xref: /linux/fs/binfmt_elf.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/binfmt_elf.c
4  *
5  * These are the functions used to load ELF format executables as used
6  * on SVr4 machines.  Information on the format may be found in the book
7  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8  * Tools".
9  *
10  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/log2.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/slab.h>
25 #include <linux/personality.h>
26 #include <linux/elfcore.h>
27 #include <linux/init.h>
28 #include <linux/highuid.h>
29 #include <linux/compiler.h>
30 #include <linux/highmem.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vmalloc.h>
34 #include <linux/security.h>
35 #include <linux/random.h>
36 #include <linux/elf.h>
37 #include <linux/elf-randomize.h>
38 #include <linux/utsname.h>
39 #include <linux/coredump.h>
40 #include <linux/sched.h>
41 #include <linux/sched/coredump.h>
42 #include <linux/sched/task_stack.h>
43 #include <linux/sched/cputime.h>
44 #include <linux/sizes.h>
45 #include <linux/types.h>
46 #include <linux/cred.h>
47 #include <linux/dax.h>
48 #include <linux/uaccess.h>
49 #include <linux/rseq.h>
50 #include <asm/param.h>
51 #include <asm/page.h>
52 
53 #ifndef ELF_COMPAT
54 #define ELF_COMPAT 0
55 #endif
56 
57 #ifndef user_long_t
58 #define user_long_t long
59 #endif
60 #ifndef user_siginfo_t
61 #define user_siginfo_t siginfo_t
62 #endif
63 
64 /* That's for binfmt_elf_fdpic to deal with */
65 #ifndef elf_check_fdpic
66 #define elf_check_fdpic(ex) false
67 #endif
68 
69 static int load_elf_binary(struct linux_binprm *bprm);
70 
71 #ifdef CONFIG_USELIB
72 static int load_elf_library(struct file *);
73 #else
74 #define load_elf_library NULL
75 #endif
76 
77 /*
78  * If we don't support core dumping, then supply a NULL so we
79  * don't even try.
80  */
81 #ifdef CONFIG_ELF_CORE
82 static int elf_core_dump(struct coredump_params *cprm);
83 #else
84 #define elf_core_dump	NULL
85 #endif
86 
87 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
88 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
89 #else
90 #define ELF_MIN_ALIGN	PAGE_SIZE
91 #endif
92 
93 #ifndef ELF_CORE_EFLAGS
94 #define ELF_CORE_EFLAGS	0
95 #endif
96 
97 #define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1))
98 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
99 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
100 
101 static struct linux_binfmt elf_format = {
102 	.module		= THIS_MODULE,
103 	.load_binary	= load_elf_binary,
104 	.load_shlib	= load_elf_library,
105 #ifdef CONFIG_COREDUMP
106 	.core_dump	= elf_core_dump,
107 	.min_coredump	= ELF_EXEC_PAGESIZE,
108 #endif
109 };
110 
111 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
112 
113 /*
114  * We need to explicitly zero any trailing portion of the page that follows
115  * p_filesz when it ends before the page ends (e.g. bss), otherwise this
116  * memory will contain the junk from the file that should not be present.
117  */
118 static int padzero(unsigned long address)
119 {
120 	unsigned long nbyte;
121 
122 	nbyte = ELF_PAGEOFFSET(address);
123 	if (nbyte) {
124 		nbyte = ELF_MIN_ALIGN - nbyte;
125 		if (clear_user((void __user *)address, nbyte))
126 			return -EFAULT;
127 	}
128 	return 0;
129 }
130 
131 /* Let's use some macros to make this stack manipulation a little clearer */
132 #ifdef CONFIG_STACK_GROWSUP
133 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
134 #define STACK_ROUND(sp, items) \
135 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
136 #define STACK_ALLOC(sp, len) ({ \
137 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
138 	old_sp; })
139 #else
140 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
141 #define STACK_ROUND(sp, items) \
142 	(((unsigned long) (sp - items)) &~ 15UL)
143 #define STACK_ALLOC(sp, len) (sp -= len)
144 #endif
145 
146 #ifndef ELF_BASE_PLATFORM
147 /*
148  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
149  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
150  * will be copied to the user stack in the same manner as AT_PLATFORM.
151  */
152 #define ELF_BASE_PLATFORM NULL
153 #endif
154 
155 static int
156 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
157 		unsigned long interp_load_addr,
158 		unsigned long e_entry, unsigned long phdr_addr)
159 {
160 	struct mm_struct *mm = current->mm;
161 	unsigned long p = bprm->p;
162 	int argc = bprm->argc;
163 	int envc = bprm->envc;
164 	elf_addr_t __user *sp;
165 	elf_addr_t __user *u_platform;
166 	elf_addr_t __user *u_base_platform;
167 	elf_addr_t __user *u_rand_bytes;
168 	const char *k_platform = ELF_PLATFORM;
169 	const char *k_base_platform = ELF_BASE_PLATFORM;
170 	unsigned char k_rand_bytes[16];
171 	int items;
172 	elf_addr_t *elf_info;
173 	elf_addr_t flags = 0;
174 	int ei_index;
175 	const struct cred *cred = current_cred();
176 	struct vm_area_struct *vma;
177 
178 	/*
179 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
180 	 * evictions by the processes running on the same package. One
181 	 * thing we can do is to shuffle the initial stack for them.
182 	 */
183 
184 	p = arch_align_stack(p);
185 
186 	/*
187 	 * If this architecture has a platform capability string, copy it
188 	 * to userspace.  In some cases (Sparc), this info is impossible
189 	 * for userspace to get any other way, in others (i386) it is
190 	 * merely difficult.
191 	 */
192 	u_platform = NULL;
193 	if (k_platform) {
194 		size_t len = strlen(k_platform) + 1;
195 
196 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
197 		if (copy_to_user(u_platform, k_platform, len))
198 			return -EFAULT;
199 	}
200 
201 	/*
202 	 * If this architecture has a "base" platform capability
203 	 * string, copy it to userspace.
204 	 */
205 	u_base_platform = NULL;
206 	if (k_base_platform) {
207 		size_t len = strlen(k_base_platform) + 1;
208 
209 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
210 		if (copy_to_user(u_base_platform, k_base_platform, len))
211 			return -EFAULT;
212 	}
213 
214 	/*
215 	 * Generate 16 random bytes for userspace PRNG seeding.
216 	 */
217 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
218 	u_rand_bytes = (elf_addr_t __user *)
219 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
220 	if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
221 		return -EFAULT;
222 
223 	/* Create the ELF interpreter info */
224 	elf_info = (elf_addr_t *)mm->saved_auxv;
225 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
226 #define NEW_AUX_ENT(id, val) \
227 	do { \
228 		*elf_info++ = id; \
229 		*elf_info++ = val; \
230 	} while (0)
231 
232 #ifdef ARCH_DLINFO
233 	/*
234 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
235 	 * AUXV.
236 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
237 	 * ARCH_DLINFO changes
238 	 */
239 	ARCH_DLINFO;
240 #endif
241 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
242 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
243 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
244 	NEW_AUX_ENT(AT_PHDR, phdr_addr);
245 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
246 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
247 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
248 	if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0)
249 		flags |= AT_FLAGS_PRESERVE_ARGV0;
250 	NEW_AUX_ENT(AT_FLAGS, flags);
251 	NEW_AUX_ENT(AT_ENTRY, e_entry);
252 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
253 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
254 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
255 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
256 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
257 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
258 #ifdef ELF_HWCAP2
259 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
260 #endif
261 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
262 	if (k_platform) {
263 		NEW_AUX_ENT(AT_PLATFORM,
264 			    (elf_addr_t)(unsigned long)u_platform);
265 	}
266 	if (k_base_platform) {
267 		NEW_AUX_ENT(AT_BASE_PLATFORM,
268 			    (elf_addr_t)(unsigned long)u_base_platform);
269 	}
270 	if (bprm->have_execfd) {
271 		NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
272 	}
273 #ifdef CONFIG_RSEQ
274 	NEW_AUX_ENT(AT_RSEQ_FEATURE_SIZE, offsetof(struct rseq, end));
275 	NEW_AUX_ENT(AT_RSEQ_ALIGN, __alignof__(struct rseq));
276 #endif
277 #undef NEW_AUX_ENT
278 	/* AT_NULL is zero; clear the rest too */
279 	memset(elf_info, 0, (char *)mm->saved_auxv +
280 			sizeof(mm->saved_auxv) - (char *)elf_info);
281 
282 	/* And advance past the AT_NULL entry.  */
283 	elf_info += 2;
284 
285 	ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
286 	sp = STACK_ADD(p, ei_index);
287 
288 	items = (argc + 1) + (envc + 1) + 1;
289 	bprm->p = STACK_ROUND(sp, items);
290 
291 	/* Point sp at the lowest address on the stack */
292 #ifdef CONFIG_STACK_GROWSUP
293 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
294 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
295 #else
296 	sp = (elf_addr_t __user *)bprm->p;
297 #endif
298 
299 
300 	/*
301 	 * Grow the stack manually; some architectures have a limit on how
302 	 * far ahead a user-space access may be in order to grow the stack.
