 0;
1152 	}
1153 
1154 	/* Dump segments that have been written to.  */
1155 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1156 		goto whole;
1157 	if (vma->vm_file == NULL)
1158 		return 0;
1159 
1160 	if (FILTER(MAPPED_PRIVATE))
1161 		goto whole;
1162 
1163 	/*
1164 	 * If this looks like the beginning of a DSO or executable mapping,
1165 	 * check for an ELF header.  If we find one, dump the first page to
1166 	 * aid in determining what was mapped here.
1167 	 */
1168 	if (FILTER(ELF_HEADERS) &&
1169 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1170 		u32 __user *header = (u32 __user *) vma->vm_start;
1171 		u32 word;
1172 		mm_segment_t fs = get_fs();
1173 		/*
1174 		 * Doing it this way gets the constant folded by GCC.
1175 		 */
1176 		union {
1177 			u32 cmp;
1178 			char elfmag[SELFMAG];
1179 		} magic;
1180 		BUILD_BUG_ON(SELFMAG != sizeof word);
1181 		magic.elfmag[EI_MAG0] = ELFMAG0;
1182 		magic.elfmag[EI_MAG1] = ELFMAG1;
1183 		magic.elfmag[EI_MAG2] = ELFMAG2;
1184 		magic.elfmag[EI_MAG3] = ELFMAG3;
1185 		/*
1186 		 * Switch to the user "segment" for get_user(),
1187 		 * then put back what elf_core_dump() had in place.
1188 		 */
1189 		set_fs(USER_DS);
1190 		if (unlikely(get_user(word, header)))
1191 			word = 0;
1192 		set_fs(fs);
1193 		if (word == magic.cmp)
1194 			return PAGE_SIZE;
1195 	}
1196 
1197 #undef	FILTER
1198 
1199 	return 0;
1200 
1201 whole:
1202 	return vma->vm_end - vma->vm_start;
1203 }
1204 
1205 /* An ELF note in memory */
1206 struct memelfnote
1207 {
1208 	const char *name;
1209 	int type;
1210 	unsigned int datasz;
1211 	void *data;
1212 };
1213 
1214 static int notesize(struct memelfnote *en)
1215 {
1216 	int sz;
1217 
1218 	sz = sizeof(struct elf_note);
1219 	sz += roundup(strlen(en->name) + 1, 4);
1220 	sz += roundup(en->datasz, 4);
1221 
1222 	return sz;
1223 }
1224 
1225 #define DUMP_WRITE(addr, nr, foffset)	\
1226 	do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1227 
1228 static int alignfile(struct file *file, loff_t *foffset)
1229 {
1230 	static const char buf[4] = { 0, };
1231 	DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1232 	return 1;
1233 }
1234 
1235 static int writenote(struct memelfnote *men, struct file *file,
1236 			loff_t *foffset)
1237 {
1238 	struct elf_note en;
1239 	en.n_namesz = strlen(men->name) + 1;
1240 	en.n_descsz = men->datasz;
1241 	en.n_type = men->type;
1242 
1243 	DUMP_WRITE(&en, sizeof(en), foffset);
1244 	DUMP_WRITE(men->name, en.n_namesz, foffset);
1245 	if (!alignfile(file, foffset))
1246 		return 0;
1247 	DUMP_WRITE(men->data, men->datasz, foffset);
1248 	if (!alignfile(file, foffset))
1249 		return 0;
1250 
1251 	return 1;
1252 }
1253 #undef DUMP_WRITE
1254 
1255 static void fill_elf_header(struct elfhdr *elf, int segs,
1256 			    u16 machine, u32 flags, u8 osabi)
1257 {
1258 	memset(elf, 0, sizeof(*elf));
1259 
1260 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1261 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1262 	elf->e_ident[EI_DATA] = ELF_DATA;
1263 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1264 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1265 
1266 	elf->e_type = ET_CORE;
1267 	elf->e_machine = machine;
1268 	elf->e_version = EV_CURRENT;
1269 	elf->e_phoff = sizeof(struct elfhdr);
1270 	elf->e_flags = flags;
1271 	elf->e_ehsize = sizeof(struct elfhdr);
1272 	elf->e_phentsize = sizeof(struct elf_phdr);
1273 	elf->e_phnum = segs;
1274 
1275 	return;
1276 }
1277 
1278 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1279 {
1280 	phdr->p_type = PT_NOTE;
1281 	phdr->p_offset = offset;
1282 	phdr->p_vaddr = 0;
1283 	phdr->p_paddr = 0;
1284 	phdr->p_filesz = sz;
1285 	phdr->p_memsz = 0;
1286 	phdr->p_flags = 0;
1287 	phdr->p_align = 0;
1288 	return;
1289 }
1290 
1291 static void fill_note(struct memelfnote *note, const char *name, int type,
1292 		unsigned int sz, void *data)
1293 {
1294 	note->name = name;
1295 	note->type = type;
1296 	note->datasz = sz;
1297 	note->data = data;
1298 	return;
1299 }
1300 
1301 /*
1302  * fill up all the fields in prstatus from the given task struct, except
1303  * registers which need to be filled up separately.
