xref: /linux/fs/binfmt_elf.c (revision 3545deff0ec7a37de7ed9632e262598582b140e9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/binfmt_elf.c
4  *
5  * These are the functions used to load ELF format executables as used
6  * on SVr4 machines.  Information on the format may be found in the book
7  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8  * Tools".
9  *
10  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/log2.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/slab.h>
25 #include <linux/personality.h>
26 #include <linux/elfcore.h>
27 #include <linux/init.h>
28 #include <linux/highuid.h>
29 #include <linux/compiler.h>
30 #include <linux/highmem.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vmalloc.h>
34 #include <linux/security.h>
35 #include <linux/random.h>
36 #include <linux/elf.h>
37 #include <linux/elf-randomize.h>
38 #include <linux/utsname.h>
39 #include <linux/coredump.h>
40 #include <linux/sched.h>
41 #include <linux/sched/coredump.h>
42 #include <linux/sched/task_stack.h>
43 #include <linux/sched/cputime.h>
44 #include <linux/sizes.h>
45 #include <linux/types.h>
46 #include <linux/cred.h>
47 #include <linux/dax.h>
48 #include <linux/uaccess.h>
49 #include <linux/rseq.h>
50 #include <asm/param.h>
51 #include <asm/page.h>
52 
53 #ifndef ELF_COMPAT
54 #define ELF_COMPAT 0
55 #endif
56 
57 #ifndef user_long_t
58 #define user_long_t long
59 #endif
60 #ifndef user_siginfo_t
61 #define user_siginfo_t siginfo_t
62 #endif
63 
64 /* That's for binfmt_elf_fdpic to deal with */
65 #ifndef elf_check_fdpic
66 #define elf_check_fdpic(ex) false
67 #endif
68 
69 static int load_elf_binary(struct linux_binprm *bprm);
70 
71 #ifdef CONFIG_USELIB
72 static int load_elf_library(struct file *);
73 #else
74 #define load_elf_library NULL
75 #endif
76 
77 /*
78  * If we don't support core dumping, then supply a NULL so we
79  * don't even try.
80  */
81 #ifdef CONFIG_ELF_CORE
82 static int elf_core_dump(struct coredump_params *cprm);
83 #else
84 #define elf_core_dump	NULL
85 #endif
86 
87 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
88 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
89 #else
90 #define ELF_MIN_ALIGN	PAGE_SIZE
91 #endif
92 
93 #ifndef ELF_CORE_EFLAGS
94 #define ELF_CORE_EFLAGS	0
95 #endif
96 
97 #define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1))
98 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
99 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
100 
101 static struct linux_binfmt elf_format = {
102 	.module		= THIS_MODULE,
103 	.load_binary	= load_elf_binary,
104 	.load_shlib	= load_elf_library,
105 #ifdef CONFIG_COREDUMP
106 	.core_dump	= elf_core_dump,
107 	.min_coredump	= ELF_EXEC_PAGESIZE,
108 #endif
109 };
110 
111 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
112 
113 /*
114  * We need to explicitly zero any trailing portion of the page that follows
115  * p_filesz when it ends before the page ends (e.g. bss), otherwise this
116  * memory will contain the junk from the file that should not be present.
117  */
118 static int padzero(unsigned long address)
119 {
120 	unsigned long nbyte;
121 
122 	nbyte = ELF_PAGEOFFSET(address);
123 	if (nbyte) {
124 		nbyte = ELF_MIN_ALIGN - nbyte;
125 		if (clear_user((void __user *)address, nbyte))
126 			return -EFAULT;
127 	}
128 	return 0;
129 }
130 
131 /* Let's use some macros to make this stack manipulation a little clearer */
132 #ifdef CONFIG_STACK_GROWSUP
133 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
134 #define STACK_ROUND(sp, items) \
135 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
136 #define STACK_ALLOC(sp, len) ({ \
137 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
138 	old_sp; })
139 #else
140 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
141 #define STACK_ROUND(sp, items) \
142 	(((unsigned long) (sp - items)) &~ 15UL)
143 #define STACK_ALLOC(sp, len) (sp -= len)
144 #endif
145 
146 #ifndef ELF_BASE_PLATFORM
147 /*
148  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
149  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
150  * will be copied to the user stack in the same manner as AT_PLATFORM.
151  */
152 #define ELF_BASE_PLATFORM NULL
153 #endif
154 
155 static int
156 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
157 		unsigned long interp_load_addr,
158 		unsigned long e_entry, unsigned long phdr_addr)
159 {
160 	struct mm_struct *mm = current->mm;
161 	unsigned long p = bprm->p;
162 	int argc = bprm->argc;
163 	int envc = bprm->envc;
164 	elf_addr_t __user *sp;
165 	elf_addr_t __user *u_platform;
166 	elf_addr_t __user *u_base_platform;
167 	elf_addr_t __user *u_rand_bytes;
168 	const char *k_platform = ELF_PLATFORM;
169 	const char *k_base_platform = ELF_BASE_PLATFORM;
170 	unsigned char k_rand_bytes[16];
171 	int items;
172 	elf_addr_t *elf_info;
173 	elf_addr_t flags = 0;
174 	int ei_index;
175 	const struct cred *cred = current_cred();
176 	struct vm_area_struct *vma;
177 
178 	/*
179 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
180 	 * evictions by the processes running on the same package. One
181 	 * thing we can do is to shuffle the initial stack for them.
182 	 */
183 
184 	p = arch_align_stack(p);
185 
186 	/*
187 	 * If this architecture has a platform capability string, copy it
188 	 * to userspace.  In some cases (Sparc), this info is impossible
189 	 * for userspace to get any other way, in others (i386) it is
190 	 * merely difficult.
191 	 */
192 	u_platform = NULL;
193 	if (k_platform) {
194 		size_t len = strlen(k_platform) + 1;
195 
196 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
197 		if (copy_to_user(u_platform, k_platform, len))
198 			return -EFAULT;
199 	}
200 
201 	/*
202 	 * If this architecture has a "base" platform capability
203 	 * string, copy it to userspace.
204 	 */
205 	u_base_platform = NULL;
206 	if (k_base_platform) {
207 		size_t len = strlen(k_base_platform) + 1;
208 
209 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
210 		if (copy_to_user(u_base_platform, k_base_platform, len))
211 			return -EFAULT;
212 	}
213 
214 	/*
215 	 * Generate 16 random bytes for userspace PRNG seeding.
216 	 */
217 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
218 	u_rand_bytes = (elf_addr_t __user *)
219 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
220 	if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
221 		return -EFAULT;
222 
223 	/* Create the ELF interpreter info */
224 	elf_info = (elf_addr_t *)mm->saved_auxv;
225 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
226 #define NEW_AUX_ENT(id, val) \
227 	do { \
228 		*elf_info++ = id; \
229 		*elf_info++ = val; \
230 	} while (0)
231 
232 #ifdef ARCH_DLINFO
233 	/*
234 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
235 	 * AUXV.
236 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
237 	 * ARCH_DLINFO changes
238 	 */
239 	ARCH_DLINFO;
240 #endif
241 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
242 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
243 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
244 	NEW_AUX_ENT(AT_PHDR, phdr_addr);
245 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
246 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
247 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
248 	if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0)
249 		flags |= AT_FLAGS_PRESERVE_ARGV0;
250 	NEW_AUX_ENT(AT_FLAGS, flags);
251 	NEW_AUX_ENT(AT_ENTRY, e_entry);
252 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
253 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
254 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
255 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
256 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
257 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
258 #ifdef ELF_HWCAP2
259 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
260 #endif
261 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
262 	if (k_platform) {
263 		NEW_AUX_ENT(AT_PLATFORM,
264 			    (elf_addr_t)(unsigned long)u_platform);
265 	}
266 	if (k_base_platform) {
267 		NEW_AUX_ENT(AT_BASE_PLATFORM,
268 			    (elf_addr_t)(unsigned long)u_base_platform);
269 	}
270 	if (bprm->have_execfd) {
271 		NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
272 	}
273 #ifdef CONFIG_RSEQ
274 	NEW_AUX_ENT(AT_RSEQ_FEATURE_SIZE, offsetof(struct rseq, end));
275 	NEW_AUX_ENT(AT_RSEQ_ALIGN, __alignof__(struct rseq));
276 #endif
277 #undef NEW_AUX_ENT
278 	/* AT_NULL is zero; clear the rest too */
279 	memset(elf_info, 0, (char *)mm->saved_auxv +
280 			sizeof(mm->saved_auxv) - (char *)elf_info);
281 
282 	/* And advance past the AT_NULL entry.  */
283 	elf_info += 2;
284 
285 	ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
286 	sp = STACK_ADD(p, ei_index);
287 
288 	items = (argc + 1) + (envc + 1) + 1;
289 	bprm->p = STACK_ROUND(sp, items);
290 
291 	/* Point sp at the lowest address on the stack */
292 #ifdef CONFIG_STACK_GROWSUP
293 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
294 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
295 #else
296 	sp = (elf_addr_t __user *)bprm->p;
297 #endif
298 
299 
300 	/*
301 	 * Grow the stack manually; some architectures have a limit on how
302 	 * far ahead a user-space access may be in order to grow the stack.