303 	 */
304 	if (mmap_write_lock_killable(mm))
305 		return -EINTR;
306 	vma = find_extend_vma_locked(mm, bprm->p);
307 	mmap_write_unlock(mm);
308 	if (!vma)
309 		return -EFAULT;
310 
311 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
312 	if (put_user(argc, sp++))
313 		return -EFAULT;
314 
315 	/* Populate list of argv pointers back to argv strings. */
316 	p = mm->arg_end = mm->arg_start;
317 	while (argc-- > 0) {
318 		size_t len;
319 		if (put_user((elf_addr_t)p, sp++))
320 			return -EFAULT;
321 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
322 		if (!len || len > MAX_ARG_STRLEN)
323 			return -EINVAL;
324 		p += len;
325 	}
326 	if (put_user(0, sp++))
327 		return -EFAULT;
328 	mm->arg_end = p;
329 
330 	/* Populate list of envp pointers back to envp strings. */
331 	mm->env_end = mm->env_start = p;
332 	while (envc-- > 0) {
333 		size_t len;
334 		if (put_user((elf_addr_t)p, sp++))
335 			return -EFAULT;
336 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
337 		if (!len || len > MAX_ARG_STRLEN)
338 			return -EINVAL;
339 		p += len;
340 	}
341 	if (put_user(0, sp++))
342 		return -EFAULT;
343 	mm->env_end = p;
344 
345 	/* Put the elf_info on the stack in the right place.  */
346 	if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
347 		return -EFAULT;
348 	return 0;
349 }
350 
351 /*
352  * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset"
353  * into memory at "addr". (Note that p_filesz is rounded up to the
354  * next page, so any extra bytes from the file must be wiped.)
355  */
356 static unsigned long elf_map(struct file *filep, unsigned long addr,
357 		const struct elf_phdr *eppnt, int prot, int type,
358 		unsigned long total_size)
359 {
360 	unsigned long map_addr;
361 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
362 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
363 	addr = ELF_PAGESTART(addr);
364 	size = ELF_PAGEALIGN(size);
365 
366 	/* mmap() will return -EINVAL if given a zero size, but a
367 	 * segment with zero filesize is perfectly valid */
368 	if (!size)
369 		return addr;
370 
371 	/*
372 	* total_size is the size of the ELF (interpreter) image.
373 	* The _first_ mmap needs to know the full size, otherwise
374 	* randomization might put this image into an overlapping
375 	* position with the ELF binary image. (since size < total_size)
376 	* So we first map the 'big' image - and unmap the remainder at
377 	* the end. (which unmap is needed for ELF images with holes.)
378 	*/
379 	if (total_size) {
380 		total_size = ELF_PAGEALIGN(total_size);
381 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
382 		if (!BAD_ADDR(map_addr))
383 			vm_munmap(map_addr+size, total_size-size);
384 	} else
385 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
386 
387 	if ((type & MAP_FIXED_NOREPLACE) &&
388 	    PTR_ERR((void *)map_addr) == -EEXIST)
389 		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
390 			task_pid_nr(current), current->comm, (void *)addr);
391 
392 	return(map_addr);
393 }
394 
395 /*
396  * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset"
397  * into memory at "addr". Memory from "p_filesz" through "p_memsz"
398  * rounded up to the next page is zeroed.
399  */
400 static unsigned long elf_load(struct file *filep, unsigned long addr,
401 		const struct elf_phdr *eppnt, int prot, int type,
402 		unsigned long total_size)
403 {
404 	unsigned long zero_start, zero_end;
405 	unsigned long map_addr;
406 
407 	if (eppnt->p_filesz) {
408 		map_addr = elf_map(filep, addr, eppnt, prot, type, total_size);
409 		if (BAD_ADDR(map_addr))
410 			return map_addr;
411 		if (eppnt->p_memsz > eppnt->p_filesz) {
412 			zero_start = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) +
413 				eppnt->p_filesz;
414 			zero_end = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) +
415 				eppnt->p_memsz;
416 
417 			/*
418 			 * Zero the end of the last mapped page but ignore
419 			 * any errors if the segment isn't writable.
420 			 */
421 			if (padzero(zero_start) && (prot & PROT_WRITE))
422 				return -EFAULT;
423 		}
424 	} else {
425 		map_addr = zero_start = ELF_PAGESTART(addr);
426 		zero_end = zero_start + ELF_PAGEOFFSET(eppnt->p_vaddr) +
427 			eppnt->p_memsz;
428 	}
429 	if (eppnt->p_memsz > eppnt->p_filesz) {
430 		/*
431 		 * Map the last of the segment.
432 		 * If the header is requesting these pages to be
433 		 * executable, honour that (ppc32 needs this).
434 		 */
435 		int error;
436 
437 		zero_start = ELF_PAGEALIGN(zero_start);
438 		zero_end = ELF_PAGEALIGN(zero_end);
439 
440 		error = vm_brk_flags(zero_start, zero_end - zero_start,
441 				     prot & PROT_EXEC ? VM_EXEC : 0);
442 		if (error)
443 			map_addr = error;
444 	}
445 	return map_addr;
446 }
447 
448 
449 static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr)
450 {
451 	elf_addr_t min_addr = -1;
452 	elf_addr_t max_addr = 0;
453 	bool pt_load = false;
454 	int i;
455 
456 	for (i = 0; i < nr; i++) {
457 		if (phdr[i].p_type == PT_LOAD) {
458 			min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr));
459 			max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz);
460 			pt_load = true;
461 		}
462 	}
463 	return pt_load ? (max_addr - min_addr) : 0;
464 }
465 
466 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
467 {
468 	ssize_t rv;
469 
470 	rv = kernel_read(file, buf, len, &pos);
471 	if (unlikely(rv != len)) {
472 		return (rv < 0) ? rv : -EIO;
473 	}
474 	return 0;
475 }
476 
477 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
478 {
479 	unsigned long alignment = 0;
480 	int i;
481 
482 	for (i = 0; i < nr; i++) {
483 		if (cmds[i].p_type == PT_LOAD) {
484 			unsigned long p_align = cmds[i].p_align;
485 
486 			/* skip non-power of two alignments as invalid */
487 			if (!is_power_of_2(p_align))
488 				continue;
489 			alignment = max(alignment, p_align);
490 		}
491 	}
492 
493 	/* ensure we align to at least one page */
494 	return ELF_PAGEALIGN(alignment);
495 }
496 
497 /**
498  * load_elf_phdrs() - load ELF program headers
499  * @elf_ex:   ELF header of the binary whose program headers should be loaded
500  * @elf_file: the opened ELF binary file
501  *
502  * Loads ELF program headers from the binary file elf_file, which has the ELF
503  * header pointed to by elf_ex, into a newly allocated array. The caller is
504  * responsible for freeing the allocated data. Returns NULL upon failure.
505  */
506 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
507 				       struct file *elf_file)
508 {
509 	struct elf_phdr *elf_phdata = NULL;
510 	int retval = -1;
511 	unsigned int size;
512 
513 	/*
514 	 * If the size of this structure has changed, then punt, since
515 	 * we will be doing the wrong thing.
516 	 */
517 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
518 		goto out;
519 
520 	/* Sanity check the number of program headers... */
521 	/* ...and their total size. */
522 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
523 	if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
524 		goto out;
525 
526 	elf_phdata = kmalloc(size, GFP_KERNEL);
527 	if (!elf_phdata)
528 		goto out;
529 
530 	/* Read in the program headers */
531 	retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
532 
533 out:
534 	if (retval) {
535 		kfree(elf_phdata);
536 		elf_phdata = NULL;
537 	}
538 	return elf_phdata;
539 }
540 
541 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
542 
543 /**
544  * struct arch_elf_state - arch-specific ELF loading state
545  *
546  * This structure is used to preserve architecture specific data during
547  * the loading of an ELF file, throughout the checking of architecture
548  * specific ELF headers & through to the point where the ELF load is
549  * known to be proceeding (ie. SET_PERSONALITY).
550  *
551  * This implementation is a dummy for architectures which require no
552  * specific state.