1304  */
1305 static void fill_prstatus(struct elf_prstatus *prstatus,
1306 		struct task_struct *p, long signr)
1307 {
1308 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1309 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1310 	prstatus->pr_sighold = p->blocked.sig[0];
1311 	rcu_read_lock();
1312 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1313 	rcu_read_unlock();
1314 	prstatus->pr_pid = task_pid_vnr(p);
1315 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1316 	prstatus->pr_sid = task_session_vnr(p);
1317 	if (thread_group_leader(p)) {
1318 		struct task_cputime cputime;
1319 
1320 		/*
1321 		 * This is the record for the group leader.  It shows the
1322 		 * group-wide total, not its individual thread total.
1323 		 */
1324 		thread_group_cputime(p, &cputime);
1325 		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1326 		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1327 	} else {
1328 		cputime_to_timeval(p->utime, &prstatus->pr_utime);
1329 		cputime_to_timeval(p->stime, &prstatus->pr_stime);
1330 	}
1331 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1332 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1333 }
1334 
1335 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1336 		       struct mm_struct *mm)
1337 {
1338 	const struct cred *cred;
1339 	unsigned int i, len;
1340 
1341 	/* first copy the parameters from user space */
1342 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1343 
1344 	len = mm->arg_end - mm->arg_start;
1345 	if (len >= ELF_PRARGSZ)
1346 		len = ELF_PRARGSZ-1;
1347 	if (copy_from_user(&psinfo->pr_psargs,
1348 		           (const char __user *)mm->arg_start, len))
1349 		return -EFAULT;
1350 	for(i = 0; i < len; i++)
1351 		if (psinfo->pr_psargs[i] == 0)
1352 			psinfo->pr_psargs[i] = ' ';
1353 	psinfo->pr_psargs[len] = 0;
1354 
1355 	rcu_read_lock();
1356 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1357 	rcu_read_unlock();
1358 	psinfo->pr_pid = task_pid_vnr(p);
1359 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1360 	psinfo->pr_sid = task_session_vnr(p);
1361 
1362 	i = p->state ? ffz(~p->state) + 1 : 0;
1363 	psinfo->pr_state = i;
1364 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1365 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1366 	psinfo->pr_nice = task_nice(p);
1367 	psinfo->pr_flag = p->flags;
1368 	rcu_read_lock();
1369 	cred = __task_cred(p);
1370 	SET_UID(psinfo->pr_uid, cred->uid);
1371 	SET_GID(psinfo->pr_gid, cred->gid);
1372 	rcu_read_unlock();
1373 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1374 
1375 	return 0;
1376 }
1377 
1378 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1379 {
1380 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1381 	int i = 0;
1382 	do
1383 		i += 2;
1384 	while (auxv[i - 2] != AT_NULL);
1385 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1386 }
1387 
1388 #ifdef CORE_DUMP_USE_REGSET
1389 #include <linux/regset.h>
1390 
1391 struct elf_thread_core_info {
1392 	struct elf_thread_core_info *next;
1393 	struct task_struct *task;
1394 	struct elf_prstatus prstatus;
1395 	struct memelfnote notes[0];
1396 };
1397 
1398 struct elf_note_info {
1399 	struct elf_thread_core_info *thread;
1400 	struct memelfnote psinfo;
1401 	struct memelfnote auxv;
1402 	size_t size;
1403 	int thread_notes;
1404 };
1405 
1406 /*
1407  * When a regset has a writeback hook, we call it on each thread before
1408  * dumping user memory.  On register window machines, this makes sure the
1409  * user memory backing the register data is up to date before we read it.
