xref: /linux/fs/binfmt_elf.c (revision 5499b45190237ca90dd2ac86395cf464fe1f4cc7)
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/security.h>
31 #include <linux/random.h>
32 #include <linux/elf.h>
33 #include <linux/utsname.h>
34 #include <asm/uaccess.h>
35 #include <asm/param.h>
36 #include <asm/page.h>
37 
38 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
39 static int load_elf_library(struct file *);
40 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
41 				int, int, unsigned long);
42 
43 /*
44  * If we don't support core dumping, then supply a NULL so we
45  * don't even try.
46  */
47 #ifdef CONFIG_ELF_CORE
48 static int elf_core_dump(struct coredump_params *cprm);
49 #else
50 #define elf_core_dump	NULL
51 #endif
52 
53 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
54 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
55 #else
56 #define ELF_MIN_ALIGN	PAGE_SIZE
57 #endif
58 
59 #ifndef ELF_CORE_EFLAGS
60 #define ELF_CORE_EFLAGS	0
61 #endif
62 
63 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
64 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
65 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
66 
67 static struct linux_binfmt elf_format = {
68 		.module		= THIS_MODULE,
69 		.load_binary	= load_elf_binary,
70 		.load_shlib	= load_elf_library,
71 		.core_dump	= elf_core_dump,
72 		.min_coredump	= ELF_EXEC_PAGESIZE,
73 		.hasvdso	= 1
74 };
75 
76 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
77 
78 static int set_brk(unsigned long start, unsigned long end)
79 {
80 	start = ELF_PAGEALIGN(start);
81 	end = ELF_PAGEALIGN(end);
82 	if (end > start) {
83 		unsigned long addr;
84 		down_write(&current->mm->mmap_sem);
85 		addr = do_brk(start, end - start);
86 		up_write(&current->mm->mmap_sem);
87 		if (BAD_ADDR(addr))
88 			return addr;
89 	}
90 	current->mm->start_brk = current->mm->brk = end;
91 	return 0;
92 }
93 
94 /* We need to explicitly zero any fractional pages
95    after the data section (i.e. bss).  This would
96    contain the junk from the file that should not
97    be in memory
98  */
99 static int padzero(unsigned long elf_bss)
100 {
101 	unsigned long nbyte;
102 
103 	nbyte = ELF_PAGEOFFSET(elf_bss);
104 	if (nbyte) {
105 		nbyte = ELF_MIN_ALIGN - nbyte;
106 		if (clear_user((void __user *) elf_bss, nbyte))
107 			return -EFAULT;
108 	}
109 	return 0;
110 }
111 
112 /* Let's use some macros to make this stack manipulation a little clearer */
113 #ifdef CONFIG_STACK_GROWSUP
114 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
115 #define STACK_ROUND(sp, items) \
116 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
117 #define STACK_ALLOC(sp, len) ({ \
118 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
119 	old_sp; })
120 #else
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
122 #define STACK_ROUND(sp, items) \
123 	(((unsigned long) (sp - items)) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
125 #endif
126 
127 #ifndef ELF_BASE_PLATFORM
128 /*
129  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
130  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
131  * will be copied to the user stack in the same manner as AT_PLATFORM.
132  */
133 #define ELF_BASE_PLATFORM NULL
134 #endif
135 
136 static int
137 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
138 		unsigned long load_addr, unsigned long interp_load_addr)
139 {
140 	unsigned long p = bprm->p;
141 	int argc = bprm->argc;
142 	int envc = bprm->envc;
143 	elf_addr_t __user *argv;
144 	elf_addr_t __user *envp;
145 	elf_addr_t __user *sp;
146 	elf_addr_t __user *u_platform;
147 	elf_addr_t __user *u_base_platform;
148 	elf_addr_t __user *u_rand_bytes;
149 	const char *k_platform = ELF_PLATFORM;
150 	const char *k_base_platform = ELF_BASE_PLATFORM;
151 	unsigned char k_rand_bytes[16];
152 	int items;
153 	elf_addr_t *elf_info;
154 	int ei_index = 0;
155 	const struct cred *cred = current_cred();
156 	struct vm_area_struct *vma;
157 
158 	/*
159 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
160 	 * evictions by the processes running on the same package. One
161 	 * thing we can do is to shuffle the initial stack for them.
162 	 */
163 
164 	p = arch_align_stack(p);
165 
166 	/*
167 	 * If this architecture has a platform capability string, copy it
168 	 * to userspace.  In some cases (Sparc), this info is impossible
169 	 * for userspace to get any other way, in others (i386) it is
170 	 * merely difficult.
171 	 */
172 	u_platform = NULL;
173 	if (k_platform) {
174 		size_t len = strlen(k_platform) + 1;
175 
176 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
177 		if (__copy_to_user(u_platform, k_platform, len))
178 			return -EFAULT;
179 	}
180 
181 	/*
182 	 * If this architecture has a "base" platform capability
183 	 * string, copy it to userspace.
184 	 */
185 	u_base_platform = NULL;
186 	if (k_base_platform) {
187 		size_t len = strlen(k_base_platform) + 1;
188 
189 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
190 		if (__copy_to_user(u_base_platform, k_base_platform, len))
191 			return -EFAULT;
192 	}
193 
194 	/*
195 	 * Generate 16 random bytes for userspace PRNG seeding.
196 	 */
197 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
198 	u_rand_bytes = (elf_addr_t __user *)
199 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
200 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
201 		return -EFAULT;
202 
203 	/* Create the ELF interpreter info */
204 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
205 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
206 #define NEW_AUX_ENT(id, val) \
207 	do { \
208 		elf_info[ei_index++] = id; \
209 		elf_info[ei_index++] = val; \
210 	} while (0)
211 
212 #ifdef ARCH_DLINFO
213 	/*
214 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
215 	 * AUXV.
216 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
217 	 * ARCH_DLINFO changes
218 	 */
219 	ARCH_DLINFO;
220 #endif
221 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
222 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
223 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
224 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
225 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
226 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
227 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
228 	NEW_AUX_ENT(AT_FLAGS, 0);
229 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
230 	NEW_AUX_ENT(AT_UID, cred->uid);
231 	NEW_AUX_ENT(AT_EUID, cred->euid);
232 	NEW_AUX_ENT(AT_GID, cred->gid);
233 	NEW_AUX_ENT(AT_EGID, cred->egid);
234  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
235 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
236 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
237 	if (k_platform) {
238 		NEW_AUX_ENT(AT_PLATFORM,
239 			    (elf_addr_t)(unsigned long)u_platform);
240 	}
241 	if (k_base_platform) {
242 		NEW_AUX_ENT(AT_BASE_PLATFORM,
243 			    (elf_addr_t)(unsigned long)u_base_platform);
244 	}
245 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
246 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
247 	}
248 #undef NEW_AUX_ENT
249 	/* AT_NULL is zero; clear the rest too */
250 	memset(&elf_info[ei_index], 0,
251 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
252 
253 	/* And advance past the AT_NULL entry.  */
254 	ei_index += 2;
255 
256 	sp = STACK_ADD(p, ei_index);
257 
258 	items = (argc + 1) + (envc + 1) + 1;
259 	bprm->p = STACK_ROUND(sp, items);
260 
261 	/* Point sp at the lowest address on the stack */
262 #ifdef CONFIG_STACK_GROWSUP
263 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
264 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
265 #else
266 	sp = (elf_addr_t __user *)bprm->p;
267 #endif
268 
269 
270 	/*
271 	 * Grow the stack manually; some architectures have a limit on how
272 	 * far ahead a user-space access may be in order to grow the stack.