303 	 */
304 	if (mmap_write_lock_killable(mm))
305 		return -EINTR;
306 	vma = find_extend_vma_locked(mm, bprm->p);
307 	mmap_write_unlock(mm);
308 	if (!vma)
309 		return -EFAULT;
310 
311 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
312 	if (put_user(argc, sp++))
313 		return -EFAULT;
314 
315 	/* Populate list of argv pointers back to argv strings. */
316 	p = mm->arg_end = mm->arg_start;
317 	while (argc-- > 0) {
318 		size_t len;
319 		if (put_user((elf_addr_t)p, sp++))
320 			return -EFAULT;
321 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
322 		if (!len || len > MAX_ARG_STRLEN)
323 			return -EINVAL;
324 		p += len;
325 	}
326 	if (put_user(0, sp++))
327 		return -EFAULT;
328 	mm->arg_end = p;
329 
330 	/* Populate list of envp pointers back to envp strings. */
331 	mm->env_end = mm->env_start = p;
332 	while (envc-- > 0) {
333 		size_t len;
334 		if (put_user((elf_addr_t)p, sp++))
335 			return -EFAULT;
336 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
337 		if (!len || len > MAX_ARG_STRLEN)
338 			return -EINVAL;
339 		p += len;
340 	}
341 	if (put_user(0, sp++))
342 		return -EFAULT;
343 	mm->env_end = p;
344 
345 	/* Put the elf_info on the stack in the right place.  */
346 	if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
347 		return -EFAULT;
348 	return 0;
349 }
350 
351 /*
352  * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset"
353  * into memory at "addr". (Note that p_filesz is rounded up to the
354  * next page, so any extra bytes from the file must be wiped.)
355  */
356 static unsigned long elf_map(struct file *filep, unsigned long addr,
357 		const struct elf_phdr *eppnt, int prot, int type,
358 		unsigned long total_size)
359 {
360 	unsigned long map_addr;
361 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
362 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
363 	addr = ELF_PAGESTART(addr);
364 	size = ELF_PAGEALIGN(size);
365 
366 	/* mmap() will return -EINVAL if given a zero size, but a
367 	 * segment with zero filesize is perfectly valid */
368 	if (!size)
369 		return addr;
370 
371 	/*
372 	* total_size is the size of the ELF (interpreter) image.
373 	* The _first_ mmap needs to know the full size, otherwise
374 	* randomization might put this image into an overlapping
375 	* position with the ELF binary image. (since size < total_size)
376 	* So we first map the 'big' image - and unmap the remainder at
377 	* the end. (which unmap is needed for ELF images with holes.)
378 	*/
379 	if (total_size) {
380 		total_size = ELF_PAGEALIGN(total_size);
381 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
382 		if (!BAD_ADDR(map_addr))
383 			vm_munmap(map_addr+size, total_size-size);
384 	} else
385 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
386 
387 	if ((type & MAP_FIXED_NOREPLACE) &&
388 	    PTR_ERR((void *)map_addr) == -EEXIST)
389 		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
390 			task_pid_nr(current), current->comm, (void *)addr);
391 
392 	return(map_addr);
393 }
394 
395 /*
396  * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset"
397  * into memory at "addr". Memory from "p_filesz" through "p_memsz"
398  * rounded up to the next page is zeroed.
399  */
400 static unsigned long elf_load(struct file *filep, unsigned long addr,
401 		const struct elf_phdr *eppnt, int prot, int type,
402 		unsigned long total_size)
403 {
404 	unsigned long zero_start, zero_end;
405 	unsigned long map_addr;
406 
407 	if (eppnt->p_filesz) {
408 		map_addr = elf_map(filep, addr, eppnt, prot, type, total_size);
409 		if (BAD_ADDR(map_addr))
410 			return map_addr;
411 		if (eppnt->p_memsz > eppnt->p_filesz) {
412 			zero_start = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) +
413 				eppnt->p_filesz;
414 			zero_end = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) +
415 				eppnt->p_memsz;
416 
417 			/*
418 			 * Zero the end of the last mapped page but ignore
419 			 * any errors if the segment isn't writable.
420 			 */
421 			if (padzero(zero_start) && (prot & PROT_WRITE))
422 				return -EFAULT;
423 		}
424 	} else {
425 		map_addr = zero_start = ELF_PAGESTART(addr);
426 		zero_end = zero_start + ELF_PAGEOFFSET(eppnt->p_vaddr) +
427 			eppnt->p_memsz;
428 	}
429 	if (eppnt->p_memsz > eppnt->p_filesz) {
430 		/*
431 		 * Map the last of the segment.
432 		 * If the header is requesting these pages to be
433 		 * executable, honour that (ppc32 needs this).
434 		 */
435 		int error;
436 
437 		zero_start = ELF_PAGEALIGN(zero_start);
438 		zero_end = ELF_PAGEALIGN(zero_end);
439 
440 		error = vm_brk_flags(zero_start, zero_end - zero_start,
441 				     prot & PROT_EXEC ? VM_EXEC : 0);
442 		if (error)
443 			map_addr = error;
444 	}
445 	return map_addr;
446 }
447 
448 
449 static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr)
450 {
451 	elf_addr_t min_addr = -1;
452 	elf_addr_t max_addr = 0;
453 	bool pt_load = false;
454 	int i;
455 
456 	for (i = 0; i < nr; i++) {
457 		if (phdr[i].p_type == PT_LOAD) {
458 			min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr));
459 			max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz);
460 			pt_load = true;
461 		}
462 	}
463 	return pt_load ? (max_addr - min_addr) : 0;
464 }
465 
466 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
467 {
468 	ssize_t rv;
469 
470 	rv = kernel_read(file, buf, len, &pos);
471 	if (unlikely(rv != len)) {
472 		return (rv < 0) ? rv : -EIO;
473 	}
474 	return 0;
475 }
476 
477 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
478 {
479 	unsigned long alignment = 0;
480 	int i;
481 
482 	for (i = 0; i < nr; i++) {
483 		if (cmds[i].p_type == PT_LOAD) {
484 			unsigned long p_align = cmds[i].p_align;
485 
486 			/* skip non-power of two alignments as invalid */
487 			if (!is_power_of_2(p_align))
488 				continue;
489 			alignment = max(alignment, p_align);
490 		}
491 	}
492 
493 	/* ensure we align to at least one page */
494 	return ELF_PAGEALIGN(alignment);
495 }
496 
497 /**
498  * load_elf_phdrs() - load ELF program headers
499  * @elf_ex:   ELF header of the binary whose program headers should be loaded
500  * @elf_file: the opened ELF binary file
501  *
502  * Loads ELF program headers from the binary file elf_file, which has the ELF
503  * header pointed to by elf_ex, into a newly allocated array. The caller is
504  * responsible for freeing the allocated data. Returns NULL upon failure.
505  */
506 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
507 				       struct file *elf_file)
508 {
509 	struct elf_phdr *elf_phdata = NULL;
510 	int retval = -1;
511 	unsigned int size;
512 
513 	/*
514 	 * If the size of this structure has changed, then punt, since
515 	 * we will be doing the wrong thing.
516 	 */
517 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
518 		goto out;
519 
520 	/* Sanity check the number of program headers... */
521 	/* ...and their total size. */
522 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
523 	if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
524 		goto out;
525 
526 	elf_phdata = kmalloc(size, GFP_KERNEL);
527 	if (!elf_phdata)
528 		goto out;
529 
530 	/* Read in the program headers */
531 	retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
532 
533 out:
534 	if (retval) {
535 		kfree(elf_phdata);
536 		elf_phdata = NULL;
537 	}
538 	return elf_phdata;
539 }
540 
541 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
542 
543 /**
544  * struct arch_elf_state - arch-specific ELF loading state
545  *
546  * This structure is used to preserve architecture specific data during
547  * the loading of an ELF file, throughout the checking of architecture
548  * specific ELF headers & through to the point where the ELF load is
549  * known to be proceeding (ie. SET_PERSONALITY).
550  *
551  * This implementation is a dummy for architectures which require no
552  * specific state.
553  */
554 struct arch_elf_state {
555 };
556 
557 #define INIT_ARCH_ELF_STATE {}
558 
559 /**
560  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
561  * @ehdr:	The main ELF header
562  * @phdr:	The program header to check
563  * @elf:	The open ELF file
564  * @is_interp:	True if the phdr is from the interpreter of the ELF being
565  *		loaded, else false.
566  * @state:	Architecture-specific state preserved throughout the process
567  *		of loading the ELF.