1410  */
1411 static void do_thread_regset_writeback(struct task_struct *task,
1412 				       const struct user_regset *regset)
1413 {
1414 	if (regset->writeback)
1415 		regset->writeback(task, regset, 1);
1416 }
1417 
1418 #ifndef PR_REG_SIZE
1419 #define PR_REG_SIZE(S) sizeof(S)
1420 #endif
1421 
1422 #ifndef PRSTATUS_SIZE
1423 #define PRSTATUS_SIZE(S) sizeof(S)
1424 #endif
1425 
1426 #ifndef PR_REG_PTR
1427 #define PR_REG_PTR(S) (&((S)->pr_reg))
1428 #endif
1429 
1430 #ifndef SET_PR_FPVALID
1431 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1432 #endif
1433 
1434 static int fill_thread_core_info(struct elf_thread_core_info *t,
1435 				 const struct user_regset_view *view,
1436 				 long signr, size_t *total)
1437 {
1438 	unsigned int i;
1439 
1440 	/*
1441 	 * NT_PRSTATUS is the one special case, because the regset data
1442 	 * goes into the pr_reg field inside the note contents, rather
1443 	 * than being the whole note contents.  We fill the reset in here.
1444 	 * We assume that regset 0 is NT_PRSTATUS.
1445 	 */
1446 	fill_prstatus(&t->prstatus, t->task, signr);
1447 	(void) view->regsets[0].get(t->task, &view->regsets[0],
1448 				    0, PR_REG_SIZE(t->prstatus.pr_reg),
1449 				    PR_REG_PTR(&t->prstatus), NULL);
1450 
1451 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1452 		  PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1453 	*total += notesize(&t->notes[0]);
1454 
1455 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1456 
1457 	/*
1458 	 * Each other regset might generate a note too.  For each regset
1459 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1460 	 * all zero and we'll know to skip writing it later.
1461 	 */
1462 	for (i = 1; i < view->n; ++i) {
1463 		const struct user_regset *regset = &view->regsets[i];
1464 		do_thread_regset_writeback(t->task, regset);
1465 		if (regset->core_note_type && regset->get &&
1466 		    (!regset->active || regset->active(t->task, regset))) {
1467 			int ret;
1468 			size_t size = regset->n * regset->size;
1469 			void *data = kmalloc(size, GFP_KERNEL);
1470 			if (unlikely(!data))
1471 				return 0;
1472 			ret = regset->get(t->task, regset,
1473 					  0, size, data, NULL);
1474 			if (unlikely(ret))
1475 				kfree(data);
1476 			else {
1477 				if (regset->core_note_type != NT_PRFPREG)
1478 					fill_note(&t->notes[i], "LINUX",
1479 						  regset->core_note_type,
1480 						  size, data);
1481 				else {
1482 					SET_PR_FPVALID(&t->prstatus, 1);
1483 					fill_note(&t->notes[i], "CORE",
1484 						  NT_PRFPREG, size, data);
1485 				}
1486 				*total += notesize(&t->notes[i]);
1487 			}
1488 		}
1489 	}
1490 
1491 	return 1;
1492 }
1493 
1494 static int fill_note_info(struct elfhdr *elf, int phdrs,
1495 			  struct elf_note_info *info,
1496 			  long signr, struct pt_regs *regs)
1497 {
1498 	struct task_struct *dump_task = current;
1499 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1500 	struct elf_thread_core_info *t;
1501 	struct elf_prpsinfo *psinfo;
1502 	struct core_thread *ct;
1503 	unsigned int i;
1504 
1505 	info->size = 0;
1506 	info->thread = NULL;
1507 
1508 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1509 	if (psinfo == NULL)
1510 		return 0;
1511 
1512 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1513 
1514 	/*
1515 	 * Figure out how many notes we're going to need for each thread.