553  */
554 struct arch_elf_state {
555 };
556 
557 #define INIT_ARCH_ELF_STATE {}
558 
559 /**
560  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
561  * @ehdr:	The main ELF header
562  * @phdr:	The program header to check
563  * @elf:	The open ELF file
564  * @is_interp:	True if the phdr is from the interpreter of the ELF being
565  *		loaded, else false.
566  * @state:	Architecture-specific state preserved throughout the process
567  *		of loading the ELF.
568  *
569  * Inspects the program header phdr to validate its correctness and/or
570  * suitability for the system. Called once per ELF program header in the
571  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
572  * interpreter.
573  *
574  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
575  *         with that return code.
576  */
577 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
578 				   struct elf_phdr *phdr,
579 				   struct file *elf, bool is_interp,
580 				   struct arch_elf_state *state)
581 {
582 	/* Dummy implementation, always proceed */
583 	return 0;
584 }
585 
586 /**
587  * arch_check_elf() - check an ELF executable
588  * @ehdr:	The main ELF header
589  * @has_interp:	True if the ELF has an interpreter, else false.
590  * @interp_ehdr: The interpreter's ELF header
591  * @state:	Architecture-specific state preserved throughout the process
592  *		of loading the ELF.
593  *
594  * Provides a final opportunity for architecture code to reject the loading
595  * of the ELF & cause an exec syscall to return an error. This is called after
596  * all program headers to be checked by arch_elf_pt_proc have been.
597  *
598  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
599  *         with that return code.
600  */
601 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
602 				 struct elfhdr *interp_ehdr,
603 				 struct arch_elf_state *state)
604 {
605 	/* Dummy implementation, always proceed */
606 	return 0;
607 }
608 
609 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
610 
611 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
612 			    bool has_interp, bool is_interp)
613 {
614 	int prot = 0;
615 
616 	if (p_flags & PF_R)
617 		prot |= PROT_READ;
618 	if (p_flags & PF_W)
619 		prot |= PROT_WRITE;
620 	if (p_flags & PF_X)
621 		prot |= PROT_EXEC;
622 
623 	return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
624 }
625 
626 /* This is much more generalized than the library routine read function,
627    so we keep this separate.  Technically the library read function
628    is only provided so that we can read a.out libraries that have
629    an ELF header */
630 
631 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
632 		struct file *interpreter,
633 		unsigned long no_base, struct elf_phdr *interp_elf_phdata,
634 		struct arch_elf_state *arch_state)
635 {
636 	struct elf_phdr *eppnt;
637 	unsigned long load_addr = 0;
638 	int load_addr_set = 0;
639 	unsigned long error = ~0UL;
640 	unsigned long total_size;
641 	int i;
642 
643 	/* First of all, some simple consistency checks */
644 	if (interp_elf_ex->e_type != ET_EXEC &&
645 	    interp_elf_ex->e_type != ET_DYN)
646 		goto out;
647 	if (!elf_check_arch(interp_elf_ex) ||
648 	    elf_check_fdpic(interp_elf_ex))
649 		goto out;
650 	if (!interpreter->f_op->mmap)
651 		goto out;
652 
653 	total_size = total_mapping_size(interp_elf_phdata,
654 					interp_elf_ex->e_phnum);
655 	if (!total_size) {
656 		error = -EINVAL;
657 		goto out;
658 	}
659 
660 	eppnt = interp_elf_phdata;
661 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
662 		if (eppnt->p_type == PT_LOAD) {
663 			int elf_type = MAP_PRIVATE;
664 			int elf_prot = make_prot(eppnt->p_flags, arch_state,
665 						 true, true);
666 			unsigned long vaddr = 0;
667 			unsigned long k, map_addr;
668 
669 			vaddr = eppnt->p_vaddr;
670 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
671 				elf_type |= MAP_FIXED;
672 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
673 				load_addr = -vaddr;
674 
675 			map_addr = elf_load(interpreter, load_addr + vaddr,
676 					eppnt, elf_prot, elf_type, total_size);
677 			total_size = 0;
678 			error = map_addr;
679 			if (BAD_ADDR(map_addr))
680 				goto out;
681 
682 			if (!load_addr_set &&
683 			    interp_elf_ex->e_type == ET_DYN) {
684 				load_addr = map_addr - ELF_PAGESTART(vaddr);
685 				load_addr_set = 1;
686 			}
687 
688 			/*
689 			 * Check to see if the section's size will overflow the
690 			 * allowed task size. Note that p_filesz must always be
691 			 * <= p_memsize so it's only necessary to check p_memsz.
692 			 */
693 			k = load_addr + eppnt->p_vaddr;
694 			if (BAD_ADDR(k) ||
695 			    eppnt->p_filesz > eppnt->p_memsz ||
696 			    eppnt->p_memsz > TASK_SIZE ||
697 			    TASK_SIZE - eppnt->p_memsz < k) {
698 				error = -ENOMEM;
699 				goto out;
700 			}
701 		}
702 	}
703 
704 	error = load_addr;
705 out:
706 	return error;
707 }
708 
709 /*
710  * These are the functions used to load ELF style executables and shared
711  * libraries.  There is no binary dependent code anywhere else.
712  */
713 
714 static int parse_elf_property(const char *data, size_t *off, size_t datasz,
715 			      struct arch_elf_state *arch,
716 			      bool have_prev_type, u32 *prev_type)
717 {
718 	size_t o, step;
719 	const struct gnu_property *pr;
720 	int ret;
721 
722 	if (*off == datasz)
723 		return -ENOENT;
724 
725 	if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
726 		return -EIO;
727 	o = *off;
728 	datasz -= *off;
729 
730 	if (datasz < sizeof(*pr))
731 		return -ENOEXEC;
732 	pr = (const struct gnu_property *)(data + o);
733 	o += sizeof(*pr);
734 	datasz -= sizeof(*pr);
735 
736 	if (pr->pr_datasz > datasz)
737 		return -ENOEXEC;
738 
739 	WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
740 	step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
741 	if (step > datasz)
742 		return -ENOEXEC;
743 
744 	/* Properties are supposed to be unique and sorted on pr_type: */
745 	if (have_prev_type && pr->pr_type <= *prev_type)
746 		return -ENOEXEC;
747 	*prev_type = pr->pr_type;
748 
749 	ret = arch_parse_elf_property(pr->pr_type, data + o,
750 				      pr->pr_datasz, ELF_COMPAT, arch);
751 	if (ret)
752 		return ret;
753 
754 	*off = o + step;
755 	return 0;
756 }
757 
758 #define NOTE_DATA_SZ SZ_1K
759 #define GNU_PROPERTY_TYPE_0_NAME "GNU"
760 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
761 
762 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
763 				struct arch_elf_state *arch)
764 {
765 	union {
766 		struct elf_note nhdr;
767 		char data[NOTE_DATA_SZ];
768 	} note;
769 	loff_t pos;
770 	ssize_t n;
771 	size_t off, datasz;
772 	int ret;
773 	bool have_prev_type;
774 	u32 prev_type;
775 
776 	if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
777 		return 0;
778 
779 	/* load_elf_binary() shouldn't call us unless this is true... */
780 	if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
781 		return -ENOEXEC;
782 
783 	/* If the properties are crazy large, that's too bad (for now): */
784 	if (phdr->p_filesz > sizeof(note))
785 		return -ENOEXEC;
786 
787 	pos = phdr->p_offset;
788 	n = kernel_read(f, &note, phdr->p_filesz, &pos);
789 
790 	BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
791 	if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
792 		return -EIO;
793 
794 	if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
795 	    note.nhdr.n_namesz != NOTE_NAME_SZ ||
796 	    strncmp(note.data + sizeof(note.nhdr),
797 		    GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
798 		return -ENOEXEC;
799 
800 	off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
801 		       ELF_GNU_PROPERTY_ALIGN);
802 	if (off > n)
803 		return -ENOEXEC;
804 
805 	if (note.nhdr.n_descsz > n - off)
806 		return -ENOEXEC;
807 	datasz = off + note.nhdr.n_descsz;
808 
809 	have_prev_type = false;
810 	do {
811 		ret = parse_elf_property(note.data, &off, datasz, arch,
812 					 have_prev_type, &prev_type);
813 		have_prev_type = true;
814 	} while (!ret);
815 
816 	return ret == -ENOENT ? 0 : ret;
817 }
818 
819 static int load_elf_binary(struct linux_binprm *bprm)
820 {
821 	struct file *interpreter = NULL; /* to shut gcc up */
822 	unsigned long load_bias = 0, phdr_addr = 0;
823 	int first_pt_load = 1;
824 	unsigned long error;
825 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
826 	struct elf_phdr *elf_property_phdata = NULL;
827 	unsigned long elf_brk;
828 	int retval, i;
829 	unsigned long elf_entry;
830 	unsigned long e_entry;
831 	unsigned long interp_load_addr = 0;
832 	unsigned long start_code, end_code, start_data, end_data;
833 	unsigned long reloc_func_desc __maybe_unused = 0;
834 	int executable_stack = EXSTACK_DEFAULT;
835 	struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
836 	struct elfhdr *interp_elf_ex = NULL;
837 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
838 	struct mm_struct *mm;
839 	struct pt_regs *regs;
840 
841 	retval = -ENOEXEC;
842 	/* First of all, some simple consistency checks */
843 	if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
844 		goto out;
845 
846 	if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
847 		goto out;
848 	if (!elf_check_arch(elf_ex))
849 		goto out;
850 	if (elf_check_fdpic(elf_ex))
851 		goto out;
852 	if (!bprm->file->f_op->mmap)
853 		goto out;
854 
855 	elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
856 	if (!elf_phdata)
857 		goto out;
858 
859 	elf_ppnt = elf_phdata;
860 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
861 		char *elf_interpreter;
862 
863 		if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
864 			elf_property_phdata = elf_ppnt;
865 			continue;
866 		}
867 
868 		if (elf_ppnt->p_type != PT_INTERP)
869 			continue;
870 
871 		/*
872 		 * This is the program interpreter used for shared libraries -
873 		 * for now assume that this is an a.out format binary.
