1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/binfmt_elf.c 4 * 5 * These are the functions used to load ELF format executables as used 6 * on SVr4 machines. Information on the format may be found in the book 7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 8 * Tools". 9 * 10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 11 */ 12 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/fs.h> 16 #include <linux/log2.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/errno.h> 20 #include <linux/signal.h> 21 #include <linux/binfmts.h> 22 #include <linux/string.h> 23 #include <linux/file.h> 24 #include <linux/slab.h> 25 #include <linux/personality.h> 26 #include <linux/elfcore.h> 27 #include <linux/init.h> 28 #include <linux/highuid.h> 29 #include <linux/compiler.h> 30 #include <linux/highmem.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vmalloc.h> 34 #include <linux/security.h> 35 #include <linux/random.h> 36 #include <linux/elf.h> 37 #include <linux/elf-randomize.h> 38 #include <linux/utsname.h> 39 #include <linux/coredump.h> 40 #include <linux/sched.h> 41 #include <linux/sched/coredump.h> 42 #include <linux/sched/task_stack.h> 43 #include <linux/sched/cputime.h> 44 #include <linux/sizes.h> 45 #include <linux/types.h> 46 #include <linux/cred.h> 47 #include <linux/dax.h> 48 #include <linux/uaccess.h> 49 #include <linux/rseq.h> 50 #include <asm/param.h> 51 #include <asm/page.h> 52 53 #ifndef ELF_COMPAT 54 #define ELF_COMPAT 0 55 #endif 56 57 #ifndef user_long_t 58 #define user_long_t long 59 #endif 60 #ifndef user_siginfo_t 61 #define user_siginfo_t siginfo_t 62 #endif 63 64 /* That's for binfmt_elf_fdpic to deal with */ 65 #ifndef elf_check_fdpic 66 #define elf_check_fdpic(ex) false 67 #endif 68 69 static int load_elf_binary(struct linux_binprm *bprm); 70 71 #ifdef CONFIG_USELIB 72 static int load_elf_library(struct file *); 73 #else 74 #define load_elf_library NULL 75 #endif 76 77 /* 78 * If we don't support core dumping, then supply a NULL so we 79 * don't even try. 80 */ 81 #ifdef CONFIG_ELF_CORE 82 static int elf_core_dump(struct coredump_params *cprm); 83 #else 84 #define elf_core_dump NULL 85 #endif 86 87 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 88 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 89 #else 90 #define ELF_MIN_ALIGN PAGE_SIZE 91 #endif 92 93 #ifndef ELF_CORE_EFLAGS 94 #define ELF_CORE_EFLAGS 0 95 #endif 96 97 #define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1)) 98 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 99 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 100 101 static struct linux_binfmt elf_format = { 102 .module = THIS_MODULE, 103 .load_binary = load_elf_binary, 104 .load_shlib = load_elf_library, 105 #ifdef CONFIG_COREDUMP 106 .core_dump = elf_core_dump, 107 .min_coredump = ELF_EXEC_PAGESIZE, 108 #endif 109 }; 110 111 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE)) 112 113 /* 114 * We need to explicitly zero any trailing portion of the page that follows 115 * p_filesz when it ends before the page ends (e.g. bss), otherwise this 116 * memory will contain the junk from the file that should not be present. 117 */ 118 static int padzero(unsigned long address) 119 { 120 unsigned long nbyte; 121 122 nbyte = ELF_PAGEOFFSET(address); 123 if (nbyte) { 124 nbyte = ELF_MIN_ALIGN - nbyte; 125 if (clear_user((void __user *)address, nbyte)) 126 return -EFAULT; 127 } 128 return 0; 129 } 130 131 /* Let's use some macros to make this stack manipulation a little clearer */ 132 #ifdef CONFIG_STACK_GROWSUP 133 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 134 #define STACK_ROUND(sp, items) \ 135 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 136 #define STACK_ALLOC(sp, len) ({ \ 137 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 138 old_sp; }) 139 #else 140 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 141 #define STACK_ROUND(sp, items) \ 142 (((unsigned long) (sp - items)) &~ 15UL) 143 #define STACK_ALLOC(sp, len) (sp -= len) 144 #endif 145 146 #ifndef ELF_BASE_PLATFORM 147 /* 148 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 149 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 150 * will be copied to the user stack in the same manner as AT_PLATFORM. 151 */ 152 #define ELF_BASE_PLATFORM NULL 153 #endif 154 155 static int 156 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec, 157 unsigned long interp_load_addr, 158 unsigned long e_entry, unsigned long phdr_addr) 159 { 160 struct mm_struct *mm = current->mm; 161 unsigned long p = bprm->p; 162 int argc = bprm->argc; 163 int envc = bprm->envc; 164 elf_addr_t __user *sp; 165 elf_addr_t __user *u_platform; 166 elf_addr_t __user *u_base_platform; 167 elf_addr_t __user *u_rand_bytes; 168 const char *k_platform = ELF_PLATFORM; 169 const char *k_base_platform = ELF_BASE_PLATFORM; 170 unsigned char k_rand_bytes[16]; 171 int items; 172 elf_addr_t *elf_info; 173 elf_addr_t flags = 0; 174 int ei_index; 175 const struct cred *cred = current_cred(); 176 struct vm_area_struct *vma; 177 178 /* 179 * In some cases (e.g. Hyper-Threading), we want to avoid L1 180 * evictions by the processes running on the same package. One 181 * thing we can do is to shuffle the initial stack for them. 182 */ 183 184 p = arch_align_stack(p); 185 186 /* 187 * If this architecture has a platform capability string, copy it 188 * to userspace. In some cases (Sparc), this info is impossible 189 * for userspace to get any other way, in others (i386) it is 190 * merely difficult. 191 */ 192 u_platform = NULL; 193 if (k_platform) { 194 size_t len = strlen(k_platform) + 1; 195 196 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 197 if (copy_to_user(u_platform, k_platform, len)) 198 return -EFAULT; 199 } 200 201 /* 202 * If this architecture has a "base" platform capability 203 * string, copy it to userspace. 204 */ 205 u_base_platform = NULL; 206 if (k_base_platform) { 207 size_t len = strlen(k_base_platform) + 1; 208 209 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 210 if (copy_to_user(u_base_platform, k_base_platform, len)) 211 return -EFAULT; 212 } 213 214 /* 215 * Generate 16 random bytes for userspace PRNG seeding. 216 */ 217 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 218 u_rand_bytes = (elf_addr_t __user *) 219 STACK_ALLOC(p, sizeof(k_rand_bytes)); 220 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 221 return -EFAULT; 222 223 /* Create the ELF interpreter info */ 224 elf_info = (elf_addr_t *)mm->saved_auxv; 225 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 226 #define NEW_AUX_ENT(id, val) \ 227 do { \ 228 *elf_info++ = id; \ 229 *elf_info++ = val; \ 230 } while (0) 231 232 #ifdef ARCH_DLINFO 233 /* 234 * ARCH_DLINFO must come first so PPC can do its special alignment of 235 * AUXV. 236 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 237 * ARCH_DLINFO changes 238 */ 239 ARCH_DLINFO; 240 #endif 241 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 242 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 243 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 244 NEW_AUX_ENT(AT_PHDR, phdr_addr); 245 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 246 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 247 NEW_AUX_ENT(AT_BASE, interp_load_addr); 248 