1516 	 */
1517 	info->thread_notes = 0;
1518 	for (i = 0; i < view->n; ++i)
1519 		if (view->regsets[i].core_note_type != 0)
1520 			++info->thread_notes;
1521 
1522 	/*
1523 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1524 	 * since it is our one special case.
1525 	 */
1526 	if (unlikely(info->thread_notes == 0) ||
1527 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1528 		WARN_ON(1);
1529 		return 0;
1530 	}
1531 
1532 	/*
1533 	 * Initialize the ELF file header.
1534 	 */
1535 	fill_elf_header(elf, phdrs,
1536 			view->e_machine, view->e_flags, view->ei_osabi);
1537 
1538 	/*
1539 	 * Allocate a structure for each thread.
1540 	 */
1541 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1542 		t = kzalloc(offsetof(struct elf_thread_core_info,
1543 				     notes[info->thread_notes]),
1544 			    GFP_KERNEL);
1545 		if (unlikely(!t))
1546 			return 0;
1547 
1548 		t->task = ct->task;
1549 		if (ct->task == dump_task || !info->thread) {
1550 			t->next = info->thread;
1551 			info->thread = t;
1552 		} else {
1553 			/*
1554 			 * Make sure to keep the original task at
1555 			 * the head of the list.
1556 			 */
1557 			t->next = info->thread->next;
1558 			info->thread->next = t;
1559 		}
1560 	}
1561 
1562 	/*
1563 	 * Now fill in each thread's information.
1564 	 */
1565 	for (t = info->thread; t != NULL; t = t->next)
1566 		if (!fill_thread_core_info(t, view, signr, &info->size))
1567 			return 0;
1568 
1569 	/*
1570 	 * Fill in the two process-wide notes.
1571 	 */
1572 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1573 	info->size += notesize(&info->psinfo);
1574 
1575 	fill_auxv_note(&info->auxv, current->mm);
1576 	info->size += notesize(&info->auxv);
1577 
1578 	return 1;
1579 }
1580 
1581 static size_t get_note_info_size(struct elf_note_info *info)
1582 {
1583 	return info->size;
1584 }
1585 
1586 /*
1587  * Write all the notes for each thread.  When writing the first thread, the
1588  * process-wide notes are interleaved after the first thread-specific note.
1589  */
1590 static int write_note_info(struct elf_note_info *info,
1591 			   struct file *file, loff_t *foffset)
1592 {
1593 	bool first = 1;
1594 	struct elf_thread_core_info *t = info->thread;
1595 
1596 	do {
1597 		int i;
1598 
1599 		if (!writenote(&t->notes[0], file, foffset))
1600 			return 0;
1601 
1602 		if (first && !writenote(&info->psinfo, file, foffset))
1603 			return 0;
1604 		if (first && !writenote(&info->auxv, file, foffset))
1605 			return 0;
1606 
1607 		for (i = 1; i < info->thread_notes; ++i)
1608 			if (t->notes[i].data &&
1609 			    !writenote(&t->notes[i], file, foffset))
1610 				return 0;
1611 
1612 		first = 0;
1613 		t = t->next;
1614 	} while (t);
1615 
1616 	return 1;
1617 }
1618 
1619 static void free_note_info(struct elf_note_info *info)
1620 {
1621 	struct elf_thread_core_info *threads = info->thread;
1622 	while (threads) {
1623 		unsigned int i;
1624 		struct elf_thread_core_info *t = threads;
1625 		threads = t->next;
1626 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1627 		for (i = 1; i < info->thread_notes; ++i)
1628 			kfree(t->notes[i].data);
1629 		kfree(t);
1630 	}
1631 	kfree(info->psinfo.data);
1632 }
1633 
1634 #else
1635 
1636 /* Here is the structure in which status of each thread is captured. */
1637 struct elf_thread_status
1638 {
1639 	struct list_head list;
1640 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1641 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1642 	struct task_struct *thread;
1643 #ifdef ELF_CORE_COPY_XFPREGS
1644 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1645 #endif
1646 	struct memelfnote notes[3];
1647 	int num_notes;
1648 };
1649 
1650 /*
1651  * In order to add the specific thread information for the elf file format,
1652  * we need to keep a linked list of every threads pr_status and then create
1653  * a single section for them in the final core file.
