xref: /linux/fs/binfmt_elf.c (revision 7c43185138cf523b0810ffd2c9e18e2ecb356730)
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/security.h>
31 #include <linux/random.h>
32 #include <linux/elf.h>
33 #include <linux/utsname.h>
34 #include <linux/coredump.h>
35 #include <asm/uaccess.h>
36 #include <asm/param.h>
37 #include <asm/page.h>
38 
39 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
40 static int load_elf_library(struct file *);
41 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
42 				int, int, unsigned long);
43 
44 /*
45  * If we don't support core dumping, then supply a NULL so we
46  * don't even try.
47  */
48 #ifdef CONFIG_ELF_CORE
49 static int elf_core_dump(struct coredump_params *cprm);
50 #else
51 #define elf_core_dump	NULL
52 #endif
53 
54 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
55 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
56 #else
57 #define ELF_MIN_ALIGN	PAGE_SIZE
58 #endif
59 
60 #ifndef ELF_CORE_EFLAGS
61 #define ELF_CORE_EFLAGS	0
62 #endif
63 
64 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
65 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
66 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
67 
68 static struct linux_binfmt elf_format = {
69 	.module		= THIS_MODULE,
70 	.load_binary	= load_elf_binary,
71 	.load_shlib	= load_elf_library,
72 	.core_dump	= elf_core_dump,
73 	.min_coredump	= ELF_EXEC_PAGESIZE,
74 };
75 
76 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
77 
78 static int set_brk(unsigned long start, unsigned long end)
79 {
80 	start = ELF_PAGEALIGN(start);
81 	end = ELF_PAGEALIGN(end);
82 	if (end > start) {
83 		unsigned long addr;
84 		down_write(&current->mm->mmap_sem);
85 		addr = do_brk(start, end - start);
86 		up_write(&current->mm->mmap_sem);
87 		if (BAD_ADDR(addr))
88 			return addr;
89 	}
90 	current->mm->start_brk = current->mm->brk = end;
91 	return 0;
92 }
93 
94 /* We need to explicitly zero any fractional pages
95    after the data section (i.e. bss).  This would
96    contain the junk from the file that should not
97    be in memory
98  */
99 static int padzero(unsigned long elf_bss)
100 {
101 	unsigned long nbyte;
102 
103 	nbyte = ELF_PAGEOFFSET(elf_bss);
104 	if (nbyte) {
105 		nbyte = ELF_MIN_ALIGN - nbyte;
106 		if (clear_user((void __user *) elf_bss, nbyte))
107 			return -EFAULT;
108 	}
109 	return 0;
110 }
111 
112 /* Let's use some macros to make this stack manipulation a little clearer */
113 #ifdef CONFIG_STACK_GROWSUP
114 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
115 #define STACK_ROUND(sp, items) \
116 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
117 #define STACK_ALLOC(sp, len) ({ \
118 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
119 	old_sp; })
120 #else
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
122 #define STACK_ROUND(sp, items) \
123 	(((unsigned long) (sp - items)) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
125 #endif
126 
127 #ifndef ELF_BASE_PLATFORM
128 /*
129  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
130  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
131  * will be copied to the user stack in the same manner as AT_PLATFORM.
132  */
133 #define ELF_BASE_PLATFORM NULL
134 #endif
135 
136 static int
137 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
138 		unsigned long load_addr, unsigned long interp_load_addr)
139 {
140 	unsigned long p = bprm->p;
141 	int argc = bprm->argc;
142 	int envc = bprm->envc;
143 	elf_addr_t __user *argv;
144 	elf_addr_t __user *envp;
145 	elf_addr_t __user *sp;
146 	elf_addr_t __user *u_platform;
147 	elf_addr_t __user *u_base_platform;
148 	elf_addr_t __user *u_rand_bytes;
149 	const char *k_platform = ELF_PLATFORM;
150 	const char *k_base_platform = ELF_BASE_PLATFORM;
151 	unsigned char k_rand_bytes[16];
152 	int items;
153 	elf_addr_t *elf_info;
154 	int ei_index = 0;
155 	const struct cred *cred = current_cred();
156 	struct vm_area_struct *vma;
157 
158 	/*
159 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
160 	 * evictions by the processes running on the same package. One
161 	 * thing we can do is to shuffle the initial stack for them.
162 	 */
163 
164 	p = arch_align_stack(p);
165 
166 	/*
167 	 * If this architecture has a platform capability string, copy it
168 	 * to userspace.  In some cases (Sparc), this info is impossible
169 	 * for userspace to get any other way, in others (i386) it is
170 	 * merely difficult.
171 	 */
172 	u_platform = NULL;
173 	if (k_platform) {
174 		size_t len = strlen(k_platform) + 1;
175 
176 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
177 		if (__copy_to_user(u_platform, k_platform, len))
178 			return -EFAULT;
179 	}
180 
181 	/*
182 	 * If this architecture has a "base" platform capability
183 	 * string, copy it to userspace.
184 	 */
185 	u_base_platform = NULL;
186 	if (k_base_platform) {
187 		size_t len = strlen(k_base_platform) + 1;
188 
189 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
190 		if (__copy_to_user(u_base_platform, k_base_platform, len))
191 			return -EFAULT;
192 	}
193 
194 	/*
195 	 * Generate 16 random bytes for userspace PRNG seeding.
196 	 */
197 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
198 	u_rand_bytes = (elf_addr_t __user *)
199 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
200 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
201 		return -EFAULT;
202 
203 	/* Create the ELF interpreter info */
204 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
205 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
206 #define NEW_AUX_ENT(id, val) \
207 	do { \
208 		elf_info[ei_index++] = id; \
209 		elf_info[ei_index++] = val; \
210 	} while (0)
211 
212 #ifdef ARCH_DLINFO
213 	/*
214 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
215 	 * AUXV.
216 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
217 	 * ARCH_DLINFO changes
218 	 */
219 	ARCH_DLINFO;
220 #endif
221 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
222 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
223 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
224 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
225 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
226 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
227 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
228 	NEW_AUX_ENT(AT_FLAGS, 0);
229 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
230 	NEW_AUX_ENT(AT_UID, cred->uid);
231 	NEW_AUX_ENT(AT_EUID, cred->euid);
232 	NEW_AUX_ENT(AT_GID, cred->gid);
233 	NEW_AUX_ENT(AT_EGID, cred->egid);
234  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
235 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
236 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
237 	if (k_platform) {
238 		NEW_AUX_ENT(AT_PLATFORM,
239 			    (elf_addr_t)(unsigned long)u_platform);
240 	}
241 	if (k_base_platform) {
242 		NEW_AUX_ENT(AT_BASE_PLATFORM,
243 			    (elf_addr_t)(unsigned long)u_base_platform);
244 	}
245 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
246 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
247 	}
248 #undef NEW_AUX_ENT
249 	/* AT_NULL is zero; clear the rest too */
250 	memset(&elf_info[ei_index], 0,
251 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
252 
253 	/* And advance past the AT_NULL entry.  */
254 	ei_index += 2;
255 
256 	sp = STACK_ADD(p, ei_index);
257 
258 	items = (argc + 1) + (envc + 1) + 1;
259 	bprm->p = STACK_ROUND(sp, items);
260 
261 	/* Point sp at the lowest address on the stack */
262 #ifdef CONFIG_STACK_GROWSUP
263 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
264 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
265 #else
266 	sp = (elf_addr_t __user *)bprm->p;
267 #endif
268 
269 
270 	/*
271 	 * Grow the stack manually; some architectures have a limit on how
272 	 * far ahead a user-space access may be in order to grow the stack.