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0) 249 flags |= AT_FLAGS_PRESERVE_ARGV0; 250 NEW_AUX_ENT(AT_FLAGS, flags); 251 NEW_AUX_ENT(AT_ENTRY, e_entry); 252 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); 253 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); 254 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); 255 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); 256 NEW_AUX_ENT(AT_SECURE, bprm->secureexec); 257 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 258 #ifdef ELF_HWCAP2 259 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2); 260 #endif 261 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 262 if (k_platform) { 263 NEW_AUX_ENT(AT_PLATFORM, 264 (elf_addr_t)(unsigned long)u_platform); 265 } 266 if (k_base_platform) { 267 NEW_AUX_ENT(AT_BASE_PLATFORM, 268 (elf_addr_t)(unsigned long)u_base_platform); 269 } 270 if (bprm->have_execfd) { 271 NEW_AUX_ENT(AT_EXECFD, bprm->execfd); 272 } 273 #ifdef CONFIG_RSEQ 274 NEW_AUX_ENT(AT_RSEQ_FEATURE_SIZE, offsetof(struct rseq, end)); 275 NEW_AUX_ENT(AT_RSEQ_ALIGN, __alignof__(struct rseq)); 276 #endif 277 #undef NEW_AUX_ENT 278 /* AT_NULL is zero; clear the rest too */ 279 memset(elf_info, 0, (char *)mm->saved_auxv + 280 sizeof(mm->saved_auxv) - (char *)elf_info); 281 282 /* And advance past the AT_NULL entry. */ 283 elf_info += 2; 284 285 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv; 286 sp = STACK_ADD(p, ei_index); 287 288 items = (argc + 1) + (envc + 1) + 1; 289 bprm->p = STACK_ROUND(sp, items); 290 291 /* Point sp at the lowest address on the stack */ 292 #ifdef CONFIG_STACK_GROWSUP 293 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 294 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 295 #else 296 sp = (elf_addr_t __user *)bprm->p; 297 #endif 298 299 300 /* 301 * Grow the stack manually; some architectures have a limit on how 302 * far ahead a user-space access may be in order to grow the stack. 303 */ 304 if (mmap_write_lock_killable(mm)) 305 return -EINTR; 306 vma = find_extend_vma_locked(mm, bprm->p); 307 mmap_write_unlock(mm); 308 if (!vma) 309 return -EFAULT; 310 311 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 312 if (put_user(argc, sp++)) 313 return -EFAULT; 314 315 /* Populate list of argv pointers back to argv strings. */ 316 p = mm->arg_end = mm->arg_start; 317 while (argc-- > 0) { 318 size_t len; 319 if (put_user((elf_addr_t)p, sp++)) 320 return -EFAULT; 321 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 322 if (!len || len > MAX_ARG_STRLEN) 323 return -EINVAL; 324 p += len; 325 } 326 if (put_user(0, sp++)) 327 return -EFAULT; 328 mm->arg_end = p; 329 330 /* Populate list of envp pointers back to envp strings. */ 331 mm->env_end = mm->env_start = p; 332 while (envc-- > 0) { 333 size_t len; 334 if (put_user((elf_addr_t)p, sp++)) 335 return -EFAULT; 336 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 337 if (!len || len > MAX_ARG_STRLEN) 338 return -EINVAL; 339 p += len; 340 } 341 if (put_user(0, sp++)) 342 return -EFAULT; 343 mm->env_end = p; 344 345 /* Put the elf_info on the stack in the right place. */ 346 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t))) 347 return -EFAULT; 348 return 0; 349 } 350 351 /* 352 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset" 353 * into memory at "addr". (Note that p_filesz is rounded up to the 354 * next page, so any extra bytes from the file must be wiped.) 355 */ 356 static unsigned long elf_map(struct file *filep, unsigned long addr, 357 const struct elf_phdr *eppnt, int prot, int type, 358 unsigned long total_size) 359 { 360 unsigned long map_addr; 361 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 362 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 363 addr = ELF_PAGESTART(addr); 364 size = ELF_PAGEALIGN(size); 365 366 /* mmap() will return -EINVAL if given a zero size, but a 367 * segment with zero filesize is perfectly valid */ 368 if (!size) 369 return addr; 370 371 /* 372 * total_size is the size of the ELF (interpreter) image. 373 * The _first_ mmap needs to know the full size, otherwise 374 * randomization might put this image into an overlapping 375 * position with the ELF binary image. (since size < total_size) 376 * So we first map the 'big' image - and unmap the remainder at 377 * the end. (which unmap is needed for ELF images with holes.) 378 */ 379 if (total_size) { 380 total_size = ELF_PAGEALIGN(total_size); 381 map_addr = vm_mmap(filep, addr, total_size, prot, type, off); 382 if (!BAD_ADDR(map_addr)) 383 vm_munmap(map_addr+size, total_size-size); 384 } else 385 map_addr = vm_mmap(filep, addr, size, prot, type, off); 386 387 if ((type & MAP_FIXED_NOREPLACE) && 388 PTR_ERR((void *)map_addr) == -EEXIST) 389 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n", 390 task_pid_nr(current), current->comm, (void *)addr); 391 392 return(map_addr); 393 } 394 395 /* 396 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset" 397 * into memory at "addr". Memory from "p_filesz" through "p_memsz" 398 * rounded up to the next page is zeroed. 399 */ 400 static unsigned long elf_load(struct file *filep, unsigned long addr, 401 const struct elf_phdr *eppnt, int prot, int type, 402 unsigned long total_size) 403 { 404 unsigned long zero_start, zero_end; 405 unsigned long map_addr; 406 407 if (eppnt->p_filesz) { 408 map_addr = elf_map(filep, addr, eppnt, prot, type, total_size); 409 if (BAD_ADDR(map_addr)) 410 return map_addr; 411 if (eppnt->p_memsz > eppnt->p_filesz) { 412 zero_start = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) + 413 eppnt->p_filesz; 414 zero_end = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) + 415 eppnt->p_memsz; 416 417 /* 418 * Zero the end of the last mapped page but ignore 419 * any errors if the segment isn't writable. 420 */ 421 if (padzero(zero_start) && (prot & PROT_WRITE)) 422 return -EFAULT; 423 } 424 } else { 425 map_addr = zero_start = ELF_PAGESTART(addr); 426 zero_end = zero_start + ELF_PAGEOFFSET(eppnt->p_vaddr) + 427 eppnt->p_memsz; 428 } 429 if (eppnt->p_memsz > eppnt->p_filesz) { 430 /* 431 * Map the last of the segment. 432 * If the header is requesting these pages to be 433 * executable, honour that (ppc32 needs this). 434 */ 435 int error; 436 437 zero_start = ELF_PAGEALIGN(zero_start); 438 zero_end = ELF_PAGEALIGN(zero_end); 439 440 error = vm_brk_flags(zero_start, zero_end - zero_start, 441 prot & PROT_EXEC ? VM_EXEC : 0); 442 if (error) 443 map_addr = error; 444 } 445 return map_addr; 446 } 447 448 449 static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr) 450 { 451 elf_addr_t min_addr = -1; 452 elf_addr_t max_addr = 0; 453 bool pt_load = false; 454 int i; 455 456 for (i = 0; i < nr; i++) { 457 if (phdr[i].p_type == PT_LOAD) { 458 min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr)); 459 max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz); 460 pt_load = true; 461 } 462 } 463 return pt_load ? (max_addr - min_addr) : 0; 464 } 465 466 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos) 467 { 468 ssize_t rv; 469 470 rv = kernel_read(file, buf, len, &pos); 471 if (unlikely(rv != len)) { 472 return (rv < 0) ? rv : -EIO; 473 } 474 return 0; 475 } 476 477 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr) 478 { 479 unsigned long alignment = 0; 480 int i; 481 482 for (i = 0; i < nr; i++) { 483 if (cmds[i].p_type == PT_LOAD) { 484 unsigned long p_align = cmds[i].p_align; 485 486 /* skip non-power of two alignments as invalid */ 487 if (!is_power_of_2(p_align)) 488 continue; 489 alignment = max(alignment, p_align); 490 } 491 } 492 493 /* ensure we align to at least one page */ 494 return ELF_PAGEALIGN(alignment); 495 } 496 497 /** 498 * load_elf_phdrs() - load ELF program headers 499 * @elf_ex: ELF header of the binary whose program headers should be loaded 500 * @elf_file: the opened ELF binary file 501 * 502 * Loads ELF program headers from the binary file elf_file, which has the ELF 503 * header pointed to by elf_ex, into a newly allocated array. The caller is 504 * responsible for freeing the allocated data. Returns NULL upon failure. 