1654  */
1655 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1656 {
1657 	int sz = 0;
1658 	struct task_struct *p = t->thread;
1659 	t->num_notes = 0;
1660 
1661 	fill_prstatus(&t->prstatus, p, signr);
1662 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1663 
1664 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1665 		  &(t->prstatus));
1666 	t->num_notes++;
1667 	sz += notesize(&t->notes[0]);
1668 
1669 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1670 								&t->fpu))) {
1671 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1672 			  &(t->fpu));
1673 		t->num_notes++;
1674 		sz += notesize(&t->notes[1]);
1675 	}
1676 
1677 #ifdef ELF_CORE_COPY_XFPREGS
1678 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1679 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1680 			  sizeof(t->xfpu), &t->xfpu);
1681 		t->num_notes++;
1682 		sz += notesize(&t->notes[2]);
1683 	}
1684 #endif
1685 	return sz;
1686 }
1687 
1688 struct elf_note_info {
1689 	struct memelfnote *notes;
1690 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1691 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1692 	struct list_head thread_list;
1693 	elf_fpregset_t *fpu;
1694 #ifdef ELF_CORE_COPY_XFPREGS
1695 	elf_fpxregset_t *xfpu;
1696 #endif
1697 	int thread_status_size;
1698 	int numnote;
1699 };
1700 
1701 static int elf_note_info_init(struct elf_note_info *info)
1702 {
1703 	memset(info, 0, sizeof(*info));
1704 	INIT_LIST_HEAD(&info->thread_list);
1705 
1706 	/* Allocate space for six ELF notes */
1707 	info->notes = kmalloc(6 * sizeof(struct memelfnote), GFP_KERNEL);
1708 	if (!info->notes)
1709 		return 0;
1710 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1711 	if (!info->psinfo)
1712 		goto notes_free;
1713 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1714 	if (!info->prstatus)
1715 		goto psinfo_free;
1716 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1717 	if (!info->fpu)
1718 		goto prstatus_free;
1719 #ifdef ELF_CORE_COPY_XFPREGS
1720 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1721 	if (!info->xfpu)
1722 		goto fpu_free;
1723 #endif
1724 	return 1;
1725 #ifdef ELF_CORE_COPY_XFPREGS
1726  fpu_free:
1727 	kfree(info->fpu);
1728 #endif
1729  prstatus_free:
1730 	kfree(info->prstatus);
1731  psinfo_free:
1732 	kfree(info->psinfo);
1733  notes_free:
1734 	kfree(info->notes);
1735 	return 0;
1736 }
1737 
1738 static int fill_note_info(struct elfhdr *elf, int phdrs,
1739 			  struct elf_note_info *info,
1740 			  long signr, struct pt_regs *regs)
1741 {
1742 	struct list_head *t;
1743 
1744 	if (!elf_note_info_init(info))
1745 		return 0;
1746 
1747 	if (signr) {
1748 		struct core_thread *ct;
1749 		struct elf_thread_status *ets;
1750 
1751 		for (ct = current->mm->core_state->dumper.next;
1752 						ct; ct = ct->next) {
1753 			ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1754 			if (!ets)
1755 				return 0;
1756 
1757 			ets->thread = ct->task;
1758 			list_add(&ets->list, &info->thread_list);
1759 		}
1760 
1761 		list_for_each(t, &info->thread_list) {
1762 			int sz;
1763 
1764 			ets = list_entry(t, struct elf_thread_status, list);
1765 			sz = elf_dump_thread_status(signr, ets);
1766 			info->thread_status_size += sz;
1767 		}
1768 	}
1769 	/* now collect the dump for the current */
1770 	memset(info->prstatus, 0, sizeof(*info->prstatus));
1771 	fill_prstatus(info->prstatus, current, signr);
1772 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1773 
1774 	/* Set up header */
1775 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1776 
1777 	/*
1778 	 * Set up the notes in similar form to SVR4 core dumps made
1779 	 * with info from their /proc.
