xref: /linux/fs/binfmt_elf.c (revision 4bb1eb3cd4bd6241d5e5f99bbfd801ea5a007b6c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/binfmt_elf.c
4  *
5  * These are the functions used to load ELF format executables as used
6  * on SVr4 machines.  Information on the format may be found in the book
7  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8  * Tools".
9  *
10  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/errno.h>
19 #include <linux/signal.h>
20 #include <linux/binfmts.h>
21 #include <linux/string.h>
22 #include <linux/file.h>
23 #include <linux/slab.h>
24 #include <linux/personality.h>
25 #include <linux/elfcore.h>
26 #include <linux/init.h>
27 #include <linux/highuid.h>
28 #include <linux/compiler.h>
29 #include <linux/highmem.h>
30 #include <linux/hugetlb.h>
31 #include <linux/pagemap.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/random.h>
35 #include <linux/elf.h>
36 #include <linux/elf-randomize.h>
37 #include <linux/utsname.h>
38 #include <linux/coredump.h>
39 #include <linux/sched.h>
40 #include <linux/sched/coredump.h>
41 #include <linux/sched/task_stack.h>
42 #include <linux/sched/cputime.h>
43 #include <linux/sizes.h>
44 #include <linux/types.h>
45 #include <linux/cred.h>
46 #include <linux/dax.h>
47 #include <linux/uaccess.h>
48 #include <asm/param.h>
49 #include <asm/page.h>
50 
51 #ifndef ELF_COMPAT
52 #define ELF_COMPAT 0
53 #endif
54 
55 #ifndef user_long_t
56 #define user_long_t long
57 #endif
58 #ifndef user_siginfo_t
59 #define user_siginfo_t siginfo_t
60 #endif
61 
62 /* That's for binfmt_elf_fdpic to deal with */
63 #ifndef elf_check_fdpic
64 #define elf_check_fdpic(ex) false
65 #endif
66 
67 static int load_elf_binary(struct linux_binprm *bprm);
68 
69 #ifdef CONFIG_USELIB
70 static int load_elf_library(struct file *);
71 #else
72 #define load_elf_library NULL
73 #endif
74 
75 /*
76  * If we don't support core dumping, then supply a NULL so we
77  * don't even try.
78  */
79 #ifdef CONFIG_ELF_CORE
80 static int elf_core_dump(struct coredump_params *cprm);
81 #else
82 #define elf_core_dump	NULL
83 #endif
84 
85 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
86 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
87 #else
88 #define ELF_MIN_ALIGN	PAGE_SIZE
89 #endif
90 
91 #ifndef ELF_CORE_EFLAGS
92 #define ELF_CORE_EFLAGS	0
93 #endif
94 
95 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
96 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
97 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
98 
99 static struct linux_binfmt elf_format = {
100 	.module		= THIS_MODULE,
101 	.load_binary	= load_elf_binary,
102 	.load_shlib	= load_elf_library,
103 	.core_dump	= elf_core_dump,
104 	.min_coredump	= ELF_EXEC_PAGESIZE,
105 };
106 
107 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
108 
109 static int set_brk(unsigned long start, unsigned long end, int prot)
110 {
111 	start = ELF_PAGEALIGN(start);
112 	end = ELF_PAGEALIGN(end);
113 	if (end > start) {
114 		/*
115 		 * Map the last of the bss segment.
116 		 * If the header is requesting these pages to be
117 		 * executable, honour that (ppc32 needs this).
118 		 */
119 		int error = vm_brk_flags(start, end - start,
120 				prot & PROT_EXEC ? VM_EXEC : 0);
121 		if (error)
122 			return error;
123 	}
124 	current->mm->start_brk = current->mm->brk = end;
125 	return 0;
126 }
127 
128 /* We need to explicitly zero any fractional pages
129    after the data section (i.e. bss).  This would
130    contain the junk from the file that should not
131    be in memory
132  */
133 static int padzero(unsigned long elf_bss)
134 {
135 	unsigned long nbyte;
136 
137 	nbyte = ELF_PAGEOFFSET(elf_bss);
138 	if (nbyte) {
139 		nbyte = ELF_MIN_ALIGN - nbyte;
140 		if (clear_user((void __user *) elf_bss, nbyte))
141 			return -EFAULT;
142 	}
143 	return 0;
144 }
145 
146 /* Let's use some macros to make this stack manipulation a little clearer */
147 #ifdef CONFIG_STACK_GROWSUP
148 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
149 #define STACK_ROUND(sp, items) \
150 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
151 #define STACK_ALLOC(sp, len) ({ \
152 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
153 	old_sp; })
154 #else
155 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
156 #define STACK_ROUND(sp, items) \
157 	(((unsigned long) (sp - items)) &~ 15UL)
158 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
159 #endif
160 
161 #ifndef ELF_BASE_PLATFORM
162 /*
163  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
164  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
165  * will be copied to the user stack in the same manner as AT_PLATFORM.
166  */
167 #define ELF_BASE_PLATFORM NULL
168 #endif
169 
170 static int
171 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
172 		unsigned long load_addr, unsigned long interp_load_addr,
173 		unsigned long e_entry)
174 {
175 	struct mm_struct *mm = current->mm;
176 	unsigned long p = bprm->p;
177 	int argc = bprm->argc;
178 	int envc = bprm->envc;
179 	elf_addr_t __user *sp;
180 	elf_addr_t __user *u_platform;
181 	elf_addr_t __user *u_base_platform;
182 	elf_addr_t __user *u_rand_bytes;
183 	const char *k_platform = ELF_PLATFORM;
184 	const char *k_base_platform = ELF_BASE_PLATFORM;
185 	unsigned char k_rand_bytes[16];
186 	int items;
187 	elf_addr_t *elf_info;
188 	int ei_index;
189 	const struct cred *cred = current_cred();
190 	struct vm_area_struct *vma;
191 
192 	/*
193 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
194 	 * evictions by the processes running on the same package. One
195 	 * thing we can do is to shuffle the initial stack for them.
196 	 */
197 
198 	p = arch_align_stack(p);
199 
200 	/*
201 	 * If this architecture has a platform capability string, copy it
202 	 * to userspace.  In some cases (Sparc), this info is impossible
203 	 * for userspace to get any other way, in others (i386) it is
204 	 * merely difficult.
205 	 */
206 	u_platform = NULL;
207 	if (k_platform) {
208 		size_t len = strlen(k_platform) + 1;
209 
210 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
211 		if (copy_to_user(u_platform, k_platform, len))
212 			return -EFAULT;
213 	}
214 
215 	/*
216 	 * If this architecture has a "base" platform capability
217 	 * string, copy it to userspace.
218 	 */
219 	u_base_platform = NULL;
220 	if (k_base_platform) {
221 		size_t len = strlen(k_base_platform) + 1;
222 
223 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
224 		if (copy_to_user(u_base_platform, k_base_platform, len))
225 			return -EFAULT;
226 	}
227 
228 	/*
229 	 * Generate 16 random bytes for userspace PRNG seeding.
230 	 */
231 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
232 	u_rand_bytes = (elf_addr_t __user *)
233 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
234 	if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
235 		return -EFAULT;
236 
237 	/* Create the ELF interpreter info */
238 	elf_info = (elf_addr_t *)mm->saved_auxv;
239 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
240 #define NEW_AUX_ENT(id, val) \
241 	do { \
242 		*elf_info++ = id; \
243 		*elf_info++ = val; \
244 	} while (0)
245 
246 #ifdef ARCH_DLINFO
247 	/*
248 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
249 	 * AUXV.
250 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
251 	 * ARCH_DLINFO changes
252 	 */
253 	ARCH_DLINFO;
254 #endif
255 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
256 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
257 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
258 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
259 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
260 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
261 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
262 	NEW_AUX_ENT(AT_FLAGS, 0);
263 	NEW_AUX_ENT(AT_ENTRY, e_entry);
264 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
265 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
266 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
267 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
268 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
269 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
270 #ifdef ELF_HWCAP2
271 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
272 #endif
273 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
274 	if (k_platform) {
275 		NEW_AUX_ENT(AT_PLATFORM,
276 			    (elf_addr_t)(unsigned long)u_platform);
277 	}
278 	if (k_base_platform) {
279 		NEW_AUX_ENT(AT_BASE_PLATFORM,
280 			    (elf_addr_t)(unsigned long)u_base_platform);
281 	}
282 	if (bprm->have_execfd) {
283 		NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
284 	}
285 #undef NEW_AUX_ENT
286 	/* AT_NULL is zero; clear the rest too */
287 	memset(elf_info, 0, (char *)mm->saved_auxv +
288 			sizeof(mm->saved_auxv) - (char *)elf_info);
289 
290 	/* And advance past the AT_NULL entry.  */
291 	elf_info += 2;
292 
293 	ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
294 	sp = STACK_ADD(p, ei_index);
295 
296 	items = (argc + 1) + (envc + 1) + 1;
297 	bprm->p = STACK_ROUND(sp, items);
298 
299 	/* Point sp at the lowest address on the stack */
300 #ifdef CONFIG_STACK_GROWSUP
301 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
302 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
303 #else
304 	sp = (elf_addr_t __user *)bprm->p;
305 #endif
306 
307 
308 	/*
309 	 * Grow the stack manually; some architectures have a limit on how
310 	 * far ahead a user-space access may be in order to grow the stack.