273 	 */
274 	vma = find_extend_vma(current->mm, bprm->p);
275 	if (!vma)
276 		return -EFAULT;
277 
278 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
279 	if (__put_user(argc, sp++))
280 		return -EFAULT;
281 	argv = sp;
282 	envp = argv + argc + 1;
283 
284 	/* Populate argv and envp */
285 	p = current->mm->arg_end = current->mm->arg_start;
286 	while (argc-- > 0) {
287 		size_t len;
288 		if (__put_user((elf_addr_t)p, argv++))
289 			return -EFAULT;
290 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
291 		if (!len || len > MAX_ARG_STRLEN)
292 			return -EINVAL;
293 		p += len;
294 	}
295 	if (__put_user(0, argv))
296 		return -EFAULT;
297 	current->mm->arg_end = current->mm->env_start = p;
298 	while (envc-- > 0) {
299 		size_t len;
300 		if (__put_user((elf_addr_t)p, envp++))
301 			return -EFAULT;
302 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
303 		if (!len || len > MAX_ARG_STRLEN)
304 			return -EINVAL;
305 		p += len;
306 	}
307 	if (__put_user(0, envp))
308 		return -EFAULT;
309 	current->mm->env_end = p;
310 
311 	/* Put the elf_info on the stack in the right place.  */
312 	sp = (elf_addr_t __user *)envp + 1;
313 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
314 		return -EFAULT;
315 	return 0;
316 }
317 
318 #ifndef elf_map
319 
320 static unsigned long elf_map(struct file *filep, unsigned long addr,
321 		struct elf_phdr *eppnt, int prot, int type,
322 		unsigned long total_size)
323 {
324 	unsigned long map_addr;
325 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
326 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
327 	addr = ELF_PAGESTART(addr);
328 	size = ELF_PAGEALIGN(size);
329 
330 	/* mmap() will return -EINVAL if given a zero size, but a
331 	 * segment with zero filesize is perfectly valid */
332 	if (!size)
333 		return addr;
334 
335 	down_write(&current->mm->mmap_sem);
336 	/*
337 	* total_size is the size of the ELF (interpreter) image.
338 	* The _first_ mmap needs to know the full size, otherwise
339 	* randomization might put this image into an overlapping
340 	* position with the ELF binary image. (since size < total_size)
341 	* So we first map the 'big' image - and unmap the remainder at
342 	* the end. (which unmap is needed for ELF images with holes.)
343 	*/
344 	if (total_size) {
345 		total_size = ELF_PAGEALIGN(total_size);
346 		map_addr = do_mmap(filep, addr, total_size, prot, type, off);
347 		if (!BAD_ADDR(map_addr))
348 			do_munmap(current->mm, map_addr+size, total_size-size);
349 	} else
350 		map_addr = do_mmap(filep, addr, size, prot, type, off);
351 
352 	up_write(&current->mm->mmap_sem);
353 	return(map_addr);
354 }
355 
356 #endif /* !elf_map */
357 
358 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
359 {
360 	int i, first_idx = -1, last_idx = -1;
361 
362 	for (i = 0; i < nr; i++) {
363 		if (cmds[i].p_type == PT_LOAD) {
364 			last_idx = i;
365 			if (first_idx == -1)
366 				first_idx = i;
367 		}
368 	}
369 	if (first_idx == -1)
370 		return 0;
371 
372 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
373 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
374 }
375 
376 
377 /* This is much more generalized than the library routine read function,
378    so we keep this separate.  Technically the library read function
379    is only provided so that we can read a.out libraries that have
380    an ELF header */
381 
382 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
383 		struct file *interpreter, unsigned long *interp_map_addr,
384 		unsigned long no_base)
385 {
386 	struct elf_phdr *elf_phdata;
387 	struct elf_phdr *eppnt;
388 	unsigned long load_addr = 0;
389 	int load_addr_set = 0;
390 	unsigned long last_bss = 0, elf_bss = 0;
391 	unsigned long error = ~0UL;
392 	unsigned long total_size;
393 	int retval, i, size;
394 
395 	/* First of all, some simple consistency checks */
396 	if (interp_elf_ex->e_type != ET_EXEC &&
397 	    interp_elf_ex->e_type != ET_DYN)
398 		goto out;
399 	if (!elf_check_arch(interp_elf_ex))
400 		goto out;
401 	if (!interpreter->f_op || !interpreter->f_op->mmap)
402 		goto out;
403 
404 	/*
405 	 * If the size of this structure has changed, then punt, since
406 	 * we will be doing the wrong thing.
407 	 */
408 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
409 		goto out;
410 	if (interp_elf_ex->e_phnum < 1 ||
411 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
412 		goto out;
413 
414 	/* Now read in all of the header information */
415 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
416 	if (size > ELF_MIN_ALIGN)
417 		goto out;
418 	elf_phdata = kmalloc(size, GFP_KERNEL);
419 	if (!elf_phdata)
420 		goto out;
421 
422 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
423 			     (char *)elf_phdata,size);
424 	error = -EIO;
425 	if (retval != size) {
426 		if (retval < 0)
427 			error = retval;
428 		goto out_close;
429 	}
430 
431 	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
432 	if (!total_size) {
433 		error = -EINVAL;
434 		goto out_close;
435 	}
436 
437 	eppnt = elf_phdata;
438 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
439 		if (eppnt->p_type == PT_LOAD) {
440 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
441 			int elf_prot = 0;
442 			unsigned long vaddr = 0;
443 			unsigned long k, map_addr;
444 
445 			if (eppnt->p_flags & PF_R)
446 		    		elf_prot = PROT_READ;
447 			if (eppnt->p_flags & PF_W)
448 				elf_prot |= PROT_WRITE;
449 			if (eppnt->p_flags & PF_X)
450 				elf_prot |= PROT_EXEC;
451 			vaddr = eppnt->p_vaddr;
452 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
453 				elf_type |= MAP_FIXED;
454 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
455 				load_addr = -vaddr;
456 
457 			map_addr = elf_map(interpreter, load_addr + vaddr,
458 					eppnt, elf_prot, elf_type, total_size);
459 			total_size = 0;
460 			if (!*interp_map_addr)
461 				*interp_map_addr = map_addr;
462 			error = map_addr;
463 			if (BAD_ADDR(map_addr))
464 				goto out_close;
465 
466 			if (!load_addr_set &&
467 			    interp_elf_ex->e_type == ET_DYN) {
468 				load_addr = map_addr - ELF_PAGESTART(vaddr);
469 				load_addr_set = 1;
470 			}
471 
472 			/*
473 			 * Check to see if the section's size will overflow the
474 			 * allowed task size. Note that p_filesz must always be
475 			 * <= p_memsize so it's only necessary to check p_memsz.
476 			 */
477 			k = load_addr + eppnt->p_vaddr;
478 			if (BAD_ADDR(k) ||
479 			    eppnt->p_filesz > eppnt->p_memsz ||
480 			    eppnt->p_memsz > TASK_SIZE ||
481 			    TASK_SIZE - eppnt->p_memsz < k) {
482 				error = -ENOMEM;
483 				goto out_close;
484 			}
485 
486 			/*
487 			 * Find the end of the file mapping for this phdr, and
488 			 * keep track of the largest address we see for this.
489 			 */
490 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
491 			if (k > elf_bss)
492 				elf_bss = k;
493 
494 			/*
495 			 * Do the same thing for the memory mapping - between
496 			 * elf_bss and last_bss is the bss section.
497 			 */
498 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
499 			if (k > last_bss)
500 				last_bss = k;
501 		}
502 	}
503 
504 	if (last_bss > elf_bss) {
505 		/*
506 		 * Now fill out the bss section.  First pad the last page up
507 		 * to the page boundary, and then perform a mmap to make sure
508 		 * that there are zero-mapped pages up to and including the
509 		 * last bss page.
510 		 */
511 		if (padzero(elf_bss)) {
512 			error = -EFAULT;
513 			goto out_close;
514 		}
515 
516 		/* What we have mapped so far */
517 		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
518 
519 		/* Map the last of the bss segment */
520 		down_write(&current->mm->mmap_sem);
521 		error = do_brk(elf_bss, last_bss - elf_bss);
522 		up_write(&current->mm->mmap_sem);
523 		if (BAD_ADDR(error))
524 			goto out_close;
525 	}
526 
527 	error = load_addr;
528 
529 out_close:
530 	kfree(elf_phdata);
531 out:
532 	return error;
533 }
534 
535 /*
536  * These are the functions used to load ELF style executables and shared
537  * libraries.  There is no binary dependent code anywhere else.