1780 	 */
1781 
1782 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1783 		  sizeof(*info->prstatus), info->prstatus);
1784 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1785 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1786 		  sizeof(*info->psinfo), info->psinfo);
1787 
1788 	info->numnote = 2;
1789 
1790 	fill_auxv_note(&info->notes[info->numnote++], current->mm);
1791 
1792 	/* Try to dump the FPU. */
1793 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1794 							       info->fpu);
1795 	if (info->prstatus->pr_fpvalid)
1796 		fill_note(info->notes + info->numnote++,
1797 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1798 #ifdef ELF_CORE_COPY_XFPREGS
1799 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
1800 		fill_note(info->notes + info->numnote++,
1801 			  "LINUX", ELF_CORE_XFPREG_TYPE,
1802 			  sizeof(*info->xfpu), info->xfpu);
1803 #endif
1804 
1805 	return 1;
1806 }
1807 
1808 static size_t get_note_info_size(struct elf_note_info *info)
1809 {
1810 	int sz = 0;
1811 	int i;
1812 
1813 	for (i = 0; i < info->numnote; i++)
1814 		sz += notesize(info->notes + i);
1815 
1816 	sz += info->thread_status_size;
1817 
1818 	return sz;
1819 }
1820 
1821 static int write_note_info(struct elf_note_info *info,
1822 			   struct file *file, loff_t *foffset)
1823 {
1824 	int i;
1825 	struct list_head *t;
1826 
1827 	for (i = 0; i < info->numnote; i++)
1828 		if (!writenote(info->notes + i, file, foffset))
1829 			return 0;
1830 
1831 	/* write out the thread status notes section */
1832 	list_for_each(t, &info->thread_list) {
1833 		struct elf_thread_status *tmp =
1834 				list_entry(t, struct elf_thread_status, list);
1835 
1836 		for (i = 0; i < tmp->num_notes; i++)
1837 			if (!writenote(&tmp->notes[i], file, foffset))
1838 				return 0;
1839 	}
1840 
1841 	return 1;
1842 }
1843 
1844 static void free_note_info(struct elf_note_info *info)
1845 {
1846 	while (!list_empty(&info->thread_list)) {
1847 		struct list_head *tmp = info->thread_list.next;
1848 		list_del(tmp);
1849 		kfree(list_entry(tmp, struct elf_thread_status, list));
1850 	}
1851 
1852 	kfree(info->prstatus);
1853 	kfree(info->psinfo);
1854 	kfree(info->notes);
1855 	kfree(info->fpu);
1856 #ifdef ELF_CORE_COPY_XFPREGS
1857 	kfree(info->xfpu);
1858 #endif
1859 }
1860 
1861 #endif
1862 
1863 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1864 					struct vm_area_struct *gate_vma)
1865 {
1866 	struct vm_area_struct *ret = tsk->mm->mmap;
1867 
1868 	if (ret)
1869 		return ret;
1870 	return gate_vma;
1871 }
1872 /*
1873  * Helper function for iterating across a vma list.  It ensures that the caller
1874  * will visit `gate_vma' prior to terminating the search.