568  *
569  * Inspects the program header phdr to validate its correctness and/or
570  * suitability for the system. Called once per ELF program header in the
571  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
572  * interpreter.
573  *
574  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
575  *         with that return code.
576  */
577 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
578 				   struct elf_phdr *phdr,
579 				   struct file *elf, bool is_interp,
580 				   struct arch_elf_state *state)
581 {
582 	/* Dummy implementation, always proceed */
583 	return 0;
584 }
585 
586 /**
587  * arch_check_elf() - check an ELF executable
588  * @ehdr:	The main ELF header
589  * @has_interp:	True if the ELF has an interpreter, else false.
590  * @interp_ehdr: The interpreter's ELF header
591  * @state:	Architecture-specific state preserved throughout the process
592  *		of loading the ELF.
593  *
594  * Provides a final opportunity for architecture code to reject the loading
595  * of the ELF & cause an exec syscall to return an error. This is called after
596  * all program headers to be checked by arch_elf_pt_proc have been.
597  *
598  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
599  *         with that return code.
600  */
601 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
602 				 struct elfhdr *interp_ehdr,
603 				 struct arch_elf_state *state)
604 {
605 	/* Dummy implementation, always proceed */
606 	return 0;
607 }
608 
609 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
610 
611 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
612 			    bool has_interp, bool is_interp)
613 {
614 	int prot = 0;
615 
616 	if (p_flags & PF_R)
617 		prot |= PROT_READ;
618 	if (p_flags & PF_W)
619 		prot |= PROT_WRITE;
620 	if (p_flags & PF_X)
621 		prot |= PROT_EXEC;
622 
623 	return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
624 }
625 
626 /* This is much more generalized than the library routine read function,
627    so we keep this separate.  Technically the library read function
628    is only provided so that we can read a.out libraries that have
629    an ELF header */
630 
631 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
632 		struct file *interpreter,
633 		unsigned long no_base, struct elf_phdr *interp_elf_phdata,
634 		struct arch_elf_state *arch_state)
635 {
636 	struct elf_phdr *eppnt;
637 	unsigned long load_addr = 0;
638 	int load_addr_set = 0;
639 	unsigned long error = ~0UL;
640 	unsigned long total_size;
641 	int i;
642 
643 	/* First of all, some simple consistency checks */
644 	if (interp_elf_ex->e_type != ET_EXEC &&
645 	    interp_elf_ex->e_type != ET_DYN)
646 		goto out;
647 	if (!elf_check_arch(interp_elf_ex) ||
648 	    elf_check_fdpic(interp_elf_ex))
649 		goto out;
650 	if (!interpreter->f_op->mmap)
651 		goto out;
652 
653 	total_size = total_mapping_size(interp_elf_phdata,
654 					interp_elf_ex->e_phnum);
655 	if (!total_size) {
656 		error = -EINVAL;
657 		goto out;
658 	}
659 
660 	eppnt = interp_elf_phdata;
661 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
662 		if (eppnt->p_type == PT_LOAD) {
663 			int elf_type = MAP_PRIVATE;
664 			int elf_prot = make_prot(eppnt->p_flags, arch_state,
665 						 true, true);
666 			unsigned long vaddr = 0;
667 			unsigned long k, map_addr;
668 
669 			vaddr = eppnt->p_vaddr;
670 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
671 				elf_type |= MAP_FIXED;
672 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
673 				load_addr = -vaddr;
674 
675 			map_addr = elf_load(interpreter, load_addr + vaddr,
676 					eppnt, elf_prot, elf_type, total_size);
677 			total_size = 0;
678 			error = map_addr;
679 			if (BAD_ADDR(map_addr))
680 				goto out;
681 
682 			if (!load_addr_set &&
683 			    interp_elf_ex->e_type == ET_DYN) {
684 				load_addr = map_addr - ELF_PAGESTART(vaddr);
685 				load_addr_set = 1;
686 			}
687 
688 			/*
689 			 * Check to see if the section's size will overflow the
690 			 * allowed task size. Note that p_filesz must always be
691 			 * <= p_memsize so it's only necessary to check p_memsz.
692 			 */
693 			k = load_addr + eppnt->p_vaddr;
694 			if (BAD_ADDR(k) ||
695 			    eppnt->p_filesz > eppnt->p_memsz ||
696 			    eppnt->p_memsz > TASK_SIZE ||
697 			    TASK_SIZE - eppnt->p_memsz < k) {
698 				error = -ENOMEM;
699 				goto out;
700 			}
701 		}
702 	}
703 
704 	error = load_addr;
705 out:
706 	return error;
707 }
708 
709 /*
710  * These are the functions used to load ELF style executables and shared
711  * libraries.  There is no binary dependent code anywhere else.
712  */
713 
714 static int parse_elf_property(const char *data, size_t *off, size_t datasz,
715 			      struct arch_elf_state *arch,
716 			      bool have_prev_type, u32 *prev_type)
717 {
718 	size_t o, step;
719 	const struct gnu_property *pr;
720 	int ret;
721 
722 	if (*off == datasz)
723 		return -ENOENT;
724 
725 	if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
726 		return -EIO;
727 	o = *off;
728 	datasz -= *off;
729 
730 	if (datasz < sizeof(*pr))
731 		return -ENOEXEC;
732 	pr = (const struct gnu_property *)(data + o);
733 	o += sizeof(*pr);
734 	datasz -= sizeof(*pr);
735 
736 	if (pr->pr_datasz > datasz)
737 		return -ENOEXEC;
738 
739 	WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
740 	step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
741 	if (step > datasz)
742 		return -ENOEXEC;
743 
744 	/* Properties are supposed to be unique and sorted on pr_type: */
745 	if (have_prev_type && pr->pr_type <= *prev_type)
746 		return -ENOEXEC;
747 	*prev_type = pr->pr_type;
748 
749 	ret = arch_parse_elf_property(pr->pr_type, data + o,
750 				      pr->pr_datasz, ELF_COMPAT, arch);
751 	if (ret)
752 		return ret;
753 
754 	*off = o + step;
755 	return 0;
756 }
757 
758 #define NOTE_DATA_SZ SZ_1K
759 #define GNU_PROPERTY_TYPE_0_NAME "GNU"
760 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
761 
762 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
763 				struct arch_elf_state *arch)
764 {
765 	union {
766 		struct elf_note nhdr;
767 		char data[NOTE_DATA_SZ];
768 	} note;
769 	loff_t pos;
770 	ssize_t n;
771 	size_t off, datasz;
772 	int ret;
773 	bool have_prev_type;
774 	u32 prev_type;
775 
776 	if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
777 		return 0;
778 
779 	/* load_elf_binary() shouldn't call us unless this is true... */
780 	if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
781 		return -ENOEXEC;
782 
783 	/* If the properties are crazy large, that's too bad (for now): */
784 	if (phdr->p_filesz > sizeof(note))
785 		return -ENOEXEC;
786 
787 	pos = phdr->p_offset;
788 	n = kernel_read(f, &note, phdr->p_filesz, &pos);
789 
790 	BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
791 	if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
792 		return -EIO;
793 
794 	if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
795 	    note.nhdr.n_namesz != NOTE_NAME_SZ ||
796 	    strncmp(note.data + sizeof(note.nhdr),
797 		    GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
798 		return -ENOEXEC;
799 
800 	off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
801 		       ELF_GNU_PROPERTY_ALIGN);
802 	if (off > n)
803 		return -ENOEXEC;
804 
805 	if (note.nhdr.n_descsz > n - off)
806 		return -ENOEXEC;
807 	datasz = off + note.nhdr.n_descsz;
808 
809 	have_prev_type = false;
810 	do {
811 		ret = parse_elf_property(note.data, &off, datasz, arch,
812 					 have_prev_type, &prev_type);
813 		have_prev_type = true;
814 	} while (!ret);
815 
816 	return ret == -ENOENT ? 0 : ret;
817 }
818 
819 static int load_elf_binary(struct linux_binprm *bprm)
820 {
821 	struct file *interpreter = NULL; /* to shut gcc up */
822 	unsigned long load_bias = 0, phdr_addr = 0;
823 	int first_pt_load = 1;
824 	unsigned long error;
825 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
826 	struct elf_phdr *elf_property_phdata = NULL;
827 	unsigned long elf_brk;
828 	int retval, i;
829 	unsigned long elf_entry;
830 	unsigned long e_entry;
831 	unsigned long interp_load_addr = 0;
832 	unsigned long start_code, end_code, start_data, end_data;
833 	unsigned long reloc_func_desc __maybe_unused = 0;
834 	int executable_stack = EXSTACK_DEFAULT;
835 	struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
836 	struct elfhdr *interp_elf_ex = NULL;
837 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
838 	struct mm_struct *mm;
839 	struct pt_regs *regs;
840 
841 	retval = -ENOEXEC;
842 	/* First of all, some simple consistency checks */
843 	if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
844 		goto out;
845 
846 	if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
847 		goto out;
848 	if (!elf_check_arch(elf_ex))
849 		goto out;
850 	if (elf_check_fdpic(elf_ex))
851 		goto out;
852 	if (!bprm->file->f_op->mmap)
853 		goto out;
854 
855 	elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
856 	if (!elf_phdata)
857 		goto out;
858 
859 	elf_ppnt = elf_phdata;
860 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
861 		char *elf_interpreter;
862 
863 		if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
864 			elf_property_phdata = elf_ppnt;
865 			continue;
866 		}
867 
868 		if (elf_ppnt->p_type != PT_INTERP)
869 			continue;
870 
871 		/*
872 		 * This is the program interpreter used for shared libraries -
873 		 * for now assume that this is an a.out format binary.