273 	 */
274 	vma = find_extend_vma(current->mm, bprm->p);
275 	if (!vma)
276 		return -EFAULT;
277 
278 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
279 	if (__put_user(argc, sp++))
280 		return -EFAULT;
281 	argv = sp;
282 	envp = argv + argc + 1;
283 
284 	/* Populate argv and envp */
285 	p = current->mm->arg_end = current->mm->arg_start;
286 	while (argc-- > 0) {
287 		size_t len;
288 		if (__put_user((elf_addr_t)p, argv++))
289 			return -EFAULT;
290 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
291 		if (!len || len > MAX_ARG_STRLEN)
292 			return -EINVAL;
293 		p += len;
294 	}
295 	if (__put_user(0, argv))
296 		return -EFAULT;
297 	current->mm->arg_end = current->mm->env_start = p;
298 	while (envc-- > 0) {
299 		size_t len;
300 		if (__put_user((elf_addr_t)p, envp++))
301 			return -EFAULT;
302 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
303 		if (!len || len > MAX_ARG_STRLEN)
304 			return -EINVAL;
305 		p += len;
306 	}
307 	if (__put_user(0, envp))
308 		return -EFAULT;
309 	current->mm->env_end = p;
310 
311 	/* Put the elf_info on the stack in the right place.  */
312 	sp = (elf_addr_t __user *)envp + 1;
313 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
314 		return -EFAULT;
315 	return 0;
316 }
317 
318 static unsigned long elf_map(struct file *filep, unsigned long addr,
319 		struct elf_phdr *eppnt, int prot, int type,
320 		unsigned long total_size)
321 {
322 	unsigned long map_addr;
323 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
324 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
325 	addr = ELF_PAGESTART(addr);
326 	size = ELF_PAGEALIGN(size);
327 
328 	/* mmap() will return -EINVAL if given a zero size, but a
329 	 * segment with zero filesize is perfectly valid */
330 	if (!size)
331 		return addr;
332 
333 	down_write(&current->mm->mmap_sem);
334 	/*
335 	* total_size is the size of the ELF (interpreter) image.
336 	* The _first_ mmap needs to know the full size, otherwise
337 	* randomization might put this image into an overlapping
338 	* position with the ELF binary image. (since size < total_size)
339 	* So we first map the 'big' image - and unmap the remainder at
340 	* the end. (which unmap is needed for ELF images with holes.)
341 	*/
342 	if (total_size) {
343 		total_size = ELF_PAGEALIGN(total_size);
344 		map_addr = do_mmap(filep, addr, total_size, prot, type, off);
345 		if (!BAD_ADDR(map_addr))
346 			do_munmap(current->mm, map_addr+size, total_size-size);
347 	} else
348 		map_addr = do_mmap(filep, addr, size, prot, type, off);
349 
350 	up_write(&current->mm->mmap_sem);
351 	return(map_addr);
352 }
353 
354 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
355 {
356 	int i, first_idx = -1, last_idx = -1;
357 
358 	for (i = 0; i < nr; i++) {
359 		if (cmds[i].p_type == PT_LOAD) {
360 			last_idx = i;
361 			if (first_idx == -1)
362 				first_idx = i;
363 		}
364 	}
365 	if (first_idx == -1)
366 		return 0;
367 
368 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
369 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
370 }
371 
372 
373 /* This is much more generalized than the library routine read function,
374    so we keep this separate.  Technically the library read function
375    is only provided so that we can read a.out libraries that have
376    an ELF header */
377 
378 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
379 		struct file *interpreter, unsigned long *interp_map_addr,
380 		unsigned long no_base)
381 {
382 	struct elf_phdr *elf_phdata;
383 	struct elf_phdr *eppnt;
384 	unsigned long load_addr = 0;
385 	int load_addr_set = 0;
386 	unsigned long last_bss = 0, elf_bss = 0;
387 	unsigned long error = ~0UL;
388 	unsigned long total_size;
389 	int retval, i, size;
390 
391 	/* First of all, some simple consistency checks */
392 	if (interp_elf_ex->e_type != ET_EXEC &&
393 	    interp_elf_ex->e_type != ET_DYN)
394 		goto out;
395 	if (!elf_check_arch(interp_elf_ex))
396 		goto out;
397 	if (!interpreter->f_op || !interpreter->f_op->mmap)
398 		goto out;
399 
400 	/*
401 	 * If the size of this structure has changed, then punt, since
402 	 * we will be doing the wrong thing.
403 	 */
404 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
405 		goto out;
406 	if (interp_elf_ex->e_phnum < 1 ||
407 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
408 		goto out;
409 
410 	/* Now read in all of the header information */
411 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
412 	if (size > ELF_MIN_ALIGN)
413 		goto out;
414 	elf_phdata = kmalloc(size, GFP_KERNEL);
415 	if (!elf_phdata)
416 		goto out;
417 
418 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
419 			     (char *)elf_phdata, size);
420 	error = -EIO;
421 	if (retval != size) {
422 		if (retval < 0)
423 			error = retval;
424 		goto out_close;
425 	}
426 
427 	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
428 	if (!total_size) {
429 		error = -EINVAL;
430 		goto out_close;
431 	}
432 
433 	eppnt = elf_phdata;
434 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
435 		if (eppnt->p_type == PT_LOAD) {
436 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
437 			int elf_prot = 0;
438 			unsigned long vaddr = 0;
439 			unsigned long k, map_addr;
440 
441 			if (eppnt->p_flags & PF_R)
442 		    		elf_prot = PROT_READ;
443 			if (eppnt->p_flags & PF_W)
444 				elf_prot |= PROT_WRITE;
445 			if (eppnt->p_flags & PF_X)
446 				elf_prot |= PROT_EXEC;
447 			vaddr = eppnt->p_vaddr;
448 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
449 				elf_type |= MAP_FIXED;
450 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
451 				load_addr = -vaddr;
452 
453 			map_addr = elf_map(interpreter, load_addr + vaddr,
454 					eppnt, elf_prot, elf_type, total_size);
455 			total_size = 0;
456 			if (!*interp_map_addr)
457 				*interp_map_addr = map_addr;
458 			error = map_addr;
459 			if (BAD_ADDR(map_addr))
460 				goto out_close;
461 
462 			if (!load_addr_set &&
463 			    interp_elf_ex->e_type == ET_DYN) {
464 				load_addr = map_addr - ELF_PAGESTART(vaddr);
465 				load_addr_set = 1;
466 			}
467 
468 			/*
469 			 * Check to see if the section's size will overflow the
470 			 * allowed task size. Note that p_filesz must always be
471 			 * <= p_memsize so it's only necessary to check p_memsz.
472 			 */
473 			k = load_addr + eppnt->p_vaddr;
474 			if (BAD_ADDR(k) ||
475 			    eppnt->p_filesz > eppnt->p_memsz ||
476 			    eppnt->p_memsz > TASK_SIZE ||
477 			    TASK_SIZE - eppnt->p_memsz < k) {
478 				error = -ENOMEM;
479 				goto out_close;
480 			}
481 
482 			/*
483 			 * Find the end of the file mapping for this phdr, and
484 			 * keep track of the largest address we see for this.
485 			 */
486 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
487 			if (k > elf_bss)
488 				elf_bss = k;
489 
490 			/*
491 			 * Do the same thing for the memory mapping - between
492 			 * elf_bss and last_bss is the bss section.
493 			 */
494 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
495 			if (k > last_bss)
496 				last_bss = k;
497 		}
498 	}
499 
500 	if (last_bss > elf_bss) {
501 		/*
502 		 * Now fill out the bss section.  First pad the last page up
503 		 * to the page boundary, and then perform a mmap to make sure
504 		 * that there are zero-mapped pages up to and including the
505 		 * last bss page.
506 		 */
507 		if (padzero(elf_bss)) {
508 			error = -EFAULT;
509 			goto out_close;
510 		}
511 
512 		/* What we have mapped so far */
513 		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
514 
515 		/* Map the last of the bss segment */
516 		down_write(&current->mm->mmap_sem);
517 		error = do_brk(elf_bss, last_bss - elf_bss);
518 		up_write(&current->mm->mmap_sem);
519 		if (BAD_ADDR(error))
520 			goto out_close;
521 	}
522 
523 	error = load_addr;
524 
525 out_close:
526 	kfree(elf_phdata);
527 out:
528 	return error;
529 }
530 
531 /*
532  * These are the functions used to load ELF style executables and shared
533  * libraries.  There is no binary dependent code anywhere else.