1875  */
1876 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1877 					struct vm_area_struct *gate_vma)
1878 {
1879 	struct vm_area_struct *ret;
1880 
1881 	ret = this_vma->vm_next;
1882 	if (ret)
1883 		return ret;
1884 	if (this_vma == gate_vma)
1885 		return NULL;
1886 	return gate_vma;
1887 }
1888 
1889 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1890 			     elf_addr_t e_shoff, int segs)
1891 {
1892 	elf->e_shoff = e_shoff;
1893 	elf->e_shentsize = sizeof(*shdr4extnum);
1894 	elf->e_shnum = 1;
1895 	elf->e_shstrndx = SHN_UNDEF;
1896 
1897 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1898 
1899 	shdr4extnum->sh_type = SHT_NULL;
1900 	shdr4extnum->sh_size = elf->e_shnum;
1901 	shdr4extnum->sh_link = elf->e_shstrndx;
1902 	shdr4extnum->sh_info = segs;
1903 }
1904 
1905 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
1906 				     unsigned long mm_flags)
1907 {
1908 	struct vm_area_struct *vma;
1909 	size_t size = 0;
1910 
1911 	for (vma = first_vma(current, gate_vma); vma != NULL;
1912 	     vma = next_vma(vma, gate_vma))
1913 		size += vma_dump_size(vma, mm_flags);
1914 	return size;
1915 }
1916 
1917 /*
1918  * Actual dumper
1919  *
1920  * This is a two-pass process; first we find the offsets of the bits,
1921  * and then they are actually written out.  If we run out of core limit
1922  * we just truncate.
1923  */
1924 static int elf_core_dump(struct coredump_params *cprm)
1925 {
1926 	int has_dumped = 0;
1927 	mm_segment_t fs;
1928 	int segs;
1929 	size_t size = 0;
1930 	struct vm_area_struct *vma, *gate_vma;
1931 	struct elfhdr *elf = NULL;
1932 	loff_t offset = 0, dataoff, foffset;
1933 	struct elf_note_info info;
1934 	struct elf_phdr *phdr4note = NULL;
1935 	struct elf_shdr *shdr4extnum = NULL;
1936 	Elf_Half e_phnum;
1937 	elf_addr_t e_shoff;
1938 
1939 	/*
1940 	 * We no longer stop all VM operations.
1941 	 *
1942 	 * This is because those proceses that could possibly change map_count
1943 	 * or the mmap / vma pages are now blocked in do_exit on current
1944 	 * finishing this core dump.
1945 	 *
1946 	 * Only ptrace can touch these memory addresses, but it doesn't change
1947 	 * the map_count or the pages allocated. So no possibility of crashing
1948 	 * exists while dumping the mm->vm_next areas to the core file.
1949 	 */
1950 
1951 	/* alloc memory for large data structures: too large to be on stack */
1952 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1953 	if (!elf)
1954 		goto out;
1955 	/*
1956 	 * The number of segs are recored into ELF header as 16bit value.
1957 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1958 	 */
1959 	segs = current->mm->map_count;
1960 	segs += elf_core_extra_phdrs();
1961 
1962 	gate_vma = get_gate_vma(current->mm);
1963 	if (gate_vma != NULL)
1964 		segs++;
1965 
1966 	/* for notes section */
1967 	segs++;
1968 
1969 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
1970 	 * this, kernel supports extended numbering. Have a look at
1971 	 * include/linux/elf.h for further information. */
1972 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
1973 
1974 	/*
1975 	 * Collect all the non-memory information about the process for the
1976 	 * notes.  This also sets up the file header.