505 */ 506 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex, 507 struct file *elf_file) 508 { 509 struct elf_phdr *elf_phdata = NULL; 510 int retval = -1; 511 unsigned int size; 512 513 /* 514 * If the size of this structure has changed, then punt, since 515 * we will be doing the wrong thing. 516 */ 517 if (elf_ex->e_phentsize != sizeof(struct elf_phdr)) 518 goto out; 519 520 /* Sanity check the number of program headers... */ 521 /* ...and their total size. */ 522 size = sizeof(struct elf_phdr) * elf_ex->e_phnum; 523 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN) 524 goto out; 525 526 elf_phdata = kmalloc(size, GFP_KERNEL); 527 if (!elf_phdata) 528 goto out; 529 530 /* Read in the program headers */ 531 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff); 532 533 out: 534 if (retval) { 535 kfree(elf_phdata); 536 elf_phdata = NULL; 537 } 538 return elf_phdata; 539 } 540 541 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE 542 543 /** 544 * struct arch_elf_state - arch-specific ELF loading state 545 * 546 * This structure is used to preserve architecture specific data during 547 * the loading of an ELF file, throughout the checking of architecture 548 * specific ELF headers & through to the point where the ELF load is 549 * known to be proceeding (ie. SET_PERSONALITY). 550 * 551 * This implementation is a dummy for architectures which require no 552 * specific state. 553 */ 554 struct arch_elf_state { 555 }; 556 557 #define INIT_ARCH_ELF_STATE {} 558 559 /** 560 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header 561 * @ehdr: The main ELF header 562 * @phdr: The program header to check 563 * @elf: The open ELF file 564 * @is_interp: True if the phdr is from the interpreter of the ELF being 565 * loaded, else false. 566 * @state: Architecture-specific state preserved throughout the process 567 * of loading the ELF. 568 * 569 * Inspects the program header phdr to validate its correctness and/or 570 * suitability for the system. Called once per ELF program header in the 571 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its 572 * interpreter. 573 * 574 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 575 * with that return code. 576 */ 577 static inline int arch_elf_pt_proc(struct elfhdr *ehdr, 578 struct elf_phdr *phdr, 579 struct file *elf, bool is_interp, 580 struct arch_elf_state *state) 581 { 582 /* Dummy implementation, always proceed */ 583 return 0; 584 } 585 586 /** 587 * arch_check_elf() - check an ELF executable 588 * @ehdr: The main ELF header 589 * @has_interp: True if the ELF has an interpreter, else false. 590 * @interp_ehdr: The interpreter's ELF header 591 * @state: Architecture-specific state preserved throughout the process 592 * of loading the ELF. 593 * 594 * Provides a final opportunity for architecture code to reject the loading 595 * of the ELF & cause an exec syscall to return an error. This is called after 596 * all program headers to be checked by arch_elf_pt_proc have been. 597 * 598 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 599 * with that return code. 600 */ 601 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp, 602 struct elfhdr *interp_ehdr, 603 struct arch_elf_state *state) 604 { 605 /* Dummy implementation, always proceed */ 606 return 0; 607 } 608 609 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */ 610 611 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state, 612 bool has_interp, bool is_interp) 613 { 614 int prot = 0; 615 616 if (p_flags & PF_R) 617 prot |= PROT_READ; 618 if (p_flags & PF_W) 619 prot |= PROT_WRITE; 620 if (p_flags & PF_X) 621 prot |= PROT_EXEC; 622 623 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp); 624 } 625 626 /* This is much more generalized than the library routine read function, 627 so we keep this separate. Technically the library read function 628 is only provided so that we can read a.out libraries that have 629 an ELF header */ 630 631 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 632 struct file *interpreter, 633 unsigned long no_base, struct elf_phdr *interp_elf_phdata, 634 struct arch_elf_state *arch_state) 635 { 636 struct elf_phdr *eppnt; 637 unsigned long load_addr = 0; 638 int load_addr_set = 0; 639 unsigned long error = ~0UL; 640 unsigned long total_size; 641 int i; 642 643 /* First of all, some simple consistency checks */ 644 if (interp_elf_ex->e_type != ET_EXEC && 645 interp_elf_ex->e_type != ET_DYN) 646 goto out; 647 if (!elf_check_arch(interp_elf_ex) || 648 elf_check_fdpic(interp_elf_ex)) 649 goto out; 650 if (!interpreter->f_op->mmap) 651 goto out; 652 653 total_size = total_mapping_size(interp_elf_phdata, 654 interp_elf_ex->e_phnum); 655 if (!total_size) { 656 error = -EINVAL; 657 goto out; 658 } 659 660 eppnt = interp_elf_phdata; 661 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 662 if (eppnt->p_type == PT_LOAD) { 663 int elf_type = MAP_PRIVATE; 664 int elf_prot = make_prot(eppnt->p_flags, arch_state, 665 true, true); 666 unsigned long vaddr = 0; 667 unsigned long k, map_addr; 668 669 vaddr = eppnt->p_vaddr; 670 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 671 elf_type |= MAP_FIXED; 672 else if (no_base && interp_elf_ex->e_type == ET_DYN) 673 load_addr = -vaddr; 674 675 map_addr = elf_load(interpreter, load_addr + vaddr, 676 eppnt, elf_prot, elf_type, total_size); 677 total_size = 0; 678 error = map_addr; 679 if (BAD_ADDR(map_addr)) 680 goto out; 681 682 if (!load_addr_set && 683 interp_elf_ex->e_type == ET_DYN) { 684 load_addr = map_addr - ELF_PAGESTART(vaddr); 685 load_addr_set = 1; 686 } 687 688 /* 689 * Check to see if the section's size will overflow the 690 * allowed task size. Note that p_filesz must always be 691 * <= p_memsize so it's only necessary to check p_memsz. 