874 		 */
875 		retval = -ENOEXEC;
876 		if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
877 			goto out_free_ph;
878 
879 		retval = -ENOMEM;
880 		elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
881 		if (!elf_interpreter)
882 			goto out_free_ph;
883 
884 		retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
885 				  elf_ppnt->p_offset);
886 		if (retval < 0)
887 			goto out_free_interp;
888 		/* make sure path is NULL terminated */
889 		retval = -ENOEXEC;
890 		if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
891 			goto out_free_interp;
892 
893 		interpreter = open_exec(elf_interpreter);
894 		kfree(elf_interpreter);
895 		retval = PTR_ERR(interpreter);
896 		if (IS_ERR(interpreter))
897 			goto out_free_ph;
898 
899 		/*
900 		 * If the binary is not readable then enforce mm->dumpable = 0
901 		 * regardless of the interpreter's permissions.
902 		 */
903 		would_dump(bprm, interpreter);
904 
905 		interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
906 		if (!interp_elf_ex) {
907 			retval = -ENOMEM;
908 			goto out_free_file;
909 		}
910 
911 		/* Get the exec headers */
912 		retval = elf_read(interpreter, interp_elf_ex,
913 				  sizeof(*interp_elf_ex), 0);
914 		if (retval < 0)
915 			goto out_free_dentry;
916 
917 		break;
918 
919 out_free_interp:
920 		kfree(elf_interpreter);
921 		goto out_free_ph;
922 	}
923 
924 	elf_ppnt = elf_phdata;
925 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
926 		switch (elf_ppnt->p_type) {
927 		case PT_GNU_STACK:
928 			if (elf_ppnt->p_flags & PF_X)
929 				executable_stack = EXSTACK_ENABLE_X;
930 			else
931 				executable_stack = EXSTACK_DISABLE_X;
932 			break;
933 
934 		case PT_LOPROC ... PT_HIPROC:
935 			retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
936 						  bprm->file, false,
937 						  &arch_state);
938 			if (retval)
939 				goto out_free_dentry;
940 			break;
941 		}
942 
943 	/* Some simple consistency checks for the interpreter */
944 	if (interpreter) {
945 		retval = -ELIBBAD;
946 		/* Not an ELF interpreter */
947 		if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
948 			goto out_free_dentry;
949 		/* Verify the interpreter has a valid arch */
950 		if (!elf_check_arch(interp_elf_ex) ||
951 		    elf_check_fdpic(interp_elf_ex))
952 			goto out_free_dentry;
953 
954 		/* Load the interpreter program headers */
955 		interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
956 						   interpreter);
957 		if (!interp_elf_phdata)
958 			goto out_free_dentry;
959 
960 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
961 		elf_property_phdata = NULL;
962 		elf_ppnt = interp_elf_phdata;
963 		for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
964 			switch (elf_ppnt->p_type) {
965 			case PT_GNU_PROPERTY:
966 				elf_property_phdata = elf_ppnt;
967 				break;
968 
969 			case PT_LOPROC ... PT_HIPROC:
970 				retval = arch_elf_pt_proc(interp_elf_ex,
971 							  elf_ppnt, interpreter,
972 							  true, &arch_state);
973 				if (retval)
974 					goto out_free_dentry;
975 				break;
976 			}
977 	}
978 
979 	retval = parse_elf_properties(interpreter ?: bprm->file,
980 				      elf_property_phdata, &arch_state);
981 	if (retval)
982 		goto out_free_dentry;
983 
984 	/*
985 	 * Allow arch code to reject the ELF at this point, whilst it's
986 	 * still possible to return an error to the code that invoked
987 	 * the exec syscall.
988 	 */
989 	retval = arch_check_elf(elf_ex,
990 				!!interpreter, interp_elf_ex,
991 				&arch_state);
992 	if (retval)
993 		goto out_free_dentry;
994 
995 	/* Flush all traces of the currently running executable */
996 	retval = begin_new_exec(bprm);
997 	if (retval)
998 		goto out_free_dentry;
999 
1000 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
1001 	   may depend on the personality.  */
1002 	SET_PERSONALITY2(*elf_ex, &arch_state);
1003 	if (elf_read_implies_exec(*elf_ex, executable_stack))
1004 		current->personality |= READ_IMPLIES_EXEC;
1005 
1006 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1007 		current->flags |= PF_RANDOMIZE;
1008 
1009 	setup_new_exec(bprm);
1010 
1011 	/* Do this so that we can load the interpreter, if need be.  We will
1012 	   change some of these later */
1013 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1014 				 executable_stack);
1015 	if (retval < 0)
1016 		goto out_free_dentry;
1017 
1018 	elf_brk = 0;
1019 
1020 	start_code = ~0UL;
1021 	end_code = 0;
1022 	start_data = 0;
1023 	end_data = 0;
1024 
1025 	/* Now we do a little grungy work by mmapping the ELF image into
1026 	   the correct location in memory. */
1027 	for(i = 0, elf_ppnt = elf_phdata;
1028 	    i < elf_ex->e_phnum; i++, elf_ppnt++) {
1029 		int elf_prot, elf_flags;
1030 		unsigned long k, vaddr;
1031 		unsigned long total_size = 0;
1032 		unsigned long alignment;
1033 
1034 		if (elf_ppnt->p_type != PT_LOAD)
1035 			continue;
1036 
1037 		elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1038 				     !!interpreter, false);
1039 
1040 		elf_flags = MAP_PRIVATE;
1041 
1042 		vaddr = elf_ppnt->p_vaddr;
1043 		/*
1044 		 * The first time through the loop, first_pt_load is true:
1045 		 * layout will be calculated. Once set, use MAP_FIXED since
1046 		 * we know we've already safely mapped the entire region with
1047 		 * MAP_FIXED_NOREPLACE in the once-per-binary logic following.
1048 		 */
1049 		if (!first_pt_load) {
1050 			elf_flags |= MAP_FIXED;
1051 		} else if (elf_ex->e_type == ET_EXEC) {
1052 			/*
1053 			 * This logic is run once for the first LOAD Program
1054 			 * Header for ET_EXEC binaries. No special handling
1055 			 * is needed.
1056 			 */
1057 			elf_flags |= MAP_FIXED_NOREPLACE;
1058 		} else if (elf_ex->e_type == ET_DYN) {
1059 			/*
1060 			 * This logic is run once for the first LOAD Program
1061 			 * Header for ET_DYN binaries to calculate the
1062 			 * randomization (load_bias) for all the LOAD
1063 			 * Program Headers.
1064 			 *
1065 			 * There are effectively two types of ET_DYN
1066 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
1067 			 * and loaders (ET_DYN without INTERP, since they
1068 			 * _are_ the ELF interpreter). The loaders must
1069 			 * be loaded away from programs since the program
1070 			 * may otherwise collide with the loader (especially
1071 			 * for ET_EXEC which does not have a randomized
1072 			 * position). For example to handle invocations of
1073 			 * "./ld.so someprog" to test out a new version of
1074 			 * the loader, the subsequent program that the
1075 			 * loader loads must avoid the loader itself, so
1076 			 * they cannot share the same load range. Sufficient
1077 			 * room for the brk must be allocated with the
1078 			 * loader as well, since brk must be available with
1079 			 * the loader.