874 		 */
875 		retval = -ENOEXEC;
876 		if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
877 			goto out_free_ph;
878 
879 		retval = -ENOMEM;
880 		elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
881 		if (!elf_interpreter)
882 			goto out_free_ph;
883 
884 		retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
885 				  elf_ppnt->p_offset);
886 		if (retval < 0)
887 			goto out_free_interp;
888 		/* make sure path is NULL terminated */
889 		retval = -ENOEXEC;
890 		if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
891 			goto out_free_interp;
892 
893 		interpreter = open_exec(elf_interpreter);
894 		kfree(elf_interpreter);
895 		retval = PTR_ERR(interpreter);
896 		if (IS_ERR(interpreter))
897 			goto out_free_ph;
898 
899 		/*
900 		 * If the binary is not readable then enforce mm->dumpable = 0
901 		 * regardless of the interpreter's permissions.
902 		 */
903 		would_dump(bprm, interpreter);
904 
905 		interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
906 		if (!interp_elf_ex) {
907 			retval = -ENOMEM;
908 			goto out_free_file;
909 		}
910 
911 		/* Get the exec headers */
912 		retval = elf_read(interpreter, interp_elf_ex,
913 				  sizeof(*interp_elf_ex), 0);
914 		if (retval < 0)
915 			goto out_free_dentry;
916 
917 		break;
918 
919 out_free_interp:
920 		kfree(elf_interpreter);
921 		goto out_free_ph;
922 	}
923 
924 	elf_ppnt = elf_phdata;
925 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
926 		switch (elf_ppnt->p_type) {
927 		case PT_GNU_STACK:
928 			if (elf_ppnt->p_flags & PF_X)
929 				executable_stack = EXSTACK_ENABLE_X;
930 			else
931 				executable_stack = EXSTACK_DISABLE_X;
932 			break;
933 
934 		case PT_LOPROC ... PT_HIPROC:
935 			retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
936 						  bprm->file, false,
937 						  &arch_state);
938 			if (retval)
939 				goto out_free_dentry;
940 			break;
941 		}
942 
943 	/* Some simple consistency checks for the interpreter */
944 	if (interpreter) {
945 		retval = -ELIBBAD;
946 		/* Not an ELF interpreter */
947 		if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
948 			goto out_free_dentry;
949 		/* Verify the interpreter has a valid arch */
950 		if (!elf_check_arch(interp_elf_ex) ||
951 		    elf_check_fdpic(interp_elf_ex))
952 			goto out_free_dentry;
953 
954 		/* Load the interpreter program headers */
955 		interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
956 						   interpreter);
957 		if (!interp_elf_phdata)
958 			goto out_free_dentry;
959 
960 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
961 		elf_property_phdata = NULL;
962 		elf_ppnt = interp_elf_phdata;
963 		for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
964 			switch (elf_ppnt->p_type) {
965 			case PT_GNU_PROPERTY:
966 				elf_property_phdata = elf_ppnt;
967 				break;
968 
969 			case PT_LOPROC ... PT_HIPROC:
970 				retval = arch_elf_pt_proc(interp_elf_ex,
971 							  elf_ppnt, interpreter,
972 							  true, &arch_state);
973 				if (retval)
974 					goto out_free_dentry;
975 				break;
976 			}
977 	}
978 
979 	retval = parse_elf_properties(interpreter ?: bprm->file,
980 				      elf_property_phdata, &arch_state);
981 	if (retval)
982 		goto out_free_dentry;
983 
984 	/*
985 	 * Allow arch code to reject the ELF at this point, whilst it's
986 	 * still possible to return an error to the code that invoked
987 	 * the exec syscall.
988 	 */
989 	retval = arch_check_elf(elf_ex,
990 				!!interpreter, interp_elf_ex,
991 				&arch_state);
992 	if (retval)
993 		goto out_free_dentry;
994 
995 	/* Flush all traces of the currently running executable */
996 	retval = begin_new_exec(bprm);
997 	if (retval)
998 		goto out_free_dentry;
999 
1000 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
1001 	   may depend on the personality.  */
1002 	SET_PERSONALITY2(*elf_ex, &arch_state);
1003 	if (elf_read_implies_exec(*elf_ex, executable_stack))
1004 		current->personality |= READ_IMPLIES_EXEC;
1005 
1006 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1007 		current->flags |= PF_RANDOMIZE;
1008 
1009 	setup_new_exec(bprm);
1010 
1011 	/* Do this so that we can load the interpreter, if need be.  We will
1012 	   change some of these later */
1013 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1014 				 executable_stack);
1015 	if (retval < 0)
1016 		goto out_free_dentry;
1017 
1018 	elf_brk = 0;
1019 
1020 	start_code = ~0UL;
1021 	end_code = 0;
1022 	start_data = 0;
1023 	end_data = 0;
1024 
1025 	/* Now we do a little grungy work by mmapping the ELF image into
1026 	   the correct location in memory. */
1027 	for(i = 0, elf_ppnt = elf_phdata;
1028 	    i < elf_ex->e_phnum; i++, elf_ppnt++) {
1029 		int elf_prot, elf_flags;
1030 		unsigned long k, vaddr;
1031 		unsigned long total_size = 0;
1032 		unsigned long alignment;
1033 
1034 		if (elf_ppnt->p_type != PT_LOAD)
1035 			continue;
1036 
1037 		elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1038 				     !!interpreter, false);
1039 
1040 		elf_flags = MAP_PRIVATE;
1041 
1042 		vaddr = elf_ppnt->p_vaddr;
1043 		/*
1044 		 * The first time through the loop, first_pt_load is true:
1045 		 * layout will be calculated. Once set, use MAP_FIXED since
1046 		 * we know we've already safely mapped the entire region with
1047 		 * MAP_FIXED_NOREPLACE in the once-per-binary logic following.
1048 		 */
1049 		if (!first_pt_load) {
1050 			elf_flags |= MAP_FIXED;
1051 		} else if (elf_ex->e_type == ET_EXEC) {
1052 			/*
1053 			 * This logic is run once for the first LOAD Program
1054 			 * Header for ET_EXEC binaries. No special handling
1055 			 * is needed.
1056 			 */
1057 			elf_flags |= MAP_FIXED_NOREPLACE;
1058 		} else if (elf_ex->e_type == ET_DYN) {
1059 			/*
1060 			 * This logic is run once for the first LOAD Program
1061 			 * Header for ET_DYN binaries to calculate the
1062 			 * randomization (load_bias) for all the LOAD
1063 			 * Program Headers.
1064 			 */
1065 
1066 			/*
1067 			 * Calculate the entire size of the ELF mapping
1068 			 * (total_size), used for the initial mapping,
1069 			 * due to load_addr_set which is set to true later
1070 			 * once the initial mapping is performed.
1071 			 *
1072 			 * Note that this is only sensible when the LOAD
1073 			 * segments are contiguous (or overlapping). If
1074 			 * used for LOADs that are far apart, this would
1075 			 * cause the holes between LOADs to be mapped,
1076 			 * running the risk of having the mapping fail,
1077 			 * as it would be larger than the ELF file itself.
1078 			 *
1079 			 * As a result, only ET_DYN does this, since
1080 			 * some ET_EXEC (e.g. ia64) may have large virtual
1081 			 * memory holes between LOADs.
1082 			 *
1083 			 */
1084 			total_size = total_mapping_size(elf_phdata,
1085 							elf_ex->e_phnum);
1086 			if (!total_size) {
1087 				retval = -EINVAL;
1088 				goto out_free_dentry;
1089 			}
1090 
1091 			/* Calculate any requested alignment. */
1092 			alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1093 
1094 			/*
1095 			 * There are effectively two types of ET_DYN
1096 			 * binaries: programs (i.e. PIE: ET_DYN with PT_INTERP)
1097 			 * and loaders (ET_DYN without PT_INTERP, since they
1098 			 * _are_ the ELF interpreter). The loaders must
1099 			 * be loaded away from programs since the program
1100 			 * may otherwise collide with the loader (especially
1101 			 * for ET_EXEC which does not have a randomized
1102 			 * position). For example to handle invocations of
1103 			 * "./ld.so someprog" to test out a new version of
1104 			 * the loader, the subsequent program that the
1105 			 * loader loads must avoid the loader itself, so
1106 			 * they cannot share the same load range. Sufficient
1107 			 * room for the brk must be allocated with the
1108 			 * loader as well, since brk must be available with
1109 			 * the loader.