692 */ 693 k = load_addr + eppnt->p_vaddr; 694 if (BAD_ADDR(k) || 695 eppnt->p_filesz > eppnt->p_memsz || 696 eppnt->p_memsz > TASK_SIZE || 697 TASK_SIZE - eppnt->p_memsz < k) { 698 error = -ENOMEM; 699 goto out; 700 } 701 } 702 } 703 704 error = load_addr; 705 out: 706 return error; 707 } 708 709 /* 710 * These are the functions used to load ELF style executables and shared 711 * libraries. There is no binary dependent code anywhere else. 712 */ 713 714 static int parse_elf_property(const char *data, size_t *off, size_t datasz, 715 struct arch_elf_state *arch, 716 bool have_prev_type, u32 *prev_type) 717 { 718 size_t o, step; 719 const struct gnu_property *pr; 720 int ret; 721 722 if (*off == datasz) 723 return -ENOENT; 724 725 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN)) 726 return -EIO; 727 o = *off; 728 datasz -= *off; 729 730 if (datasz < sizeof(*pr)) 731 return -ENOEXEC; 732 pr = (const struct gnu_property *)(data + o); 733 o += sizeof(*pr); 734 datasz -= sizeof(*pr); 735 736 if (pr->pr_datasz > datasz) 737 return -ENOEXEC; 738 739 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN); 740 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN); 741 if (step > datasz) 742 return -ENOEXEC; 743 744 /* Properties are supposed to be unique and sorted on pr_type: */ 745 if (have_prev_type && pr->pr_type <= *prev_type) 746 return -ENOEXEC; 747 *prev_type = pr->pr_type; 748 749 ret = arch_parse_elf_property(pr->pr_type, data + o, 750 pr->pr_datasz, ELF_COMPAT, arch); 751 if (ret) 752 return ret; 753 754 *off = o + step; 755 return 0; 756 } 757 758 #define NOTE_DATA_SZ SZ_1K 759 #define GNU_PROPERTY_TYPE_0_NAME "GNU" 760 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME)) 761 762 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr, 763 struct arch_elf_state *arch) 764 { 765 union { 766 struct elf_note nhdr; 767 char data[NOTE_DATA_SZ]; 768 } note; 769 loff_t pos; 770 ssize_t n; 771 size_t off, datasz; 772 int ret; 773 bool have_prev_type; 774 u32 prev_type; 775 776 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr) 777 return 0; 778 779 /* load_elf_binary() shouldn't call us unless this is true... */ 780 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY)) 781 return -ENOEXEC; 782 783 /* If the properties are crazy large, that's too bad (for now): */ 784 if (phdr->p_filesz > sizeof(note)) 785 return -ENOEXEC; 786 787 pos = phdr->p_offset; 788 n = kernel_read(f, ¬e, phdr->p_filesz, &pos); 789 790 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ); 791 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ) 792 return -EIO; 793 794 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 795 note.nhdr.n_namesz != NOTE_NAME_SZ || 796 strncmp(note.data + sizeof(note.nhdr), 797 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr))) 798 return -ENOEXEC; 799 800 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ, 801 ELF_GNU_PROPERTY_ALIGN); 802 if (off > n) 803 return -ENOEXEC; 804 805 if (note.nhdr.n_descsz > n - off) 806 return -ENOEXEC; 807 datasz = off + note.nhdr.n_descsz; 808 809 have_prev_type = false; 810 do { 811 ret = parse_elf_property(note.data, &off, datasz, arch, 812 have_prev_type, &prev_type); 813 have_prev_type = true; 814 } while (!ret); 815 816 return ret == -ENOENT ? 0 : ret; 817 } 818 819 static int load_elf_binary(struct linux_binprm *bprm) 820 { 821 struct file *interpreter = NULL; /* to shut gcc up */ 822 unsigned long load_bias = 0, phdr_addr = 0; 823 int first_pt_load = 1; 824 unsigned long error; 825 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL; 826 struct elf_phdr *elf_property_phdata = NULL; 827 unsigned long elf_brk; 828 int retval, i; 829 unsigned long elf_entry; 830 unsigned long e_entry; 831 unsigned long interp_load_addr = 0; 832 unsigned long start_code, end_code, start_data, end_data; 833 unsigned long reloc_func_desc __maybe_unused = 0; 834 int executable_stack = EXSTACK_DEFAULT; 835 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf; 836 struct elfhdr *interp_elf_ex = NULL; 837 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE; 838 struct mm_struct *mm; 839 struct pt_regs *regs; 840 841 retval = -ENOEXEC; 842 /* First of all, some simple consistency checks */ 843 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 844 goto out; 845 846 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN) 847 goto out; 848 if (!elf_check_arch(elf_ex)) 849 goto out; 850 if (elf_check_fdpic(elf_ex)) 851 goto out; 852 if (!bprm->file->f_op->mmap) 853 goto out; 854 855 elf_phdata = load_elf_phdrs(elf_ex, bprm->file); 856 if (!elf_phdata) 857 goto out; 858 859 elf_ppnt = elf_phdata; 860 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) { 861 char *elf_interpreter; 862 863 if (elf_ppnt->p_type == PT_GNU_PROPERTY) { 864 elf_property_phdata = elf_ppnt; 865 continue; 866 } 867 868 if (elf_ppnt->p_type != PT_INTERP) 869 continue; 870 871 /* 872 * This is the program interpreter used for shared libraries - 873 * for now assume that this is an a.out format binary. 874 */ 875 retval = -ENOEXEC; 876 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2) 877 goto out_free_ph; 878 879 retval = -ENOMEM; 880 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL); 881 if (!elf_interpreter) 882 goto out_free_ph; 883 884 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz, 885 elf_ppnt->p_offset); 886 if (retval < 0) 887 goto out_free_interp; 888 /* make sure path is NULL terminated */ 889 retval = -ENOEXEC; 890 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 891 goto out_free_interp; 892 893 interpreter = open_exec(elf_interpreter); 894 kfree(elf_interpreter); 895 retval = PTR_ERR(interpreter); 896 if (IS_ERR(interpreter)) 897 goto out_free_ph; 898 899 /* 900 * If the binary is not readable then enforce mm->dumpable = 0 901 * regardless of the interpreter's permissions. 902 */ 903 would_dump(bprm, interpreter); 904 905 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL); 906 if (!interp_elf_ex) { 907 retval = -ENOMEM; 908 goto out_free_file; 909 } 910 911 /* Get the exec headers */ 912 retval = elf_read(interpreter, interp_elf_ex, 913 sizeof(*interp_elf_ex), 0); 914 if (retval < 0) 915 goto out_free_dentry; 916 917 break; 918 919 out_free_interp: 920 kfree(elf_interpreter); 921 goto out_free_ph; 922 } 923 924 elf_ppnt = elf_phdata; 925 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) 926 switch (elf_ppnt->p_type) { 927 case PT_GNU_STACK: 928 if (elf_ppnt->p_flags & PF_X) 929 executable_stack = EXSTACK_ENABLE_X; 930 else 931 executable_stack = EXSTACK_DISABLE_X; 932 break; 933 934 case PT_LOPROC ... PT_HIPROC: 935 retval = arch_elf_pt_proc(elf_ex, elf_ppnt, 936 bprm->file, false, 937 &arch_state); 938 if (retval) 939 goto out_free_dentry; 940 break; 941 } 942 943 /* Some simple consistency checks for the interpreter */ 944 if (interpreter) { 945 retval = -ELIBBAD; 946 /* Not an ELF interpreter */ 947 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 948 goto out_free_dentry; 949 /* Verify the interpreter has a valid arch */ 950 if (!elf_check_arch(interp_elf_ex) || 951 elf_check_fdpic(interp_elf_ex)) 952 goto out_free_dentry; 953 954 /* Load the interpreter program headers */ 955 interp_elf_phdata = load_elf_phdrs(interp_elf_ex, 956 interpreter); 957 if (!interp_elf_phdata) 958 goto out_free_dentry; 959 960 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */ 961 elf_property_phdata = NULL; 962 elf_ppnt = interp_elf_phdata; 963 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++) 964 switch (elf_ppnt->p_type) { 965 case PT_GNU_PROPERTY: 966 elf_property_phdata = elf_ppnt; 967 break; 968 969 case PT_LOPROC ... PT_HIPROC: 970 retval = arch_elf_pt_proc(interp_elf_ex, 971 elf_ppnt, interpreter, 972 true, &arch_state); 973 if (retval) 974 goto out_free_dentry; 975 break; 976 } 977 } 978 979 retval = parse_elf_properties(interpreter ?: bprm->file, 980 elf_property_phdata, &arch_state); 981 if (retval) 982 goto out_free_dentry; 983 984 /* 985 * Allow arch code to reject the ELF at this point, whilst it's 986 * still possible to return an error to the code that invoked 987 * the exec syscall. 