1080 			 *
1081 			 * Therefore, programs are loaded offset from
1082 			 * ELF_ET_DYN_BASE and loaders are loaded into the
1083 			 * independently randomized mmap region (0 load_bias
1084 			 * without MAP_FIXED nor MAP_FIXED_NOREPLACE).
1085 			 */
1086 			if (interpreter) {
1087 				load_bias = ELF_ET_DYN_BASE;
1088 				if (current->flags & PF_RANDOMIZE)
1089 					load_bias += arch_mmap_rnd();
1090 				alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1091 				if (alignment)
1092 					load_bias &= ~(alignment - 1);
1093 				elf_flags |= MAP_FIXED_NOREPLACE;
1094 			} else
1095 				load_bias = 0;
1096 
1097 			/*
1098 			 * Since load_bias is used for all subsequent loading
1099 			 * calculations, we must lower it by the first vaddr
1100 			 * so that the remaining calculations based on the
1101 			 * ELF vaddrs will be correctly offset. The result
1102 			 * is then page aligned.
1103 			 */
1104 			load_bias = ELF_PAGESTART(load_bias - vaddr);
1105 
1106 			/*
1107 			 * Calculate the entire size of the ELF mapping
1108 			 * (total_size), used for the initial mapping,
1109 			 * due to load_addr_set which is set to true later
1110 			 * once the initial mapping is performed.
1111 			 *
1112 			 * Note that this is only sensible when the LOAD
1113 			 * segments are contiguous (or overlapping). If
1114 			 * used for LOADs that are far apart, this would
1115 			 * cause the holes between LOADs to be mapped,
1116 			 * running the risk of having the mapping fail,
1117 			 * as it would be larger than the ELF file itself.
1118 			 *
1119 			 * As a result, only ET_DYN does this, since
1120 			 * some ET_EXEC (e.g. ia64) may have large virtual
1121 			 * memory holes between LOADs.
1122 			 *
1123 			 */
1124 			total_size = total_mapping_size(elf_phdata,
1125 							elf_ex->e_phnum);
1126 			if (!total_size) {
1127 				retval = -EINVAL;
1128 				goto out_free_dentry;
1129 			}
1130 		}
1131 
1132 		error = elf_load(bprm->file, load_bias + vaddr, elf_ppnt,
1133 				elf_prot, elf_flags, total_size);
1134 		if (BAD_ADDR(error)) {
1135 			retval = IS_ERR_VALUE(error) ?
1136 				PTR_ERR((void*)error) : -EINVAL;
1137 			goto out_free_dentry;
1138 		}
1139 
1140 		if (first_pt_load) {
1141 			first_pt_load = 0;
1142 			if (elf_ex->e_type == ET_DYN) {
1143 				load_bias += error -
1144 				             ELF_PAGESTART(load_bias + vaddr);
1145 				reloc_func_desc = load_bias;
1146 			}
1147 		}
1148 
1149 		/*
1150 		 * Figure out which segment in the file contains the Program
1151 		 * Header table, and map to the associated memory address.
1152 		 */
1153 		if (elf_ppnt->p_offset <= elf_ex->e_phoff &&
1154 		    elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) {
1155 			phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset +
1156 				    elf_ppnt->p_vaddr;
1157 		}
1158 
1159 		k = elf_ppnt->p_vaddr;
1160 		if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1161 			start_code = k;
1162 		if (start_data < k)
1163 			start_data = k;
1164 
1165 		/*
1166 		 * Check to see if the section's size will overflow the
1167 		 * allowed task size. Note that p_filesz must always be
1168 		 * <= p_memsz so it is only necessary to check p_memsz.
1169 		 */
1170 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1171 		    elf_ppnt->p_memsz > TASK_SIZE ||
1172 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1173 			/* set_brk can never work. Avoid overflows. */
1174 			retval = -EINVAL;
1175 			goto out_free_dentry;
1176 		}
1177 
1178 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1179 
1180 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1181 			end_code = k;
1182 		if (end_data < k)
1183 			end_data = k;
1184 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1185 		if (k > elf_brk)
1186 			elf_brk = k;
1187 	}
1188 
1189 	e_entry = elf_ex->e_entry + load_bias;
1190 	phdr_addr += load_bias;
1191 	elf_brk += load_bias;
1192 	start_code += load_bias;
1193 	end_code += load_bias;
1194 	start_data += load_bias;
1195 	end_data += load_bias;
1196 
1197 	current->mm->start_brk = current->mm->brk = ELF_PAGEALIGN(elf_brk);
1198 
1199 	if (interpreter) {
1200 		elf_entry = load_elf_interp(interp_elf_ex,
1201 					    interpreter,
1202 					    load_bias, interp_elf_phdata,
1203 					    &arch_state);
1204 		if (!IS_ERR_VALUE(elf_entry)) {
1205 			/*
1206 			 * load_elf_interp() returns relocation
1207 			 * adjustment
1208 			 */
1209 			interp_load_addr = elf_entry;
1210 			elf_entry += interp_elf_ex->e_entry;
1211 		}
1212 		if (BAD_ADDR(elf_entry)) {
1213 			retval = IS_ERR_VALUE(elf_entry) ?
1214 					(int)elf_entry : -EINVAL;
1215 			goto out_free_dentry;
1216 		}
1217 		reloc_func_desc = interp_load_addr;
1218 
1219 		allow_write_access(interpreter);
1220 		fput(interpreter);
1221 
1222 		kfree(interp_elf_ex);
1223 		kfree(interp_elf_phdata);
1224 	} else {
1225 		elf_entry = e_entry;
1226 		if (BAD_ADDR(elf_entry)) {
1227 			retval = -EINVAL;
1228 			goto out_free_dentry;
1229 		}
1230 	}
1231 
1232 	kfree(elf_phdata);
1233 
1234 	set_binfmt(&elf_format);
1235 
1236 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1237 	retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
1238 	if (retval < 0)
1239 		goto out;
1240 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1241 
1242 	retval = create_elf_tables(bprm, elf_ex, interp_load_addr,
1243 				   e_entry, phdr_addr);
1244 	if (retval < 0)
1245 		goto out;
1246 
1247 	mm = current->mm;
1248 	mm->end_code = end_code;
1249 	mm->start_code = start_code;
1250 	mm->start_data = start_data;
1251 	mm->end_data = end_data;
1252 	mm->start_stack = bprm->p;
1253 
1254 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1255 		/*
1256 		 * For architectures with ELF randomization, when executing
1257 		 * a loader directly (i.e. no interpreter listed in ELF
1258 		 * headers), move the brk area out of the mmap region
1259 		 * (since it grows up, and may collide early with the stack
1260 		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1261 		 */
1262 		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1263 		    elf_ex->e_type == ET_DYN && !interpreter) {
1264 			mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1265 		} else {
1266 			/* Otherwise leave a gap between .bss and brk. */
1267 			mm->brk = mm->start_brk = mm->brk + PAGE_SIZE;
1268 		}
1269 
1270 		mm->brk = mm->start_brk = arch_randomize_brk(mm);
1271 #ifdef compat_brk_randomized
1272 		current->brk_randomized = 1;
1273 #endif
1274 	}
1275 
1276 	if (current->personality & MMAP_PAGE_ZERO) {
1277 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1278 		   and some applications "depend" upon this behavior.
1279 		   Since we do not have the power to recompile these, we
1280 		   emulate the SVr4 behavior. Sigh. */
1281 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1282 				MAP_FIXED | MAP_PRIVATE, 0);
1283 	}
1284 
1285 	regs = current_pt_regs();
1286 #ifdef ELF_PLAT_INIT
1287 	/*
1288 	 * The ABI may specify that certain registers be set up in special
1289 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1290 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1291 	 * that the e_entry field is the address of the function descriptor
1292 	 * for the startup routine, rather than the address of the startup
1293 	 * routine itself.  This macro performs whatever initialization to
1294 	 * the regs structure is required as well as any relocations to the
1295 	 * function descriptor entries when executing dynamically links apps.