311 	 */
312 	vma = find_extend_vma(mm, bprm->p);
313 	if (!vma)
314 		return -EFAULT;
315 
316 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
317 	if (put_user(argc, sp++))
318 		return -EFAULT;
319 
320 	/* Populate list of argv pointers back to argv strings. */
321 	p = mm->arg_end = mm->arg_start;
322 	while (argc-- > 0) {
323 		size_t len;
324 		if (put_user((elf_addr_t)p, sp++))
325 			return -EFAULT;
326 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
327 		if (!len || len > MAX_ARG_STRLEN)
328 			return -EINVAL;
329 		p += len;
330 	}
331 	if (put_user(0, sp++))
332 		return -EFAULT;
333 	mm->arg_end = p;
334 
335 	/* Populate list of envp pointers back to envp strings. */
336 	mm->env_end = mm->env_start = p;
337 	while (envc-- > 0) {
338 		size_t len;
339 		if (put_user((elf_addr_t)p, sp++))
340 			return -EFAULT;
341 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
342 		if (!len || len > MAX_ARG_STRLEN)
343 			return -EINVAL;
344 		p += len;
345 	}
346 	if (put_user(0, sp++))
347 		return -EFAULT;
348 	mm->env_end = p;
349 
350 	/* Put the elf_info on the stack in the right place.  */
351 	if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
352 		return -EFAULT;
353 	return 0;
354 }
355 
356 static unsigned long elf_map(struct file *filep, unsigned long addr,
357 		const struct elf_phdr *eppnt, int prot, int type,
358 		unsigned long total_size)
359 {
360 	unsigned long map_addr;
361 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
362 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
363 	addr = ELF_PAGESTART(addr);
364 	size = ELF_PAGEALIGN(size);
365 
366 	/* mmap() will return -EINVAL if given a zero size, but a
367 	 * segment with zero filesize is perfectly valid */
368 	if (!size)
369 		return addr;
370 
371 	/*
372 	* total_size is the size of the ELF (interpreter) image.
373 	* The _first_ mmap needs to know the full size, otherwise
374 	* randomization might put this image into an overlapping
375 	* position with the ELF binary image. (since size < total_size)
376 	* So we first map the 'big' image - and unmap the remainder at
377 	* the end. (which unmap is needed for ELF images with holes.)
378 	*/
379 	if (total_size) {
380 		total_size = ELF_PAGEALIGN(total_size);
381 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
382 		if (!BAD_ADDR(map_addr))
383 			vm_munmap(map_addr+size, total_size-size);
384 	} else
385 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
386 
387 	if ((type & MAP_FIXED_NOREPLACE) &&
388 	    PTR_ERR((void *)map_addr) == -EEXIST)
389 		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
390 			task_pid_nr(current), current->comm, (void *)addr);
391 
392 	return(map_addr);
393 }
394 
395 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
396 {
397 	int i, first_idx = -1, last_idx = -1;
398 
399 	for (i = 0; i < nr; i++) {
400 		if (cmds[i].p_type == PT_LOAD) {
401 			last_idx = i;
402 			if (first_idx == -1)
403 				first_idx = i;
404 		}
405 	}
406 	if (first_idx == -1)
407 		return 0;
408 
409 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
410 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
411 }
412 
413 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
414 {
415 	ssize_t rv;
416 
417 	rv = kernel_read(file, buf, len, &pos);
418 	if (unlikely(rv != len)) {
419 		return (rv < 0) ? rv : -EIO;
420 	}
421 	return 0;
422 }
423 
424 /**
425  * load_elf_phdrs() - load ELF program headers
426  * @elf_ex:   ELF header of the binary whose program headers should be loaded
427  * @elf_file: the opened ELF binary file
428  *
429  * Loads ELF program headers from the binary file elf_file, which has the ELF
430  * header pointed to by elf_ex, into a newly allocated array. The caller is
431  * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
432  */
433 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
434 				       struct file *elf_file)
435 {
436 	struct elf_phdr *elf_phdata = NULL;
437 	int retval, err = -1;
438 	unsigned int size;
439 
440 	/*
441 	 * If the size of this structure has changed, then punt, since
442 	 * we will be doing the wrong thing.
443 	 */
444 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
445 		goto out;
446 
447 	/* Sanity check the number of program headers... */
448 	/* ...and their total size. */
449 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
450 	if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
451 		goto out;
452 
453 	elf_phdata = kmalloc(size, GFP_KERNEL);
454 	if (!elf_phdata)
455 		goto out;
456 
457 	/* Read in the program headers */
458 	retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
459 	if (retval < 0) {
460 		err = retval;
461 		goto out;
462 	}
463 
464 	/* Success! */
465 	err = 0;
466 out:
467 	if (err) {
468 		kfree(elf_phdata);
469 		elf_phdata = NULL;
470 	}
471 	return elf_phdata;
472 }
473 
474 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
475 
476 /**
477  * struct arch_elf_state - arch-specific ELF loading state
478  *
479  * This structure is used to preserve architecture specific data during
480  * the loading of an ELF file, throughout the checking of architecture
481  * specific ELF headers & through to the point where the ELF load is
482  * known to be proceeding (ie. SET_PERSONALITY).
483  *
484  * This implementation is a dummy for architectures which require no
485  * specific state.
486  */
487 struct arch_elf_state {
488 };
489 
490 #define INIT_ARCH_ELF_STATE {}
491 
492 /**
493  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
494  * @ehdr:	The main ELF header
495  * @phdr:	The program header to check
496  * @elf:	The open ELF file
497  * @is_interp:	True if the phdr is from the interpreter of the ELF being
498  *		loaded, else false.
499  * @state:	Architecture-specific state preserved throughout the process
500  *		of loading the ELF.
501  *
502  * Inspects the program header phdr to validate its correctness and/or
503  * suitability for the system. Called once per ELF program header in the
504  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
505  * interpreter.
506  *
507  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
508  *         with that return code.
509  */
510 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
511 				   struct elf_phdr *phdr,
512 				   struct file *elf, bool is_interp,
513 				   struct arch_elf_state *state)
514 {
515 	/* Dummy implementation, always proceed */
516 	return 0;
517 }
518 
519 /**
520  * arch_check_elf() - check an ELF executable
521  * @ehdr:	The main ELF header
522  * @has_interp:	True if the ELF has an interpreter, else false.
523  * @interp_ehdr: The interpreter's ELF header
524  * @state:	Architecture-specific state preserved throughout the process
525  *		of loading the ELF.
526  *
527  * Provides a final opportunity for architecture code to reject the loading
528  * of the ELF & cause an exec syscall to return an error. This is called after
529  * all program headers to be checked by arch_elf_pt_proc have been.
530  *
531  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
532  *         with that return code.
533  */
534 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
535 				 struct elfhdr *interp_ehdr,
536 				 struct arch_elf_state *state)
537 {
538 	/* Dummy implementation, always proceed */
539 	return 0;
540 }
541 
542 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
543 
544 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
545 			    bool has_interp, bool is_interp)
546 {
547 	int prot = 0;
548 
549 	if (p_flags & PF_R)
550 		prot |= PROT_READ;
551 	if (p_flags & PF_W)
552 		prot |= PROT_WRITE;
553 	if (p_flags & PF_X)
554 		prot |= PROT_EXEC;
555 
556 	return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
557 }
558 
559 /* This is much more generalized than the library routine read function,
560    so we keep this separate.  Technically the library read function
561    is only provided so that we can read a.out libraries that have
562    an ELF header */
563 
564 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
565 		struct file *interpreter,
566 		unsigned long no_base, struct elf_phdr *interp_elf_phdata,
567 		struct arch_elf_state *arch_state)
568 {
569 	struct elf_phdr *eppnt;
570 	unsigned long load_addr = 0;
571 	int load_addr_set = 0;
572 	unsigned long last_bss = 0, elf_bss = 0;
573 	int bss_prot = 0;
574 	unsigned long error = ~0UL;
575 	unsigned long total_size;
576 	int i;
577 
578 	/* First of all, some simple consistency checks */
579 	if (interp_elf_ex->e_type != ET_EXEC &&
580 	    interp_elf_ex->e_type != ET_DYN)
581 		goto out;
582 	if (!elf_check_arch(interp_elf_ex) ||
583 	    elf_check_fdpic(interp_elf_ex))
584 		goto out;
585 	if (!interpreter->f_op->mmap)
586 		goto out;
587 
588 	total_size = total_mapping_size(interp_elf_phdata,
589 					interp_elf_ex->e_phnum);
590 	if (!total_size) {
591 		error = -EINVAL;
592 		goto out;
593 	}
594 
595 	eppnt = interp_elf_phdata;
596 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
597 		if (eppnt->p_type == PT_LOAD) {
598 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
599 			int elf_prot = make_prot(eppnt->p_flags, arch_state,
600 						 true, true);
601 			unsigned long vaddr = 0;
602 			unsigned long k, map_addr;
603 
604 			vaddr = eppnt->p_vaddr;
605 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
606 				elf_type |= MAP_FIXED_NOREPLACE;
607 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
608 				load_addr = -vaddr;
609 
610 			map_addr = elf_map(interpreter, load_addr + vaddr,
611 					eppnt, elf_prot, elf_type, total_size);
612 			total_size = 0;
613 			error = map_addr;
614 			if (BAD_ADDR(map_addr))
615 				goto out;
616 
617 			if (!load_addr_set &&
618 			    interp_elf_ex->e_type == ET_DYN) {
619 				load_addr = map_addr - ELF_PAGESTART(vaddr);
620 				load_addr_set = 1;
621 			}
622 
623 			/*
624 			 * Check to see if the section's size will overflow the
625 			 * allowed task size. Note that p_filesz must always be
626 			 * <= p_memsize so it's only necessary to check p_memsz.
627 			 */
628 			k = load_addr + eppnt->p_vaddr;
629 			if (BAD_ADDR(k) ||
630 			    eppnt->p_filesz > eppnt->p_memsz ||
631 			    eppnt->p_memsz > TASK_SIZE ||
632 			    TASK_SIZE - eppnt->p_memsz < k) {
633 				error = -ENOMEM;
634 				goto out;
635 			}
636 
637 			/*
638 			 * Find the end of the file mapping for this phdr, and
639 			 * keep track of the largest address we see for this.