534  */
535 
536 #define INTERPRETER_NONE 0
537 #define INTERPRETER_ELF 2
538 
539 #ifndef STACK_RND_MASK
540 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
541 #endif
542 
543 static unsigned long randomize_stack_top(unsigned long stack_top)
544 {
545 	unsigned int random_variable = 0;
546 
547 	if ((current->flags & PF_RANDOMIZE) &&
548 		!(current->personality & ADDR_NO_RANDOMIZE)) {
549 		random_variable = get_random_int() & STACK_RND_MASK;
550 		random_variable <<= PAGE_SHIFT;
551 	}
552 #ifdef CONFIG_STACK_GROWSUP
553 	return PAGE_ALIGN(stack_top) + random_variable;
554 #else
555 	return PAGE_ALIGN(stack_top) - random_variable;
556 #endif
557 }
558 
559 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
560 {
561 	struct file *interpreter = NULL; /* to shut gcc up */
562  	unsigned long load_addr = 0, load_bias = 0;
563 	int load_addr_set = 0;
564 	char * elf_interpreter = NULL;
565 	unsigned long error;
566 	struct elf_phdr *elf_ppnt, *elf_phdata;
567 	unsigned long elf_bss, elf_brk;
568 	int retval, i;
569 	unsigned int size;
570 	unsigned long elf_entry;
571 	unsigned long interp_load_addr = 0;
572 	unsigned long start_code, end_code, start_data, end_data;
573 	unsigned long reloc_func_desc __maybe_unused = 0;
574 	int executable_stack = EXSTACK_DEFAULT;
575 	unsigned long def_flags = 0;
576 	struct {
577 		struct elfhdr elf_ex;
578 		struct elfhdr interp_elf_ex;
579 	} *loc;
580 
581 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
582 	if (!loc) {
583 		retval = -ENOMEM;
584 		goto out_ret;
585 	}
586 
587 	/* Get the exec-header */
588 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
589 
590 	retval = -ENOEXEC;
591 	/* First of all, some simple consistency checks */
592 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
593 		goto out;
594 
595 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
596 		goto out;
597 	if (!elf_check_arch(&loc->elf_ex))
598 		goto out;
599 	if (!bprm->file->f_op || !bprm->file->f_op->mmap)
600 		goto out;
601 
602 	/* Now read in all of the header information */
603 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
604 		goto out;
605 	if (loc->elf_ex.e_phnum < 1 ||
606 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
607 		goto out;
608 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
609 	retval = -ENOMEM;
610 	elf_phdata = kmalloc(size, GFP_KERNEL);
611 	if (!elf_phdata)
612 		goto out;
613 
614 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
615 			     (char *)elf_phdata, size);
616 	if (retval != size) {
617 		if (retval >= 0)
618 			retval = -EIO;
619 		goto out_free_ph;
620 	}
621 
622 	elf_ppnt = elf_phdata;
623 	elf_bss = 0;
624 	elf_brk = 0;
625 
626 	start_code = ~0UL;
627 	end_code = 0;
628 	start_data = 0;
629 	end_data = 0;
630 
631 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
632 		if (elf_ppnt->p_type == PT_INTERP) {
633 			/* This is the program interpreter used for
634 			 * shared libraries - for now assume that this
635 			 * is an a.out format binary
636 			 */
637 			retval = -ENOEXEC;
638 			if (elf_ppnt->p_filesz > PATH_MAX ||
639 			    elf_ppnt->p_filesz < 2)
640 				goto out_free_ph;
641 
642 			retval = -ENOMEM;
643 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
644 						  GFP_KERNEL);
645 			if (!elf_interpreter)
646 				goto out_free_ph;
647 
648 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
649 					     elf_interpreter,
650 					     elf_ppnt->p_filesz);
651 			if (retval != elf_ppnt->p_filesz) {
652 				if (retval >= 0)
653 					retval = -EIO;
654 				goto out_free_interp;
655 			}
656 			/* make sure path is NULL terminated */
657 			retval = -ENOEXEC;
658 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
659 				goto out_free_interp;
660 
661 			interpreter = open_exec(elf_interpreter);
662 			retval = PTR_ERR(interpreter);
663 			if (IS_ERR(interpreter))
664 				goto out_free_interp;
665 
666 			/*
667 			 * If the binary is not readable then enforce
668 			 * mm->dumpable = 0 regardless of the interpreter's
669 			 * permissions.
670 			 */
671 			would_dump(bprm, interpreter);
672 
673 			retval = kernel_read(interpreter, 0, bprm->buf,
674 					     BINPRM_BUF_SIZE);
675 			if (retval != BINPRM_BUF_SIZE) {
676 				if (retval >= 0)
677 					retval = -EIO;
678 				goto out_free_dentry;
679 			}
680 
681 			/* Get the exec headers */
682 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
683 			break;
684 		}
685 		elf_ppnt++;
686 	}
687 
688 	elf_ppnt = elf_phdata;
689 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
690 		if (elf_ppnt->p_type == PT_GNU_STACK) {
691 			if (elf_ppnt->p_flags & PF_X)
692 				executable_stack = EXSTACK_ENABLE_X;
693 			else
694 				executable_stack = EXSTACK_DISABLE_X;
695 			break;
696 		}
697 
698 	/* Some simple consistency checks for the interpreter */
699 	if (elf_interpreter) {
700 		retval = -ELIBBAD;
701 		/* Not an ELF interpreter */
702 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
703 			goto out_free_dentry;
704 		/* Verify the interpreter has a valid arch */
705 		if (!elf_check_arch(&loc->interp_elf_ex))
706 			goto out_free_dentry;
707 	}
708 
709 	/* Flush all traces of the currently running executable */
710 	retval = flush_old_exec(bprm);
711 	if (retval)
712 		goto out_free_dentry;
713 
714 	/* OK, This is the point of no return */
715 	current->flags &= ~PF_FORKNOEXEC;
716 	current->mm->def_flags = def_flags;
717 
718 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
719 	   may depend on the personality.  */
720 	SET_PERSONALITY(loc->elf_ex);
721 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
722 		current->personality |= READ_IMPLIES_EXEC;
723 
724 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
725 		current->flags |= PF_RANDOMIZE;
726 
727 	setup_new_exec(bprm);
728 
729 	/* Do this so that we can load the interpreter, if need be.  We will
730 	   change some of these later */
731 	current->mm->free_area_cache = current->mm->mmap_base;
732 	current->mm->cached_hole_size = 0;
733 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
734 				 executable_stack);
735 	if (retval < 0) {
736 		send_sig(SIGKILL, current, 0);
737 		goto out_free_dentry;
738 	}
739 
740 	current->mm->start_stack = bprm->p;
741 
742 	/* Now we do a little grungy work by mmapping the ELF image into
743 	   the correct location in memory. */
744 	for(i = 0, elf_ppnt = elf_phdata;
745 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
746 		int elf_prot = 0, elf_flags;
747 		unsigned long k, vaddr;
748 
749 		if (elf_ppnt->p_type != PT_LOAD)
750 			continue;
751 
752 		if (unlikely (elf_brk > elf_bss)) {
753 			unsigned long nbyte;
754 
755 			/* There was a PT_LOAD segment with p_memsz > p_filesz
756 			   before this one. Map anonymous pages, if needed,
757 			   and clear the area.  */
758 			retval = set_brk(elf_bss + load_bias,
759 					 elf_brk + load_bias);
760 			if (retval) {
761 				send_sig(SIGKILL, current, 0);
762 				goto out_free_dentry;
763 			}
764 			nbyte = ELF_PAGEOFFSET(elf_bss);
765 			if (nbyte) {
766 				nbyte = ELF_MIN_ALIGN - nbyte;
767 				if (nbyte > elf_brk - elf_bss)
768 					nbyte = elf_brk - elf_bss;
769 				if (clear_user((void __user *)elf_bss +
770 							load_bias, nbyte)) {
771 					/*
772 					 * This bss-zeroing can fail if the ELF
773 					 * file specifies odd protections. So
774 					 * we don't check the return value
775 					 */
776 				}
777 			}
778 		}
779 
780 		if (elf_ppnt->p_flags & PF_R)
781 			elf_prot |= PROT_READ;
782 		if (elf_ppnt->p_flags & PF_W)
783 			elf_prot |= PROT_WRITE;
784 		if (elf_ppnt->p_flags & PF_X)
785 			elf_prot |= PROT_EXEC;
786 
787 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
788 
789 		vaddr = elf_ppnt->p_vaddr;
790 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
791 			elf_flags |= MAP_FIXED;
792 		} else if (loc->elf_ex.e_type == ET_DYN) {
793 			/* Try and get dynamic programs out of the way of the
794 			 * default mmap base, as well as whatever program they
795 			 * might try to exec.  This is because the brk will
796 			 * follow the loader, and is not movable.  */
797 #if defined(CONFIG_X86) || defined(CONFIG_ARM)
798 			load_bias = 0;
799 #else
800 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
801 #endif
802 		}
803 
804 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
805 				elf_prot, elf_flags, 0);
806 		if (BAD_ADDR(error)) {
807 			send_sig(SIGKILL, current, 0);
808 			retval = IS_ERR((void *)error) ?