1296 	 */
1297 	ELF_PLAT_INIT(regs, reloc_func_desc);
1298 #endif
1299 
1300 	finalize_exec(bprm);
1301 	START_THREAD(elf_ex, regs, elf_entry, bprm->p);
1302 	retval = 0;
1303 out:
1304 	return retval;
1305 
1306 	/* error cleanup */
1307 out_free_dentry:
1308 	kfree(interp_elf_ex);
1309 	kfree(interp_elf_phdata);
1310 out_free_file:
1311 	allow_write_access(interpreter);
1312 	if (interpreter)
1313 		fput(interpreter);
1314 out_free_ph:
1315 	kfree(elf_phdata);
1316 	goto out;
1317 }
1318 
1319 #ifdef CONFIG_USELIB
1320 /* This is really simpleminded and specialized - we are loading an
1321    a.out library that is given an ELF header. */
1322 static int load_elf_library(struct file *file)
1323 {
1324 	struct elf_phdr *elf_phdata;
1325 	struct elf_phdr *eppnt;
1326 	int retval, error, i, j;
1327 	struct elfhdr elf_ex;
1328 
1329 	error = -ENOEXEC;
1330 	retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1331 	if (retval < 0)
1332 		goto out;
1333 
1334 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1335 		goto out;
1336 
1337 	/* First of all, some simple consistency checks */
1338 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1339 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1340 		goto out;
1341 	if (elf_check_fdpic(&elf_ex))
1342 		goto out;
1343 
1344 	/* Now read in all of the header information */
1345 
1346 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1347 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1348 
1349 	error = -ENOMEM;
1350 	elf_phdata = kmalloc(j, GFP_KERNEL);
1351 	if (!elf_phdata)
1352 		goto out;
1353 
1354 	eppnt = elf_phdata;
1355 	error = -ENOEXEC;
1356 	retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1357 	if (retval < 0)
1358 		goto out_free_ph;
1359 
1360 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1361 		if ((eppnt + i)->p_type == PT_LOAD)
1362 			j++;
1363 	if (j != 1)
1364 		goto out_free_ph;
1365 
1366 	while (eppnt->p_type != PT_LOAD)
1367 		eppnt++;
1368 
1369 	/* Now use mmap to map the library into memory. */
1370 	error = elf_load(file, ELF_PAGESTART(eppnt->p_vaddr),
1371 			eppnt,
1372 			PROT_READ | PROT_WRITE | PROT_EXEC,
1373 			MAP_FIXED_NOREPLACE | MAP_PRIVATE,
1374 			0);
1375 
1376 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1377 		goto out_free_ph;
1378 
1379 	error = 0;
1380 
1381 out_free_ph:
1382 	kfree(elf_phdata);
1383 out:
1384 	return error;
1385 }
1386 #endif /* #ifdef CONFIG_USELIB */
1387 
1388 #ifdef CONFIG_ELF_CORE
1389 /*
1390  * ELF core dumper
1391  *
1392  * Modelled on fs/exec.c:aout_core_dump()
1393  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1394  */
1395 
1396 /* An ELF note in memory */
1397 struct memelfnote
1398 {
1399 	const char *name;
1400 	int type;
1401 	unsigned int datasz;
1402 	void *data;
1403 };
1404 
1405 static int notesize(struct memelfnote *en)
1406 {
1407 	int sz;
1408 
1409 	sz = sizeof(struct elf_note);
1410 	sz += roundup(strlen(en->name) + 1, 4);
1411 	sz += roundup(en->datasz, 4);
1412 
1413 	return sz;
1414 }
1415 
1416 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1417 {
1418 	struct elf_note en;
1419 	en.n_namesz = strlen(men->name) + 1;
1420 	en.n_descsz = men->datasz;
1421 	en.n_type = men->type;
1422 
1423 	return dump_emit(cprm, &en, sizeof(en)) &&
1424 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1425 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1426 }
1427 
1428 static void fill_elf_header(struct elfhdr *elf, int segs,
1429 			    u16 machine, u32 flags)
1430 {
1431 	memset(elf, 0, sizeof(*elf));
1432 
1433 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1434 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1435 	elf->e_ident[EI_DATA] = ELF_DATA;
1436 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1437 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1438 
1439 	elf->e_type = ET_CORE;
1440 	elf->e_machine = machine;
1441 	elf->e_version = EV_CURRENT;
1442 	elf->e_phoff = sizeof(struct elfhdr);
1443 	elf->e_flags = flags;
1444 	elf->e_ehsize = sizeof(struct elfhdr);
1445 	elf->e_phentsize = sizeof(struct elf_phdr);
1446 	elf->e_phnum = segs;
1447 }
1448 
1449 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1450 {
1451 	phdr->p_type = PT_NOTE;
1452 	phdr->p_offset = offset;
1453 	phdr->p_vaddr = 0;
1454 	phdr->p_paddr = 0;
1455 	phdr->p_filesz = sz;
1456 	phdr->p_memsz = 0;
1457 	phdr->p_flags = 0;
1458 	phdr->p_align = 4;
1459 }
1460 
1461 static void fill_note(struct memelfnote *note, const char *name, int type,
1462 		unsigned int sz, void *data)
1463 {
1464 	note->name = name;
1465 	note->type = type;
1466 	note->datasz = sz;
1467 	note->data = data;
1468 }
1469 
1470 /*
1471  * fill up all the fields in prstatus from the given task struct, except
1472  * registers which need to be filled up separately.
1473  */
1474 static void fill_prstatus(struct elf_prstatus_common *prstatus,
1475 		struct task_struct *p, long signr)
1476 {
1477 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1478 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1479 	prstatus->pr_sighold = p->blocked.sig[0];
1480 	rcu_read_lock();
1481 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1482 	rcu_read_unlock();
1483 	prstatus->pr_pid = task_pid_vnr(p);
1484 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1485 	prstatus->pr_sid = task_session_vnr(p);
1486 	if (thread_group_leader(p)) {
1487 		struct task_cputime cputime;
1488 
1489 		/*
1490 		 * This is the record for the group leader.  It shows the
1491 		 * group-wide total, not its individual thread total.
1492 		 */
1493 		thread_group_cputime(p, &cputime);
1494 		prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1495 		prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1496 	} else {
1497 		u64 utime, stime;
1498 
1499 		task_cputime(p, &utime, &stime);
1500 		prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1501 		prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1502 	}
1503 
1504 	prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1505 	prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1506 }
1507 
1508 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1509 		       struct mm_struct *mm)
1510 {
1511 	const struct cred *cred;
1512 	unsigned int i, len;
1513 	unsigned int state;
1514 
1515 	/* first copy the parameters from user space */
1516 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1517 
1518 	len = mm->arg_end - mm->arg_start;
1519 	if (len >= ELF_PRARGSZ)
1520 		len = ELF_PRARGSZ-1;
1521 	if (copy_from_user(&psinfo->pr_psargs,
1522 		           (const char __user *)mm->arg_start, len))
1523 		return -EFAULT;
1524 	for(i = 0; i < len; i++)
1525 		if (psinfo->pr_psargs[i] == 0)
1526 			psinfo->pr_psargs[i] = ' ';
1527 	psinfo->pr_psargs[len] = 0;
1528 
1529 	rcu_read_lock();
1530 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1531 	rcu_read_unlock();
1532 	psinfo->pr_pid = task_pid_vnr(p);
1533 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1534 	psinfo->pr_sid = task_session_vnr(p);
1535 
1536 	state = READ_ONCE(p->__state);
1537 	i = state ? ffz(~state) + 1 : 0;
1538 	psinfo->pr_state = i;
1539 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1540 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1541 	psinfo->pr_nice = task_nice(p);
1542 	psinfo->pr_flag = p->flags;
1543 	rcu_read_lock();
1544 	cred = __task_cred(p);
1545 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1546 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1547 	rcu_read_unlock();
1548 	get_task_comm(psinfo->pr_fname, p);
1549 
1550 	return 0;
1551 }
1552 
1553 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1554 {
1555 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1556 	int i = 0;
1557 	do
1558 		i += 2;
1559 	while (auxv[i - 2] != AT_NULL);
1560 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1561 }
1562 
1563 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1564 		const kernel_siginfo_t *siginfo)
1565 {
1566 	copy_siginfo_to_external(csigdata, siginfo);
1567 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1568 }
1569 
1570 /*
1571  * Format of NT_FILE note:
1572  *
1573  * long count     -- how many files are mapped
1574  * long page_size -- units for file_ofs
1575  * array of [COUNT] elements of
1576  *   long start
1577  *   long end
1578  *   long file_ofs
1579  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1580  */
1581 static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm)
1582 {
1583 	unsigned count, size, names_ofs, remaining, n;
1584 	user_long_t *data;
1585 	user_long_t *start_end_ofs;
1586 	char *name_base, *name_curpos;
1587 	int i;
1588 
1589 	/* *Estimated* file count and total data size needed */
1590 	count = cprm->vma_count;
1591 	if (count > UINT_MAX / 64)
1592 		return -EINVAL;
1593 	size = count * 64;
1594 
1595 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1596  alloc:
1597 	/* paranoia check */
1598 	if (size >= core_file_note_size_limit) {
1599 		pr_warn_once("coredump Note size too large: %u (does kernel.core_file_note_size_limit sysctl need adjustment?\n",
1600 			      size);
1601 		return -EINVAL;
1602 	}
1603 	size = round_up(size, PAGE_SIZE);
1604 	/*
1605 	 * "size" can be 0 here legitimately.