1110 			 *
1111 			 * Therefore, programs are loaded offset from
1112 			 * ELF_ET_DYN_BASE and loaders are loaded into the
1113 			 * independently randomized mmap region (0 load_bias
1114 			 * without MAP_FIXED nor MAP_FIXED_NOREPLACE).
1115 			 */
1116 			if (interpreter) {
1117 				/* On ET_DYN with PT_INTERP, we do the ASLR. */
1118 				load_bias = ELF_ET_DYN_BASE;
1119 				if (current->flags & PF_RANDOMIZE)
1120 					load_bias += arch_mmap_rnd();
1121 				/* Adjust alignment as requested. */
1122 				if (alignment)
1123 					load_bias &= ~(alignment - 1);
1124 				elf_flags |= MAP_FIXED_NOREPLACE;
1125 			} else {
1126 				/*
1127 				 * For ET_DYN without PT_INTERP, we rely on
1128 				 * the architectures's (potentially ASLR) mmap
1129 				 * base address (via a load_bias of 0).
1130 				 *
1131 				 * When a large alignment is requested, we
1132 				 * must do the allocation at address "0" right
1133 				 * now to discover where things will load so
1134 				 * that we can adjust the resulting alignment.
1135 				 * In this case (load_bias != 0), we can use
1136 				 * MAP_FIXED_NOREPLACE to make sure the mapping
1137 				 * doesn't collide with anything.
1138 				 */
1139 				if (alignment > ELF_MIN_ALIGN) {
1140 					load_bias = elf_load(bprm->file, 0, elf_ppnt,
1141 							     elf_prot, elf_flags, total_size);
1142 					if (BAD_ADDR(load_bias)) {
1143 						retval = IS_ERR_VALUE(load_bias) ?
1144 							 PTR_ERR((void*)load_bias) : -EINVAL;
1145 						goto out_free_dentry;
1146 					}
1147 					vm_munmap(load_bias, total_size);
1148 					/* Adjust alignment as requested. */
1149 					if (alignment)
1150 						load_bias &= ~(alignment - 1);
1151 					elf_flags |= MAP_FIXED_NOREPLACE;
1152 				} else
1153 					load_bias = 0;
1154 			}
1155 
1156 			/*
1157 			 * Since load_bias is used for all subsequent loading
1158 			 * calculations, we must lower it by the first vaddr
1159 			 * so that the remaining calculations based on the
1160 			 * ELF vaddrs will be correctly offset. The result
1161 			 * is then page aligned.
1162 			 */
1163 			load_bias = ELF_PAGESTART(load_bias - vaddr);
1164 		}
1165 
1166 		error = elf_load(bprm->file, load_bias + vaddr, elf_ppnt,
1167 				elf_prot, elf_flags, total_size);
1168 		if (BAD_ADDR(error)) {
1169 			retval = IS_ERR_VALUE(error) ?
1170 				PTR_ERR((void*)error) : -EINVAL;
1171 			goto out_free_dentry;
1172 		}
1173 
1174 		if (first_pt_load) {
1175 			first_pt_load = 0;
1176 			if (elf_ex->e_type == ET_DYN) {
1177 				load_bias += error -
1178 				             ELF_PAGESTART(load_bias + vaddr);
1179 				reloc_func_desc = load_bias;
1180 			}
1181 		}
1182 
1183 		/*
1184 		 * Figure out which segment in the file contains the Program
1185 		 * Header table, and map to the associated memory address.
1186 		 */
1187 		if (elf_ppnt->p_offset <= elf_ex->e_phoff &&
1188 		    elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) {
1189 			phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset +
1190 				    elf_ppnt->p_vaddr;
1191 		}
1192 
1193 		k = elf_ppnt->p_vaddr;
1194 		if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1195 			start_code = k;
1196 		if (start_data < k)
1197 			start_data = k;
1198 
1199 		/*
1200 		 * Check to see if the section's size will overflow the
1201 		 * allowed task size. Note that p_filesz must always be
1202 		 * <= p_memsz so it is only necessary to check p_memsz.
1203 		 */
1204 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1205 		    elf_ppnt->p_memsz > TASK_SIZE ||
1206 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1207 			/* set_brk can never work. Avoid overflows. */
1208 			retval = -EINVAL;
1209 			goto out_free_dentry;
1210 		}
1211 
1212 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1213 
1214 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1215 			end_code = k;
1216 		if (end_data < k)
1217 			end_data = k;
1218 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1219 		if (k > elf_brk)
1220 			elf_brk = k;
1221 	}
1222 
1223 	e_entry = elf_ex->e_entry + load_bias;
1224 	phdr_addr += load_bias;
1225 	elf_brk += load_bias;
1226 	start_code += load_bias;
1227 	end_code += load_bias;
1228 	start_data += load_bias;
1229 	end_data += load_bias;
1230 
1231 	current->mm->start_brk = current->mm->brk = ELF_PAGEALIGN(elf_brk);
1232 
1233 	if (interpreter) {
1234 		elf_entry = load_elf_interp(interp_elf_ex,
1235 					    interpreter,
1236 					    load_bias, interp_elf_phdata,
1237 					    &arch_state);
1238 		if (!IS_ERR_VALUE(elf_entry)) {
1239 			/*
1240 			 * load_elf_interp() returns relocation
1241 			 * adjustment
1242 			 */
1243 			interp_load_addr = elf_entry;
1244 			elf_entry += interp_elf_ex->e_entry;
1245 		}
1246 		if (BAD_ADDR(elf_entry)) {
1247 			retval = IS_ERR_VALUE(elf_entry) ?
1248 					(int)elf_entry : -EINVAL;
1249 			goto out_free_dentry;
1250 		}
1251 		reloc_func_desc = interp_load_addr;
1252 
1253 		allow_write_access(interpreter);
1254 		fput(interpreter);
1255 
1256 		kfree(interp_elf_ex);
1257 		kfree(interp_elf_phdata);
1258 	} else {
1259 		elf_entry = e_entry;
1260 		if (BAD_ADDR(elf_entry)) {
1261 			retval = -EINVAL;
1262 			goto out_free_dentry;
1263 		}
1264 	}
1265 
1266 	kfree(elf_phdata);
1267 
1268 	set_binfmt(&elf_format);
1269 
1270 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1271 	retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
1272 	if (retval < 0)
1273 		goto out;
1274 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1275 
1276 	retval = create_elf_tables(bprm, elf_ex, interp_load_addr,
1277 				   e_entry, phdr_addr);
1278 	if (retval < 0)
1279 		goto out;
1280 
1281 	mm = current->mm;
1282 	mm->end_code = end_code;
1283 	mm->start_code = start_code;
1284 	mm->start_data = start_data;
1285 	mm->end_data = end_data;
1286 	mm->start_stack = bprm->p;
1287 
1288 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1289 		/*
1290 		 * For architectures with ELF randomization, when executing
1291 		 * a loader directly (i.e. no interpreter listed in ELF
1292 		 * headers), move the brk area out of the mmap region
1293 		 * (since it grows up, and may collide early with the stack
1294 		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1295 		 */
1296 		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1297 		    elf_ex->e_type == ET_DYN && !interpreter) {
1298 			mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1299 		} else {
1300 			/* Otherwise leave a gap between .bss and brk. */
1301 			mm->brk = mm->start_brk = mm->brk + PAGE_SIZE;
1302 		}
1303 
1304 		mm->brk = mm->start_brk = arch_randomize_brk(mm);
1305 #ifdef compat_brk_randomized
1306 		current->brk_randomized = 1;
1307 #endif
1308 	}
1309 
1310 	if (current->personality & MMAP_PAGE_ZERO) {
1311 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1312 		   and some applications "depend" upon this behavior.
1313 		   Since we do not have the power to recompile these, we
1314 		   emulate the SVr4 behavior. Sigh. */
1315 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1316 				MAP_FIXED | MAP_PRIVATE, 0);
1317 	}
1318 
1319 	regs = current_pt_regs();
1320 #ifdef ELF_PLAT_INIT
1321 	/*
1322 	 * The ABI may specify that certain registers be set up in special
1323 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1324 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1325 	 * that the e_entry field is the address of the function descriptor
1326 	 * for the startup routine, rather than the address of the startup
1327 	 * routine itself.  This macro performs whatever initialization to
1328 	 * the regs structure is required as well as any relocations to the
1329 	 * function descriptor entries when executing dynamically links apps.