988 */ 989 retval = arch_check_elf(elf_ex, 990 !!interpreter, interp_elf_ex, 991 &arch_state); 992 if (retval) 993 goto out_free_dentry; 994 995 /* Flush all traces of the currently running executable */ 996 retval = begin_new_exec(bprm); 997 if (retval) 998 goto out_free_dentry; 999 1000 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 1001 may depend on the personality. */ 1002 SET_PERSONALITY2(*elf_ex, &arch_state); 1003 if (elf_read_implies_exec(*elf_ex, executable_stack)) 1004 current->personality |= READ_IMPLIES_EXEC; 1005 1006 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1007 current->flags |= PF_RANDOMIZE; 1008 1009 setup_new_exec(bprm); 1010 1011 /* Do this so that we can load the interpreter, if need be. We will 1012 change some of these later */ 1013 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 1014 executable_stack); 1015 if (retval < 0) 1016 goto out_free_dentry; 1017 1018 elf_brk = 0; 1019 1020 start_code = ~0UL; 1021 end_code = 0; 1022 start_data = 0; 1023 end_data = 0; 1024 1025 /* Now we do a little grungy work by mmapping the ELF image into 1026 the correct location in memory. */ 1027 for(i = 0, elf_ppnt = elf_phdata; 1028 i < elf_ex->e_phnum; i++, elf_ppnt++) { 1029 int elf_prot, elf_flags; 1030 unsigned long k, vaddr; 1031 unsigned long total_size = 0; 1032 unsigned long alignment; 1033 1034 if (elf_ppnt->p_type != PT_LOAD) 1035 continue; 1036 1037 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state, 1038 !!interpreter, false); 1039 1040 elf_flags = MAP_PRIVATE; 1041 1042 vaddr = elf_ppnt->p_vaddr; 1043 /* 1044 * The first time through the loop, first_pt_load is true: 1045 * layout will be calculated. Once set, use MAP_FIXED since 1046 * we know we've already safely mapped the entire region with 1047 * MAP_FIXED_NOREPLACE in the once-per-binary logic following. 1048 */ 1049 if (!first_pt_load) { 1050 elf_flags |= MAP_FIXED; 1051 } else if (elf_ex->e_type == ET_EXEC) { 1052 /* 1053 * This logic is run once for the first LOAD Program 1054 * Header for ET_EXEC binaries. No special handling 1055 * is needed. 1056 */ 1057 elf_flags |= MAP_FIXED_NOREPLACE; 1058 } else if (elf_ex->e_type == ET_DYN) { 1059 /* 1060 * This logic is run once for the first LOAD Program 1061 * Header for ET_DYN binaries to calculate the 1062 * randomization (load_bias) for all the LOAD 1063 * Program Headers. 1064 */ 1065 1066 /* 1067 * Calculate the entire size of the ELF mapping 1068 * (total_size), used for the initial mapping, 1069 * due to load_addr_set which is set to true later 1070 * once the initial mapping is performed. 1071 * 1072 * Note that this is only sensible when the LOAD 1073 * segments are contiguous (or overlapping). If 1074 * used for LOADs that are far apart, this would 1075 * cause the holes between LOADs to be mapped, 1076 * running the risk of having the mapping fail, 1077 * as it would be larger than the ELF file itself. 1078 * 1079 * As a result, only ET_DYN does this, since 1080 * some ET_EXEC (e.g. ia64) may have large virtual 1081 * memory holes between LOADs. 1082 * 1083 */ 1084 total_size = total_mapping_size(elf_phdata, 1085 elf_ex->e_phnum); 1086 if (!total_size) { 1087 retval = -EINVAL; 1088 goto out_free_dentry; 1089 } 1090 1091 /* Calculate any requested alignment. */ 1092 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum); 1093 1094 /* 1095 * There are effectively two types of ET_DYN 1096 * binaries: programs (i.e. PIE: ET_DYN with PT_INTERP) 1097 * and loaders (ET_DYN without PT_INTERP, since they 1098 * _are_ the ELF interpreter). The loaders must 1099 * be loaded away from programs since the program 1100 * may otherwise collide with the loader (especially 1101 * for ET_EXEC which does not have a randomized 1102 * position). For example to handle invocations of 1103 * "./ld.so someprog" to test out a new version of 1104 * the loader, the subsequent program that the 1105 * loader loads must avoid the loader itself, so 1106 * they cannot share the same load range. Sufficient 1107 * room for the brk must be allocated with the 1108 * loader as well, since brk must be available with 1109 * the loader. 1110 * 1111 * Therefore, programs are loaded offset from 1112 * ELF_ET_DYN_BASE and loaders are loaded into the 1113 * independently randomized mmap region (0 load_bias 1114 * without MAP_FIXED nor MAP_FIXED_NOREPLACE). 1115 */ 1116 if (interpreter) { 1117 /* On ET_DYN with PT_INTERP, we do the ASLR. */ 1118 load_bias = ELF_ET_DYN_BASE; 1119 if (current->flags & PF_RANDOMIZE) 1120 load_bias += arch_mmap_rnd(); 1121 /* Adjust alignment as requested. */ 1122 if (alignment) 1123 load_bias &= ~(alignment - 1); 1124 elf_flags |= MAP_FIXED_NOREPLACE; 1125 } else { 1126 /* 1127 * For ET_DYN without PT_INTERP, we rely on 1128 * the architectures's (potentially ASLR) mmap 1129 * base address (via a load_bias of 0). 1130 * 1131 * When a large alignment is requested, we 1132 * must do the allocation at address "0" right 1133 * now to discover where things will load so 1134 * that we can adjust the resulting alignment. 1135 * In this case (load_bias != 0), we can use 1136 * MAP_FIXED_NOREPLACE to make sure the mapping 1137 * doesn't collide with anything. 1138 */ 1139 if (alignment > ELF_MIN_ALIGN) { 1140 load_bias = elf_load(bprm->file, 0, elf_ppnt, 1141 elf_prot, elf_flags, total_size); 1142 if (BAD_ADDR(load_bias)) { 1143 retval = IS_ERR_VALUE(load_bias) ? 1144 PTR_ERR((void*)load_bias) : -EINVAL; 1145 goto out_free_dentry; 1146 } 1147 vm_munmap(load_bias, total_size); 1148 /* Adjust alignment as requested. */ 1149 if (alignment) 1150 load_bias &= ~(alignment - 1); 1151 elf_flags |= MAP_FIXED_NOREPLACE; 1152 } else 1153 load_bias = 0; 1154 } 1155 1156 /* 1157 * Since load_bias is used for all subsequent loading 1158 * calculations, we must lower it by the first vaddr 1159 * so that the remaining calculations based on the 1160 * ELF vaddrs will be correctly offset. The result 1161 * is then page aligned. 1162 */ 1163 load_bias = ELF_PAGESTART(load_bias - vaddr); 1164 } 1165 1166 error = elf_load(bprm->file, load_bias + vaddr, elf_ppnt, 1167 elf_prot, elf_flags, total_size); 1168 if (BAD_ADDR(error)) { 1169 retval = IS_ERR_VALUE(error) ? 1170 PTR_ERR((void*)error) : -EINVAL; 1171 goto out_free_dentry; 1172 } 1173 1174 if (first_pt_load) { 1175 first_pt_load = 0; 1176 if (elf_ex->e_type == ET_DYN) { 1177 load_bias += error - 1178 ELF_PAGESTART(load_bias + vaddr); 1179 reloc_func_desc = load_bias; 1180 } 1181 } 1182 1183 /* 1184 * Figure out which segment in the file contains the Program 1185 * Header table, and map to the associated memory address. 1186 */ 1187 if (elf_ppnt->p_offset <= elf_ex->e_phoff && 1188 elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) { 1189 phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset + 1190 elf_ppnt->p_vaddr; 1191 } 1192 1193 k = elf_ppnt->p_vaddr; 1194 if ((elf_ppnt->p_flags & PF_X) && k < start_code) 1195 start_code = k; 1196 if (start_data < k) 1197 start_data = k; 1198 1199 /* 1200 * Check to see if the section's size will overflow the 1201 * allowed task size. Note that p_filesz must always be 1202 * <= p_memsz so it is only necessary to check p_memsz. 