538  */
539 
540 #define INTERPRETER_NONE 0
541 #define INTERPRETER_ELF 2
542 
543 #ifndef STACK_RND_MASK
544 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
545 #endif
546 
547 static unsigned long randomize_stack_top(unsigned long stack_top)
548 {
549 	unsigned int random_variable = 0;
550 
551 	if ((current->flags & PF_RANDOMIZE) &&
552 		!(current->personality & ADDR_NO_RANDOMIZE)) {
553 		random_variable = get_random_int() & STACK_RND_MASK;
554 		random_variable <<= PAGE_SHIFT;
555 	}
556 #ifdef CONFIG_STACK_GROWSUP
557 	return PAGE_ALIGN(stack_top) + random_variable;
558 #else
559 	return PAGE_ALIGN(stack_top) - random_variable;
560 #endif
561 }
562 
563 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
564 {
565 	struct file *interpreter = NULL; /* to shut gcc up */
566  	unsigned long load_addr = 0, load_bias = 0;
567 	int load_addr_set = 0;
568 	char * elf_interpreter = NULL;
569 	unsigned long error;
570 	struct elf_phdr *elf_ppnt, *elf_phdata;
571 	unsigned long elf_bss, elf_brk;
572 	int retval, i;
573 	unsigned int size;
574 	unsigned long elf_entry;
575 	unsigned long interp_load_addr = 0;
576 	unsigned long start_code, end_code, start_data, end_data;
577 	unsigned long reloc_func_desc = 0;
578 	int executable_stack = EXSTACK_DEFAULT;
579 	unsigned long def_flags = 0;
580 	struct {
581 		struct elfhdr elf_ex;
582 		struct elfhdr interp_elf_ex;
583 	} *loc;
584 
585 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
586 	if (!loc) {
587 		retval = -ENOMEM;
588 		goto out_ret;
589 	}
590 
591 	/* Get the exec-header */
592 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
593 
594 	retval = -ENOEXEC;
595 	/* First of all, some simple consistency checks */
596 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
597 		goto out;
598 
599 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
600 		goto out;
601 	if (!elf_check_arch(&loc->elf_ex))
602 		goto out;
603 	if (!bprm->file->f_op||!bprm->file->f_op->mmap)
604 		goto out;
605 
606 	/* Now read in all of the header information */
607 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
608 		goto out;
609 	if (loc->elf_ex.e_phnum < 1 ||
610 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
611 		goto out;
612 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
613 	retval = -ENOMEM;
614 	elf_phdata = kmalloc(size, GFP_KERNEL);
615 	if (!elf_phdata)
616 		goto out;
617 
618 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
619 			     (char *)elf_phdata, size);
620 	if (retval != size) {
621 		if (retval >= 0)
622 			retval = -EIO;
623 		goto out_free_ph;
624 	}
625 
626 	elf_ppnt = elf_phdata;
627 	elf_bss = 0;
628 	elf_brk = 0;
629 
630 	start_code = ~0UL;
631 	end_code = 0;
632 	start_data = 0;
633 	end_data = 0;
634 
635 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
636 		if (elf_ppnt->p_type == PT_INTERP) {
637 			/* This is the program interpreter used for
638 			 * shared libraries - for now assume that this
639 			 * is an a.out format binary
640 			 */
641 			retval = -ENOEXEC;
642 			if (elf_ppnt->p_filesz > PATH_MAX ||
643 			    elf_ppnt->p_filesz < 2)
644 				goto out_free_ph;
645 
646 			retval = -ENOMEM;
647 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
648 						  GFP_KERNEL);
649 			if (!elf_interpreter)
650 				goto out_free_ph;
651 
652 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
653 					     elf_interpreter,
654 					     elf_ppnt->p_filesz);
655 			if (retval != elf_ppnt->p_filesz) {
656 				if (retval >= 0)
657 					retval = -EIO;
658 				goto out_free_interp;
659 			}
660 			/* make sure path is NULL terminated */
661 			retval = -ENOEXEC;
662 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
663 				goto out_free_interp;
664 
665 			interpreter = open_exec(elf_interpreter);
666 			retval = PTR_ERR(interpreter);
667 			if (IS_ERR(interpreter))
668 				goto out_free_interp;
669 
670 			/*
671 			 * If the binary is not readable then enforce
672 			 * mm->dumpable = 0 regardless of the interpreter's
673 			 * permissions.
674 			 */
675 			if (file_permission(interpreter, MAY_READ) < 0)
676 				bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
677 
678 			retval = kernel_read(interpreter, 0, bprm->buf,
679 					     BINPRM_BUF_SIZE);
680 			if (retval != BINPRM_BUF_SIZE) {
681 				if (retval >= 0)
682 					retval = -EIO;
683 				goto out_free_dentry;
684 			}
685 
686 			/* Get the exec headers */
687 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
688 			break;
689 		}
690 		elf_ppnt++;
691 	}
692 
693 	elf_ppnt = elf_phdata;
694 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
695 		if (elf_ppnt->p_type == PT_GNU_STACK) {
696 			if (elf_ppnt->p_flags & PF_X)
697 				executable_stack = EXSTACK_ENABLE_X;
698 			else
699 				executable_stack = EXSTACK_DISABLE_X;
700 			break;
701 		}
702 
703 	/* Some simple consistency checks for the interpreter */
704 	if (elf_interpreter) {
705 		retval = -ELIBBAD;
706 		/* Not an ELF interpreter */
707 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
708 			goto out_free_dentry;
709 		/* Verify the interpreter has a valid arch */
710 		if (!elf_check_arch(&loc->interp_elf_ex))
711 			goto out_free_dentry;
712 	}
713 
714 	/* Flush all traces of the currently running executable */
715 	retval = flush_old_exec(bprm);
716 	if (retval)
717 		goto out_free_dentry;
718 
719 	/* OK, This is the point of no return */
720 	current->flags &= ~PF_FORKNOEXEC;
721 	current->mm->def_flags = def_flags;
722 
723 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
724 	   may depend on the personality.  */
725 	SET_PERSONALITY(loc->elf_ex);
726 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
727 		current->personality |= READ_IMPLIES_EXEC;
728 
729 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
730 		current->flags |= PF_RANDOMIZE;
731 
732 	setup_new_exec(bprm);
733 
734 	/* Do this so that we can load the interpreter, if need be.  We will
735 	   change some of these later */
736 	current->mm->free_area_cache = current->mm->mmap_base;
737 	current->mm->cached_hole_size = 0;
738 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
739 				 executable_stack);
740 	if (retval < 0) {
741 		send_sig(SIGKILL, current, 0);
742 		goto out_free_dentry;
743 	}
744 
745 	current->mm->start_stack = bprm->p;
746 
747 	/* Now we do a little grungy work by mmapping the ELF image into
748 	   the correct location in memory. */
749 	for(i = 0, elf_ppnt = elf_phdata;
750 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
751 		int elf_prot = 0, elf_flags;
752 		unsigned long k, vaddr;
753 
754 		if (elf_ppnt->p_type != PT_LOAD)
755 			continue;
756 
757 		if (unlikely (elf_brk > elf_bss)) {
758 			unsigned long nbyte;
759 
760 			/* There was a PT_LOAD segment with p_memsz > p_filesz
761 			   before this one. Map anonymous pages, if needed,
762 			   and clear the area.  */
763 			retval = set_brk (elf_bss + load_bias,
764 					  elf_brk + load_bias);
765 			if (retval) {
766 				send_sig(SIGKILL, current, 0);
767 				goto out_free_dentry;
768 			}
769 			nbyte = ELF_PAGEOFFSET(elf_bss);
770 			if (nbyte) {
771 				nbyte = ELF_MIN_ALIGN - nbyte;
772 				if (nbyte > elf_brk - elf_bss)
773 					nbyte = elf_brk - elf_bss;
774 				if (clear_user((void __user *)elf_bss +
775 							load_bias, nbyte)) {
776 					/*
777 					 * This bss-zeroing can fail if the ELF
778 					 * file specifies odd protections. So
779 					 * we don't check the return value
780 					 */
781 				}
782 			}
783 		}
784 
785 		if (elf_ppnt->p_flags & PF_R)
786 			elf_prot |= PROT_READ;
787 		if (elf_ppnt->p_flags & PF_W)
788 			elf_prot |= PROT_WRITE;
789 		if (elf_ppnt->p_flags & PF_X)
790 			elf_prot |= PROT_EXEC;
791 
792 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
793 
794 		vaddr = elf_ppnt->p_vaddr;
795 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
796 			elf_flags |= MAP_FIXED;
797 		} else if (loc->elf_ex.e_type == ET_DYN) {
798 			/* Try and get dynamic programs out of the way of the
799 			 * default mmap base, as well as whatever program they
800 			 * might try to exec.  This is because the brk will
801 			 * follow the loader, and is not movable.  */
802 #ifdef CONFIG_X86
803 			load_bias = 0;
804 #else
805 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
806 #endif
807 		}
808 
809 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
810 				elf_prot, elf_flags, 0);
811 		if (BAD_ADDR(error)) {
812 			send_sig(SIGKILL, current, 0);
813 			retval = IS_ERR((void *)error) ?