1330 	 */
1331 	ELF_PLAT_INIT(regs, reloc_func_desc);
1332 #endif
1333 
1334 	finalize_exec(bprm);
1335 	START_THREAD(elf_ex, regs, elf_entry, bprm->p);
1336 	retval = 0;
1337 out:
1338 	return retval;
1339 
1340 	/* error cleanup */
1341 out_free_dentry:
1342 	kfree(interp_elf_ex);
1343 	kfree(interp_elf_phdata);
1344 out_free_file:
1345 	allow_write_access(interpreter);
1346 	if (interpreter)
1347 		fput(interpreter);
1348 out_free_ph:
1349 	kfree(elf_phdata);
1350 	goto out;
1351 }
1352 
1353 #ifdef CONFIG_USELIB
1354 /* This is really simpleminded and specialized - we are loading an
1355    a.out library that is given an ELF header. */
1356 static int load_elf_library(struct file *file)
1357 {
1358 	struct elf_phdr *elf_phdata;
1359 	struct elf_phdr *eppnt;
1360 	int retval, error, i, j;
1361 	struct elfhdr elf_ex;
1362 
1363 	error = -ENOEXEC;
1364 	retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1365 	if (retval < 0)
1366 		goto out;
1367 
1368 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1369 		goto out;
1370 
1371 	/* First of all, some simple consistency checks */
1372 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1373 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1374 		goto out;
1375 	if (elf_check_fdpic(&elf_ex))
1376 		goto out;
1377 
1378 	/* Now read in all of the header information */
1379 
1380 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1381 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1382 
1383 	error = -ENOMEM;
1384 	elf_phdata = kmalloc(j, GFP_KERNEL);
1385 	if (!elf_phdata)
1386 		goto out;
1387 
1388 	eppnt = elf_phdata;
1389 	error = -ENOEXEC;
1390 	retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1391 	if (retval < 0)
1392 		goto out_free_ph;
1393 
1394 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1395 		if ((eppnt + i)->p_type == PT_LOAD)
1396 			j++;
1397 	if (j != 1)
1398 		goto out_free_ph;
1399 
1400 	while (eppnt->p_type != PT_LOAD)
1401 		eppnt++;
1402 
1403 	/* Now use mmap to map the library into memory. */
1404 	error = elf_load(file, ELF_PAGESTART(eppnt->p_vaddr),
1405 			eppnt,
1406 			PROT_READ | PROT_WRITE | PROT_EXEC,
1407 			MAP_FIXED_NOREPLACE | MAP_PRIVATE,
1408 			0);
1409 
1410 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1411 		goto out_free_ph;
1412 
1413 	error = 0;
1414 
1415 out_free_ph:
1416 	kfree(elf_phdata);
1417 out:
1418 	return error;
1419 }
1420 #endif /* #ifdef CONFIG_USELIB */
1421 
1422 #ifdef CONFIG_ELF_CORE
1423 /*
1424  * ELF core dumper
1425  *
1426  * Modelled on fs/exec.c:aout_core_dump()
1427  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1428  */
1429 
1430 /* An ELF note in memory */
1431 struct memelfnote
1432 {
1433 	const char *name;
1434 	int type;
1435 	unsigned int datasz;
1436 	void *data;
1437 };
1438 
1439 static int notesize(struct memelfnote *en)
1440 {
1441 	int sz;
1442 
1443 	sz = sizeof(struct elf_note);
1444 	sz += roundup(strlen(en->name) + 1, 4);
1445 	sz += roundup(en->datasz, 4);
1446 
1447 	return sz;
1448 }
1449 
1450 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1451 {
1452 	struct elf_note en;
1453 	en.n_namesz = strlen(men->name) + 1;
1454 	en.n_descsz = men->datasz;
1455 	en.n_type = men->type;
1456 
1457 	return dump_emit(cprm, &en, sizeof(en)) &&
1458 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1459 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1460 }
1461 
1462 static void fill_elf_header(struct elfhdr *elf, int segs,
1463 			    u16 machine, u32 flags)
1464 {
1465 	memset(elf, 0, sizeof(*elf));
1466 
1467 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1468 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1469 	elf->e_ident[EI_DATA] = ELF_DATA;
1470 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1471 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1472 
1473 	elf->e_type = ET_CORE;
1474 	elf->e_machine = machine;
1475 	elf->e_version = EV_CURRENT;
1476 	elf->e_phoff = sizeof(struct elfhdr);
1477 	elf->e_flags = flags;
1478 	elf->e_ehsize = sizeof(struct elfhdr);
1479 	elf->e_phentsize = sizeof(struct elf_phdr);
1480 	elf->e_phnum = segs;
1481 }
1482 
1483 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1484 {
1485 	phdr->p_type = PT_NOTE;
1486 	phdr->p_offset = offset;
1487 	phdr->p_vaddr = 0;
1488 	phdr->p_paddr = 0;
1489 	phdr->p_filesz = sz;
1490 	phdr->p_memsz = 0;
1491 	phdr->p_flags = 0;
1492 	phdr->p_align = 4;
1493 }
1494 
1495 static void fill_note(struct memelfnote *note, const char *name, int type,
1496 		unsigned int sz, void *data)
1497 {
1498 	note->name = name;
1499 	note->type = type;
1500 	note->datasz = sz;
1501 	note->data = data;
1502 }
1503 
1504 /*
1505  * fill up all the fields in prstatus from the given task struct, except
1506  * registers which need to be filled up separately.
1507  */
1508 static void fill_prstatus(struct elf_prstatus_common *prstatus,
1509 		struct task_struct *p, long signr)
1510 {
1511 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1512 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1513 	prstatus->pr_sighold = p->blocked.sig[0];
1514 	rcu_read_lock();
1515 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1516 	rcu_read_unlock();
1517 	prstatus->pr_pid = task_pid_vnr(p);
1518 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1519 	prstatus->pr_sid = task_session_vnr(p);
1520 	if (thread_group_leader(p)) {
1521 		struct task_cputime cputime;
1522 
1523 		/*
1524 		 * This is the record for the group leader.  It shows the
1525 		 * group-wide total, not its individual thread total.
1526 		 */
1527 		thread_group_cputime(p, &cputime);
1528 		prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1529 		prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1530 	} else {
1531 		u64 utime, stime;
1532 
1533 		task_cputime(p, &utime, &stime);
1534 		prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1535 		prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1536 	}
1537 
1538 	prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1539 	prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1540 }
1541 
1542 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1543 		       struct mm_struct *mm)
1544 {
1545 	const struct cred *cred;
1546 	unsigned int i, len;
1547 	unsigned int state;
1548 
1549 	/* first copy the parameters from user space */
1550 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1551 
1552 	len = mm->arg_end - mm->arg_start;
1553 	if (len >= ELF_PRARGSZ)
1554 		len = ELF_PRARGSZ-1;
1555 	if (copy_from_user(&psinfo->pr_psargs,
1556 		           (const char __user *)mm->arg_start, len))
1557 		return -EFAULT;
1558 	for(i = 0; i < len; i++)
1559 		if (psinfo->pr_psargs[i] == 0)
1560 			psinfo->pr_psargs[i] = ' ';
1561 	psinfo->pr_psargs[len] = 0;
1562 
1563 	rcu_read_lock();
1564 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1565 	rcu_read_unlock();
1566 	psinfo->pr_pid = task_pid_vnr(p);
1567 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1568 	psinfo->pr_sid = task_session_vnr(p);
1569 
1570 	state = READ_ONCE(p->__state);
1571 	i = state ? ffz(~state) + 1 : 0;
1572 	psinfo->pr_state = i;
1573 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1574 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1575 	psinfo->pr_nice = task_nice(p);
1576 	psinfo->pr_flag = p->flags;
1577 	rcu_read_lock();
1578 	cred = __task_cred(p);
1579 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1580 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1581 	rcu_read_unlock();
1582 	get_task_comm(psinfo->pr_fname, p);
1583 
1584 	return 0;
1585 }
1586 
1587 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1588 {
1589 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1590 	int i = 0;
1591 	do
1592 		i += 2;
1593 	while (auxv[i - 2] != AT_NULL);
1594 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1595 }
1596 
1597 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1598 		const kernel_siginfo_t *siginfo)
1599 {
1600 	copy_siginfo_to_external(csigdata, siginfo);
1601 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1602 }
1603 
1604 /*
1605  * Format of NT_FILE note:
1606  *
1607  * long count     -- how many files are mapped
1608  * long page_size -- units for file_ofs
1609  * array of [COUNT] elements of
1610  *   long start
1611  *   long end
1612  *   long file_ofs
1613  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1614  */
1615 static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm)
1616 {
1617 	unsigned count, size, names_ofs, remaining, n;
1618 	user_long_t *data;
1619 	user_long_t *start_end_ofs;
1620 	char *name_base, *name_curpos;
1621 	int i;
1622 
1623 	/* *Estimated* file count and total data size needed */
1624 	count = cprm->vma_count;
1625 	if (count > UINT_MAX / 64)
1626 		return -EINVAL;
1627 	size = count * 64;
1628 
1629 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1630  alloc:
1631 	/* paranoia check */
1632 	if (size >= core_file_note_size_limit) {
1633 		pr_warn_once("coredump Note size too large: %u (does kernel.core_file_note_size_limit sysctl need adjustment?\n",
1634 			      size);
1635 		return -EINVAL;
1636 	}
1637 	size = round_up(size, PAGE_SIZE);
1638 	/*
1639 	 * "size" can be 0 here legitimately.