1203 */ 1204 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 1205 elf_ppnt->p_memsz > TASK_SIZE || 1206 TASK_SIZE - elf_ppnt->p_memsz < k) { 1207 /* set_brk can never work. Avoid overflows. */ 1208 retval = -EINVAL; 1209 goto out_free_dentry; 1210 } 1211 1212 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 1213 1214 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 1215 end_code = k; 1216 if (end_data < k) 1217 end_data = k; 1218 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 1219 if (k > elf_brk) 1220 elf_brk = k; 1221 } 1222 1223 e_entry = elf_ex->e_entry + load_bias; 1224 phdr_addr += load_bias; 1225 elf_brk += load_bias; 1226 start_code += load_bias; 1227 end_code += load_bias; 1228 start_data += load_bias; 1229 end_data += load_bias; 1230 1231 current->mm->start_brk = current->mm->brk = ELF_PAGEALIGN(elf_brk); 1232 1233 if (interpreter) { 1234 elf_entry = load_elf_interp(interp_elf_ex, 1235 interpreter, 1236 load_bias, interp_elf_phdata, 1237 &arch_state); 1238 if (!IS_ERR_VALUE(elf_entry)) { 1239 /* 1240 * load_elf_interp() returns relocation 1241 * adjustment 1242 */ 1243 interp_load_addr = elf_entry; 1244 elf_entry += interp_elf_ex->e_entry; 1245 } 1246 if (BAD_ADDR(elf_entry)) { 1247 retval = IS_ERR_VALUE(elf_entry) ? 1248 (int)elf_entry : -EINVAL; 1249 goto out_free_dentry; 1250 } 1251 reloc_func_desc = interp_load_addr; 1252 1253 allow_write_access(interpreter); 1254 fput(interpreter); 1255 1256 kfree(interp_elf_ex); 1257 kfree(interp_elf_phdata); 1258 } else { 1259 elf_entry = e_entry; 1260 if (BAD_ADDR(elf_entry)) { 1261 retval = -EINVAL; 1262 goto out_free_dentry; 1263 } 1264 } 1265 1266 kfree(elf_phdata); 1267 1268 set_binfmt(&elf_format); 1269 1270 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 1271 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter); 1272 if (retval < 0) 1273 goto out; 1274 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 1275 1276 retval = create_elf_tables(bprm, elf_ex, interp_load_addr, 1277 e_entry, phdr_addr); 1278 if (retval < 0) 1279 goto out; 1280 1281 mm = current->mm; 1282 mm->end_code = end_code; 1283 mm->start_code = start_code; 1284 mm->start_data = start_data; 1285 mm->end_data = end_data; 1286 mm->start_stack = bprm->p; 1287 1288 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { 1289 /* 1290 * For architectures with ELF randomization, when executing 1291 * a loader directly (i.e. no interpreter listed in ELF 1292 * headers), move the brk area out of the mmap region 1293 * (since it grows up, and may collide early with the stack 1294 * growing down), and into the unused ELF_ET_DYN_BASE region. 1295 */ 1296 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && 1297 elf_ex->e_type == ET_DYN && !interpreter) { 1298 mm->brk = mm->start_brk = ELF_ET_DYN_BASE; 1299 } else { 1300 /* Otherwise leave a gap between .bss and brk. */ 1301 mm->brk = mm->start_brk = mm->brk + PAGE_SIZE; 1302 } 1303 1304 mm->brk = mm->start_brk = arch_randomize_brk(mm); 1305 #ifdef compat_brk_randomized 1306 current->brk_randomized = 1; 1307 #endif 1308 } 1309 1310 if (current->personality & MMAP_PAGE_ZERO) { 1311 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 1312 and some applications "depend" upon this behavior. 1313 Since we do not have the power to recompile these, we 1314 emulate the SVr4 behavior. Sigh. */ 1315 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 1316 MAP_FIXED | MAP_PRIVATE, 0); 1317 } 1318 1319 regs = current_pt_regs(); 1320 #ifdef ELF_PLAT_INIT 1321 /* 1322 * The ABI may specify that certain registers be set up in special 1323 * ways (on i386 %edx is the address of a DT_FINI function, for 1324 * example. In addition, it may also specify (eg, PowerPC64 ELF) 1325 * that the e_entry field is the address of the function descriptor 1326 * for the startup routine, rather than the address of the startup 1327 * routine itself. This macro performs whatever initialization to 1328 * the regs structure is required as well as any relocations to the 1329 * function descriptor entries when executing dynamically links apps. 1330 */ 1331 ELF_PLAT_INIT(regs, reloc_func_desc); 1332 #endif 1333 1334 finalize_exec(bprm); 1335 START_THREAD(elf_ex, regs, elf_entry, bprm->p); 1336 retval = 0; 1337 out: 1338 return retval; 1339 1340 /* error cleanup */ 1341 out_free_dentry: 1342 kfree(interp_elf_ex); 1343 kfree(interp_elf_phdata); 1344 out_free_file: 1345 allow_write_access(interpreter); 1346 if (interpreter) 1347 fput(interpreter); 1348 out_free_ph: 1349 kfree(elf_phdata); 1350 goto out; 1351 } 1352 1353 #ifdef CONFIG_USELIB 1354 /* This is really simpleminded and specialized - we are loading an 1355 a.out library that is given an ELF header. */ 1356 static int load_elf_library(struct file *file) 1357 { 1358 struct elf_phdr *elf_phdata; 1359 struct elf_phdr *eppnt; 1360 int retval, error, i, j; 1361 struct elfhdr elf_ex; 1362 1363 error = -ENOEXEC; 1364 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0); 1365 if (retval < 0) 1366 goto out; 1367 1368 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1369 goto out; 1370 1371 /* First of all, some simple consistency checks */ 1372 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1373 !elf_check_arch(&elf_ex) || !file->f_op->mmap) 1374 goto out; 1375 if (elf_check_fdpic(&elf_ex)) 1376 goto out; 1377 1378 /* Now read in all of the header information */ 1379 1380 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1381 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1382 1383 error = -ENOMEM; 1384 elf_phdata = kmalloc(j, GFP_KERNEL); 1385 if (!elf_phdata) 1386 goto out; 1387 1388 eppnt = elf_phdata; 1389 error = -ENOEXEC; 1390 retval = elf_read(file, eppnt, j, elf_ex.e_phoff); 1391 if (retval < 0) 1392 goto out_free_ph; 1393 1394 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1395 if ((eppnt + i)->p_type == PT_LOAD) 1396 j++; 1397 if (j != 1) 1398 goto out_free_ph; 1399 1400 while (eppnt->p_type != PT_LOAD) 1401 eppnt++; 1402 1403 /* Now use mmap to map the library into memory. */ 1404 error = elf_load(file, ELF_PAGESTART(eppnt->p_vaddr), 1405 eppnt, 1406 PROT_READ | PROT_WRITE | PROT_EXEC, 1407 MAP_FIXED_NOREPLACE | MAP_PRIVATE, 1408 0); 1409 1410 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1411 goto out_free_ph; 1412 1413 error = 0; 1414 1415 out_free_ph: 1416 kfree(elf_phdata); 1417 out: 1418 return error; 1419 } 1420 #endif /* #ifdef CONFIG_USELIB */ 1421 1422 #ifdef CONFIG_ELF_CORE 1423 /* 1424 * ELF core dumper 1425 * 1426 * Modelled on fs/exec.c:aout_core_dump() 1427 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1428 */ 1429 1430 /* An ELF note in memory */ 1431 struct memelfnote 1432 { 1433 const char *name; 1434 int type; 1435 unsigned int datasz; 1436 void *data; 1437 }; 1438 1439 static int notesize(struct memelfnote *en) 1440 { 1441 int sz; 1442 1443 sz = sizeof(struct elf_note); 1444 sz += roundup(strlen(en->name) + 1, 4); 1445 sz += roundup(en->datasz, 4); 1446 1447 return sz; 1448 } 1449 1450 static int writenote(struct memelfnote *men, struct coredump_params *cprm) 1451 { 1452 struct elf_note en; 1453 en.n_namesz = strlen(men->name) + 1; 1454 en.n_descsz = men->datasz; 1455 en.n_type = men->type; 1456 1457 return dump_emit(cprm, &en, sizeof(en)) && 1458 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) && 