809 				PTR_ERR((void*)error) : -EINVAL;
810 			goto out_free_dentry;
811 		}
812 
813 		if (!load_addr_set) {
814 			load_addr_set = 1;
815 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
816 			if (loc->elf_ex.e_type == ET_DYN) {
817 				load_bias += error -
818 				             ELF_PAGESTART(load_bias + vaddr);
819 				load_addr += load_bias;
820 				reloc_func_desc = load_bias;
821 			}
822 		}
823 		k = elf_ppnt->p_vaddr;
824 		if (k < start_code)
825 			start_code = k;
826 		if (start_data < k)
827 			start_data = k;
828 
829 		/*
830 		 * Check to see if the section's size will overflow the
831 		 * allowed task size. Note that p_filesz must always be
832 		 * <= p_memsz so it is only necessary to check p_memsz.
833 		 */
834 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
835 		    elf_ppnt->p_memsz > TASK_SIZE ||
836 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
837 			/* set_brk can never work. Avoid overflows. */
838 			send_sig(SIGKILL, current, 0);
839 			retval = -EINVAL;
840 			goto out_free_dentry;
841 		}
842 
843 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
844 
845 		if (k > elf_bss)
846 			elf_bss = k;
847 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
848 			end_code = k;
849 		if (end_data < k)
850 			end_data = k;
851 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
852 		if (k > elf_brk)
853 			elf_brk = k;
854 	}
855 
856 	loc->elf_ex.e_entry += load_bias;
857 	elf_bss += load_bias;
858 	elf_brk += load_bias;
859 	start_code += load_bias;
860 	end_code += load_bias;
861 	start_data += load_bias;
862 	end_data += load_bias;
863 
864 	/* Calling set_brk effectively mmaps the pages that we need
865 	 * for the bss and break sections.  We must do this before
866 	 * mapping in the interpreter, to make sure it doesn't wind
867 	 * up getting placed where the bss needs to go.
868 	 */
869 	retval = set_brk(elf_bss, elf_brk);
870 	if (retval) {
871 		send_sig(SIGKILL, current, 0);
872 		goto out_free_dentry;
873 	}
874 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
875 		send_sig(SIGSEGV, current, 0);
876 		retval = -EFAULT; /* Nobody gets to see this, but.. */
877 		goto out_free_dentry;
878 	}
879 
880 	if (elf_interpreter) {
881 		unsigned long uninitialized_var(interp_map_addr);
882 
883 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
884 					    interpreter,
885 					    &interp_map_addr,
886 					    load_bias);
887 		if (!IS_ERR((void *)elf_entry)) {
888 			/*
889 			 * load_elf_interp() returns relocation
890 			 * adjustment
891 			 */
892 			interp_load_addr = elf_entry;
893 			elf_entry += loc->interp_elf_ex.e_entry;
894 		}
895 		if (BAD_ADDR(elf_entry)) {
896 			force_sig(SIGSEGV, current);
897 			retval = IS_ERR((void *)elf_entry) ?
898 					(int)elf_entry : -EINVAL;
899 			goto out_free_dentry;
900 		}
901 		reloc_func_desc = interp_load_addr;
902 
903 		allow_write_access(interpreter);
904 		fput(interpreter);
905 		kfree(elf_interpreter);
906 	} else {
907 		elf_entry = loc->elf_ex.e_entry;
908 		if (BAD_ADDR(elf_entry)) {
909 			force_sig(SIGSEGV, current);
910 			retval = -EINVAL;
911 			goto out_free_dentry;
912 		}
913 	}
914 
915 	kfree(elf_phdata);
916 
917 	set_binfmt(&elf_format);
918 
919 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
920 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
921 	if (retval < 0) {
922 		send_sig(SIGKILL, current, 0);
923 		goto out;
924 	}
925 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
926 
927 	install_exec_creds(bprm);
928 	current->flags &= ~PF_FORKNOEXEC;
929 	retval = create_elf_tables(bprm, &loc->elf_ex,
930 			  load_addr, interp_load_addr);
931 	if (retval < 0) {
932 		send_sig(SIGKILL, current, 0);
933 		goto out;
934 	}
935 	/* N.B. passed_fileno might not be initialized? */
936 	current->mm->end_code = end_code;
937 	current->mm->start_code = start_code;
938 	current->mm->start_data = start_data;
939 	current->mm->end_data = end_data;
940 	current->mm->start_stack = bprm->p;
941 
942 #ifdef arch_randomize_brk
943 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
944 		current->mm->brk = current->mm->start_brk =
945 			arch_randomize_brk(current->mm);
946 #ifdef CONFIG_COMPAT_BRK
947 		current->brk_randomized = 1;
948 #endif
949 	}
950 #endif
951 
952 	if (current->personality & MMAP_PAGE_ZERO) {
953 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
954 		   and some applications "depend" upon this behavior.
955 		   Since we do not have the power to recompile these, we
956 		   emulate the SVr4 behavior. Sigh. */
957 		down_write(&current->mm->mmap_sem);
958 		error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
959 				MAP_FIXED | MAP_PRIVATE, 0);
960 		up_write(&current->mm->mmap_sem);
961 	}
962 
963 #ifdef ELF_PLAT_INIT
964 	/*
965 	 * The ABI may specify that certain registers be set up in special
966 	 * ways (on i386 %edx is the address of a DT_FINI function, for
967 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
968 	 * that the e_entry field is the address of the function descriptor
969 	 * for the startup routine, rather than the address of the startup
970 	 * routine itself.  This macro performs whatever initialization to
971 	 * the regs structure is required as well as any relocations to the
972 	 * function descriptor entries when executing dynamically links apps.
973 	 */
974 	ELF_PLAT_INIT(regs, reloc_func_desc);
975 #endif
976 
977 	start_thread(regs, elf_entry, bprm->p);
978 	retval = 0;
979 out:
980 	kfree(loc);
981 out_ret:
982 	return retval;
983 
984 	/* error cleanup */
985 out_free_dentry:
986 	allow_write_access(interpreter);
987 	if (interpreter)
988 		fput(interpreter);
989 out_free_interp:
990 	kfree(elf_interpreter);
991 out_free_ph:
992 	kfree(elf_phdata);
993 	goto out;
994 }
995 
996 /* This is really simpleminded and specialized - we are loading an
997    a.out library that is given an ELF header. */
998 static int load_elf_library(struct file *file)
999 {
1000 	struct elf_phdr *elf_phdata;
1001 	struct elf_phdr *eppnt;
1002 	unsigned long elf_bss, bss, len;
1003 	int retval, error, i, j;
1004 	struct elfhdr elf_ex;
1005 
1006 	error = -ENOEXEC;
1007 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1008 	if (retval != sizeof(elf_ex))
1009 		goto out;
1010 
1011 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1012 		goto out;
1013 
1014 	/* First of all, some simple consistency checks */
1015 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1016 	    !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1017 		goto out;
1018 
1019 	/* Now read in all of the header information */
1020 
1021 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1022 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1023 
1024 	error = -ENOMEM;
1025 	elf_phdata = kmalloc(j, GFP_KERNEL);
1026 	if (!elf_phdata)
1027 		goto out;
1028 
1029 	eppnt = elf_phdata;
1030 	error = -ENOEXEC;
1031 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1032 	if (retval != j)
1033 		goto out_free_ph;
1034 
1035 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1036 		if ((eppnt + i)->p_type == PT_LOAD)
1037 			j++;
1038 	if (j != 1)
1039 		goto out_free_ph;
1040 
1041 	while (eppnt->p_type != PT_LOAD)
1042 		eppnt++;
1043 
1044 	/* Now use mmap to map the library into memory. */
1045 	down_write(&current->mm->mmap_sem);
1046 	error = do_mmap(file,
1047 			ELF_PAGESTART(eppnt->p_vaddr),
1048 			(eppnt->p_filesz +
1049 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1050 			PROT_READ | PROT_WRITE | PROT_EXEC,
1051 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1052 			(eppnt->p_offset -
1053 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1054 	up_write(&current->mm->mmap_sem);
1055 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1056 		goto out_free_ph;
1057 
1058 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1059 	if (padzero(elf_bss)) {
1060 		error = -EFAULT;
1061 		goto out_free_ph;
1062 	}
1063 
1064 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1065 			    ELF_MIN_ALIGN - 1);
1066 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1067 	if (bss > len) {
1068 		down_write(&current->mm->mmap_sem);
1069 		do_brk(len, bss - len);
1070 		up_write(&current->mm->mmap_sem);
1071 	}
1072 	error = 0;
1073 
1074 out_free_ph:
1075 	kfree(elf_phdata);
1076 out:
1077 	return error;
1078 }
1079 
1080 #ifdef CONFIG_ELF_CORE
1081 /*
1082  * ELF core dumper
1083  *
1084  * Modelled on fs/exec.c:aout_core_dump()
1085  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1086  */
1087 
1088 /*
1089  * Decide what to dump of a segment, part, all or none.