1640 	 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1641 	 */
1642 	data = kvmalloc(size, GFP_KERNEL);
1643 	if (ZERO_OR_NULL_PTR(data))
1644 		return -ENOMEM;
1645 
1646 	start_end_ofs = data + 2;
1647 	name_base = name_curpos = ((char *)data) + names_ofs;
1648 	remaining = size - names_ofs;
1649 	count = 0;
1650 	for (i = 0; i < cprm->vma_count; i++) {
1651 		struct core_vma_metadata *m = &cprm->vma_meta[i];
1652 		struct file *file;
1653 		const char *filename;
1654 
1655 		file = m->file;
1656 		if (!file)
1657 			continue;
1658 		filename = file_path(file, name_curpos, remaining);
1659 		if (IS_ERR(filename)) {
1660 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1661 				kvfree(data);
1662 				size = size * 5 / 4;
1663 				goto alloc;
1664 			}
1665 			continue;
1666 		}
1667 
1668 		/* file_path() fills at the end, move name down */
1669 		/* n = strlen(filename) + 1: */
1670 		n = (name_curpos + remaining) - filename;
1671 		remaining = filename - name_curpos;
1672 		memmove(name_curpos, filename, n);
1673 		name_curpos += n;
1674 
1675 		*start_end_ofs++ = m->start;
1676 		*start_end_ofs++ = m->end;
1677 		*start_end_ofs++ = m->pgoff;
1678 		count++;
1679 	}
1680 
1681 	/* Now we know exact count of files, can store it */
1682 	data[0] = count;
1683 	data[1] = PAGE_SIZE;
1684 	/*
1685 	 * Count usually is less than mm->map_count,
1686 	 * we need to move filenames down.
1687 	 */
1688 	n = cprm->vma_count - count;
1689 	if (n != 0) {
1690 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1691 		memmove(name_base - shift_bytes, name_base,
1692 			name_curpos - name_base);
1693 		name_curpos -= shift_bytes;
1694 	}
1695 
1696 	size = name_curpos - (char *)data;
1697 	fill_note(note, "CORE", NT_FILE, size, data);
1698 	return 0;
1699 }
1700 
1701 #include <linux/regset.h>
1702 
1703 struct elf_thread_core_info {
1704 	struct elf_thread_core_info *next;
1705 	struct task_struct *task;
1706 	struct elf_prstatus prstatus;
1707 	struct memelfnote notes[];
1708 };
1709 
1710 struct elf_note_info {
1711 	struct elf_thread_core_info *thread;
1712 	struct memelfnote psinfo;
1713 	struct memelfnote signote;
1714 	struct memelfnote auxv;
1715 	struct memelfnote files;
1716 	user_siginfo_t csigdata;
1717 	size_t size;
1718 	int thread_notes;
1719 };
1720 
1721 #ifdef CORE_DUMP_USE_REGSET
1722 /*
1723  * When a regset has a writeback hook, we call it on each thread before
1724  * dumping user memory.  On register window machines, this makes sure the
1725  * user memory backing the register data is up to date before we read it.
1726  */
1727 static void do_thread_regset_writeback(struct task_struct *task,
1728 				       const struct user_regset *regset)
1729 {
1730 	if (regset->writeback)
1731 		regset->writeback(task, regset, 1);
1732 }
1733 
1734 #ifndef PRSTATUS_SIZE
1735 #define PRSTATUS_SIZE sizeof(struct elf_prstatus)
1736 #endif
1737 
1738 #ifndef SET_PR_FPVALID
1739 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1)
1740 #endif
1741 
1742 static int fill_thread_core_info(struct elf_thread_core_info *t,
1743 				 const struct user_regset_view *view,
1744 				 long signr, struct elf_note_info *info)
1745 {
1746 	unsigned int note_iter, view_iter;
1747 
1748 	/*
1749 	 * NT_PRSTATUS is the one special case, because the regset data
1750 	 * goes into the pr_reg field inside the note contents, rather
1751 	 * than being the whole note contents.  We fill the regset in here.
1752 	 * We assume that regset 0 is NT_PRSTATUS.
1753 	 */
1754 	fill_prstatus(&t->prstatus.common, t->task, signr);
1755 	regset_get(t->task, &view->regsets[0],
1756 		   sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1757 
1758 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1759 		  PRSTATUS_SIZE, &t->prstatus);
1760 	info->size += notesize(&t->notes[0]);
1761 
1762 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1763 
1764 	/*
1765 	 * Each other regset might generate a note too.  For each regset
1766 	 * that has no core_note_type or is inactive, skip it.
1767 	 */
1768 	note_iter = 1;
1769 	for (view_iter = 1; view_iter < view->n; ++view_iter) {
1770 		const struct user_regset *regset = &view->regsets[view_iter];
1771 		int note_type = regset->core_note_type;
1772 		bool is_fpreg = note_type == NT_PRFPREG;
1773 		void *data;
1774 		int ret;
1775 
1776 		do_thread_regset_writeback(t->task, regset);
1777 		if (!note_type) // not for coredumps
1778 			continue;
1779 		if (regset->active && regset->active(t->task, regset) <= 0)
1780 			continue;
1781 
1782 		ret = regset_get_alloc(t->task, regset, ~0U, &data);
1783 		if (ret < 0)
1784 			continue;
1785 
1786 		if (WARN_ON_ONCE(note_iter >= info->thread_notes))
1787 			break;
1788 
1789 		if (is_fpreg)
1790 			SET_PR_FPVALID(&t->prstatus);
1791 
1792 		fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX",
1793 			  note_type, ret, data);
1794 
1795 		info->size += notesize(&t->notes[note_iter]);
1796 		note_iter++;
1797 	}
1798 
1799 	return 1;
1800 }
1801 #else
1802 static int fill_thread_core_info(struct elf_thread_core_info *t,
1803 				 const struct user_regset_view *view,
1804 				 long signr, struct elf_note_info *info)
1805 {
1806 	struct task_struct *p = t->task;
1807 	elf_fpregset_t *fpu;
1808 
1809 	fill_prstatus(&t->prstatus.common, p, signr);
1810 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1811 
1812 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1813 		  &(t->prstatus));
1814 	info->size += notesize(&t->notes[0]);
1815 
1816 	fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL);
1817 	if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) {
1818 		kfree(fpu);
1819 		return 1;
1820 	}
1821 
1822 	t->prstatus.pr_fpvalid = 1;
1823 	fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu);
1824 	info->size += notesize(&t->notes[1]);
1825 
1826 	return 1;
1827 }
1828 #endif
1829 
1830 static int fill_note_info(struct elfhdr *elf, int phdrs,
1831 			  struct elf_note_info *info,
1832 			  struct coredump_params *cprm)
1833 {
1834 	struct task_struct *dump_task = current;
1835 	const struct user_regset_view *view;
1836 	struct elf_thread_core_info *t;
1837 	struct elf_prpsinfo *psinfo;
1838 	struct core_thread *ct;
1839 
1840 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1841 	if (!psinfo)
1842 		return 0;
1843 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1844 
1845 #ifdef CORE_DUMP_USE_REGSET
1846 	view = task_user_regset_view(dump_task);
1847 
1848 	/*
1849 	 * Figure out how many notes we're going to need for each thread.
1850 	 */
1851 	info->thread_notes = 0;
1852 	for (int i = 0; i < view->n; ++i)
1853 		if (view->regsets[i].core_note_type != 0)
1854 			++info->thread_notes;
1855 
1856 	/*
1857 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1858 	 * since it is our one special case.
1859 	 */
1860 	if (unlikely(info->thread_notes == 0) ||
1861 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1862 		WARN_ON(1);
1863 		return 0;
1864 	}
1865 
1866 	/*
1867 	 * Initialize the ELF file header.
1868 	 */
1869 	fill_elf_header(elf, phdrs,
1870 			view->e_machine, view->e_flags);
1871 #else
1872 	view = NULL;
1873 	info->thread_notes = 2;
1874 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1875 #endif
1876 
1877 	/*
1878 	 * Allocate a structure for each thread.