814 				PTR_ERR((void*)error) : -EINVAL;
815 			goto out_free_dentry;
816 		}
817 
818 		if (!load_addr_set) {
819 			load_addr_set = 1;
820 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
821 			if (loc->elf_ex.e_type == ET_DYN) {
822 				load_bias += error -
823 				             ELF_PAGESTART(load_bias + vaddr);
824 				load_addr += load_bias;
825 				reloc_func_desc = load_bias;
826 			}
827 		}
828 		k = elf_ppnt->p_vaddr;
829 		if (k < start_code)
830 			start_code = k;
831 		if (start_data < k)
832 			start_data = k;
833 
834 		/*
835 		 * Check to see if the section's size will overflow the
836 		 * allowed task size. Note that p_filesz must always be
837 		 * <= p_memsz so it is only necessary to check p_memsz.
838 		 */
839 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
840 		    elf_ppnt->p_memsz > TASK_SIZE ||
841 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
842 			/* set_brk can never work. Avoid overflows. */
843 			send_sig(SIGKILL, current, 0);
844 			retval = -EINVAL;
845 			goto out_free_dentry;
846 		}
847 
848 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
849 
850 		if (k > elf_bss)
851 			elf_bss = k;
852 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
853 			end_code = k;
854 		if (end_data < k)
855 			end_data = k;
856 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
857 		if (k > elf_brk)
858 			elf_brk = k;
859 	}
860 
861 	loc->elf_ex.e_entry += load_bias;
862 	elf_bss += load_bias;
863 	elf_brk += load_bias;
864 	start_code += load_bias;
865 	end_code += load_bias;
866 	start_data += load_bias;
867 	end_data += load_bias;
868 
869 	/* Calling set_brk effectively mmaps the pages that we need
870 	 * for the bss and break sections.  We must do this before
871 	 * mapping in the interpreter, to make sure it doesn't wind
872 	 * up getting placed where the bss needs to go.
873 	 */
874 	retval = set_brk(elf_bss, elf_brk);
875 	if (retval) {
876 		send_sig(SIGKILL, current, 0);
877 		goto out_free_dentry;
878 	}
879 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
880 		send_sig(SIGSEGV, current, 0);
881 		retval = -EFAULT; /* Nobody gets to see this, but.. */
882 		goto out_free_dentry;
883 	}
884 
885 	if (elf_interpreter) {
886 		unsigned long uninitialized_var(interp_map_addr);
887 
888 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
889 					    interpreter,
890 					    &interp_map_addr,
891 					    load_bias);
892 		if (!IS_ERR((void *)elf_entry)) {
893 			/*
894 			 * load_elf_interp() returns relocation
895 			 * adjustment
896 			 */
897 			interp_load_addr = elf_entry;
898 			elf_entry += loc->interp_elf_ex.e_entry;
899 		}
900 		if (BAD_ADDR(elf_entry)) {
901 			force_sig(SIGSEGV, current);
902 			retval = IS_ERR((void *)elf_entry) ?
903 					(int)elf_entry : -EINVAL;
904 			goto out_free_dentry;
905 		}
906 		reloc_func_desc = interp_load_addr;
907 
908 		allow_write_access(interpreter);
909 		fput(interpreter);
910 		kfree(elf_interpreter);
911 	} else {
912 		elf_entry = loc->elf_ex.e_entry;
913 		if (BAD_ADDR(elf_entry)) {
914 			force_sig(SIGSEGV, current);
915 			retval = -EINVAL;
916 			goto out_free_dentry;
917 		}
918 	}
919 
920 	kfree(elf_phdata);
921 
922 	set_binfmt(&elf_format);
923 
924 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
925 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
926 	if (retval < 0) {
927 		send_sig(SIGKILL, current, 0);
928 		goto out;
929 	}
930 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
931 
932 	install_exec_creds(bprm);
933 	current->flags &= ~PF_FORKNOEXEC;
934 	retval = create_elf_tables(bprm, &loc->elf_ex,
935 			  load_addr, interp_load_addr);
936 	if (retval < 0) {
937 		send_sig(SIGKILL, current, 0);
938 		goto out;
939 	}
940 	/* N.B. passed_fileno might not be initialized? */
941 	current->mm->end_code = end_code;
942 	current->mm->start_code = start_code;
943 	current->mm->start_data = start_data;
944 	current->mm->end_data = end_data;
945 	current->mm->start_stack = bprm->p;
946 
947 #ifdef arch_randomize_brk
948 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1))
949 		current->mm->brk = current->mm->start_brk =
950 			arch_randomize_brk(current->mm);
951 #endif
952 
953 	if (current->personality & MMAP_PAGE_ZERO) {
954 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
955 		   and some applications "depend" upon this behavior.
956 		   Since we do not have the power to recompile these, we
957 		   emulate the SVr4 behavior. Sigh. */
958 		down_write(&current->mm->mmap_sem);
959 		error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
960 				MAP_FIXED | MAP_PRIVATE, 0);
961 		up_write(&current->mm->mmap_sem);
962 	}
963 
964 #ifdef ELF_PLAT_INIT
965 	/*
966 	 * The ABI may specify that certain registers be set up in special
967 	 * ways (on i386 %edx is the address of a DT_FINI function, for
968 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
969 	 * that the e_entry field is the address of the function descriptor
970 	 * for the startup routine, rather than the address of the startup
971 	 * routine itself.  This macro performs whatever initialization to
972 	 * the regs structure is required as well as any relocations to the
973 	 * function descriptor entries when executing dynamically links apps.
974 	 */
975 	ELF_PLAT_INIT(regs, reloc_func_desc);
976 #endif
977 
978 	start_thread(regs, elf_entry, bprm->p);
979 	retval = 0;
980 out:
981 	kfree(loc);
982 out_ret:
983 	return retval;
984 
985 	/* error cleanup */
986 out_free_dentry:
987 	allow_write_access(interpreter);
988 	if (interpreter)
989 		fput(interpreter);
990 out_free_interp:
991 	kfree(elf_interpreter);
992 out_free_ph:
993 	kfree(elf_phdata);
994 	goto out;
995 }
996 
997 /* This is really simpleminded and specialized - we are loading an
998    a.out library that is given an ELF header. */
999 static int load_elf_library(struct file *file)
1000 {
1001 	struct elf_phdr *elf_phdata;
1002 	struct elf_phdr *eppnt;
1003 	unsigned long elf_bss, bss, len;
1004 	int retval, error, i, j;
1005 	struct elfhdr elf_ex;
1006 
1007 	error = -ENOEXEC;
1008 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1009 	if (retval != sizeof(elf_ex))
1010 		goto out;
1011 
1012 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1013 		goto out;
1014 
1015 	/* First of all, some simple consistency checks */
1016 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1017 	    !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1018 		goto out;
1019 
1020 	/* Now read in all of the header information */
1021 
1022 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1023 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1024 
1025 	error = -ENOMEM;
1026 	elf_phdata = kmalloc(j, GFP_KERNEL);
1027 	if (!elf_phdata)
1028 		goto out;
1029 
1030 	eppnt = elf_phdata;
1031 	error = -ENOEXEC;
1032 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1033 	if (retval != j)
1034 		goto out_free_ph;
1035 
1036 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1037 		if ((eppnt + i)->p_type == PT_LOAD)
1038 			j++;
1039 	if (j != 1)
1040 		goto out_free_ph;
1041 
1042 	while (eppnt->p_type != PT_LOAD)
1043 		eppnt++;
1044 
1045 	/* Now use mmap to map the library into memory. */
1046 	down_write(&current->mm->mmap_sem);
1047 	error = do_mmap(file,
1048 			ELF_PAGESTART(eppnt->p_vaddr),
1049 			(eppnt->p_filesz +
1050 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1051 			PROT_READ | PROT_WRITE | PROT_EXEC,
1052 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1053 			(eppnt->p_offset -
1054 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1055 	up_write(&current->mm->mmap_sem);
1056 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1057 		goto out_free_ph;
1058 
1059 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1060 	if (padzero(elf_bss)) {
1061 		error = -EFAULT;
1062 		goto out_free_ph;
1063 	}
1064 
1065 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1066 			    ELF_MIN_ALIGN - 1);
1067 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1068 	if (bss > len) {
1069 		down_write(&current->mm->mmap_sem);
1070 		do_brk(len, bss - len);
1071 		up_write(&current->mm->mmap_sem);
1072 	}
1073 	error = 0;
1074 
1075 out_free_ph:
1076 	kfree(elf_phdata);
1077 out:
1078 	return error;
1079 }
1080 
1081 #ifdef CONFIG_ELF_CORE
1082 /*
1083  * ELF core dumper
1084  *
1085  * Modelled on fs/exec.c:aout_core_dump()
1086  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1087  */
1088 /*
1089  * These are the only things you should do on a core-file: use only these
1090  * functions to write out all the necessary info.