1090  */
1091 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1092 				   unsigned long mm_flags)
1093 {
1094 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1095 
1096 	/* The vma can be set up to tell us the answer directly.  */
1097 	if (vma->vm_flags & VM_ALWAYSDUMP)
1098 		goto whole;
1099 
1100 	/* Hugetlb memory check */
1101 	if (vma->vm_flags & VM_HUGETLB) {
1102 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1103 			goto whole;
1104 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1105 			goto whole;
1106 	}
1107 
1108 	/* Do not dump I/O mapped devices or special mappings */
1109 	if (vma->vm_flags & (VM_IO | VM_RESERVED))
1110 		return 0;
1111 
1112 	/* By default, dump shared memory if mapped from an anonymous file. */
1113 	if (vma->vm_flags & VM_SHARED) {
1114 		if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1115 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1116 			goto whole;
1117 		return 0;
1118 	}
1119 
1120 	/* Dump segments that have been written to.  */
1121 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1122 		goto whole;
1123 	if (vma->vm_file == NULL)
1124 		return 0;
1125 
1126 	if (FILTER(MAPPED_PRIVATE))
1127 		goto whole;
1128 
1129 	/*
1130 	 * If this looks like the beginning of a DSO or executable mapping,
1131 	 * check for an ELF header.  If we find one, dump the first page to
1132 	 * aid in determining what was mapped here.
1133 	 */
1134 	if (FILTER(ELF_HEADERS) &&
1135 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1136 		u32 __user *header = (u32 __user *) vma->vm_start;
1137 		u32 word;
1138 		mm_segment_t fs = get_fs();
1139 		/*
1140 		 * Doing it this way gets the constant folded by GCC.
1141 		 */
1142 		union {
1143 			u32 cmp;
1144 			char elfmag[SELFMAG];
1145 		} magic;
1146 		BUILD_BUG_ON(SELFMAG != sizeof word);
1147 		magic.elfmag[EI_MAG0] = ELFMAG0;
1148 		magic.elfmag[EI_MAG1] = ELFMAG1;
1149 		magic.elfmag[EI_MAG2] = ELFMAG2;
1150 		magic.elfmag[EI_MAG3] = ELFMAG3;
1151 		/*
1152 		 * Switch to the user "segment" for get_user(),
1153 		 * then put back what elf_core_dump() had in place.
1154 		 */
1155 		set_fs(USER_DS);
1156 		if (unlikely(get_user(word, header)))
1157 			word = 0;
1158 		set_fs(fs);
1159 		if (word == magic.cmp)
1160 			return PAGE_SIZE;
1161 	}
1162 
1163 #undef	FILTER
1164 
1165 	return 0;
1166 
1167 whole:
1168 	return vma->vm_end - vma->vm_start;
1169 }
1170 
1171 /* An ELF note in memory */
1172 struct memelfnote
1173 {
1174 	const char *name;
1175 	int type;
1176 	unsigned int datasz;
1177 	void *data;
1178 };
1179 
1180 static int notesize(struct memelfnote *en)
1181 {
1182 	int sz;
1183 
1184 	sz = sizeof(struct elf_note);
1185 	sz += roundup(strlen(en->name) + 1, 4);
1186 	sz += roundup(en->datasz, 4);
1187 
1188 	return sz;
1189 }
1190 
1191 #define DUMP_WRITE(addr, nr, foffset)	\
1192 	do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1193 
1194 static int alignfile(struct file *file, loff_t *foffset)
1195 {
1196 	static const char buf[4] = { 0, };
1197 	DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1198 	return 1;
1199 }
1200 
1201 static int writenote(struct memelfnote *men, struct file *file,
1202 			loff_t *foffset)
1203 {
1204 	struct elf_note en;
1205 	en.n_namesz = strlen(men->name) + 1;
1206 	en.n_descsz = men->datasz;
1207 	en.n_type = men->type;
1208 
1209 	DUMP_WRITE(&en, sizeof(en), foffset);
1210 	DUMP_WRITE(men->name, en.n_namesz, foffset);
1211 	if (!alignfile(file, foffset))
1212 		return 0;
1213 	DUMP_WRITE(men->data, men->datasz, foffset);
1214 	if (!alignfile(file, foffset))
1215 		return 0;
1216 
1217 	return 1;
1218 }
1219 #undef DUMP_WRITE
1220 
1221 static void fill_elf_header(struct elfhdr *elf, int segs,
1222 			    u16 machine, u32 flags, u8 osabi)
1223 {
1224 	memset(elf, 0, sizeof(*elf));
1225 
1226 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1227 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1228 	elf->e_ident[EI_DATA] = ELF_DATA;
1229 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1230 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1231 
1232 	elf->e_type = ET_CORE;
1233 	elf->e_machine = machine;
1234 	elf->e_version = EV_CURRENT;
1235 	elf->e_phoff = sizeof(struct elfhdr);
1236 	elf->e_flags = flags;
1237 	elf->e_ehsize = sizeof(struct elfhdr);
1238 	elf->e_phentsize = sizeof(struct elf_phdr);
1239 	elf->e_phnum = segs;
1240 
1241 	return;
1242 }
1243 
1244 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1245 {
1246 	phdr->p_type = PT_NOTE;
1247 	phdr->p_offset = offset;
1248 	phdr->p_vaddr = 0;
1249 	phdr->p_paddr = 0;
1250 	phdr->p_filesz = sz;
1251 	phdr->p_memsz = 0;
1252 	phdr->p_flags = 0;
1253 	phdr->p_align = 0;
1254 	return;
1255 }
1256 
1257 static void fill_note(struct memelfnote *note, const char *name, int type,
1258 		unsigned int sz, void *data)
1259 {
1260 	note->name = name;
1261 	note->type = type;
1262 	note->datasz = sz;
1263 	note->data = data;
1264 	return;
1265 }
1266 
1267 /*
1268  * fill up all the fields in prstatus from the given task struct, except
1269  * registers which need to be filled up separately.
1270  */
1271 static void fill_prstatus(struct elf_prstatus *prstatus,
1272 		struct task_struct *p, long signr)
1273 {
1274 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1275 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1276 	prstatus->pr_sighold = p->blocked.sig[0];
1277 	rcu_read_lock();
1278 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1279 	rcu_read_unlock();
1280 	prstatus->pr_pid = task_pid_vnr(p);
1281 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1282 	prstatus->pr_sid = task_session_vnr(p);
1283 	if (thread_group_leader(p)) {
1284 		struct task_cputime cputime;
1285 
1286 		/*
1287 		 * This is the record for the group leader.  It shows the
1288 		 * group-wide total, not its individual thread total.