1977 	 */
1978 	if (!fill_note_info(elf, e_phnum, &info, cprm->signr, cprm->regs))
1979 		goto cleanup;
1980 
1981 	has_dumped = 1;
1982 	current->flags |= PF_DUMPCORE;
1983 
1984 	fs = get_fs();
1985 	set_fs(KERNEL_DS);
1986 
1987 	offset += sizeof(*elf);				/* Elf header */
1988 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
1989 	foffset = offset;
1990 
1991 	/* Write notes phdr entry */
1992 	{
1993 		size_t sz = get_note_info_size(&info);
1994 
1995 		sz += elf_coredump_extra_notes_size();
1996 
1997 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
1998 		if (!phdr4note)
1999 			goto end_coredump;
2000 
2001 		fill_elf_note_phdr(phdr4note, sz, offset);
2002 		offset += sz;
2003 	}
2004 
2005 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2006 
2007 	offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
2008 	offset += elf_core_extra_data_size();
2009 	e_shoff = offset;
2010 
2011 	if (e_phnum == PN_XNUM) {
2012 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2013 		if (!shdr4extnum)
2014 			goto end_coredump;
2015 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2016 	}
2017 
2018 	offset = dataoff;
2019 
2020 	size += sizeof(*elf);
2021 	if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
2022 		goto end_coredump;
2023 
2024 	size += sizeof(*phdr4note);
2025 	if (size > cprm->limit
2026 	    || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
2027 		goto end_coredump;
2028 
2029 	/* Write program headers for segments dump */
2030 	for (vma = first_vma(current, gate_vma); vma != NULL;
2031 			vma = next_vma(vma, gate_vma)) {
2032 		struct elf_phdr phdr;
2033 
2034 		phdr.p_type = PT_LOAD;
2035 		phdr.p_offset = offset;
2036 		phdr.p_vaddr = vma->vm_start;
2037 		phdr.p_paddr = 0;
2038 		phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
2039 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2040 		offset += phdr.p_filesz;
2041 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2042 		if (vma->vm_flags & VM_WRITE)
2043 			phdr.p_flags |= PF_W;
2044 		if (vma->vm_flags & VM_EXEC)
2045 			phdr.p_flags |= PF_X;
2046 		phdr.p_align = ELF_EXEC_PAGESIZE;
2047 
2048 		size += sizeof(phdr);
2049 		if (size > cprm->limit
2050 		    || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2051 			goto end_coredump;
2052 	}
2053 
2054 	if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2055 		goto end_coredump;
2056 
2057  	/* write out the notes section */
2058 	if (!write_note_info(&info, cprm->file, &foffset))
2059 		goto end_coredump;
2060 
2061 	if (elf_coredump_extra_notes_write(cprm->file, &foffset))
2062 		goto end_coredump;
2063 
2064 	/* Align to page */
2065 	if (!dump_seek(cprm->file, dataoff - foffset))
2066 		goto end_coredump;
2067 
2068 	for (vma = first_vma(current, gate_vma); vma != NULL;
2069 			vma = next_vma(vma, gate_vma)) {
2070 		unsigned long addr;
2071 		unsigned long end;
2072 
2073 		end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2074 
2075 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2076 			struct page *page;
2077 			int stop;
2078 
2079 			page = get_dump_page(addr);
2080 			if (page) {
2081 				void *kaddr = kmap(page);
2082 				stop = ((size += PAGE_SIZE) > cprm->limit) ||
2083 					!dump_write(cprm->file, kaddr,
2084 						    PAGE_SIZE);
2085 				kunmap(page);
2086 				page_cache_release(page);
2087 			} else
2088 				stop = !dump_seek(cprm->file, PAGE_SIZE);
2089 			if (stop)
2090 				goto end_coredump;
2091 		}
2092 	}
2093 
2094 	if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2095 		goto end_coredump;
2096 
2097 	if (e_phnum == PN_XNUM) {
2098 		size += sizeof(*shdr4extnum);
2099 		if (size > cprm->limit
2100 		    || !dump_write(cprm->file, shdr4extnum,
2101 				   sizeof(*shdr4extnum)))
2102 			goto end_coredump;
2103 	}
2104 
2105 end_coredump:
2106 	set_fs(fs);
2107 
2108 cleanup:
2109 	free_note_info(&info);
2110 	kfree(shdr4extnum);
2111 	kfree(phdr4note);
2112 	kfree(elf);
2113 out:
2114 	return has_dumped;
2115 }
2116 
2117 #endif		/* CONFIG_ELF_CORE */
2118 
2119 static int __init init_elf_binfmt(void)
2120 {
2121 	register_binfmt(&elf_format);
2122 	return 0;
2123 }
2124 
2125 static void __exit exit_elf_binfmt(void)
2126 {
2127 	/* Remove the COFF and ELF loaders. */
2128 	unregister_binfmt(&elf_format);
2129 }
2130 
2131 core_initcall(init_elf_binfmt);
2132 module_exit(exit_elf_binfmt);
2133 MODULE_LICENSE("GPL");
2134