1091  */
1092 static int dump_write(struct file *file, const void *addr, int nr)
1093 {
1094 	return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
1095 }
1096 
1097 static int dump_seek(struct file *file, loff_t off)
1098 {
1099 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
1100 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
1101 			return 0;
1102 	} else {
1103 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
1104 		if (!buf)
1105 			return 0;
1106 		while (off > 0) {
1107 			unsigned long n = off;
1108 			if (n > PAGE_SIZE)
1109 				n = PAGE_SIZE;
1110 			if (!dump_write(file, buf, n))
1111 				return 0;
1112 			off -= n;
1113 		}
1114 		free_page((unsigned long)buf);
1115 	}
1116 	return 1;
1117 }
1118 
1119 /*
1120  * Decide what to dump of a segment, part, all or none.
1121  */
1122 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1123 				   unsigned long mm_flags)
1124 {
1125 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1126 
1127 	/* The vma can be set up to tell us the answer directly.  */
1128 	if (vma->vm_flags & VM_ALWAYSDUMP)
1129 		goto whole;
1130 
1131 	/* Hugetlb memory check */
1132 	if (vma->vm_flags & VM_HUGETLB) {
1133 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1134 			goto whole;
1135 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1136 			goto whole;
1137 	}
1138 
1139 	/* Do not dump I/O mapped devices or special mappings */
1140 	if (vma->vm_flags & (VM_IO | VM_RESERVED))
1141 		return 0;
1142 
1143 	/* By default, dump shared memory if mapped from an anonymous file. */
1144 	if (vma->vm_flags & VM_SHARED) {
1145 		if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1146 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1147 			goto whole;
1148 		return 0;
1149 	}
1150 
1151 	/* Dump segments that have been written to.  */
1152 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1153 		goto whole;
1154 	if (vma->vm_file == NULL)
1155 		return 0;
1156 
1157 	if (FILTER(MAPPED_PRIVATE))
1158 		goto whole;
1159 
1160 	/*
1161 	 * If this looks like the beginning of a DSO or executable mapping,
1162 	 * check for an ELF header.  If we find one, dump the first page to
1163 	 * aid in determining what was mapped here.
1164 	 */
1165 	if (FILTER(ELF_HEADERS) &&
1166 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1167 		u32 __user *header = (u32 __user *) vma->vm_start;
1168 		u32 word;
1169 		mm_segment_t fs = get_fs();
1170 		/*
1171 		 * Doing it this way gets the constant folded by GCC.
1172 		 */
1173 		union {
1174 			u32 cmp;
1175 			char elfmag[SELFMAG];
1176 		} magic;
1177 		BUILD_BUG_ON(SELFMAG != sizeof word);
1178 		magic.elfmag[EI_MAG0] = ELFMAG0;
1179 		magic.elfmag[EI_MAG1] = ELFMAG1;
1180 		magic.elfmag[EI_MAG2] = ELFMAG2;
1181 		magic.elfmag[EI_MAG3] = ELFMAG3;
1182 		/*
1183 		 * Switch to the user "segment" for get_user(),
1184 		 * then put back what elf_core_dump() had in place.
1185 		 */
1186 		set_fs(USER_DS);
1187 		if (unlikely(get_user(word, header)))
1188 			word = 0;
1189 		set_fs(fs);
1190 		if (word == magic.cmp)
1191 			return PAGE_SIZE;
1192 	}
1193 
1194 #undef	FILTER
1195 
1196 	return 0;
1197 
1198 whole:
1199 	return vma->vm_end - vma->vm_start;
1200 }
1201 
1202 /* An ELF note in memory */
1203 struct memelfnote
1204 {
1205 	const char *name;
1206 	int type;
1207 	unsigned int datasz;
1208 	void *data;
1209 };
1210 
1211 static int notesize(struct memelfnote *en)
1212 {
1213 	int sz;
1214 
1215 	sz = sizeof(struct elf_note);
1216 	sz += roundup(strlen(en->name) + 1, 4);
1217 	sz += roundup(en->datasz, 4);
1218 
1219 	return sz;
1220 }
1221 
1222 #define DUMP_WRITE(addr, nr, foffset)	\
1223 	do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1224 
1225 static int alignfile(struct file *file, loff_t *foffset)
1226 {
1227 	static const char buf[4] = { 0, };
1228 	DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1229 	return 1;
1230 }
1231 
1232 static int writenote(struct memelfnote *men, struct file *file,
1233 			loff_t *foffset)
1234 {
1235 	struct elf_note en;
1236 	en.n_namesz = strlen(men->name) + 1;
1237 	en.n_descsz = men->datasz;
1238 	en.n_type = men->type;
1239 
1240 	DUMP_WRITE(&en, sizeof(en), foffset);
1241 	DUMP_WRITE(men->name, en.n_namesz, foffset);
1242 	if (!alignfile(file, foffset))
1243 		return 0;
1244 	DUMP_WRITE(men->data, men->datasz, foffset);
1245 	if (!alignfile(file, foffset))
1246 		return 0;
1247 
1248 	return 1;
1249 }
1250 #undef DUMP_WRITE
1251 
1252 #define DUMP_WRITE(addr, nr)				\
1253 	if ((size += (nr)) > cprm->limit ||		\
1254 	    !dump_write(cprm->file, (addr), (nr)))	\
1255 		goto end_coredump;
1256 
1257 static void fill_elf_header(struct elfhdr *elf, int segs,
1258 			    u16 machine, u32 flags, u8 osabi)
1259 {
1260 	memset(elf, 0, sizeof(*elf));
1261 
1262 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1263 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1264 	elf->e_ident[EI_DATA] = ELF_DATA;
1265 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1266 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1267 
1268 	elf->e_type = ET_CORE;
1269 	elf->e_machine = machine;
1270 	elf->e_version = EV_CURRENT;
1271 	elf->e_phoff = sizeof(struct elfhdr);
1272 	elf->e_flags = flags;
1273 	elf->e_ehsize = sizeof(struct elfhdr);
1274 	elf->e_phentsize = sizeof(struct elf_phdr);
1275 	elf->e_phnum = segs;
1276 
1277 	return;
1278 }
1279 
1280 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1281 {
1282 	phdr->p_type = PT_NOTE;
1283 	phdr->p_offset = offset;
1284 	phdr->p_vaddr = 0;
1285 	phdr->p_paddr = 0;
1286 	phdr->p_filesz = sz;
1287 	phdr->p_memsz = 0;
1288 	phdr->p_flags = 0;
1289 	phdr->p_align = 0;
1290 	return;
1291 }
1292 
1293 static void fill_note(struct memelfnote *note, const char *name, int type,
1294 		unsigned int sz, void *data)
1295 {
1296 	note->name = name;
1297 	note->type = type;
1298 	note->datasz = sz;
1299 	note->data = data;
1300 	return;
1301 }
1302 
1303 /*
1304  * fill up all the fields in prstatus from the given task struct, except
1305  * registers which need to be filled up separately.