1289 		 */
1290 		thread_group_cputime(p, &cputime);
1291 		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1292 		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1293 	} else {
1294 		cputime_to_timeval(p->utime, &prstatus->pr_utime);
1295 		cputime_to_timeval(p->stime, &prstatus->pr_stime);
1296 	}
1297 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1298 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1299 }
1300 
1301 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1302 		       struct mm_struct *mm)
1303 {
1304 	const struct cred *cred;
1305 	unsigned int i, len;
1306 
1307 	/* first copy the parameters from user space */
1308 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1309 
1310 	len = mm->arg_end - mm->arg_start;
1311 	if (len >= ELF_PRARGSZ)
1312 		len = ELF_PRARGSZ-1;
1313 	if (copy_from_user(&psinfo->pr_psargs,
1314 		           (const char __user *)mm->arg_start, len))
1315 		return -EFAULT;
1316 	for(i = 0; i < len; i++)
1317 		if (psinfo->pr_psargs[i] == 0)
1318 			psinfo->pr_psargs[i] = ' ';
1319 	psinfo->pr_psargs[len] = 0;
1320 
1321 	rcu_read_lock();
1322 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1323 	rcu_read_unlock();
1324 	psinfo->pr_pid = task_pid_vnr(p);
1325 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1326 	psinfo->pr_sid = task_session_vnr(p);
1327 
1328 	i = p->state ? ffz(~p->state) + 1 : 0;
1329 	psinfo->pr_state = i;
1330 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1331 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1332 	psinfo->pr_nice = task_nice(p);
1333 	psinfo->pr_flag = p->flags;
1334 	rcu_read_lock();
1335 	cred = __task_cred(p);
1336 	SET_UID(psinfo->pr_uid, cred->uid);
1337 	SET_GID(psinfo->pr_gid, cred->gid);
1338 	rcu_read_unlock();
1339 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1340 
1341 	return 0;
1342 }
1343 
1344 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1345 {
1346 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1347 	int i = 0;
1348 	do
1349 		i += 2;
1350 	while (auxv[i - 2] != AT_NULL);
1351 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1352 }
1353 
1354 #ifdef CORE_DUMP_USE_REGSET
1355 #include <linux/regset.h>
1356 
1357 struct elf_thread_core_info {
1358 	struct elf_thread_core_info *next;
1359 	struct task_struct *task;
1360 	struct elf_prstatus prstatus;
1361 	struct memelfnote notes[0];
1362 };
1363 
1364 struct elf_note_info {
1365 	struct elf_thread_core_info *thread;
1366 	struct memelfnote psinfo;
1367 	struct memelfnote auxv;
1368 	size_t size;
1369 	int thread_notes;
1370 };
1371 
1372 /*
1373  * When a regset has a writeback hook, we call it on each thread before
1374  * dumping user memory.  On register window machines, this makes sure the
1375  * user memory backing the register data is up to date before we read it.
1376  */
1377 static void do_thread_regset_writeback(struct task_struct *task,
1378 				       const struct user_regset *regset)
1379 {
1380 	if (regset->writeback)
1381 		regset->writeback(task, regset, 1);
1382 }
1383 
1384 static int fill_thread_core_info(struct elf_thread_core_info *t,
1385 				 const struct user_regset_view *view,
1386 				 long signr, size_t *total)
1387 {
1388 	unsigned int i;
1389 
1390 	/*
1391 	 * NT_PRSTATUS is the one special case, because the regset data
1392 	 * goes into the pr_reg field inside the note contents, rather
1393 	 * than being the whole note contents.  We fill the reset in here.
1394 	 * We assume that regset 0 is NT_PRSTATUS.
1395 	 */
1396 	fill_prstatus(&t->prstatus, t->task, signr);
1397 	(void) view->regsets[0].get(t->task, &view->regsets[0],
1398 				    0, sizeof(t->prstatus.pr_reg),
1399 				    &t->prstatus.pr_reg, NULL);
1400 
1401 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1402 		  sizeof(t->prstatus), &t->prstatus);
1403 	*total += notesize(&t->notes[0]);
1404 
1405 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1406 
1407 	/*
1408 	 * Each other regset might generate a note too.  For each regset
1409 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1410 	 * all zero and we'll know to skip writing it later.
1411 	 */
1412 	for (i = 1; i < view->n; ++i) {
1413 		const struct user_regset *regset = &view->regsets[i];
1414 		do_thread_regset_writeback(t->task, regset);
1415 		if (regset->core_note_type &&
1416 		    (!regset->active || regset->active(t->task, regset))) {
1417 			int ret;
1418 			size_t size = regset->n * regset->size;
1419 			void *data = kmalloc(size, GFP_KERNEL);
1420 			if (unlikely(!data))
1421 				return 0;
1422 			ret = regset->get(t->task, regset,
1423 					  0, size, data, NULL);
1424 			if (unlikely(ret))
1425 				kfree(data);
1426 			else {
1427 				if (regset->core_note_type != NT_PRFPREG)
1428 					fill_note(&t->notes[i], "LINUX",
1429 						  regset->core_note_type,
1430 						  size, data);
1431 				else {
1432 					t->prstatus.pr_fpvalid = 1;
1433 					fill_note(&t->notes[i], "CORE",
1434 						  NT_PRFPREG, size, data);
1435 				}
1436 				*total += notesize(&t->notes[i]);
1437 			}
1438 		}
1439 	}
1440 
1441 	return 1;
1442 }
1443 
1444 static int fill_note_info(struct elfhdr *elf, int phdrs,
1445 			  struct elf_note_info *info,
1446 			  long signr, struct pt_regs *regs)
1447 {
1448 	struct task_struct *dump_task = current;
1449 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1450 	struct elf_thread_core_info *t;
1451 	struct elf_prpsinfo *psinfo;
1452 	struct core_thread *ct;
1453 	unsigned int i;
1454 
1455 	info->size = 0;
1456 	info->thread = NULL;
1457 
1458 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1459 	if (psinfo == NULL)
1460 		return 0;
1461 
1462 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1463 
1464 	/*
1465 	 * Figure out how many notes we're going to need for each thread.
1466 	 */
1467 	info->thread_notes = 0;
1468 	for (i = 0; i < view->n; ++i)
1469 		if (view->regsets[i].core_note_type != 0)
1470 			++info->thread_notes;
1471 
1472 	/*
1473 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1474 	 * since it is our one special case.
1475 	 */
1476 	if (unlikely(info->thread_notes == 0) ||
1477 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1478 		WARN_ON(1);
1479 		return 0;
1480 	}
1481 
1482 	/*
1483 	 * Initialize the ELF file header.
1484 	 */
1485 	fill_elf_header(elf, phdrs,
1486 			view->e_machine, view->e_flags, view->ei_osabi);
1487 
1488 	/*
1489 	 * Allocate a structure for each thread.
1490 	 */
1491 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1492 		t = kzalloc(offsetof(struct elf_thread_core_info,
1493 				     notes[info->thread_notes]),
1494 			    GFP_KERNEL);
1495 		if (unlikely(!t))
1496 			return 0;
1497 
1498 		t->task = ct->task;
1499 		if (ct->task == dump_task || !info->thread) {
1500 			t->next = info->thread;
1501 			info->thread = t;
1502 		} else {
1503 			/*
1504 			 * Make sure to keep the original task at
1505 			 * the head of the list.
1506 			 */
1507 			t->next = info->thread->next;
1508 			info->thread->next = t;
1509 		}
1510 	}
1511 
1512 	/*
1513 	 * Now fill in each thread's information.
1514 	 */
1515 	for (t = info->thread; t != NULL; t = t->next)
1516 		if (!fill_thread_core_info(t, view, signr, &info->size))
1517 			return 0;
1518 
1519 	/*
1520 	 * Fill in the two process-wide notes.
1521 	 */
1522 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1523 	info->size += notesize(&info->psinfo);
1524 
1525 	fill_auxv_note(&info->auxv, current->mm);
1526 	info->size += notesize(&info->auxv);
1527 
1528 	return 1;
1529 }
1530 
1531 static size_t get_note_info_size(struct elf_note_info *info)
1532 {
1533 	return info->size;
1534 }
1535 
1536 /*
1537  * Write all the notes for each thread.  When writing the first thread, the
1538  * process-wide notes are interleaved after the first thread-specific note.