640 			 */
641 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
642 			if (k > elf_bss)
643 				elf_bss = k;
644 
645 			/*
646 			 * Do the same thing for the memory mapping - between
647 			 * elf_bss and last_bss is the bss section.
648 			 */
649 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
650 			if (k > last_bss) {
651 				last_bss = k;
652 				bss_prot = elf_prot;
653 			}
654 		}
655 	}
656 
657 	/*
658 	 * Now fill out the bss section: first pad the last page from
659 	 * the file up to the page boundary, and zero it from elf_bss
660 	 * up to the end of the page.
661 	 */
662 	if (padzero(elf_bss)) {
663 		error = -EFAULT;
664 		goto out;
665 	}
666 	/*
667 	 * Next, align both the file and mem bss up to the page size,
668 	 * since this is where elf_bss was just zeroed up to, and where
669 	 * last_bss will end after the vm_brk_flags() below.
670 	 */
671 	elf_bss = ELF_PAGEALIGN(elf_bss);
672 	last_bss = ELF_PAGEALIGN(last_bss);
673 	/* Finally, if there is still more bss to allocate, do it. */
674 	if (last_bss > elf_bss) {
675 		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
676 				bss_prot & PROT_EXEC ? VM_EXEC : 0);
677 		if (error)
678 			goto out;
679 	}
680 
681 	error = load_addr;
682 out:
683 	return error;
684 }
685 
686 /*
687  * These are the functions used to load ELF style executables and shared
688  * libraries.  There is no binary dependent code anywhere else.
689  */
690 
691 static int parse_elf_property(const char *data, size_t *off, size_t datasz,
692 			      struct arch_elf_state *arch,
693 			      bool have_prev_type, u32 *prev_type)
694 {
695 	size_t o, step;
696 	const struct gnu_property *pr;
697 	int ret;
698 
699 	if (*off == datasz)
700 		return -ENOENT;
701 
702 	if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
703 		return -EIO;
704 	o = *off;
705 	datasz -= *off;
706 
707 	if (datasz < sizeof(*pr))
708 		return -ENOEXEC;
709 	pr = (const struct gnu_property *)(data + o);
710 	o += sizeof(*pr);
711 	datasz -= sizeof(*pr);
712 
713 	if (pr->pr_datasz > datasz)
714 		return -ENOEXEC;
715 
716 	WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
717 	step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
718 	if (step > datasz)
719 		return -ENOEXEC;
720 
721 	/* Properties are supposed to be unique and sorted on pr_type: */
722 	if (have_prev_type && pr->pr_type <= *prev_type)
723 		return -ENOEXEC;
724 	*prev_type = pr->pr_type;
725 
726 	ret = arch_parse_elf_property(pr->pr_type, data + o,
727 				      pr->pr_datasz, ELF_COMPAT, arch);
728 	if (ret)
729 		return ret;
730 
731 	*off = o + step;
732 	return 0;
733 }
734 
735 #define NOTE_DATA_SZ SZ_1K
736 #define GNU_PROPERTY_TYPE_0_NAME "GNU"
737 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
738 
739 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
740 				struct arch_elf_state *arch)
741 {
742 	union {
743 		struct elf_note nhdr;
744 		char data[NOTE_DATA_SZ];
745 	} note;
746 	loff_t pos;
747 	ssize_t n;
748 	size_t off, datasz;
749 	int ret;
750 	bool have_prev_type;
751 	u32 prev_type;
752 
753 	if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
754 		return 0;
755 
756 	/* load_elf_binary() shouldn't call us unless this is true... */
757 	if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
758 		return -ENOEXEC;
759 
760 	/* If the properties are crazy large, that's too bad (for now): */
761 	if (phdr->p_filesz > sizeof(note))
762 		return -ENOEXEC;
763 
764 	pos = phdr->p_offset;
765 	n = kernel_read(f, &note, phdr->p_filesz, &pos);
766 
767 	BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
768 	if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
769 		return -EIO;
770 
771 	if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
772 	    note.nhdr.n_namesz != NOTE_NAME_SZ ||
773 	    strncmp(note.data + sizeof(note.nhdr),
774 		    GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
775 		return -ENOEXEC;
776 
777 	off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
778 		       ELF_GNU_PROPERTY_ALIGN);
779 	if (off > n)
780 		return -ENOEXEC;
781 
782 	if (note.nhdr.n_descsz > n - off)
783 		return -ENOEXEC;
784 	datasz = off + note.nhdr.n_descsz;
785 
786 	have_prev_type = false;
787 	do {
788 		ret = parse_elf_property(note.data, &off, datasz, arch,
789 					 have_prev_type, &prev_type);
790 		have_prev_type = true;
791 	} while (!ret);
792 
793 	return ret == -ENOENT ? 0 : ret;
794 }
795 
796 static int load_elf_binary(struct linux_binprm *bprm)
797 {
798 	struct file *interpreter = NULL; /* to shut gcc up */
799  	unsigned long load_addr = 0, load_bias = 0;
800 	int load_addr_set = 0;
801 	unsigned long error;
802 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
803 	struct elf_phdr *elf_property_phdata = NULL;
804 	unsigned long elf_bss, elf_brk;
805 	int bss_prot = 0;
806 	int retval, i;
807 	unsigned long elf_entry;
808 	unsigned long e_entry;
809 	unsigned long interp_load_addr = 0;
810 	unsigned long start_code, end_code, start_data, end_data;
811 	unsigned long reloc_func_desc __maybe_unused = 0;
812 	int executable_stack = EXSTACK_DEFAULT;
813 	struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
814 	struct elfhdr *interp_elf_ex = NULL;
815 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
816 	struct mm_struct *mm;
817 	struct pt_regs *regs;
818 
819 	retval = -ENOEXEC;
820 	/* First of all, some simple consistency checks */
821 	if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
822 		goto out;
823 
824 	if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
825 		goto out;
826 	if (!elf_check_arch(elf_ex))
827 		goto out;
828 	if (elf_check_fdpic(elf_ex))
829 		goto out;
830 	if (!bprm->file->f_op->mmap)
831 		goto out;
832 
833 	elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
834 	if (!elf_phdata)
835 		goto out;
836 
837 	elf_ppnt = elf_phdata;
838 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
839 		char *elf_interpreter;
840 
841 		if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
842 			elf_property_phdata = elf_ppnt;
843 			continue;
844 		}
845 
846 		if (elf_ppnt->p_type != PT_INTERP)
847 			continue;
848 
849 		/*
850 		 * This is the program interpreter used for shared libraries -
851 		 * for now assume that this is an a.out format binary.
852 		 */
853 		retval = -ENOEXEC;
854 		if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
855 			goto out_free_ph;
856 
857 		retval = -ENOMEM;
858 		elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
859 		if (!elf_interpreter)
860 			goto out_free_ph;
861 
862 		retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
863 				  elf_ppnt->p_offset);
864 		if (retval < 0)
865 			goto out_free_interp;
866 		/* make sure path is NULL terminated */
867 		retval = -ENOEXEC;
868 		if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
869 			goto out_free_interp;
870 
871 		interpreter = open_exec(elf_interpreter);
872 		kfree(elf_interpreter);
873 		retval = PTR_ERR(interpreter);
874 		if (IS_ERR(interpreter))
875 			goto out_free_ph;
876 
877 		/*
878 		 * If the binary is not readable then enforce mm->dumpable = 0
879 		 * regardless of the interpreter's permissions.
880 		 */
881 		would_dump(bprm, interpreter);
882 
883 		interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
884 		if (!interp_elf_ex) {
885 			retval = -ENOMEM;
886 			goto out_free_ph;
887 		}
888 
889 		/* Get the exec headers */
890 		retval = elf_read(interpreter, interp_elf_ex,
891 				  sizeof(*interp_elf_ex), 0);
892 		if (retval < 0)
893 			goto out_free_dentry;
894 
895 		break;
896 
897 out_free_interp:
898 		kfree(elf_interpreter);
899 		goto out_free_ph;
900 	}
901 
902 	elf_ppnt = elf_phdata;
903 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
904 		switch (elf_ppnt->p_type) {
905 		case PT_GNU_STACK:
906 			if (elf_ppnt->p_flags & PF_X)
907 				executable_stack = EXSTACK_ENABLE_X;
908 			else
909 				executable_stack = EXSTACK_DISABLE_X;
910 			break;
911 
912 		case PT_LOPROC ... PT_HIPROC:
913 			retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
914 						  bprm->file, false,
915 						  &arch_state);
916 			if (retval)
917 				goto out_free_dentry;
918 			break;
919 		}
920 
921 	/* Some simple consistency checks for the interpreter */
922 	if (interpreter) {
923 		retval = -ELIBBAD;
924 		/* Not an ELF interpreter */
925 		if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
926 			goto out_free_dentry;
927 		/* Verify the interpreter has a valid arch */
928 		if (!elf_check_arch(interp_elf_ex) ||
929 		    elf_check_fdpic(interp_elf_ex))
930 			goto out_free_dentry;
931 
932 		/* Load the interpreter program headers */
933 		interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
934 						   interpreter);
935 		if (!interp_elf_phdata)
936 			goto out_free_dentry;
937 
938 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
939 		elf_property_phdata = NULL;
940 		elf_ppnt = interp_elf_phdata;
941 		for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
942 			switch (elf_ppnt->p_type) {
943 			case PT_GNU_PROPERTY:
944 				elf_property_phdata = elf_ppnt;
945 				break;
946 
947 			case PT_LOPROC ... PT_HIPROC:
948 				retval = arch_elf_pt_proc(interp_elf_ex,
949 							  elf_ppnt, interpreter,
950 							  true, &arch_state);
951 				if (retval)
952 					goto out_free_dentry;
953 				break;
954 			}
955 	}
956 
957 	retval = parse_elf_properties(interpreter ?: bprm->file,
958 				      elf_property_phdata, &arch_state);
959 	if (retval)
960 		goto out_free_dentry;
961 
962 	/*
963 	 * Allow arch code to reject the ELF at this point, whilst it's
964 	 * still possible to return an error to the code that invoked
965 	 * the exec syscall.