1606 	 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1607 	 */
1608 	data = kvmalloc(size, GFP_KERNEL);
1609 	if (ZERO_OR_NULL_PTR(data))
1610 		return -ENOMEM;
1611 
1612 	start_end_ofs = data + 2;
1613 	name_base = name_curpos = ((char *)data) + names_ofs;
1614 	remaining = size - names_ofs;
1615 	count = 0;
1616 	for (i = 0; i < cprm->vma_count; i++) {
1617 		struct core_vma_metadata *m = &cprm->vma_meta[i];
1618 		struct file *file;
1619 		const char *filename;
1620 
1621 		file = m->file;
1622 		if (!file)
1623 			continue;
1624 		filename = file_path(file, name_curpos, remaining);
1625 		if (IS_ERR(filename)) {
1626 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1627 				kvfree(data);
1628 				size = size * 5 / 4;
1629 				goto alloc;
1630 			}
1631 			continue;
1632 		}
1633 
1634 		/* file_path() fills at the end, move name down */
1635 		/* n = strlen(filename) + 1: */
1636 		n = (name_curpos + remaining) - filename;
1637 		remaining = filename - name_curpos;
1638 		memmove(name_curpos, filename, n);
1639 		name_curpos += n;
1640 
1641 		*start_end_ofs++ = m->start;
1642 		*start_end_ofs++ = m->end;
1643 		*start_end_ofs++ = m->pgoff;
1644 		count++;
1645 	}
1646 
1647 	/* Now we know exact count of files, can store it */
1648 	data[0] = count;
1649 	data[1] = PAGE_SIZE;
1650 	/*
1651 	 * Count usually is less than mm->map_count,
1652 	 * we need to move filenames down.
1653 	 */
1654 	n = cprm->vma_count - count;
1655 	if (n != 0) {
1656 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1657 		memmove(name_base - shift_bytes, name_base,
1658 			name_curpos - name_base);
1659 		name_curpos -= shift_bytes;
1660 	}
1661 
1662 	size = name_curpos - (char *)data;
1663 	fill_note(note, "CORE", NT_FILE, size, data);
1664 	return 0;
1665 }
1666 
1667 #include <linux/regset.h>
1668 
1669 struct elf_thread_core_info {
1670 	struct elf_thread_core_info *next;
1671 	struct task_struct *task;
1672 	struct elf_prstatus prstatus;
1673 	struct memelfnote notes[];
1674 };
1675 
1676 struct elf_note_info {
1677 	struct elf_thread_core_info *thread;
1678 	struct memelfnote psinfo;
1679 	struct memelfnote signote;
1680 	struct memelfnote auxv;
1681 	struct memelfnote files;
1682 	user_siginfo_t csigdata;
1683 	size_t size;
1684 	int thread_notes;
1685 };
1686 
1687 #ifdef CORE_DUMP_USE_REGSET
1688 /*
1689  * When a regset has a writeback hook, we call it on each thread before
1690  * dumping user memory.  On register window machines, this makes sure the
1691  * user memory backing the register data is up to date before we read it.
1692  */
1693 static void do_thread_regset_writeback(struct task_struct *task,
1694 				       const struct user_regset *regset)
1695 {
1696 	if (regset->writeback)
1697 		regset->writeback(task, regset, 1);
1698 }
1699 
1700 #ifndef PRSTATUS_SIZE
1701 #define PRSTATUS_SIZE sizeof(struct elf_prstatus)
1702 #endif
1703 
1704 #ifndef SET_PR_FPVALID
1705 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1)
1706 #endif
1707 
1708 static int fill_thread_core_info(struct elf_thread_core_info *t,
1709 				 const struct user_regset_view *view,
1710 				 long signr, struct elf_note_info *info)
1711 {
1712 	unsigned int note_iter, view_iter;
1713 
1714 	/*
1715 	 * NT_PRSTATUS is the one special case, because the regset data
1716 	 * goes into the pr_reg field inside the note contents, rather
1717 	 * than being the whole note contents.  We fill the regset in here.
1718 	 * We assume that regset 0 is NT_PRSTATUS.
1719 	 */
1720 	fill_prstatus(&t->prstatus.common, t->task, signr);
1721 	regset_get(t->task, &view->regsets[0],
1722 		   sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1723 
1724 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1725 		  PRSTATUS_SIZE, &t->prstatus);
1726 	info->size += notesize(&t->notes[0]);
1727 
1728 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1729 
1730 	/*
1731 	 * Each other regset might generate a note too.  For each regset
1732 	 * that has no core_note_type or is inactive, skip it.
1733 	 */
1734 	note_iter = 1;
1735 	for (view_iter = 1; view_iter < view->n; ++view_iter) {
1736 		const struct user_regset *regset = &view->regsets[view_iter];
1737 		int note_type = regset->core_note_type;
1738 		bool is_fpreg = note_type == NT_PRFPREG;
1739 		void *data;
1740 		int ret;
1741 
1742 		do_thread_regset_writeback(t->task, regset);
1743 		if (!note_type) // not for coredumps
1744 			continue;
1745 		if (regset->active && regset->active(t->task, regset) <= 0)
1746 			continue;
1747 
1748 		ret = regset_get_alloc(t->task, regset, ~0U, &data);
1749 		if (ret < 0)
1750 			continue;
1751 
1752 		if (WARN_ON_ONCE(note_iter >= info->thread_notes))
1753 			break;
1754 
1755 		if (is_fpreg)
1756 			SET_PR_FPVALID(&t->prstatus);
1757 
1758 		fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX",
1759 			  note_type, ret, data);
1760 
1761 		info->size += notesize(&t->notes[note_iter]);
1762 		note_iter++;
1763 	}
1764 
1765 	return 1;
1766 }
1767 #else
1768 static int fill_thread_core_info(struct elf_thread_core_info *t,
1769 				 const struct user_regset_view *view,
1770 				 long signr, struct elf_note_info *info)
1771 {
1772 	struct task_struct *p = t->task;
1773 	elf_fpregset_t *fpu;
1774 
1775 	fill_prstatus(&t->prstatus.common, p, signr);
1776 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1777 
1778 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1779 		  &(t->prstatus));
1780 	info->size += notesize(&t->notes[0]);
1781 
1782 	fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL);
1783 	if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) {
1784 		kfree(fpu);
1785 		return 1;
1786 	}
1787 
1788 	t->prstatus.pr_fpvalid = 1;
1789 	fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu);
1790 	info->size += notesize(&t->notes[1]);
1791 
1792 	return 1;
1793 }
1794 #endif
1795 
1796 static int fill_note_info(struct elfhdr *elf, int phdrs,
1797 			  struct elf_note_info *info,
1798 			  struct coredump_params *cprm)
1799 {
1800 	struct task_struct *dump_task = current;
1801 	const struct user_regset_view *view;
1802 	struct elf_thread_core_info *t;
1803 	struct elf_prpsinfo *psinfo;
1804 	struct core_thread *ct;
1805 
1806 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1807 	if (!psinfo)
1808 		return 0;
1809 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1810 
1811 #ifdef CORE_DUMP_USE_REGSET
1812 	view = task_user_regset_view(dump_task);
1813 
1814 	/*
1815 	 * Figure out how many notes we're going to need for each thread.
1816 	 */
1817 	info->thread_notes = 0;
1818 	for (int i = 0; i < view->n; ++i)
1819 		if (view->regsets[i].core_note_type != 0)
1820 			++info->thread_notes;
1821 
1822 	/*
1823 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1824 	 * since it is our one special case.
1825 	 */
1826 	if (unlikely(info->thread_notes == 0) ||
1827 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1828 		WARN_ON(1);
1829 		return 0;
1830 	}
1831 
1832 	/*
1833 	 * Initialize the ELF file header.
1834 	 */
1835 	fill_elf_header(elf, phdrs,
1836 			view->e_machine, view->e_flags);
1837 #else
1838 	view = NULL;
1839 	info->thread_notes = 2;
1840 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1841 #endif
1842 
1843 	/*
1844 	 * Allocate a structure for each thread.
1845 	 */
1846 	info->thread = kzalloc(offsetof(struct elf_thread_core_info,
1847 				     notes[info->thread_notes]),
1848 			    GFP_KERNEL);
1849 	if (unlikely(!info->thread))
1850 		return 0;
1851 
1852 	info->thread->task = dump_task;
1853 	for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) {
1854 		t = kzalloc(offsetof(struct elf_thread_core_info,
1855 				     notes[info->thread_notes]),
1856 			    GFP_KERNEL);
1857 		if (unlikely(!t))
1858 			return 0;
1859 
1860 		t->task = ct->task;
1861 		t->next = info->thread->next;
1862 		info->thread->next = t;
1863 	}
1864 
1865 	/*
1866 	 * Now fill in each thread's information.