1306  */
1307 static void fill_prstatus(struct elf_prstatus *prstatus,
1308 		struct task_struct *p, long signr)
1309 {
1310 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1311 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1312 	prstatus->pr_sighold = p->blocked.sig[0];
1313 	rcu_read_lock();
1314 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1315 	rcu_read_unlock();
1316 	prstatus->pr_pid = task_pid_vnr(p);
1317 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1318 	prstatus->pr_sid = task_session_vnr(p);
1319 	if (thread_group_leader(p)) {
1320 		struct task_cputime cputime;
1321 
1322 		/*
1323 		 * This is the record for the group leader.  It shows the
1324 		 * group-wide total, not its individual thread total.
1325 		 */
1326 		thread_group_cputime(p, &cputime);
1327 		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1328 		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1329 	} else {
1330 		cputime_to_timeval(p->utime, &prstatus->pr_utime);
1331 		cputime_to_timeval(p->stime, &prstatus->pr_stime);
1332 	}
1333 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1334 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1335 }
1336 
1337 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1338 		       struct mm_struct *mm)
1339 {
1340 	const struct cred *cred;
1341 	unsigned int i, len;
1342 
1343 	/* first copy the parameters from user space */
1344 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1345 
1346 	len = mm->arg_end - mm->arg_start;
1347 	if (len >= ELF_PRARGSZ)
1348 		len = ELF_PRARGSZ-1;
1349 	if (copy_from_user(&psinfo->pr_psargs,
1350 		           (const char __user *)mm->arg_start, len))
1351 		return -EFAULT;
1352 	for(i = 0; i < len; i++)
1353 		if (psinfo->pr_psargs[i] == 0)
1354 			psinfo->pr_psargs[i] = ' ';
1355 	psinfo->pr_psargs[len] = 0;
1356 
1357 	rcu_read_lock();
1358 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1359 	rcu_read_unlock();
1360 	psinfo->pr_pid = task_pid_vnr(p);
1361 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1362 	psinfo->pr_sid = task_session_vnr(p);
1363 
1364 	i = p->state ? ffz(~p->state) + 1 : 0;
1365 	psinfo->pr_state = i;
1366 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1367 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1368 	psinfo->pr_nice = task_nice(p);
1369 	psinfo->pr_flag = p->flags;
1370 	rcu_read_lock();
1371 	cred = __task_cred(p);
1372 	SET_UID(psinfo->pr_uid, cred->uid);
1373 	SET_GID(psinfo->pr_gid, cred->gid);
1374 	rcu_read_unlock();
1375 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1376 
1377 	return 0;
1378 }
1379 
1380 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1381 {
1382 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1383 	int i = 0;
1384 	do
1385 		i += 2;
1386 	while (auxv[i - 2] != AT_NULL);
1387 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1388 }
1389 
1390 #ifdef CORE_DUMP_USE_REGSET
1391 #include <linux/regset.h>
1392 
1393 struct elf_thread_core_info {
1394 	struct elf_thread_core_info *next;
1395 	struct task_struct *task;
1396 	struct elf_prstatus prstatus;
1397 	struct memelfnote notes[0];
1398 };
1399 
1400 struct elf_note_info {
1401 	struct elf_thread_core_info *thread;
1402 	struct memelfnote psinfo;
1403 	struct memelfnote auxv;
1404 	size_t size;
1405 	int thread_notes;
1406 };
1407 
1408 /*
1409  * When a regset has a writeback hook, we call it on each thread before
1410  * dumping user memory.  On register window machines, this makes sure the
1411  * user memory backing the register data is up to date before we read it.
1412  */
1413 static void do_thread_regset_writeback(struct task_struct *task,
1414 				       const struct user_regset *regset)
1415 {
1416 	if (regset->writeback)
1417 		regset->writeback(task, regset, 1);
1418 }
1419 
1420 static int fill_thread_core_info(struct elf_thread_core_info *t,
1421 				 const struct user_regset_view *view,
1422 				 long signr, size_t *total)
1423 {
1424 	unsigned int i;
1425 
1426 	/*
1427 	 * NT_PRSTATUS is the one special case, because the regset data
1428 	 * goes into the pr_reg field inside the note contents, rather
1429 	 * than being the whole note contents.  We fill the reset in here.
1430 	 * We assume that regset 0 is NT_PRSTATUS.
1431 	 */
1432 	fill_prstatus(&t->prstatus, t->task, signr);
1433 	(void) view->regsets[0].get(t->task, &view->regsets[0],
1434 				    0, sizeof(t->prstatus.pr_reg),
1435 				    &t->prstatus.pr_reg, NULL);
1436 
1437 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1438 		  sizeof(t->prstatus), &t->prstatus);
1439 	*total += notesize(&t->notes[0]);
1440 
1441 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1442 
1443 	/*
1444 	 * Each other regset might generate a note too.  For each regset
1445 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1446 	 * all zero and we'll know to skip writing it later.
1447 	 */
1448 	for (i = 1; i < view->n; ++i) {
1449 		const struct user_regset *regset = &view->regsets[i];
1450 		do_thread_regset_writeback(t->task, regset);
1451 		if (regset->core_note_type &&
1452 		    (!regset->active || regset->active(t->task, regset))) {
1453 			int ret;
1454 			size_t size = regset->n * regset->size;
1455 			void *data = kmalloc(size, GFP_KERNEL);
1456 			if (unlikely(!data))
1457 				return 0;
1458 			ret = regset->get(t->task, regset,
1459 					  0, size, data, NULL);
1460 			if (unlikely(ret))
1461 				kfree(data);
1462 			else {
1463 				if (regset->core_note_type != NT_PRFPREG)
1464 					fill_note(&t->notes[i], "LINUX",
1465 						  regset->core_note_type,
1466 						  size, data);
1467 				else {
1468 					t->prstatus.pr_fpvalid = 1;
1469 					fill_note(&t->notes[i], "CORE",
1470 						  NT_PRFPREG, size, data);
1471 				}
1472 				*total += notesize(&t->notes[i]);
1473 			}
1474 		}
1475 	}
1476 
1477 	return 1;
1478 }
1479 
1480 static int fill_note_info(struct elfhdr *elf, int phdrs,
1481 			  struct elf_note_info *info,
1482 			  long signr, struct pt_regs *regs)
1483 {
1484 	struct task_struct *dump_task = current;
1485 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1486 	struct elf_thread_core_info *t;
1487 	struct elf_prpsinfo *psinfo;
1488 	struct core_thread *ct;
1489 	unsigned int i;
1490 
1491 	info->size = 0;
1492 	info->thread = NULL;
1493 
1494 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1495 	if (psinfo == NULL)
1496 		return 0;
1497 
1498 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1499 
1500 	/*
1501 	 * Figure out how many notes we're going to need for each thread.
1502 	 */
1503 	info->thread_notes = 0;
1504 	for (i = 0; i < view->n; ++i)
1505 		if (view->regsets[i].core_note_type != 0)
1506 			++info->thread_notes;
1507 
1508 	/*
1509 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1510 	 * since it is our one special case.
1511 	 */
1512 	if (unlikely(info->thread_notes == 0) ||
1513 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1514 		WARN_ON(1);
1515 		return 0;
1516 	}
1517 
1518 	/*
1519 	 * Initialize the ELF file header.
1520 	 */
1521 	fill_elf_header(elf, phdrs,
1522 			view->e_machine, view->e_flags, view->ei_osabi);
1523 
1524 	/*
1525 	 * Allocate a structure for each thread.
1526 	 */
1527 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1528 		t = kzalloc(offsetof(struct elf_thread_core_info,
1529 				     notes[info->thread_notes]),
1530 			    GFP_KERNEL);
1531 		if (unlikely(!t))
1532 			return 0;
1533 
1534 		t->task = ct->task;
1535 		if (ct->task == dump_task || !info->thread) {
1536 			t->next = info->thread;
1537 			info->thread = t;
1538 		} else {
1539 			/*
1540 			 * Make sure to keep the original task at
1541 			 * the head of the list.
1542 			 */
1543 			t->next = info->thread->next;
1544 			info->thread->next = t;
1545 		}
1546 	}
1547 
1548 	/*
1549 	 * Now fill in each thread's information.