1539  */
1540 static int write_note_info(struct elf_note_info *info,
1541 			   struct file *file, loff_t *foffset)
1542 {
1543 	bool first = 1;
1544 	struct elf_thread_core_info *t = info->thread;
1545 
1546 	do {
1547 		int i;
1548 
1549 		if (!writenote(&t->notes[0], file, foffset))
1550 			return 0;
1551 
1552 		if (first && !writenote(&info->psinfo, file, foffset))
1553 			return 0;
1554 		if (first && !writenote(&info->auxv, file, foffset))
1555 			return 0;
1556 
1557 		for (i = 1; i < info->thread_notes; ++i)
1558 			if (t->notes[i].data &&
1559 			    !writenote(&t->notes[i], file, foffset))
1560 				return 0;
1561 
1562 		first = 0;
1563 		t = t->next;
1564 	} while (t);
1565 
1566 	return 1;
1567 }
1568 
1569 static void free_note_info(struct elf_note_info *info)
1570 {
1571 	struct elf_thread_core_info *threads = info->thread;
1572 	while (threads) {
1573 		unsigned int i;
1574 		struct elf_thread_core_info *t = threads;
1575 		threads = t->next;
1576 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1577 		for (i = 1; i < info->thread_notes; ++i)
1578 			kfree(t->notes[i].data);
1579 		kfree(t);
1580 	}
1581 	kfree(info->psinfo.data);
1582 }
1583 
1584 #else
1585 
1586 /* Here is the structure in which status of each thread is captured. */
1587 struct elf_thread_status
1588 {
1589 	struct list_head list;
1590 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1591 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1592 	struct task_struct *thread;
1593 #ifdef ELF_CORE_COPY_XFPREGS
1594 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1595 #endif
1596 	struct memelfnote notes[3];
1597 	int num_notes;
1598 };
1599 
1600 /*
1601  * In order to add the specific thread information for the elf file format,
1602  * we need to keep a linked list of every threads pr_status and then create
1603  * a single section for them in the final core file.
1604  */
1605 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1606 {
1607 	int sz = 0;
1608 	struct task_struct *p = t->thread;
1609 	t->num_notes = 0;
1610 
1611 	fill_prstatus(&t->prstatus, p, signr);
1612 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1613 
1614 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1615 		  &(t->prstatus));
1616 	t->num_notes++;
1617 	sz += notesize(&t->notes[0]);
1618 
1619 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1620 								&t->fpu))) {
1621 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1622 			  &(t->fpu));
1623 		t->num_notes++;
1624 		sz += notesize(&t->notes[1]);
1625 	}
1626 
1627 #ifdef ELF_CORE_COPY_XFPREGS
1628 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1629 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1630 			  sizeof(t->xfpu), &t->xfpu);
1631 		t->num_notes++;
1632 		sz += notesize(&t->notes[2]);
1633 	}
1634 #endif
1635 	return sz;
1636 }
1637 
1638 struct elf_note_info {
1639 	struct memelfnote *notes;
1640 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1641 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1642 	struct list_head thread_list;
1643 	elf_fpregset_t *fpu;
1644 #ifdef ELF_CORE_COPY_XFPREGS
1645 	elf_fpxregset_t *xfpu;
1646 #endif
1647 	int thread_status_size;
1648 	int numnote;
1649 };
1650 
1651 static int elf_note_info_init(struct elf_note_info *info)
1652 {
1653 	memset(info, 0, sizeof(*info));
1654 	INIT_LIST_HEAD(&info->thread_list);
1655 
1656 	/* Allocate space for six ELF notes */
1657 	info->notes = kmalloc(6 * sizeof(struct memelfnote), GFP_KERNEL);
1658 	if (!info->notes)
1659 		return 0;
1660 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1661 	if (!info->psinfo)
1662 		goto notes_free;
1663 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1664 	if (!info->prstatus)
1665 		goto psinfo_free;
1666 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1667 	if (!info->fpu)
1668 		goto prstatus_free;
1669 #ifdef ELF_CORE_COPY_XFPREGS
1670 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1671 	if (!info->xfpu)
1672 		goto fpu_free;
1673 #endif
1674 	return 1;
1675 #ifdef ELF_CORE_COPY_XFPREGS
1676  fpu_free:
1677 	kfree(info->fpu);
1678 #endif
1679  prstatus_free:
1680 	kfree(info->prstatus);
1681  psinfo_free:
1682 	kfree(info->psinfo);
1683  notes_free:
1684 	kfree(info->notes);
1685 	return 0;
1686 }
1687 
1688 static int fill_note_info(struct elfhdr *elf, int phdrs,
1689 			  struct elf_note_info *info,
1690 			  long signr, struct pt_regs *regs)
1691 {
1692 	struct list_head *t;
1693 
1694 	if (!elf_note_info_init(info))
1695 		return 0;
1696 
1697 	if (signr) {
1698 		struct core_thread *ct;
1699 		struct elf_thread_status *ets;
1700 
1701 		for (ct = current->mm->core_state->dumper.next;
1702 						ct; ct = ct->next) {
1703 			ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1704 			if (!ets)
1705 				return 0;
1706 
1707 			ets->thread = ct->task;
1708 			list_add(&ets->list, &info->thread_list);
1709 		}
1710 
1711 		list_for_each(t, &info->thread_list) {
1712 			int sz;
1713 
1714 			ets = list_entry(t, struct elf_thread_status, list);
1715 			sz = elf_dump_thread_status(signr, ets);
1716 			info->thread_status_size += sz;
1717 		}
1718 	}
1719 	/* now collect the dump for the current */
1720 	memset(info->prstatus, 0, sizeof(*info->prstatus));
1721 	fill_prstatus(info->prstatus, current, signr);
1722 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1723 
1724 	/* Set up header */
1725 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1726 
1727 	/*
1728 	 * Set up the notes in similar form to SVR4 core dumps made
1729 	 * with info from their /proc.
1730 	 */
1731 
1732 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1733 		  sizeof(*info->prstatus), info->prstatus);
1734 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1735 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1736 		  sizeof(*info->psinfo), info->psinfo);
1737 
1738 	info->numnote = 2;
1739 
1740 	fill_auxv_note(&info->notes[info->numnote++], current->mm);
1741 
1742 	/* Try to dump the FPU. */
1743 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1744 							       info->fpu);
1745 	if (info->prstatus->pr_fpvalid)
1746 		fill_note(info->notes + info->numnote++,
1747 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1748 #ifdef ELF_CORE_COPY_XFPREGS
1749 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
1750 		fill_note(info->notes + info->numnote++,
1751 			  "LINUX", ELF_CORE_XFPREG_TYPE,
1752 			  sizeof(*info->xfpu), info->xfpu);
1753 #endif
1754 
1755 	return 1;
1756 }
1757 
1758 static size_t get_note_info_size(struct elf_note_info *info)
1759 {
1760 	int sz = 0;
1761 	int i;
1762 
1763 	for (i = 0; i < info->numnote; i++)
1764 		sz += notesize(info->notes + i);
1765 
1766 	sz += info->thread_status_size;
1767 
1768 	return sz;
1769 }
1770 
1771 static int write_note_info(struct elf_note_info *info,
1772 			   struct file *file, loff_t *foffset)
1773 {
1774 	int i;
1775 	struct list_head *t;
1776 
1777 	for (i = 0; i < info->numnote; i++)
1778 		if (!writenote(info->notes + i, file, foffset))
1779 			return 0;
1780 
1781 	/* write out the thread status notes section */
1782 	list_for_each(t, &info->thread_list) {
1783 		struct elf_thread_status *tmp =
1784 				list_entry(t, struct elf_thread_status, list);
1785 
1786 		for (i = 0; i < tmp->num_notes; i++)
1787 			if (!writenote(&tmp->notes[i], file, foffset))
1788 				return 0;
1789 	}
1790 
1791 	return 1;
1792 }
1793 
1794 static void free_note_info(struct elf_note_info *info)
1795 {
1796 	while (!list_empty(&info->thread_list)) {
1797 		struct list_head *tmp = info->thread_list.next;
1798 		list_del(tmp);
1799 		kfree(list_entry(tmp, struct elf_thread_status, list));
1800 	}
1801 
1802 	kfree(info->prstatus);
1803 	kfree(info->psinfo);
1804 	kfree(info->notes);
1805 	kfree(info->fpu);
1806 #ifdef ELF_CORE_COPY_XFPREGS
1807 	kfree(info->xfpu);
1808 #endif
1809 }
1810 
1811 #endif
1812 
1813 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1814 					struct vm_area_struct *gate_vma)
1815 {
1816 	struct vm_area_struct *ret = tsk->mm->mmap;
1817 
1818 	if (ret)
1819 		return ret;
1820 	return gate_vma;
1821 }
1822 /*
1823  * Helper function for iterating across a vma list.  It ensures that the caller
1824  * will visit `gate_vma' prior to terminating the search.