1867 	 */
1868 	for (t = info->thread; t != NULL; t = t->next)
1869 		if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info))
1870 			return 0;
1871 
1872 	/*
1873 	 * Fill in the two process-wide notes.
1874 	 */
1875 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1876 	info->size += notesize(&info->psinfo);
1877 
1878 	fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo);
1879 	info->size += notesize(&info->signote);
1880 
1881 	fill_auxv_note(&info->auxv, current->mm);
1882 	info->size += notesize(&info->auxv);
1883 
1884 	if (fill_files_note(&info->files, cprm) == 0)
1885 		info->size += notesize(&info->files);
1886 
1887 	return 1;
1888 }
1889 
1890 /*
1891  * Write all the notes for each thread.  When writing the first thread, the
1892  * process-wide notes are interleaved after the first thread-specific note.
1893  */
1894 static int write_note_info(struct elf_note_info *info,
1895 			   struct coredump_params *cprm)
1896 {
1897 	bool first = true;
1898 	struct elf_thread_core_info *t = info->thread;
1899 
1900 	do {
1901 		int i;
1902 
1903 		if (!writenote(&t->notes[0], cprm))
1904 			return 0;
1905 
1906 		if (first && !writenote(&info->psinfo, cprm))
1907 			return 0;
1908 		if (first && !writenote(&info->signote, cprm))
1909 			return 0;
1910 		if (first && !writenote(&info->auxv, cprm))
1911 			return 0;
1912 		if (first && info->files.data &&
1913 				!writenote(&info->files, cprm))
1914 			return 0;
1915 
1916 		for (i = 1; i < info->thread_notes; ++i)
1917 			if (t->notes[i].data &&
1918 			    !writenote(&t->notes[i], cprm))
1919 				return 0;
1920 
1921 		first = false;
1922 		t = t->next;
1923 	} while (t);
1924 
1925 	return 1;
1926 }
1927 
1928 static void free_note_info(struct elf_note_info *info)
1929 {
1930 	struct elf_thread_core_info *threads = info->thread;
1931 	while (threads) {
1932 		unsigned int i;
1933 		struct elf_thread_core_info *t = threads;
1934 		threads = t->next;
1935 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1936 		for (i = 1; i < info->thread_notes; ++i)
1937 			kvfree(t->notes[i].data);
1938 		kfree(t);
1939 	}
1940 	kfree(info->psinfo.data);
1941 	kvfree(info->files.data);
1942 }
1943 
1944 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1945 			     elf_addr_t e_shoff, int segs)
1946 {
1947 	elf->e_shoff = e_shoff;
1948 	elf->e_shentsize = sizeof(*shdr4extnum);
1949 	elf->e_shnum = 1;
1950 	elf->e_shstrndx = SHN_UNDEF;
1951 
1952 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1953 
1954 	shdr4extnum->sh_type = SHT_NULL;
1955 	shdr4extnum->sh_size = elf->e_shnum;
1956 	shdr4extnum->sh_link = elf->e_shstrndx;
1957 	shdr4extnum->sh_info = segs;
1958 }
1959 
1960 /*
1961  * Actual dumper
1962  *
1963  * This is a two-pass process; first we find the offsets of the bits,
1964  * and then they are actually written out.  If we run out of core limit
1965  * we just truncate.
1966  */
1967 static int elf_core_dump(struct coredump_params *cprm)
1968 {
1969 	int has_dumped = 0;
1970 	int segs, i;
1971 	struct elfhdr elf;
1972 	loff_t offset = 0, dataoff;
1973 	struct elf_note_info info = { };
1974 	struct elf_phdr *phdr4note = NULL;
1975 	struct elf_shdr *shdr4extnum = NULL;
1976 	Elf_Half e_phnum;
1977 	elf_addr_t e_shoff;
1978 
1979 	/*
1980 	 * The number of segs are recored into ELF header as 16bit value.
1981 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1982 	 */
1983 	segs = cprm->vma_count + elf_core_extra_phdrs(cprm);
1984 
1985 	/* for notes section */
1986 	segs++;
1987 
1988 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
1989 	 * this, kernel supports extended numbering. Have a look at
1990 	 * include/linux/elf.h for further information. */
1991 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
1992 
1993 	/*
1994 	 * Collect all the non-memory information about the process for the
1995 	 * notes.  This also sets up the file header.
1996 	 */
1997 	if (!fill_note_info(&elf, e_phnum, &info, cprm))
1998 		goto end_coredump;
1999 
2000 	has_dumped = 1;
2001 
2002 	offset += sizeof(elf);				/* ELF header */
2003 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2004 
2005 	/* Write notes phdr entry */
2006 	{
2007 		size_t sz = info.size;
2008 
2009 		/* For cell spufs */
2010 		sz += elf_coredump_extra_notes_size();
2011 
2012 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2013 		if (!phdr4note)
2014 			goto end_coredump;
2015 
2016 		fill_elf_note_phdr(phdr4note, sz, offset);
2017 		offset += sz;
2018 	}
2019 
2020 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2021 
2022 	offset += cprm->vma_data_size;
2023 	offset += elf_core_extra_data_size(cprm);
2024 	e_shoff = offset;
2025 
2026 	if (e_phnum == PN_XNUM) {
2027 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2028 		if (!shdr4extnum)
2029 			goto end_coredump;
2030 		fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2031 	}
2032 
2033 	offset = dataoff;
2034 
2035 	if (!dump_emit(cprm, &elf, sizeof(elf)))
2036 		goto end_coredump;
2037 
2038 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2039 		goto end_coredump;
2040 
2041 	/* Write program headers for segments dump */
2042 	for (i = 0; i < cprm->vma_count; i++) {
2043 		struct core_vma_metadata *meta = cprm->vma_meta + i;
2044 		struct elf_phdr phdr;
2045 
2046 		phdr.p_type = PT_LOAD;
2047 		phdr.p_offset = offset;
2048 		phdr.p_vaddr = meta->start;
2049 		phdr.p_paddr = 0;
2050 		phdr.p_filesz = meta->dump_size;
2051 		phdr.p_memsz = meta->end - meta->start;
2052 		offset += phdr.p_filesz;
2053 		phdr.p_flags = 0;
2054 		if (meta->flags & VM_READ)
2055 			phdr.p_flags |= PF_R;
2056 		if (meta->flags & VM_WRITE)
2057 			phdr.p_flags |= PF_W;
2058 		if (meta->flags & VM_EXEC)
2059 			phdr.p_flags |= PF_X;
2060 		phdr.p_align = ELF_EXEC_PAGESIZE;
2061 
2062 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2063 			goto end_coredump;
2064 	}
2065 
2066 	if (!elf_core_write_extra_phdrs(cprm, offset))
2067 		goto end_coredump;
2068 
2069 	/* write out the notes section */
2070 	if (!write_note_info(&info, cprm))
2071 		goto end_coredump;
2072 
2073 	/* For cell spufs */
2074 	if (elf_coredump_extra_notes_write(cprm))
2075 		goto end_coredump;
2076 
2077 	/* Align to page */
2078 	dump_skip_to(cprm, dataoff);
2079 
2080 	for (i = 0; i < cprm->vma_count; i++) {
2081 		struct core_vma_metadata *meta = cprm->vma_meta + i;
2082 
2083 		if (!dump_user_range(cprm, meta->start, meta->dump_size))
2084 			goto end_coredump;
2085 	}
2086 
2087 	if (!elf_core_write_extra_data(cprm))
2088 		goto end_coredump;
2089 
2090 	if (e_phnum == PN_XNUM) {
2091 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2092 			goto end_coredump;
2093 	}
2094 
2095 end_coredump:
2096 	free_note_info(&info);
2097 	kfree(shdr4extnum);
2098 	kfree(phdr4note);
2099 	return has_dumped;
2100 }
2101 
2102 #endif		/* CONFIG_ELF_CORE */
2103 
2104 static int __init init_elf_binfmt(void)
2105 {
2106 	register_binfmt(&elf_format);
2107 	return 0;
2108 }
2109 
2110 static void __exit exit_elf_binfmt(void)
2111 {
2112 	/* Remove the COFF and ELF loaders. */
2113 	unregister_binfmt(&elf_format);
2114 }
2115 
2116 core_initcall(init_elf_binfmt);
2117 module_exit(exit_elf_binfmt);
2118 
2119 #ifdef CONFIG_BINFMT_ELF_KUNIT_TEST
2120 #include "binfmt_elf_test.c"
2121 #endif
2122