1550 	 */
1551 	for (t = info->thread; t != NULL; t = t->next)
1552 		if (!fill_thread_core_info(t, view, signr, &info->size))
1553 			return 0;
1554 
1555 	/*
1556 	 * Fill in the two process-wide notes.
1557 	 */
1558 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1559 	info->size += notesize(&info->psinfo);
1560 
1561 	fill_auxv_note(&info->auxv, current->mm);
1562 	info->size += notesize(&info->auxv);
1563 
1564 	return 1;
1565 }
1566 
1567 static size_t get_note_info_size(struct elf_note_info *info)
1568 {
1569 	return info->size;
1570 }
1571 
1572 /*
1573  * Write all the notes for each thread.  When writing the first thread, the
1574  * process-wide notes are interleaved after the first thread-specific note.
1575  */
1576 static int write_note_info(struct elf_note_info *info,
1577 			   struct file *file, loff_t *foffset)
1578 {
1579 	bool first = 1;
1580 	struct elf_thread_core_info *t = info->thread;
1581 
1582 	do {
1583 		int i;
1584 
1585 		if (!writenote(&t->notes[0], file, foffset))
1586 			return 0;
1587 
1588 		if (first && !writenote(&info->psinfo, file, foffset))
1589 			return 0;
1590 		if (first && !writenote(&info->auxv, file, foffset))
1591 			return 0;
1592 
1593 		for (i = 1; i < info->thread_notes; ++i)
1594 			if (t->notes[i].data &&
1595 			    !writenote(&t->notes[i], file, foffset))
1596 				return 0;
1597 
1598 		first = 0;
1599 		t = t->next;
1600 	} while (t);
1601 
1602 	return 1;
1603 }
1604 
1605 static void free_note_info(struct elf_note_info *info)
1606 {
1607 	struct elf_thread_core_info *threads = info->thread;
1608 	while (threads) {
1609 		unsigned int i;
1610 		struct elf_thread_core_info *t = threads;
1611 		threads = t->next;
1612 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1613 		for (i = 1; i < info->thread_notes; ++i)
1614 			kfree(t->notes[i].data);
1615 		kfree(t);
1616 	}
1617 	kfree(info->psinfo.data);
1618 }
1619 
1620 #else
1621 
1622 /* Here is the structure in which status of each thread is captured. */
1623 struct elf_thread_status
1624 {
1625 	struct list_head list;
1626 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1627 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1628 	struct task_struct *thread;
1629 #ifdef ELF_CORE_COPY_XFPREGS
1630 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1631 #endif
1632 	struct memelfnote notes[3];
1633 	int num_notes;
1634 };
1635 
1636 /*
1637  * In order to add the specific thread information for the elf file format,
1638  * we need to keep a linked list of every threads pr_status and then create
1639  * a single section for them in the final core file.
1640  */
1641 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1642 {
1643 	int sz = 0;
1644 	struct task_struct *p = t->thread;
1645 	t->num_notes = 0;
1646 
1647 	fill_prstatus(&t->prstatus, p, signr);
1648 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1649 
1650 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1651 		  &(t->prstatus));
1652 	t->num_notes++;
1653 	sz += notesize(&t->notes[0]);
1654 
1655 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1656 								&t->fpu))) {
1657 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1658 			  &(t->fpu));
1659 		t->num_notes++;
1660 		sz += notesize(&t->notes[1]);
1661 	}
1662 
1663 #ifdef ELF_CORE_COPY_XFPREGS
1664 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1665 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1666 			  sizeof(t->xfpu), &t->xfpu);
1667 		t->num_notes++;
1668 		sz += notesize(&t->notes[2]);
1669 	}
1670 #endif
1671 	return sz;
1672 }
1673 
1674 struct elf_note_info {
1675 	struct memelfnote *notes;
1676 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1677 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1678 	struct list_head thread_list;
1679 	elf_fpregset_t *fpu;
1680 #ifdef ELF_CORE_COPY_XFPREGS
1681 	elf_fpxregset_t *xfpu;
1682 #endif
1683 	int thread_status_size;
1684 	int numnote;
1685 };
1686 
1687 static int elf_note_info_init(struct elf_note_info *info)
1688 {
1689 	memset(info, 0, sizeof(*info));
1690 	INIT_LIST_HEAD(&info->thread_list);
1691 
1692 	/* Allocate space for six ELF notes */
1693 	info->notes = kmalloc(6 * sizeof(struct memelfnote), GFP_KERNEL);
1694 	if (!info->notes)
1695 		return 0;
1696 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1697 	if (!info->psinfo)
1698 		goto notes_free;
1699 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1700 	if (!info->prstatus)
1701 		goto psinfo_free;
1702 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1703 	if (!info->fpu)
1704 		goto prstatus_free;
1705 #ifdef ELF_CORE_COPY_XFPREGS
1706 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1707 	if (!info->xfpu)
1708 		goto fpu_free;
1709 #endif
1710 	return 1;
1711 #ifdef ELF_CORE_COPY_XFPREGS
1712  fpu_free:
1713 	kfree(info->fpu);
1714 #endif
1715  prstatus_free:
1716 	kfree(info->prstatus);
1717  psinfo_free:
1718 	kfree(info->psinfo);
1719  notes_free:
1720 	kfree(info->notes);
1721 	return 0;
1722 }
1723 
1724 static int fill_note_info(struct elfhdr *elf, int phdrs,
1725 			  struct elf_note_info *info,
1726 			  long signr, struct pt_regs *regs)
1727 {
1728 	struct list_head *t;
1729 
1730 	if (!elf_note_info_init(info))
1731 		return 0;
1732 
1733 	if (signr) {
1734 		struct core_thread *ct;
1735 		struct elf_thread_status *ets;
1736 
1737 		for (ct = current->mm->core_state->dumper.next;
1738 						ct; ct = ct->next) {
1739 			ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1740 			if (!ets)
1741 				return 0;
1742 
1743 			ets->thread = ct->task;
1744 			list_add(&ets->list, &info->thread_list);
1745 		}
1746 
1747 		list_for_each(t, &info->thread_list) {
1748 			int sz;
1749 
1750 			ets = list_entry(t, struct elf_thread_status, list);
1751 			sz = elf_dump_thread_status(signr, ets);
1752 			info->thread_status_size += sz;
1753 		}
1754 	}
1755 	/* now collect the dump for the current */
1756 	memset(info->prstatus, 0, sizeof(*info->prstatus));
1757 	fill_prstatus(info->prstatus, current, signr);
1758 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1759 
1760 	/* Set up header */
1761 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1762 
1763 	/*
1764 	 * Set up the notes in similar form to SVR4 core dumps made
1765 	 * with info from their /proc.
1766 	 */
1767 
1768 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1769 		  sizeof(*info->prstatus), info->prstatus);
1770 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1771 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1772 		  sizeof(*info->psinfo), info->psinfo);
1773 
1774 	info->numnote = 2;
1775 
1776 	fill_auxv_note(&info->notes[info->numnote++], current->mm);
1777 
1778 	/* Try to dump the FPU. */
1779 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1780 							       info->fpu);
1781 	if (info->prstatus->pr_fpvalid)
1782 		fill_note(info->notes + info->numnote++,
1783 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1784 #ifdef ELF_CORE_COPY_XFPREGS
1785 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
1786 		fill_note(info->notes + info->numnote++,
1787 			  "LINUX", ELF_CORE_XFPREG_TYPE,
1788 			  sizeof(*info->xfpu), info->xfpu);
1789 #endif
1790 
1791 	return 1;
1792 }
1793 
1794 static size_t get_note_info_size(struct elf_note_info *info)
1795 {
1796 	int sz = 0;
1797 	int i;
1798 
1799 	for (i = 0; i < info->numnote; i++)
1800 		sz += notesize(info->notes + i);
1801 
1802 	sz += info->thread_status_size;
1803 
1804 	return sz;
1805 }
1806 
1807 static int write_note_info(struct elf_note_info *info,
1808 			   struct file *file, loff_t *foffset)
1809 {
1810 	int i;
1811 	struct list_head *t;
1812 
1813 	for (i = 0; i < info->numnote; i++)
1814 		if (!writenote(info->notes + i, file, foffset))
1815 			return 0;
1816 
1817 	/* write out the thread status notes section */
1818 	list_for_each(t, &info->thread_list) {
1819 		struct elf_thread_status *tmp =
1820 				list_entry(t, struct elf_thread_status, list);
1821 
1822 		for (i = 0; i < tmp->num_notes; i++)
1823 			if (!writenote(&tmp->notes[i], file, foffset))
1824 				return 0;
1825 	}
1826 
1827 	return 1;
1828 }
1829 
1830 static void free_note_info(struct elf_note_info *info)
1831 {
1832 	while (!list_empty(&info->thread_list)) {
1833 		struct list_head *tmp = info->thread_list.next;
1834 		list_del(tmp);
1835 		kfree(list_entry(tmp, struct elf_thread_status, list));
1836 	}
1837 
1838 	kfree(info->prstatus);
1839 	kfree(info->psinfo);
1840 	kfree(info->notes);
1841 	kfree(info->fpu);
1842 #ifdef ELF_CORE_COPY_XFPREGS
1843 	kfree(info->xfpu);
1844 #endif
1845 }
1846 
1847 #endif
1848 
1849 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1850 					struct vm_area_struct *gate_vma)
1851 {
1852 	struct vm_area_struct *ret = tsk->mm->mmap;
1853 
1854 	if (ret)
1855 		return ret;
1856 	return gate_vma;
1857 }
1858 /*
1859  * Helper function for iterating across a vma list.  It ensures that the caller
1860  * will visit `gate_vma' prior to terminating the search.