1879 	 */
1880 	info->thread = kzalloc(offsetof(struct elf_thread_core_info,
1881 				     notes[info->thread_notes]),
1882 			    GFP_KERNEL);
1883 	if (unlikely(!info->thread))
1884 		return 0;
1885 
1886 	info->thread->task = dump_task;
1887 	for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) {
1888 		t = kzalloc(offsetof(struct elf_thread_core_info,
1889 				     notes[info->thread_notes]),
1890 			    GFP_KERNEL);
1891 		if (unlikely(!t))
1892 			return 0;
1893 
1894 		t->task = ct->task;
1895 		t->next = info->thread->next;
1896 		info->thread->next = t;
1897 	}
1898 
1899 	/*
1900 	 * Now fill in each thread's information.
1901 	 */
1902 	for (t = info->thread; t != NULL; t = t->next)
1903 		if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info))
1904 			return 0;
1905 
1906 	/*
1907 	 * Fill in the two process-wide notes.
1908 	 */
1909 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1910 	info->size += notesize(&info->psinfo);
1911 
1912 	fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo);
1913 	info->size += notesize(&info->signote);
1914 
1915 	fill_auxv_note(&info->auxv, current->mm);
1916 	info->size += notesize(&info->auxv);
1917 
1918 	if (fill_files_note(&info->files, cprm) == 0)
1919 		info->size += notesize(&info->files);
1920 
1921 	return 1;
1922 }
1923 
1924 /*
1925  * Write all the notes for each thread.  When writing the first thread, the
1926  * process-wide notes are interleaved after the first thread-specific note.
1927  */
1928 static int write_note_info(struct elf_note_info *info,
1929 			   struct coredump_params *cprm)
1930 {
1931 	bool first = true;
1932 	struct elf_thread_core_info *t = info->thread;
1933 
1934 	do {
1935 		int i;
1936 
1937 		if (!writenote(&t->notes[0], cprm))
1938 			return 0;
1939 
1940 		if (first && !writenote(&info->psinfo, cprm))
1941 			return 0;
1942 		if (first && !writenote(&info->signote, cprm))
1943 			return 0;
1944 		if (first && !writenote(&info->auxv, cprm))
1945 			return 0;
1946 		if (first && info->files.data &&
1947 				!writenote(&info->files, cprm))
1948 			return 0;
1949 
1950 		for (i = 1; i < info->thread_notes; ++i)
1951 			if (t->notes[i].data &&
1952 			    !writenote(&t->notes[i], cprm))
1953 				return 0;
1954 
1955 		first = false;
1956 		t = t->next;
1957 	} while (t);
1958 
1959 	return 1;
1960 }
1961 
1962 static void free_note_info(struct elf_note_info *info)
1963 {
1964 	struct elf_thread_core_info *threads = info->thread;
1965 	while (threads) {
1966 		unsigned int i;
1967 		struct elf_thread_core_info *t = threads;
1968 		threads = t->next;
1969 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1970 		for (i = 1; i < info->thread_notes; ++i)
1971 			kvfree(t->notes[i].data);
1972 		kfree(t);
1973 	}
1974 	kfree(info->psinfo.data);
1975 	kvfree(info->files.data);
1976 }
1977 
1978 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1979 			     elf_addr_t e_shoff, int segs)
1980 {
1981 	elf->e_shoff = e_shoff;
1982 	elf->e_shentsize = sizeof(*shdr4extnum);
1983 	elf->e_shnum = 1;
1984 	elf->e_shstrndx = SHN_UNDEF;
1985 
1986 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1987 
1988 	shdr4extnum->sh_type = SHT_NULL;
1989 	shdr4extnum->sh_size = elf->e_shnum;
1990 	shdr4extnum->sh_link = elf->e_shstrndx;
1991 	shdr4extnum->sh_info = segs;
1992 }
1993 
1994 /*
1995  * Actual dumper
1996  *
1997  * This is a two-pass process; first we find the offsets of the bits,
1998  * and then they are actually written out.  If we run out of core limit
1999  * we just truncate.
2000  */
2001 static int elf_core_dump(struct coredump_params *cprm)
2002 {
2003 	int has_dumped = 0;
2004 	int segs, i;
2005 	struct elfhdr elf;
2006 	loff_t offset = 0, dataoff;
2007 	struct elf_note_info info = { };
2008 	struct elf_phdr *phdr4note = NULL;
2009 	struct elf_shdr *shdr4extnum = NULL;
2010 	Elf_Half e_phnum;
2011 	elf_addr_t e_shoff;
2012 
2013 	/*
2014 	 * The number of segs are recored into ELF header as 16bit value.
2015 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2016 	 */
2017 	segs = cprm->vma_count + elf_core_extra_phdrs(cprm);
2018 
2019 	/* for notes section */
2020 	segs++;
2021 
2022 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2023 	 * this, kernel supports extended numbering. Have a look at
2024 	 * include/linux/elf.h for further information. */
2025 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2026 
2027 	/*
2028 	 * Collect all the non-memory information about the process for the
2029 	 * notes.  This also sets up the file header.
2030 	 */
2031 	if (!fill_note_info(&elf, e_phnum, &info, cprm))
2032 		goto end_coredump;
2033 
2034 	has_dumped = 1;
2035 
2036 	offset += sizeof(elf);				/* ELF header */
2037 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2038 
2039 	/* Write notes phdr entry */
2040 	{
2041 		size_t sz = info.size;
2042 
2043 		/* For cell spufs */
2044 		sz += elf_coredump_extra_notes_size();
2045 
2046 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2047 		if (!phdr4note)
2048 			goto end_coredump;
2049 
2050 		fill_elf_note_phdr(phdr4note, sz, offset);
2051 		offset += sz;
2052 	}
2053 
2054 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2055 
2056 	offset += cprm->vma_data_size;
2057 	offset += elf_core_extra_data_size(cprm);
2058 	e_shoff = offset;
2059 
2060 	if (e_phnum == PN_XNUM) {
2061 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2062 		if (!shdr4extnum)
2063 			goto end_coredump;
2064 		fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2065 	}
2066 
2067 	offset = dataoff;
2068 
2069 	if (!dump_emit(cprm, &elf, sizeof(elf)))
2070 		goto end_coredump;
2071 
2072 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2073 		goto end_coredump;
2074 
2075 	/* Write program headers for segments dump */
2076 	for (i = 0; i < cprm->vma_count; i++) {
2077 		struct core_vma_metadata *meta = cprm->vma_meta + i;
2078 		struct elf_phdr phdr;
2079 
2080 		phdr.p_type = PT_LOAD;
2081 		phdr.p_offset = offset;
2082 		phdr.p_vaddr = meta->start;
2083 		phdr.p_paddr = 0;
2084 		phdr.p_filesz = meta->dump_size;
2085 		phdr.p_memsz = meta->end - meta->start;
2086 		offset += phdr.p_filesz;
2087 		phdr.p_flags = 0;
2088 		if (meta->flags & VM_READ)
2089 			phdr.p_flags |= PF_R;
2090 		if (meta->flags & VM_WRITE)
2091 			phdr.p_flags |= PF_W;
2092 		if (meta->flags & VM_EXEC)
2093 			phdr.p_flags |= PF_X;
2094 		phdr.p_align = ELF_EXEC_PAGESIZE;
2095 
2096 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2097 			goto end_coredump;
2098 	}
2099 
2100 	if (!elf_core_write_extra_phdrs(cprm, offset))
2101 		goto end_coredump;
2102 
2103 	/* write out the notes section */
2104 	if (!write_note_info(&info, cprm))
2105 		goto end_coredump;
2106 
2107 	/* For cell spufs */
2108 	if (elf_coredump_extra_notes_write(cprm))
2109 		goto end_coredump;
2110 
2111 	/* Align to page */
2112 	dump_skip_to(cprm, dataoff);
2113 
2114 	for (i = 0; i < cprm->vma_count; i++) {
2115 		struct core_vma_metadata *meta = cprm->vma_meta + i;
2116 
2117 		if (!dump_user_range(cprm, meta->start, meta->dump_size))
2118 			goto end_coredump;
2119 	}
2120 
2121 	if (!elf_core_write_extra_data(cprm))
2122 		goto end_coredump;
2123 
2124 	if (e_phnum == PN_XNUM) {
2125 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2126 			goto end_coredump;
2127 	}
2128 
2129 end_coredump:
2130 	free_note_info(&info);
2131 	kfree(shdr4extnum);
2132 	kfree(phdr4note);
2133 	return has_dumped;
2134 }
2135 
2136 #endif		/* CONFIG_ELF_CORE */
2137 
2138 static int __init init_elf_binfmt(void)
2139 {
2140 	register_binfmt(&elf_format);
2141 	return 0;
2142 }
2143 
2144 static void __exit exit_elf_binfmt(void)
2145 {
2146 	/* Remove the COFF and ELF loaders. */
2147 	unregister_binfmt(&elf_format);
2148 }
2149 
2150 core_initcall(init_elf_binfmt);
2151 module_exit(exit_elf_binfmt);
2152 
2153 #ifdef CONFIG_BINFMT_ELF_KUNIT_TEST
2154 #include "binfmt_elf_test.c"
2155 #endif
2156