966 	 */
967 	retval = arch_check_elf(elf_ex,
968 				!!interpreter, interp_elf_ex,
969 				&arch_state);
970 	if (retval)
971 		goto out_free_dentry;
972 
973 	/* Flush all traces of the currently running executable */
974 	retval = begin_new_exec(bprm);
975 	if (retval)
976 		goto out_free_dentry;
977 
978 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
979 	   may depend on the personality.  */
980 	SET_PERSONALITY2(*elf_ex, &arch_state);
981 	if (elf_read_implies_exec(*elf_ex, executable_stack))
982 		current->personality |= READ_IMPLIES_EXEC;
983 
984 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
985 		current->flags |= PF_RANDOMIZE;
986 
987 	setup_new_exec(bprm);
988 
989 	/* Do this so that we can load the interpreter, if need be.  We will
990 	   change some of these later */
991 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
992 				 executable_stack);
993 	if (retval < 0)
994 		goto out_free_dentry;
995 
996 	elf_bss = 0;
997 	elf_brk = 0;
998 
999 	start_code = ~0UL;
1000 	end_code = 0;
1001 	start_data = 0;
1002 	end_data = 0;
1003 
1004 	/* Now we do a little grungy work by mmapping the ELF image into
1005 	   the correct location in memory. */
1006 	for(i = 0, elf_ppnt = elf_phdata;
1007 	    i < elf_ex->e_phnum; i++, elf_ppnt++) {
1008 		int elf_prot, elf_flags;
1009 		unsigned long k, vaddr;
1010 		unsigned long total_size = 0;
1011 
1012 		if (elf_ppnt->p_type != PT_LOAD)
1013 			continue;
1014 
1015 		if (unlikely (elf_brk > elf_bss)) {
1016 			unsigned long nbyte;
1017 
1018 			/* There was a PT_LOAD segment with p_memsz > p_filesz
1019 			   before this one. Map anonymous pages, if needed,
1020 			   and clear the area.  */
1021 			retval = set_brk(elf_bss + load_bias,
1022 					 elf_brk + load_bias,
1023 					 bss_prot);
1024 			if (retval)
1025 				goto out_free_dentry;
1026 			nbyte = ELF_PAGEOFFSET(elf_bss);
1027 			if (nbyte) {
1028 				nbyte = ELF_MIN_ALIGN - nbyte;
1029 				if (nbyte > elf_brk - elf_bss)
1030 					nbyte = elf_brk - elf_bss;
1031 				if (clear_user((void __user *)elf_bss +
1032 							load_bias, nbyte)) {
1033 					/*
1034 					 * This bss-zeroing can fail if the ELF
1035 					 * file specifies odd protections. So
1036 					 * we don't check the return value
1037 					 */
1038 				}
1039 			}
1040 		}
1041 
1042 		elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1043 				     !!interpreter, false);
1044 
1045 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
1046 
1047 		vaddr = elf_ppnt->p_vaddr;
1048 		/*
1049 		 * If we are loading ET_EXEC or we have already performed
1050 		 * the ET_DYN load_addr calculations, proceed normally.
1051 		 */
1052 		if (elf_ex->e_type == ET_EXEC || load_addr_set) {
1053 			elf_flags |= MAP_FIXED;
1054 		} else if (elf_ex->e_type == ET_DYN) {
1055 			/*
1056 			 * This logic is run once for the first LOAD Program
1057 			 * Header for ET_DYN binaries to calculate the
1058 			 * randomization (load_bias) for all the LOAD
1059 			 * Program Headers, and to calculate the entire
1060 			 * size of the ELF mapping (total_size). (Note that
1061 			 * load_addr_set is set to true later once the
1062 			 * initial mapping is performed.)
1063 			 *
1064 			 * There are effectively two types of ET_DYN
1065 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
1066 			 * and loaders (ET_DYN without INTERP, since they
1067 			 * _are_ the ELF interpreter). The loaders must
1068 			 * be loaded away from programs since the program
1069 			 * may otherwise collide with the loader (especially
1070 			 * for ET_EXEC which does not have a randomized
1071 			 * position). For example to handle invocations of
1072 			 * "./ld.so someprog" to test out a new version of
1073 			 * the loader, the subsequent program that the
1074 			 * loader loads must avoid the loader itself, so
1075 			 * they cannot share the same load range. Sufficient
1076 			 * room for the brk must be allocated with the
1077 			 * loader as well, since brk must be available with
1078 			 * the loader.
1079 			 *
1080 			 * Therefore, programs are loaded offset from
1081 			 * ELF_ET_DYN_BASE and loaders are loaded into the
1082 			 * independently randomized mmap region (0 load_bias
1083 			 * without MAP_FIXED).
1084 			 */
1085 			if (interpreter) {
1086 				load_bias = ELF_ET_DYN_BASE;
1087 				if (current->flags & PF_RANDOMIZE)
1088 					load_bias += arch_mmap_rnd();
1089 				elf_flags |= MAP_FIXED;
1090 			} else
1091 				load_bias = 0;
1092 
1093 			/*
1094 			 * Since load_bias is used for all subsequent loading
1095 			 * calculations, we must lower it by the first vaddr
1096 			 * so that the remaining calculations based on the
1097 			 * ELF vaddrs will be correctly offset. The result
1098 			 * is then page aligned.
1099 			 */
1100 			load_bias = ELF_PAGESTART(load_bias - vaddr);
1101 
1102 			total_size = total_mapping_size(elf_phdata,
1103 							elf_ex->e_phnum);
1104 			if (!total_size) {
1105 				retval = -EINVAL;
1106 				goto out_free_dentry;
1107 			}
1108 		}
1109 
1110 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1111 				elf_prot, elf_flags, total_size);
1112 		if (BAD_ADDR(error)) {
1113 			retval = IS_ERR((void *)error) ?
1114 				PTR_ERR((void*)error) : -EINVAL;
1115 			goto out_free_dentry;
1116 		}
1117 
1118 		if (!load_addr_set) {
1119 			load_addr_set = 1;
1120 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1121 			if (elf_ex->e_type == ET_DYN) {
1122 				load_bias += error -
1123 				             ELF_PAGESTART(load_bias + vaddr);
1124 				load_addr += load_bias;
1125 				reloc_func_desc = load_bias;
1126 			}
1127 		}
1128 		k = elf_ppnt->p_vaddr;
1129 		if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1130 			start_code = k;
1131 		if (start_data < k)
1132 			start_data = k;
1133 
1134 		/*
1135 		 * Check to see if the section's size will overflow the
1136 		 * allowed task size. Note that p_filesz must always be
1137 		 * <= p_memsz so it is only necessary to check p_memsz.
1138 		 */
1139 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1140 		    elf_ppnt->p_memsz > TASK_SIZE ||
1141 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1142 			/* set_brk can never work. Avoid overflows. */
1143 			retval = -EINVAL;
1144 			goto out_free_dentry;
1145 		}
1146 
1147 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1148 
1149 		if (k > elf_bss)
1150 			elf_bss = k;
1151 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1152 			end_code = k;
1153 		if (end_data < k)
1154 			end_data = k;
1155 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1156 		if (k > elf_brk) {
1157 			bss_prot = elf_prot;
1158 			elf_brk = k;
1159 		}
1160 	}
1161 
1162 	e_entry = elf_ex->e_entry + load_bias;
1163 	elf_bss += load_bias;
1164 	elf_brk += load_bias;
1165 	start_code += load_bias;
1166 	end_code += load_bias;
1167 	start_data += load_bias;
1168 	end_data += load_bias;
1169 
1170 	/* Calling set_brk effectively mmaps the pages that we need
1171 	 * for the bss and break sections.  We must do this before
1172 	 * mapping in the interpreter, to make sure it doesn't wind
1173 	 * up getting placed where the bss needs to go.
1174 	 */
1175 	retval = set_brk(elf_bss, elf_brk, bss_prot);
1176 	if (retval)
1177 		goto out_free_dentry;
1178 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1179 		retval = -EFAULT; /* Nobody gets to see this, but.. */
1180 		goto out_free_dentry;
1181 	}
1182 
1183 	if (interpreter) {
1184 		elf_entry = load_elf_interp(interp_elf_ex,
1185 					    interpreter,
1186 					    load_bias, interp_elf_phdata,
1187 					    &arch_state);
1188 		if (!IS_ERR((void *)elf_entry)) {
1189 			/*
1190 			 * load_elf_interp() returns relocation
1191 			 * adjustment
1192 			 */
1193 			interp_load_addr = elf_entry;
1194 			elf_entry += interp_elf_ex->e_entry;
1195 		}
1196 		if (BAD_ADDR(elf_entry)) {
1197 			retval = IS_ERR((void *)elf_entry) ?