1861  */
1862 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1863 					struct vm_area_struct *gate_vma)
1864 {
1865 	struct vm_area_struct *ret;
1866 
1867 	ret = this_vma->vm_next;
1868 	if (ret)
1869 		return ret;
1870 	if (this_vma == gate_vma)
1871 		return NULL;
1872 	return gate_vma;
1873 }
1874 
1875 /*
1876  * Actual dumper
1877  *
1878  * This is a two-pass process; first we find the offsets of the bits,
1879  * and then they are actually written out.  If we run out of core limit
1880  * we just truncate.
1881  */
1882 static int elf_core_dump(struct coredump_params *cprm)
1883 {
1884 	int has_dumped = 0;
1885 	mm_segment_t fs;
1886 	int segs;
1887 	size_t size = 0;
1888 	struct vm_area_struct *vma, *gate_vma;
1889 	struct elfhdr *elf = NULL;
1890 	loff_t offset = 0, dataoff, foffset;
1891 	unsigned long mm_flags;
1892 	struct elf_note_info info;
1893 
1894 	/*
1895 	 * We no longer stop all VM operations.
1896 	 *
1897 	 * This is because those proceses that could possibly change map_count
1898 	 * or the mmap / vma pages are now blocked in do_exit on current
1899 	 * finishing this core dump.
1900 	 *
1901 	 * Only ptrace can touch these memory addresses, but it doesn't change
1902 	 * the map_count or the pages allocated. So no possibility of crashing
1903 	 * exists while dumping the mm->vm_next areas to the core file.
1904 	 */
1905 
1906 	/* alloc memory for large data structures: too large to be on stack */
1907 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1908 	if (!elf)
1909 		goto out;
1910 	/*
1911 	 * The number of segs are recored into ELF header as 16bit value.
1912 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1913 	 */
1914 	segs = current->mm->map_count;
1915 #ifdef ELF_CORE_EXTRA_PHDRS
1916 	segs += ELF_CORE_EXTRA_PHDRS;
1917 #endif
1918 
1919 	gate_vma = get_gate_vma(current);
1920 	if (gate_vma != NULL)
1921 		segs++;
1922 
1923 	/*
1924 	 * Collect all the non-memory information about the process for the
1925 	 * notes.  This also sets up the file header.
1926 	 */
1927 	if (!fill_note_info(elf, segs + 1, /* including notes section */
1928 			    &info, cprm->signr, cprm->regs))
1929 		goto cleanup;
1930 
1931 	has_dumped = 1;
1932 	current->flags |= PF_DUMPCORE;
1933 
1934 	fs = get_fs();
1935 	set_fs(KERNEL_DS);
1936 
1937 	DUMP_WRITE(elf, sizeof(*elf));
1938 	offset += sizeof(*elf);				/* Elf header */
1939 	offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
1940 	foffset = offset;
1941 
1942 	/* Write notes phdr entry */
1943 	{
1944 		struct elf_phdr phdr;
1945 		size_t sz = get_note_info_size(&info);
1946 
1947 		sz += elf_coredump_extra_notes_size();
1948 
1949 		fill_elf_note_phdr(&phdr, sz, offset);
1950 		offset += sz;
1951 		DUMP_WRITE(&phdr, sizeof(phdr));
1952 	}
1953 
1954 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1955 
1956 	/*
1957 	 * We must use the same mm->flags while dumping core to avoid
1958 	 * inconsistency between the program headers and bodies, otherwise an
1959 	 * unusable core file can be generated.
1960 	 */
1961 	mm_flags = current->mm->flags;
1962 
1963 	/* Write program headers for segments dump */
1964 	for (vma = first_vma(current, gate_vma); vma != NULL;
1965 			vma = next_vma(vma, gate_vma)) {
1966 		struct elf_phdr phdr;
1967 
1968 		phdr.p_type = PT_LOAD;
1969 		phdr.p_offset = offset;
1970 		phdr.p_vaddr = vma->vm_start;
1971 		phdr.p_paddr = 0;
1972 		phdr.p_filesz = vma_dump_size(vma, mm_flags);
1973 		phdr.p_memsz = vma->vm_end - vma->vm_start;
1974 		offset += phdr.p_filesz;
1975 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
1976 		if (vma->vm_flags & VM_WRITE)
1977 			phdr.p_flags |= PF_W;
1978 		if (vma->vm_flags & VM_EXEC)
1979 			phdr.p_flags |= PF_X;
1980 		phdr.p_align = ELF_EXEC_PAGESIZE;
1981 
1982 		DUMP_WRITE(&phdr, sizeof(phdr));
1983 	}
1984 
1985 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
1986 	ELF_CORE_WRITE_EXTRA_PHDRS;
1987 #endif
1988 
1989  	/* write out the notes section */
1990 	if (!write_note_info(&info, cprm->file, &foffset))
1991 		goto end_coredump;
1992 
1993 	if (elf_coredump_extra_notes_write(cprm->file, &foffset))
1994 		goto end_coredump;
1995 
1996 	/* Align to page */
1997 	if (!dump_seek(cprm->file, dataoff - foffset))
1998 		goto end_coredump;
1999 
2000 	for (vma = first_vma(current, gate_vma); vma != NULL;
2001 			vma = next_vma(vma, gate_vma)) {
2002 		unsigned long addr;
2003 		unsigned long end;
2004 
2005 		end = vma->vm_start + vma_dump_size(vma, mm_flags);
2006 
2007 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2008 			struct page *page;
2009 			int stop;
2010 
2011 			page = get_dump_page(addr);
2012 			if (page) {
2013 				void *kaddr = kmap(page);
2014 				stop = ((size += PAGE_SIZE) > cprm->limit) ||
2015 					!dump_write(cprm->file, kaddr,
2016 						    PAGE_SIZE);
2017 				kunmap(page);
2018 				page_cache_release(page);
2019 			} else
2020 				stop = !dump_seek(cprm->file, PAGE_SIZE);
2021 			if (stop)
2022 				goto end_coredump;
2023 		}
2024 	}
2025 
2026 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2027 	ELF_CORE_WRITE_EXTRA_DATA;
2028 #endif
2029 
2030 end_coredump:
2031 	set_fs(fs);
2032 
2033 cleanup:
2034 	free_note_info(&info);
2035 	kfree(elf);
2036 out:
2037 	return has_dumped;
2038 }
2039 
2040 #endif		/* CONFIG_ELF_CORE */
2041 
2042 static int __init init_elf_binfmt(void)
2043 {
2044 	return register_binfmt(&elf_format);
2045 }
2046 
2047 static void __exit exit_elf_binfmt(void)
2048 {
2049 	/* Remove the COFF and ELF loaders. */
2050 	unregister_binfmt(&elf_format);
2051 }
2052 
2053 core_initcall(init_elf_binfmt);
2054 module_exit(exit_elf_binfmt);
2055 MODULE_LICENSE("GPL");
2056