1459 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4); 1460 } 1461 1462 static void fill_elf_header(struct elfhdr *elf, int segs, 1463 u16 machine, u32 flags) 1464 { 1465 memset(elf, 0, sizeof(*elf)); 1466 1467 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1468 elf->e_ident[EI_CLASS] = ELF_CLASS; 1469 elf->e_ident[EI_DATA] = ELF_DATA; 1470 elf->e_ident[EI_VERSION] = EV_CURRENT; 1471 elf->e_ident[EI_OSABI] = ELF_OSABI; 1472 1473 elf->e_type = ET_CORE; 1474 elf->e_machine = machine; 1475 elf->e_version = EV_CURRENT; 1476 elf->e_phoff = sizeof(struct elfhdr); 1477 elf->e_flags = flags; 1478 elf->e_ehsize = sizeof(struct elfhdr); 1479 elf->e_phentsize = sizeof(struct elf_phdr); 1480 elf->e_phnum = segs; 1481 } 1482 1483 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1484 { 1485 phdr->p_type = PT_NOTE; 1486 phdr->p_offset = offset; 1487 phdr->p_vaddr = 0; 1488 phdr->p_paddr = 0; 1489 phdr->p_filesz = sz; 1490 phdr->p_memsz = 0; 1491 phdr->p_flags = 0; 1492 phdr->p_align = 4; 1493 } 1494 1495 static void fill_note(struct memelfnote *note, const char *name, int type, 1496 unsigned int sz, void *data) 1497 { 1498 note->name = name; 1499 note->type = type; 1500 note->datasz = sz; 1501 note->data = data; 1502 } 1503 1504 /* 1505 * fill up all the fields in prstatus from the given task struct, except 1506 * registers which need to be filled up separately. 1507 */ 1508 static void fill_prstatus(struct elf_prstatus_common *prstatus, 1509 struct task_struct *p, long signr) 1510 { 1511 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1512 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1513 prstatus->pr_sighold = p->blocked.sig[0]; 1514 rcu_read_lock(); 1515 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1516 rcu_read_unlock(); 1517 prstatus->pr_pid = task_pid_vnr(p); 1518 prstatus->pr_pgrp = task_pgrp_vnr(p); 1519 prstatus->pr_sid = task_session_vnr(p); 1520 if (thread_group_leader(p)) { 1521 struct task_cputime cputime; 1522 1523 /* 1524 * This is the record for the group leader. It shows the 1525 * group-wide total, not its individual thread total. 1526 */ 1527 thread_group_cputime(p, &cputime); 1528 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime); 1529 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime); 1530 } else { 1531 u64 utime, stime; 1532 1533 task_cputime(p, &utime, &stime); 1534 prstatus->pr_utime = ns_to_kernel_old_timeval(utime); 1535 prstatus->pr_stime = ns_to_kernel_old_timeval(stime); 1536 } 1537 1538 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime); 1539 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime); 1540 } 1541 1542 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1543 struct mm_struct *mm) 1544 { 1545 const struct cred *cred; 1546 unsigned int i, len; 1547 unsigned int state; 1548 1549 /* first copy the parameters from user space */ 1550 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1551 1552 len = mm->arg_end - mm->arg_start; 1553 if (len >= ELF_PRARGSZ) 1554 len = ELF_PRARGSZ-1; 1555 if (copy_from_user(&psinfo->pr_psargs, 1556 (const char __user *)mm->arg_start, len)) 1557 return -EFAULT; 1558 for(i = 0; i < len; i++) 1559 if (psinfo->pr_psargs[i] == 0) 1560 psinfo->pr_psargs[i] = ' '; 1561 psinfo->pr_psargs[len] = 0; 1562 1563 rcu_read_lock(); 1564 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1565 rcu_read_unlock(); 1566 psinfo->pr_pid = task_pid_vnr(p); 1567 psinfo->pr_pgrp = task_pgrp_vnr(p); 1568 psinfo->pr_sid = task_session_vnr(p); 1569 1570 state = READ_ONCE(p->__state); 1571 i = state ? ffz(~state) + 1 : 0; 1572 psinfo->pr_state = i; 1573 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1574 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1575 psinfo->pr_nice = task_nice(p); 1576 psinfo->pr_flag = p->flags; 1577 rcu_read_lock(); 1578 cred = __task_cred(p); 1579 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); 1580 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); 1581 rcu_read_unlock(); 1582 get_task_comm(psinfo->pr_fname, p); 1583 1584 return 0; 1585 } 1586 1587 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1588 { 1589 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1590 int i = 0; 1591 do 1592 i += 2; 1593 while (auxv[i - 2] != AT_NULL); 1594 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1595 } 1596 1597 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, 1598 const kernel_siginfo_t *siginfo) 1599 { 1600 copy_siginfo_to_external(csigdata, siginfo); 1601 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata); 1602 } 1603 1604 /* 1605 * Format of NT_FILE note: 1606 * 1607 * long count -- how many files are mapped 1608 * long page_size -- units for file_ofs 1609 * array of [COUNT] elements of 1610 * long start 1611 * long end 1612 * long file_ofs 1613 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... 1614 */ 1615 static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm) 1616 { 1617 unsigned count, size, names_ofs, remaining, n; 1618 user_long_t *data; 1619 user_long_t *start_end_ofs; 1620 char *name_base, *name_curpos; 1621 int i; 1622 1623 /* *Estimated* file count and total data size needed */ 1624 count = cprm->vma_count; 1625 if (count > UINT_MAX / 64) 1626 return -EINVAL; 1627 size = count * 64; 1628 1629 names_ofs = (2 + 3 * count) * sizeof(data[0]); 1630 alloc: 1631 /* paranoia check */ 1632 if (size >= core_file_note_size_limit) { 1633 pr_warn_once("coredump Note size too large: %u (does kernel.core_file_note_size_limit sysctl need adjustment?\n", 1634 size); 1635 return -EINVAL; 1636 } 1637 size = round_up(size, PAGE_SIZE); 1638 /* 1639 * "size" can be 0 here legitimately. 1640 * Let it ENOMEM and omit NT_FILE section which will be empty anyway. 1641 */ 1642 data = kvmalloc(size, GFP_KERNEL); 1643 if (ZERO_OR_NULL_PTR(data)) 1644 return -ENOMEM; 1645 1646 start_end_ofs = data + 2; 1647 name_base = name_curpos = ((char *)data) + names_ofs; 1648 remaining = size - names_ofs; 1649 count = 0; 1650 for (i = 0; i < cprm->vma_count; i++) { 1651 struct core_vma_metadata *m = &cprm->vma_meta[i]; 1652 struct file *file; 1653 const char *filename; 1654 1655 file = m->file; 1656 if (!file) 1657 continue; 1658 filename = file_path(file, name_curpos, remaining); 1659 if (IS_ERR(filename)) { 1660 if (PTR_ERR(filename) == -ENAMETOOLONG) { 1661 kvfree(data); 1662 size = size * 5 / 4; 1663 goto alloc; 1664 } 1665 continue; 1666 } 1667 1668 /* file_path() fills at the end, move name down */ 1669 /* n = strlen(filename) + 1: */ 1670 n = (name_curpos + remaining) - filename; 1671 remaining = filename - name_curpos; 1672 memmove(name_curpos, filename, n); 1673 name_curpos += n; 1674 1675 *start_end_ofs++ = m->start; 1676 *start_end_ofs++ = m->end; 1677 *start_end_ofs++ = m->pgoff; 1678 count++; 1679 } 1680 1681 /* Now we know exact count of files, can store it */ 1682 data[0] = count; 1683 data[1] = PAGE_SIZE; 1684 /* 1685 * Count usually is less than mm->map_count, 1686 * we need to move filenames down. 1687 */ 1688 n = cprm->vma_count - count; 1689 if (n != 0) { 1690 unsigned shift_bytes = n * 3 * sizeof(data[0]); 1691 memmove(name_base - shift_bytes, name_base, 1692 name_curpos - name_base); 1693 name_curpos -= shift_bytes; 1694 } 1695 1696 size = name_curpos - (char *)data; 1697 fill_note(note, "CORE", NT_FILE, size, data); 