1825  */
1826 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1827 					struct vm_area_struct *gate_vma)
1828 {
1829 	struct vm_area_struct *ret;
1830 
1831 	ret = this_vma->vm_next;
1832 	if (ret)
1833 		return ret;
1834 	if (this_vma == gate_vma)
1835 		return NULL;
1836 	return gate_vma;
1837 }
1838 
1839 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1840 			     elf_addr_t e_shoff, int segs)
1841 {
1842 	elf->e_shoff = e_shoff;
1843 	elf->e_shentsize = sizeof(*shdr4extnum);
1844 	elf->e_shnum = 1;
1845 	elf->e_shstrndx = SHN_UNDEF;
1846 
1847 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1848 
1849 	shdr4extnum->sh_type = SHT_NULL;
1850 	shdr4extnum->sh_size = elf->e_shnum;
1851 	shdr4extnum->sh_link = elf->e_shstrndx;
1852 	shdr4extnum->sh_info = segs;
1853 }
1854 
1855 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
1856 				     unsigned long mm_flags)
1857 {
1858 	struct vm_area_struct *vma;
1859 	size_t size = 0;
1860 
1861 	for (vma = first_vma(current, gate_vma); vma != NULL;
1862 	     vma = next_vma(vma, gate_vma))
1863 		size += vma_dump_size(vma, mm_flags);
1864 	return size;
1865 }
1866 
1867 /*
1868  * Actual dumper
1869  *
1870  * This is a two-pass process; first we find the offsets of the bits,
1871  * and then they are actually written out.  If we run out of core limit
1872  * we just truncate.
1873  */
1874 static int elf_core_dump(struct coredump_params *cprm)
1875 {
1876 	int has_dumped = 0;
1877 	mm_segment_t fs;
1878 	int segs;
1879 	size_t size = 0;
1880 	struct vm_area_struct *vma, *gate_vma;
1881 	struct elfhdr *elf = NULL;
1882 	loff_t offset = 0, dataoff, foffset;
1883 	struct elf_note_info info;
1884 	struct elf_phdr *phdr4note = NULL;
1885 	struct elf_shdr *shdr4extnum = NULL;
1886 	Elf_Half e_phnum;
1887 	elf_addr_t e_shoff;
1888 
1889 	/*
1890 	 * We no longer stop all VM operations.
1891 	 *
1892 	 * This is because those proceses that could possibly change map_count
1893 	 * or the mmap / vma pages are now blocked in do_exit on current
1894 	 * finishing this core dump.
1895 	 *
1896 	 * Only ptrace can touch these memory addresses, but it doesn't change
1897 	 * the map_count or the pages allocated. So no possibility of crashing
1898 	 * exists while dumping the mm->vm_next areas to the core file.
1899 	 */
1900 
1901 	/* alloc memory for large data structures: too large to be on stack */
1902 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1903 	if (!elf)
1904 		goto out;
1905 	/*
1906 	 * The number of segs are recored into ELF header as 16bit value.
1907 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1908 	 */
1909 	segs = current->mm->map_count;
1910 	segs += elf_core_extra_phdrs();
1911 
1912 	gate_vma = get_gate_vma(current->mm);
1913 	if (gate_vma != NULL)
1914 		segs++;
1915 
1916 	/* for notes section */
1917 	segs++;
1918 
1919 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
1920 	 * this, kernel supports extended numbering. Have a look at
1921 	 * include/linux/elf.h for further information. */
1922 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
1923 
1924 	/*
1925 	 * Collect all the non-memory information about the process for the
1926 	 * notes.  This also sets up the file header.
1927 	 */
1928 	if (!fill_note_info(elf, e_phnum, &info, cprm->signr, cprm->regs))
1929 		goto cleanup;
1930 
1931 	has_dumped = 1;
1932 	current->flags |= PF_DUMPCORE;
1933 
1934 	fs = get_fs();
1935 	set_fs(KERNEL_DS);
1936 
1937 	offset += sizeof(*elf);				/* Elf header */
1938 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
1939 	foffset = offset;
1940 
1941 	/* Write notes phdr entry */
1942 	{
1943 		size_t sz = get_note_info_size(&info);
1944 
1945 		sz += elf_coredump_extra_notes_size();
1946 
1947 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
1948 		if (!phdr4note)
1949 			goto end_coredump;
1950 
1951 		fill_elf_note_phdr(phdr4note, sz, offset);
1952 		offset += sz;
1953 	}
1954 
1955 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1956 
1957 	offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
1958 	offset += elf_core_extra_data_size();
1959 	e_shoff = offset;
1960 
1961 	if (e_phnum == PN_XNUM) {
1962 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
1963 		if (!shdr4extnum)
1964 			goto end_coredump;
1965 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
1966 	}
1967 
1968 	offset = dataoff;
1969 
1970 	size += sizeof(*elf);
1971 	if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
1972 		goto end_coredump;
1973 
1974 	size += sizeof(*phdr4note);
1975 	if (size > cprm->limit
1976 	    || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
1977 		goto end_coredump;
1978 
1979 	/* Write program headers for segments dump */
1980 	for (vma = first_vma(current, gate_vma); vma != NULL;
1981 			vma = next_vma(vma, gate_vma)) {
1982 		struct elf_phdr phdr;
1983 
1984 		phdr.p_type = PT_LOAD;
1985 		phdr.p_offset = offset;
1986 		phdr.p_vaddr = vma->vm_start;
1987 		phdr.p_paddr = 0;
1988 		phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
1989 		phdr.p_memsz = vma->vm_end - vma->vm_start;
1990 		offset += phdr.p_filesz;
1991 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
1992 		if (vma->vm_flags & VM_WRITE)
1993 			phdr.p_flags |= PF_W;
1994 		if (vma->vm_flags & VM_EXEC)
1995 			phdr.p_flags |= PF_X;
1996 		phdr.p_align = ELF_EXEC_PAGESIZE;
1997 
1998 		size += sizeof(phdr);
1999 		if (size > cprm->limit
2000 		    || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2001 			goto end_coredump;
2002 	}
2003 
2004 	if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2005 		goto end_coredump;
2006 
2007  	/* write out the notes section */
2008 	if (!write_note_info(&info, cprm->file, &foffset))
2009 		goto end_coredump;
2010 
2011 	if (elf_coredump_extra_notes_write(cprm->file, &foffset))
2012 		goto end_coredump;
2013 
2014 	/* Align to page */
2015 	if (!dump_seek(cprm->file, dataoff - foffset))
2016 		goto end_coredump;
2017 
2018 	for (vma = first_vma(current, gate_vma); vma != NULL;
2019 			vma = next_vma(vma, gate_vma)) {
2020 		unsigned long addr;
2021 		unsigned long end;
2022 
2023 		end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2024 
2025 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2026 			struct page *page;
2027 			int stop;
2028 
2029 			page = get_dump_page(addr);
2030 			if (page) {
2031 				void *kaddr = kmap(page);
2032 				stop = ((size += PAGE_SIZE) > cprm->limit) ||
2033 					!dump_write(cprm->file, kaddr,
2034 						    PAGE_SIZE);
2035 				kunmap(page);
2036 				page_cache_release(page);
2037 			} else
2038 				stop = !dump_seek(cprm->file, PAGE_SIZE);
2039 			if (stop)
2040 				goto end_coredump;
2041 		}
2042 	}
2043 
2044 	if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2045 		goto end_coredump;
2046 
2047 	if (e_phnum == PN_XNUM) {
2048 		size += sizeof(*shdr4extnum);
2049 		if (size > cprm->limit
2050 		    || !dump_write(cprm->file, shdr4extnum,
2051 				   sizeof(*shdr4extnum)))
2052 			goto end_coredump;
2053 	}
2054 
2055 end_coredump:
2056 	set_fs(fs);
2057 
2058 cleanup:
2059 	free_note_info(&info);
2060 	kfree(shdr4extnum);
2061 	kfree(phdr4note);
2062 	kfree(elf);
2063 out:
2064 	return has_dumped;
2065 }
2066 
2067 #endif		/* CONFIG_ELF_CORE */
2068 
2069 static int __init init_elf_binfmt(void)
2070 {
2071 	return register_binfmt(&elf_format);
2072 }
2073 
2074 static void __exit exit_elf_binfmt(void)
2075 {
2076 	/* Remove the COFF and ELF loaders. */
2077 	unregister_binfmt(&elf_format);
2078 }
2079 
2080 core_initcall(init_elf_binfmt);
2081 module_exit(exit_elf_binfmt);
2082 MODULE_LICENSE("GPL");
2083