1198 					(int)elf_entry : -EINVAL;
1199 			goto out_free_dentry;
1200 		}
1201 		reloc_func_desc = interp_load_addr;
1202 
1203 		allow_write_access(interpreter);
1204 		fput(interpreter);
1205 
1206 		kfree(interp_elf_ex);
1207 		kfree(interp_elf_phdata);
1208 	} else {
1209 		elf_entry = e_entry;
1210 		if (BAD_ADDR(elf_entry)) {
1211 			retval = -EINVAL;
1212 			goto out_free_dentry;
1213 		}
1214 	}
1215 
1216 	kfree(elf_phdata);
1217 
1218 	set_binfmt(&elf_format);
1219 
1220 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1221 	retval = arch_setup_additional_pages(bprm, !!interpreter);
1222 	if (retval < 0)
1223 		goto out;
1224 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1225 
1226 	retval = create_elf_tables(bprm, elf_ex,
1227 			  load_addr, interp_load_addr, e_entry);
1228 	if (retval < 0)
1229 		goto out;
1230 
1231 	mm = current->mm;
1232 	mm->end_code = end_code;
1233 	mm->start_code = start_code;
1234 	mm->start_data = start_data;
1235 	mm->end_data = end_data;
1236 	mm->start_stack = bprm->p;
1237 
1238 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1239 		/*
1240 		 * For architectures with ELF randomization, when executing
1241 		 * a loader directly (i.e. no interpreter listed in ELF
1242 		 * headers), move the brk area out of the mmap region
1243 		 * (since it grows up, and may collide early with the stack
1244 		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1245 		 */
1246 		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1247 		    elf_ex->e_type == ET_DYN && !interpreter) {
1248 			mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1249 		}
1250 
1251 		mm->brk = mm->start_brk = arch_randomize_brk(mm);
1252 #ifdef compat_brk_randomized
1253 		current->brk_randomized = 1;
1254 #endif
1255 	}
1256 
1257 	if (current->personality & MMAP_PAGE_ZERO) {
1258 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1259 		   and some applications "depend" upon this behavior.
1260 		   Since we do not have the power to recompile these, we
1261 		   emulate the SVr4 behavior. Sigh. */
1262 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1263 				MAP_FIXED | MAP_PRIVATE, 0);
1264 	}
1265 
1266 	regs = current_pt_regs();
1267 #ifdef ELF_PLAT_INIT
1268 	/*
1269 	 * The ABI may specify that certain registers be set up in special
1270 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1271 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1272 	 * that the e_entry field is the address of the function descriptor
1273 	 * for the startup routine, rather than the address of the startup
1274 	 * routine itself.  This macro performs whatever initialization to
1275 	 * the regs structure is required as well as any relocations to the
1276 	 * function descriptor entries when executing dynamically links apps.
1277 	 */
1278 	ELF_PLAT_INIT(regs, reloc_func_desc);
1279 #endif
1280 
1281 	finalize_exec(bprm);
1282 	start_thread(regs, elf_entry, bprm->p);
1283 	retval = 0;
1284 out:
1285 	return retval;
1286 
1287 	/* error cleanup */
1288 out_free_dentry:
1289 	kfree(interp_elf_ex);
1290 	kfree(interp_elf_phdata);
1291 	allow_write_access(interpreter);
1292 	if (interpreter)
1293 		fput(interpreter);
1294 out_free_ph:
1295 	kfree(elf_phdata);
1296 	goto out;
1297 }
1298 
1299 #ifdef CONFIG_USELIB
1300 /* This is really simpleminded and specialized - we are loading an
1301    a.out library that is given an ELF header. */
1302 static int load_elf_library(struct file *file)
1303 {
1304 	struct elf_phdr *elf_phdata;
1305 	struct elf_phdr *eppnt;
1306 	unsigned long elf_bss, bss, len;
1307 	int retval, error, i, j;
1308 	struct elfhdr elf_ex;
1309 
1310 	error = -ENOEXEC;
1311 	retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1312 	if (retval < 0)
1313 		goto out;
1314 
1315 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1316 		goto out;
1317 
1318 	/* First of all, some simple consistency checks */
1319 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1320 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1321 		goto out;
1322 	if (elf_check_fdpic(&elf_ex))
1323 		goto out;
1324 
1325 	/* Now read in all of the header information */
1326 
1327 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1328 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1329 
1330 	error = -ENOMEM;
1331 	elf_phdata = kmalloc(j, GFP_KERNEL);
1332 	if (!elf_phdata)
1333 		goto out;
1334 
1335 	eppnt = elf_phdata;
1336 	error = -ENOEXEC;
1337 	retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1338 	if (retval < 0)
1339 		goto out_free_ph;
1340 
1341 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1342 		if ((eppnt + i)->p_type == PT_LOAD)
1343 			j++;
1344 	if (j != 1)
1345 		goto out_free_ph;
1346 
1347 	while (eppnt->p_type != PT_LOAD)
1348 		eppnt++;
1349 
1350 	/* Now use mmap to map the library into memory. */
1351 	error = vm_mmap(file,
1352 			ELF_PAGESTART(eppnt->p_vaddr),
1353 			(eppnt->p_filesz +
1354 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1355 			PROT_READ | PROT_WRITE | PROT_EXEC,
1356 			MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1357 			(eppnt->p_offset -
1358 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1359 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1360 		goto out_free_ph;
1361 
1362 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1363 	if (padzero(elf_bss)) {
1364 		error = -EFAULT;
1365 		goto out_free_ph;
1366 	}
1367 
1368 	len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1369 	bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1370 	if (bss > len) {
1371 		error = vm_brk(len, bss - len);
1372 		if (error)
1373 			goto out_free_ph;
1374 	}
1375 	error = 0;
1376 
1377 out_free_ph:
1378 	kfree(elf_phdata);
1379 out:
1380 	return error;
1381 }
1382 #endif /* #ifdef CONFIG_USELIB */
1383 
1384 #ifdef CONFIG_ELF_CORE
1385 /*
1386  * ELF core dumper
1387  *
1388  * Modelled on fs/exec.c:aout_core_dump()
1389  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1390  */
1391 
1392 /*
1393  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1394  * that are useful for post-mortem analysis are included in every core dump.
1395  * In that way we ensure that the core dump is fully interpretable later
1396  * without matching up the same kernel and hardware config to see what PC values
1397  * meant. These special mappings include - vDSO, vsyscall, and other
1398  * architecture specific mappings
1399  */
1400 static bool always_dump_vma(struct vm_area_struct *vma)
1401 {
1402 	/* Any vsyscall mappings? */
1403 	if (vma == get_gate_vma(vma->vm_mm))
1404 		return true;
1405 
1406 	/*
1407 	 * Assume that all vmas with a .name op should always be dumped.
1408 	 * If this changes, a new vm_ops field can easily be added.
1409 	 */
1410 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1411 		return true;
1412 
1413 	/*
1414 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1415 	 * such as vDSO sections.
1416 	 */
1417 	if (arch_vma_name(vma))
1418 		return true;
1419 
1420 	return false;
1421 }
1422 
1423 /*
1424  * Decide what to dump of a segment, part, all or none.
1425  */
1426 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1427 				   unsigned long mm_flags)
1428 {
1429 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1430 
1431 	/* always dump the vdso and vsyscall sections */
1432 	if (always_dump_vma(vma))
1433 		goto whole;
1434 
1435 	if (vma->vm_flags & VM_DONTDUMP)
1436 		return 0;
1437 
1438 	/* support for DAX */
1439 	if (vma_is_dax(vma)) {
1440 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1441 			goto whole;
1442 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1443 			goto whole;
1444 		return 0;
1445 	}
1446 
1447 	/* Hugetlb memory check */
1448 	if (is_vm_hugetlb_page(vma)) {
1449 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1450 			goto whole;
1451 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1452 			goto whole;
1453 		return 0;
1454 	}
1455 
1456 	/* Do not dump I/O mapped devices or special mappings */
1457 	if (vma->vm_flags & VM_IO)
1458 		return 0;
1459 
1460 	/* By default, dump shared memory if mapped from an anonymous file. */
1461 	if (vma->vm_flags & VM_SHARED) {
1462 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1463 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1464 			goto whole;
1465 		return 0;
1466 	}
1467 
1468 	/* Dump segments that have been written to.  */
1469 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1470 		goto whole;
1471 	if (vma->vm_file == NULL)
1472 		return 0;
1473 
1474 	if (FILTER(MAPPED_PRIVATE))
1475 		goto whole;
1476 
1477 	/*
1478 	 * If this looks like the beginning of a DSO or executable mapping,
1479 	 * check for an ELF header.  If we find one, dump the first page to
1480 	 * aid in determining what was mapped here.
1481 	 */
1482 	if (FILTER(ELF_HEADERS) &&
1483 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1484 		u32 __user *header = (u32 __user *) vma->vm_start;
1485 		u32 word;
1486 		/*
1487 		 * Doing it this way gets the constant folded by GCC.
1488 		 */
1489 		union {
1490 			u32 cmp;
1491 			char elfmag[SELFMAG];
1492 		} magic;
1493 		BUILD_BUG_ON(SELFMAG != sizeof word);
1494 		magic.elfmag[EI_MAG0] = ELFMAG0;
1495 		magic.elfmag[EI_MAG1] = ELFMAG1;
1496 		magic.elfmag[EI_MAG2] = ELFMAG2;
1497 		magic.elfmag[EI_MAG3] = ELFMAG3;
1498 		if (unlikely(get_user(word, header)))
1499 			word = 0;
1500 		if (word == magic.cmp)
1501 			return PAGE_SIZE;
1502 	}
1503 
1504 #undef	FILTER
1505 
1506 	return 0;
1507 
1508 whole:
1509 	return vma->vm_end - vma->vm_start;
1510 }
1511 
1512 /* An ELF note in memory */
1513 struct memelfnote
1514 {
1515 	const char *name;
1516 	int type;
1517 	unsigned int datasz;
1518 	void *data;
1519 };
1520 
1521 static int notesize(struct memelfnote *en)
1522 {
1523 	int sz;
1524 
1525 	sz = sizeof(struct elf_note);
1526 	sz += roundup(strlen(en->name) + 1, 4);
1527 	sz += roundup(en->datasz, 4);
1528 
1529 	return sz;
1530 }
1531 
1532 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1533 {
1534 	struct elf_note en;
1535 	en.n_namesz = strlen(men->name) + 1;
1536 	en.n_descsz = men->datasz;
1537 	en.n_type = men->type;
1538 
1539 	return dump_emit(cprm, &en, sizeof(en)) &&
1540 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1541 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1542 }
1543 
1544 static void fill_elf_header(struct elfhdr *elf, int segs,
1545 			    u16 machine, u32 flags)
1546 {
1547 	memset(elf, 0, sizeof(*elf));
1548 
1549 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1550 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1551 	elf->e_ident[EI_DATA] = ELF_DATA;
1552 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1553 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1554 
1555 	elf->e_type = ET_CORE;
1556 	elf->e_machine = machine;
1557 	elf->e_version = EV_CURRENT;
1558 	elf->e_phoff = sizeof(struct elfhdr);
1559 	elf->e_flags = flags;
1560 	elf->e_ehsize = sizeof(struct elfhdr);
1561 	elf->e_phentsize = sizeof(struct elf_phdr);
1562 	elf->e_phnum = segs;
1563 }
1564 
1565 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1566 {
1567 	phdr->p_type = PT_NOTE;
1568 	phdr->p_offset = offset;
1569 	phdr->p_vaddr = 0;
1570 	phdr->p_paddr = 0;
1571 	phdr->p_filesz = sz;
1572 	phdr->p_memsz = 0;
1573 	phdr->p_flags = 0;
1574 	phdr->p_align = 0;
1575 }
1576 
1577 static void fill_note(struct memelfnote *note, const char *name, int type,
1578 		unsigned int sz, void *data)
1579 {
1580 	note->name = name;
1581 	note->type = type;
1582 	note->datasz = sz;
1583 	note->data = data;
1584 }
1585 
1586 /*
1587  * fill up all the fields in prstatus from the given task struct, except
1588  * registers which need to be filled up separately.
1589  */
1590 static void fill_prstatus(struct elf_prstatus *prstatus,
1591 		struct task_struct *p, long signr)
1592 {
1593 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1594 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1595 	prstatus->pr_sighold = p->blocked.sig[0];
1596 	rcu_read_lock();
1597 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1598 	rcu_read_unlock();
1599 	prstatus->pr_pid = task_pid_vnr(p);
1600 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1601 	prstatus->pr_sid = task_session_vnr(p);
1602 	if (thread_group_leader(p)) {
1603 		struct task_cputime cputime;
1604 
1605 		/*
1606 		 * This is the record for the group leader.  It shows the
1607 		 * group-wide total, not its individual thread total.
1608 		 */
1609 		thread_group_cputime(p, &cputime);
1610 		prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1611 		prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1612 	} else {
1613 		u64 utime, stime;
1614 
1615 		task_cputime(p, &utime, &stime);
1616 		prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1617 		prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1618 	}
1619 
1620 	prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1621 	prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1622 }
1623 
1624 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1625 		       struct mm_struct *mm)
1626 {
1627 	const struct cred *cred;
1628 	unsigned int i, len;
1629 
1630 	/* first copy the parameters from user space */
1631 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1632 
1633 	len = mm->arg_end - mm->arg_start;
1634 	if (len >= ELF_PRARGSZ)
1635 		len = ELF_PRARGSZ-1;
1636 	if (copy_from_user(&psinfo->pr_psargs,
1637 		           (const char __user *)mm->arg_start, len))
1638 		return -EFAULT;
1639 	for(i = 0; i < len; i++)
1640 		if (psinfo->pr_psargs[i] == 0)
1641 			psinfo->pr_psargs[i] = ' ';
1642 	psinfo->pr_psargs[len] = 0;
1643 
1644 	rcu_read_lock();
1645 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1646 	rcu_read_unlock();
1647 	psinfo->pr_pid = task_pid_vnr(p);
1648 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1649 	psinfo->pr_sid = task_session_vnr(p);
1650 
1651 	i = p->state ? ffz(~p->state) + 1 : 0;
1652 	psinfo->pr_state = i;
1653 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1654 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1655 	psinfo->pr_nice = task_nice(p);
1656 	psinfo->pr_flag = p->flags;
1657 	rcu_read_lock();
1658 	cred = __task_cred(p);
1659 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1660 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1661 	rcu_read_unlock();
1662 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1663 
1664 	return 0;
1665 }
1666 
1667 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1668 {
1669 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1670 	int i = 0;
1671 	do
1672 		i += 2;
1673 	while (auxv[i - 2] != AT_NULL);
1674 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1675 }
1676 
1677 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1678 		const kernel_siginfo_t *siginfo)
1679 {
1680 	copy_siginfo_to_external(csigdata, siginfo);
1681 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1682 }
1683 
1684 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1685 /*
1686  * Format of NT_FILE note:
1687  *
1688  * long count     -- how many files are mapped
1689  * long page_size -- units for file_ofs
1690  * array of [COUNT] elements of
1691  *   long start
1692  *   long end
1693  *   long file_ofs
1694  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1695  */
1696 static int fill_files_note(struct memelfnote *note)
1697 {
1698 	struct mm_struct *mm = current->mm;
1699 	struct vm_area_struct *vma;
1700 	unsigned count, size, names_ofs, remaining, n;
1701 	user_long_t *data;
1702 	user_long_t *start_end_ofs;
1703 	char *name_base, *name_curpos;
1704 
1705 	/* *Estimated* file count and total data size needed */
1706 	count = mm->map_count;
1707 	if (count > UINT_MAX / 64)
1708 		return -EINVAL;
1709 	size = count * 64;
1710 
1711 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1712  alloc:
1713 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1714 		return -EINVAL;
1715 	size = round_up(size, PAGE_SIZE);
1716 	/*
1717 	 * "size" can be 0 here legitimately.
1718 	 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1719 	 */
1720 	data = kvmalloc(size, GFP_KERNEL);
1721 	if (ZERO_OR_NULL_PTR(data))
1722 		return -ENOMEM;
1723 
1724 	start_end_ofs = data + 2;
1725 	name_base = name_curpos = ((char *)data) + names_ofs;
1726 	remaining = size - names_ofs;
1727 	count = 0;
1728 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1729 		struct file *file;
1730 		const char *filename;
1731 
1732 		file = vma->vm_file;
1733 		if (!file)
1734 			continue;
1735 		filename = file_path(file, name_curpos, remaining);
1736 		if (IS_ERR(filename)) {
1737 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1738 				kvfree(data);
1739 				size = size * 5 / 4;
1740 				goto alloc;
1741 			}
1742 			continue;
1743 		}
1744 
1745 		/* file_path() fills at the end, move name down */
1746 		/* n = strlen(filename) + 1: */
1747 		n = (name_curpos + remaining) - filename;
1748 		remaining = filename - name_curpos;
1749 		memmove(name_curpos, filename, n);
1750 		name_curpos += n;
1751 
1752 		*start_end_ofs++ = vma->vm_start;
1753 		*start_end_ofs++ = vma->vm_end;
1754 		*start_end_ofs++ = vma->vm_pgoff;
1755 		count++;
1756 	}
1757 
1758 	/* Now we know exact count of files, can store it */
1759 	data[0] = count;
1760 	data[1] = PAGE_SIZE;
1761 	/*
1762 	 * Count usually is less than mm->map_count,
1763 	 * we need to move filenames down.
1764 	 */
1765 	n = mm->map_count - count;
1766 	if (n != 0) {
1767 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1768 		memmove(name_base - shift_bytes, name_base,
1769 			name_curpos - name_base);
1770 		name_curpos -= shift_bytes;
1771 	}
1772 
1773 	size = name_curpos - (char *)data;
1774 	fill_note(note, "CORE", NT_FILE, size, data);
1775 	return 0;
1776 }
1777 
1778 #ifdef CORE_DUMP_USE_REGSET
1779 #include <linux/regset.h>
1780 
1781 struct elf_thread_core_info {
1782 	struct elf_thread_core_info *next;
1783 	struct task_struct *task;
1784 	struct elf_prstatus prstatus;
1785 	struct memelfnote notes[0];
1786 };
1787 
1788 struct elf_note_info {
1789 	struct elf_thread_core_info *thread;
1790 	struct memelfnote psinfo;
1791 	struct memelfnote signote;
1792 	struct memelfnote auxv;
1793 	struct memelfnote files;
1794 	user_siginfo_t csigdata;
1795 	size_t size;
1796 	int thread_notes;
1797 };
1798 
1799 /*
1800  * When a regset has a writeback hook, we call it on each thread before
1801  * dumping user memory.  On register window machines, this makes sure the
1802  * user memory backing the register data is up to date before we read it.
1803  */
1804 static void do_thread_regset_writeback(struct task_struct *task,
1805 				       const struct user_regset *regset)
1806 {
1807 	if (regset->writeback)
1808 		regset->writeback(task, regset, 1);
1809 }
1810 
1811 #ifndef PRSTATUS_SIZE
1812 #define PRSTATUS_SIZE(S, R) sizeof(S)
1813 #endif
1814 
1815 #ifndef SET_PR_FPVALID
1816 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1817 #endif
1818 
1819 static int fill_thread_core_info(struct elf_thread_core_info *t,
1820 				 const struct user_regset_view *view,
1821 				 long signr, size_t *total)
1822 {
1823 	unsigned int i;
1824 	int regset0_size;
1825 
1826 	/*
1827 	 * NT_PRSTATUS is the one special case, because the regset data
1828 	 * goes into the pr_reg field inside the note contents, rather
1829 	 * than being the whole note contents.  We fill the reset in here.
1830 	 * We assume that regset 0 is NT_PRSTATUS.
1831 	 */
1832 	fill_prstatus(&t->prstatus, t->task, signr);
1833 	regset0_size = regset_get(t->task, &view->regsets[0],
1834 		   sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1835 	if (regset0_size < 0)
1836 		return 0;
1837 
1838 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1839 		  PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1840 	*total += notesize(&t->notes[0]);
1841 
1842 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1843 
1844 	/*
1845 	 * Each other regset might generate a note too.  For each regset
1846 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1847 	 * all zero and we'll know to skip writing it later.
1848 	 */
1849 	for (i = 1; i < view->n; ++i) {
1850 		const struct user_regset *regset = &view->regsets[i];
1851 		int note_type = regset->core_note_type;
1852 		bool is_fpreg = note_type == NT_PRFPREG;
1853 		void *data;
1854 		int ret;
1855 
1856 		do_thread_regset_writeback(t->task, regset);
1857 		if (!note_type) // not for coredumps
1858 			continue;
1859 		if (regset->active && regset->active(t->task, regset) <= 0)
1860 			continue;
1861 
1862 		ret = regset_get_alloc(t->task, regset, ~0U, &data);
1863 		if (ret < 0)
1864 			continue;
1865 
1866 		if (is_fpreg)
1867 			SET_PR_FPVALID(&t->prstatus, 1, regset0_size);
1868 
1869 		fill_note(&t->notes[i], is_fpreg ? "CORE" : "LINUX",
1870 			  note_type, ret, data);
1871 
1872 		*total += notesize(&t->notes[i]);
1873 	}
1874 
1875 	return 1;
1876 }
1877 
1878 static int fill_note_info(struct elfhdr *elf, int phdrs,
1879 			  struct elf_note_info *info,
1880 			  const kernel_siginfo_t *siginfo, struct pt_regs *regs)
1881 {
1882 	struct task_struct *dump_task = current;
1883 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1884 	struct elf_thread_core_info *t;
1885 	struct elf_prpsinfo *psinfo;
1886 	struct core_thread *ct;
1887 	unsigned int i;
1888 
1889 	info->size = 0;
1890 	info->thread = NULL;
1891 
1892 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1893 	if (psinfo == NULL) {
1894 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1895 		return 0;
1896 	}
1897 
1898 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1899 
1900 	/*
1901 	 * Figure out how many notes we're going to need for each thread.
1902 	 */
1903 	info->thread_notes = 0;
1904 	for (i = 0; i < view->n; ++i)
1905 		if (view->regsets[i].core_note_type != 0)
1906 			++info->thread_notes;
1907 
1908 	/*
1909 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1910 	 * since it is our one special case.
1911 	 */
1912 	if (unlikely(info->thread_notes == 0) ||
1913 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1914 		WARN_ON(1);
1915 		return 0;
1916 	}
1917 
1918 	/*
1919 	 * Initialize the ELF file header.
1920 	 */
1921 	fill_elf_header(elf, phdrs,
1922 			view->e_machine, view->e_flags);
1923 
1924 	/*
1925 	 * Allocate a structure for each thread.
1926 	 */
1927 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1928 		t = kzalloc(offsetof(struct elf_thread_core_info,
1929 				     notes[info->thread_notes]),
1930 			    GFP_KERNEL);
1931 		if (unlikely(!t))
1932 			return 0;
1933 
1934 		t->task = ct->task;
1935 		if (ct->task == dump_task || !info->thread) {
1936 			t->next = info->thread;
1937 			info->thread = t;
1938 		} else {
1939 			/*
1940 			 * Make sure to keep the original task at
1941 			 * the head of the list.
1942 			 */
1943 			t->next = info->thread->next;
1944 			info->thread->next = t;
1945 		}
1946 	}
1947 
1948 	/*
1949 	 * Now fill in each thread's information.
1950 	 */
1951 	for (t = info->thread; t != NULL; t = t->next)
1952 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1953 			return 0;
1954 
1955 	/*
1956 	 * Fill in the two process-wide notes.
1957 	 */
1958 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1959 	info->size += notesize(&info->psinfo);
1960 
1961 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1962 	info->size += notesize(&info->signote);
1963 
1964 	fill_auxv_note(&info->auxv, current->mm);
1965 	info->size += notesize(&info->auxv);
1966 
1967 	if (fill_files_note(&info->files) == 0)
1968 		info->size += notesize(&info->files);
1969 
1970 	return 1;
1971 }
1972 
1973 static size_t get_note_info_size(struct elf_note_info *info)
1974 {
1975 	return info->size;
1976 }
1977 
1978 /*
1979  * Write all the notes for each thread.  When writing the first thread, the
1980  * process-wide notes are interleaved after the first thread-specific note.
1981  */
1982 static int write_note_info(struct elf_note_info *info,
1983 			   struct coredump_params *cprm)
1984 {
1985 	bool first = true;
1986 	struct elf_thread_core_info *t = info->thread;
1987 
1988 	do {
1989 		int i;
1990 
1991 		if (!writenote(&t->notes[0], cprm))
1992 			return 0;
1993 
1994 		if (first && !writenote(&info->psinfo, cprm))
1995 			return 0;
1996 		if (first && !writenote(&info->signote, cprm))
1997 			return 0;
1998 		if (first && !writenote(&info->auxv, cprm))
1999 			return 0;
2000 		if (first && info->files.data &&
2001 				!writenote(&info->files, cprm))
2002 			return 0;
2003 
2004 		for (i = 1; i < info->thread_notes; ++i)
2005 			if (t->notes[i].data &&
2006 			    !writenote(&t->notes[i], cprm))
2007 				return 0;
2008 
2009 		first = false;
2010 		t = t->next;
2011 	} while (t);
2012 
2013 	return 1;
2014 }
2015 
2016 static void free_note_info(struct elf_note_info *info)
2017 {
2018 	struct elf_thread_core_info *threads = info->thread;
2019 	while (threads) {
2020 		unsigned int i;
2021 		struct elf_thread_core_info *t = threads;
2022 		threads = t->next;
2023 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
2024 		for (i = 1; i < info->thread_notes; ++i)
2025 			kfree(t->notes[i].data);
2026 		kfree(t);
2027 	}
2028 	kfree(info->psinfo.data);
2029 	kvfree(info->files.data);
2030 }
2031 
2032 #else
2033 
2034 /* Here is the structure in which status of each thread is captured. */
2035 struct elf_thread_status
2036 {
2037 	struct list_head list;
2038 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
2039 	elf_fpregset_t fpu;		/* NT_PRFPREG */
2040 	struct task_struct *thread;
2041 	struct memelfnote notes[3];
2042 	int num_notes;
2043 };
2044 
2045 /*
2046  * In order to add the specific thread information for the elf file format,
2047  * we need to keep a linked list of every threads pr_status and then create
2048  * a single section for them in the final core file.
2049  */
2050 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
2051 {
2052 	int sz = 0;
2053 	struct task_struct *p = t->thread;
2054 	t->num_notes = 0;
2055 
2056 	fill_prstatus(&t->prstatus, p, signr);
2057 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
2058 
2059 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
2060 		  &(t->prstatus));
2061 	t->num_notes++;
2062 	sz += notesize(&t->notes[0]);
2063 
2064 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
2065 								&t->fpu))) {
2066 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
2067 			  &(t->fpu));
2068 		t->num_notes++;
2069 		sz += notesize(&t->notes[1]);
2070 	}
2071 	return sz;
2072 }
2073 
2074 struct elf_note_info {
2075 	struct memelfnote *notes;
2076 	struct memelfnote *notes_files;
2077 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
2078 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
2079 	struct list_head thread_list;
2080 	elf_fpregset_t *fpu;
2081 	user_siginfo_t csigdata;
2082 	int thread_status_size;
2083 	int numnote;
2084 };
2085 
2086 static int elf_note_info_init(struct elf_note_info *info)
2087 {
2088 	memset(info, 0, sizeof(*info));
2089 	INIT_LIST_HEAD(&info->thread_list);
2090 
2091 	/* Allocate space for ELF notes */
2092 	info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
2093 	if (!info->notes)
2094 		return 0;
2095 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2096 	if (!info->psinfo)
2097 		return 0;
2098 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2099 	if (!info->prstatus)
2100 		return 0;
2101 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2102 	if (!info->fpu)
2103 		return 0;
2104 	return 1;
2105 }
2106 
2107 static int fill_note_info(struct elfhdr *elf, int phdrs,
2108 			  struct elf_note_info *info,
2109 			  const kernel_siginfo_t *siginfo, struct pt_regs *regs)
2110 {
2111 	struct core_thread *ct;
2112 	struct elf_thread_status *ets;
2113 
2114 	if (!elf_note_info_init(info))
2115 		return 0;
2116 
2117 	for (ct = current->mm->core_state->dumper.next;
2118 					ct; ct = ct->next) {
2119 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2120 		if (!ets)
2121 			return 0;
2122 
2123 		ets->thread = ct->task;
2124 		list_add(&ets->list, &info->thread_list);
2125 	}
2126 
2127 	list_for_each_entry(ets, &info->thread_list, list) {
2128 		int sz;
2129 
2130 		sz = elf_dump_thread_status(siginfo->si_signo, ets);
2131 		info->thread_status_size += sz;
2132 	}
2133 	/* now collect the dump for the current */
2134 	memset(info->prstatus, 0, sizeof(*info->prstatus));
2135 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
2136 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2137 
2138 	/* Set up header */
2139 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2140 
2141 	/*
2142 	 * Set up the notes in similar form to SVR4 core dumps made
2143 	 * with info from their /proc.
2144 	 */
2145 
2146 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2147 		  sizeof(*info->prstatus), info->prstatus);
2148 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2149 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2150 		  sizeof(*info->psinfo), info->psinfo);
2151 
2152 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2153 	fill_auxv_note(info->notes + 3, current->mm);
2154 	info->numnote = 4;
2155 
2156 	if (fill_files_note(info->notes + info->numnote) == 0) {
2157 		info->notes_files = info->notes + info->numnote;
2158 		info->numnote++;
2159 	}
2160 
2161 	/* Try to dump the FPU. */
2162 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2163 							       info->fpu);
2164 	if (info->prstatus->pr_fpvalid)
2165 		fill_note(info->notes + info->numnote++,
2166 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2167 	return 1;
2168 }
2169 
2170 static size_t get_note_info_size(struct elf_note_info *info)
2171 {
2172 	int sz = 0;
2173 	int i;
2174 
2175 	for (i = 0; i < info->numnote; i++)
2176 		sz += notesize(info->notes + i);
2177 
2178 	sz += info->thread_status_size;
2179 
2180 	return sz;
2181 }
2182 
2183 static int write_note_info(struct elf_note_info *info,
2184 			   struct coredump_params *cprm)
2185 {
2186 	struct elf_thread_status *ets;
2187 	int i;
2188 
2189 	for (i = 0; i < info->numnote; i++)
2190 		if (!writenote(info->notes + i, cprm))
2191 			return 0;
2192 
2193 	/* write out the thread status notes section */
2194 	list_for_each_entry(ets, &info->thread_list, list) {
2195 		for (i = 0; i < ets->num_notes; i++)
2196 			if (!writenote(&ets->notes[i], cprm))
2197 				return 0;
2198 	}
2199 
2200 	return 1;
2201 }
2202 
2203 static void free_note_info(struct elf_note_info *info)
2204 {
2205 	while (!list_empty(&info->thread_list)) {
2206 		struct list_head *tmp = info->thread_list.next;
2207 		list_del(tmp);
2208 		kfree(list_entry(tmp, struct elf_thread_status, list));
2209 	}
2210 
2211 	/* Free data possibly allocated by fill_files_note(): */
2212 	if (info->notes_files)
2213 		kvfree(info->notes_files->data);
2214 
2215 	kfree(info->prstatus);
2216 	kfree(info->psinfo);
2217 	kfree(info->notes);
2218 	kfree(info->fpu);
2219 }
2220 
2221 #endif
2222 
2223 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2224 					struct vm_area_struct *gate_vma)
2225 {
2226 	struct vm_area_struct *ret = tsk->mm->mmap;
2227 
2228 	if (ret)
2229 		return ret;
2230 	return gate_vma;
2231 }
2232 /*
2233  * Helper function for iterating across a vma list.  It ensures that the caller
2234  * will visit `gate_vma' prior to terminating the search.
2235  */
2236 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2237 					struct vm_area_struct *gate_vma)
2238 {
2239 	struct vm_area_struct *ret;
2240 
2241 	ret = this_vma->vm_next;
2242 	if (ret)
2243 		return ret;
2244 	if (this_vma == gate_vma)
2245 		return NULL;
2246 	return gate_vma;
2247 }
2248 
2249 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2250 			     elf_addr_t e_shoff, int segs)
2251 {
2252 	elf->e_shoff = e_shoff;
2253 	elf->e_shentsize = sizeof(*shdr4extnum);
2254 	elf->e_shnum = 1;
2255 	elf->e_shstrndx = SHN_UNDEF;
2256 
2257 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2258 
2259 	shdr4extnum->sh_type = SHT_NULL;
2260 	shdr4extnum->sh_size = elf->e_shnum;
2261 	shdr4extnum->sh_link = elf->e_shstrndx;
2262 	shdr4extnum->sh_info = segs;
2263 }
2264 
2265 /*
2266  * Actual dumper
2267  *
2268  * This is a two-pass process; first we find the offsets of the bits,
2269  * and then they are actually written out.  If we run out of core limit
2270  * we just truncate.
2271  */
2272 static int elf_core_dump(struct coredump_params *cprm)
2273 {
2274 	int has_dumped = 0;
2275 	int segs, i;
2276 	size_t vma_data_size = 0;
2277 	struct vm_area_struct *vma, *gate_vma;
2278 	struct elfhdr elf;
2279 	loff_t offset = 0, dataoff;
2280 	struct elf_note_info info = { };
2281 	struct elf_phdr *phdr4note = NULL;
2282 	struct elf_shdr *shdr4extnum = NULL;
2283 	Elf_Half e_phnum;
2284 	elf_addr_t e_shoff;
2285 	elf_addr_t *vma_filesz = NULL;
2286 
2287 	/*
2288 	 * We no longer stop all VM operations.
2289 	 *
2290 	 * This is because those proceses that could possibly change map_count
2291 	 * or the mmap / vma pages are now blocked in do_exit on current
2292 	 * finishing this core dump.
2293 	 *
2294 	 * Only ptrace can touch these memory addresses, but it doesn't change
2295 	 * the map_count or the pages allocated. So no possibility of crashing
2296 	 * exists while dumping the mm->vm_next areas to the core file.
2297 	 */
2298 
2299 	/*
2300 	 * The number of segs are recored into ELF header as 16bit value.
2301 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2302 	 */
2303 	segs = current->mm->map_count;
2304 	segs += elf_core_extra_phdrs();
2305 
2306 	gate_vma = get_gate_vma(current->mm);
2307 	if (gate_vma != NULL)
2308 		segs++;
2309 
2310 	/* for notes section */
2311 	segs++;
2312 
2313 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2314 	 * this, kernel supports extended numbering. Have a look at
2315 	 * include/linux/elf.h for further information. */
2316 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2317 
2318 	/*
2319 	 * Collect all the non-memory information about the process for the
2320 	 * notes.  This also sets up the file header.
2321 	 */
2322 	if (!fill_note_info(&elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2323 		goto end_coredump;
2324 
2325 	has_dumped = 1;
2326 
2327 	offset += sizeof(elf);				/* Elf header */
2328 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2329 
2330 	/* Write notes phdr entry */
2331 	{
2332 		size_t sz = get_note_info_size(&info);
2333 
2334 		sz += elf_coredump_extra_notes_size();
2335 
2336 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2337 		if (!phdr4note)
2338 			goto end_coredump;
2339 
2340 		fill_elf_note_phdr(phdr4note, sz, offset);
2341 		offset += sz;
2342 	}
2343 
2344 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2345 
2346 	/*
2347 	 * Zero vma process will get ZERO_SIZE_PTR here.
2348 	 * Let coredump continue for register state at least.
2349 	 */
2350 	vma_filesz = kvmalloc(array_size(sizeof(*vma_filesz), (segs - 1)),
2351 			      GFP_KERNEL);
2352 	if (!vma_filesz)
2353 		goto end_coredump;
2354 
2355 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2356 			vma = next_vma(vma, gate_vma)) {
2357 		unsigned long dump_size;
2358 
2359 		dump_size = vma_dump_size(vma, cprm->mm_flags);
2360 		vma_filesz[i++] = dump_size;
2361 		vma_data_size += dump_size;
2362 	}
2363 
2364 	offset += vma_data_size;
2365 	offset += elf_core_extra_data_size();
2366 	e_shoff = offset;
2367 
2368 	if (e_phnum == PN_XNUM) {
2369 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2370 		if (!shdr4extnum)
2371 			goto end_coredump;
2372 		fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2373 	}
2374 
2375 	offset = dataoff;
2376 
2377 	if (!dump_emit(cprm, &elf, sizeof(elf)))
2378 		goto end_coredump;
2379 
2380 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2381 		goto end_coredump;
2382 
2383 	/* Write program headers for segments dump */
2384 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2385 			vma = next_vma(vma, gate_vma)) {
2386 		struct elf_phdr phdr;
2387 
2388 		phdr.p_type = PT_LOAD;
2389 		phdr.p_offset = offset;
2390 		phdr.p_vaddr = vma->vm_start;
2391 		phdr.p_paddr = 0;
2392 		phdr.p_filesz = vma_filesz[i++];
2393 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2394 		offset += phdr.p_filesz;
2395 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2396 		if (vma->vm_flags & VM_WRITE)
2397 			phdr.p_flags |= PF_W;
2398 		if (vma->vm_flags & VM_EXEC)
2399 			phdr.p_flags |= PF_X;
2400 		phdr.p_align = ELF_EXEC_PAGESIZE;
2401 
2402 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2403 			goto end_coredump;
2404 	}
2405 
2406 	if (!elf_core_write_extra_phdrs(cprm, offset))
2407 		goto end_coredump;
2408 
2409  	/* write out the notes section */
2410 	if (!write_note_info(&info, cprm))
2411 		goto end_coredump;
2412 
2413 	if (elf_coredump_extra_notes_write(cprm))
2414 		goto end_coredump;
2415 
2416 	/* Align to page */
2417 	if (!dump_skip(cprm, dataoff - cprm->pos))
2418 		goto end_coredump;
2419 
2420 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2421 			vma = next_vma(vma, gate_vma)) {
2422 		unsigned long addr;
2423 		unsigned long end;
2424 
2425 		end = vma->vm_start + vma_filesz[i++];
2426 
2427 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2428 			struct page *page;
2429 			int stop;
2430 
2431 			page = get_dump_page(addr);
2432 			if (page) {
2433 				void *kaddr = kmap(page);
2434 				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2435 				kunmap(page);
2436 				put_page(page);
2437 			} else
2438 				stop = !dump_skip(cprm, PAGE_SIZE);
2439 			if (stop)
2440 				goto end_coredump;
2441 		}
2442 	}
2443 	dump_truncate(cprm);
2444 
2445 	if (!elf_core_write_extra_data(cprm))
2446 		goto end_coredump;
2447 
2448 	if (e_phnum == PN_XNUM) {
2449 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2450 			goto end_coredump;
2451 	}
2452 
2453 end_coredump:
2454 	free_note_info(&info);
2455 	kfree(shdr4extnum);
2456 	kvfree(vma_filesz);
2457 	kfree(phdr4note);
2458 	return has_dumped;
2459 }
2460 
2461 #endif		/* CONFIG_ELF_CORE */
2462 
2463 static int __init init_elf_binfmt(void)
2464 {
2465 	register_binfmt(&elf_format);
2466 	return 0;
2467 }
2468 
2469 static void __exit exit_elf_binfmt(void)
2470 {
2471 	/* Remove the COFF and ELF loaders. */
2472 	unregister_binfmt(&elf_format);
2473 }
2474 
2475 core_initcall(init_elf_binfmt);
2476 module_exit(exit_elf_binfmt);
2477 MODULE_LICENSE("GPL");
2478