1698 return 0; 1699 } 1700 1701 #include <linux/regset.h> 1702 1703 struct elf_thread_core_info { 1704 struct elf_thread_core_info *next; 1705 struct task_struct *task; 1706 struct elf_prstatus prstatus; 1707 struct memelfnote notes[]; 1708 }; 1709 1710 struct elf_note_info { 1711 struct elf_thread_core_info *thread; 1712 struct memelfnote psinfo; 1713 struct memelfnote signote; 1714 struct memelfnote auxv; 1715 struct memelfnote files; 1716 user_siginfo_t csigdata; 1717 size_t size; 1718 int thread_notes; 1719 }; 1720 1721 #ifdef CORE_DUMP_USE_REGSET 1722 /* 1723 * When a regset has a writeback hook, we call it on each thread before 1724 * dumping user memory. On register window machines, this makes sure the 1725 * user memory backing the register data is up to date before we read it. 1726 */ 1727 static void do_thread_regset_writeback(struct task_struct *task, 1728 const struct user_regset *regset) 1729 { 1730 if (regset->writeback) 1731 regset->writeback(task, regset, 1); 1732 } 1733 1734 #ifndef PRSTATUS_SIZE 1735 #define PRSTATUS_SIZE sizeof(struct elf_prstatus) 1736 #endif 1737 1738 #ifndef SET_PR_FPVALID 1739 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1) 1740 #endif 1741 1742 static int fill_thread_core_info(struct elf_thread_core_info *t, 1743 const struct user_regset_view *view, 1744 long signr, struct elf_note_info *info) 1745 { 1746 unsigned int note_iter, view_iter; 1747 1748 /* 1749 * NT_PRSTATUS is the one special case, because the regset data 1750 * goes into the pr_reg field inside the note contents, rather 1751 * than being the whole note contents. We fill the regset in here. 1752 * We assume that regset 0 is NT_PRSTATUS. 1753 */ 1754 fill_prstatus(&t->prstatus.common, t->task, signr); 1755 regset_get(t->task, &view->regsets[0], 1756 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg); 1757 1758 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1759 PRSTATUS_SIZE, &t->prstatus); 1760 info->size += notesize(&t->notes[0]); 1761 1762 do_thread_regset_writeback(t->task, &view->regsets[0]); 1763 1764 /* 1765 * Each other regset might generate a note too. For each regset 1766 * that has no core_note_type or is inactive, skip it. 1767 */ 1768 note_iter = 1; 1769 for (view_iter = 1; view_iter < view->n; ++view_iter) { 1770 const struct user_regset *regset = &view->regsets[view_iter]; 1771 int note_type = regset->core_note_type; 1772 bool is_fpreg = note_type == NT_PRFPREG; 1773 void *data; 1774 int ret; 1775 1776 do_thread_regset_writeback(t->task, regset); 1777 if (!note_type) // not for coredumps 1778 continue; 1779 if (regset->active && regset->active(t->task, regset) <= 0) 1780 continue; 1781 1782 ret = regset_get_alloc(t->task, regset, ~0U, &data); 1783 if (ret < 0) 1784 continue; 1785 1786 if (WARN_ON_ONCE(note_iter >= info->thread_notes)) 1787 break; 1788 1789 if (is_fpreg) 1790 SET_PR_FPVALID(&t->prstatus); 1791 1792 fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX", 1793 note_type, ret, data); 1794 1795 info->size += notesize(&t->notes[note_iter]); 1796 note_iter++; 1797 } 1798 1799 return 1; 1800 } 1801 #else 1802 static int fill_thread_core_info(struct elf_thread_core_info *t, 1803 const struct user_regset_view *view, 1804 long signr, struct elf_note_info *info) 1805 { 1806 struct task_struct *p = t->task; 1807 elf_fpregset_t *fpu; 1808 1809 fill_prstatus(&t->prstatus.common, p, signr); 1810 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1811 1812 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1813 &(t->prstatus)); 1814 info->size += notesize(&t->notes[0]); 1815 1816 fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL); 1817 if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) { 1818 kfree(fpu); 1819 return 1; 1820 } 1821 1822 t->prstatus.pr_fpvalid = 1; 1823 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu); 1824 info->size += notesize(&t->notes[1]); 1825 1826 return 1; 1827 } 1828 #endif 1829 1830 static int fill_note_info(struct elfhdr *elf, int phdrs, 1831 struct elf_note_info *info, 1832 struct coredump_params *cprm) 1833 { 1834 struct task_struct *dump_task = current; 1835 const struct user_regset_view *view; 1836 struct elf_thread_core_info *t; 1837 struct elf_prpsinfo *psinfo; 1838 struct core_thread *ct; 1839 1840 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1841 if (!psinfo) 1842 return 0; 1843 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1844 1845 #ifdef CORE_DUMP_USE_REGSET 1846 view = task_user_regset_view(dump_task); 1847 1848 /* 1849 * Figure out how many notes we're going to need for each thread. 1850 */ 1851 info->thread_notes = 0; 1852 for (int i = 0; i < view->n; ++i) 1853 if (view->regsets[i].core_note_type != 0) 1854 ++info->thread_notes; 1855 1856 /* 1857 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1858 * since it is our one special case. 1859 */ 1860 if (unlikely(info->thread_notes == 0) || 1861 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1862 WARN_ON(1); 1863 return 0; 1864 } 1865 1866 /* 1867 * Initialize the ELF file header. 1868 */ 1869 fill_elf_header(elf, phdrs, 1870 view->e_machine, view->e_flags); 1871 #else 1872 view = NULL; 1873 info->thread_notes = 2; 1874 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS); 1875 #endif 1876 1877 /* 1878 * Allocate a structure for each thread. 1879 */ 1880 info->thread = kzalloc(offsetof(struct elf_thread_core_info, 1881 notes[info->thread_notes]), 1882 GFP_KERNEL); 1883 if (unlikely(!info->thread)) 1884 return 0; 1885 1886 info->thread->task = dump_task; 1887 for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) { 1888 t = kzalloc(offsetof(struct elf_thread_core_info, 1889 notes[info->thread_notes]), 1890 GFP_KERNEL); 1891 if (unlikely(!t)) 1892 return 0; 1893 1894 t->task = ct->task; 1895 t->next = info->thread->next; 1896 info->thread->next = t; 1897 } 1898 1899 /* 1900 * Now fill in each thread's information. 1901 */ 1902 for (t = info->thread; t != NULL; t = t->next) 1903 if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info)) 1904 return 0; 1905 1906 /* 1907 * Fill in the two process-wide notes. 1908 */ 1909 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1910 info->size += notesize(&info->psinfo); 1911 1912 fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo); 1913 info->size += notesize(&info->signote); 1914 1915 fill_auxv_note(&info->auxv, current->mm); 1916 info->size += notesize(&info->auxv); 1917 1918 if (fill_files_note(&info->files, cprm) == 0) 1919 info->size += notesize(&info->files); 1920 1921 return 1; 1922 } 1923 1924 /* 1925 * Write all the notes for each thread. When writing the first thread, the 1926 * process-wide notes are interleaved after the first thread-specific note. 1927 */ 1928 static int write_note_info(struct elf_note_info *info, 1929 struct coredump_params *cprm) 1930 { 1931 bool first = true; 1932 struct elf_thread_core_info *t = info->thread; 1933 1934 do { 1935 int i; 1936 1937 if (!writenote(&t->notes[0], cprm)) 1938 return 0; 1939 1940 if (first && !writenote(&info->psinfo, cprm)) 1941 return 0; 1942 if (first && !writenote(&info->signote, cprm)) 1943 return 0; 1944 if (first && !writenote(&info->auxv, cprm)) 1945 return 0; 1946 if (first && info->files.data && 1947 !writenote(&info->files, cprm)) 1948 return 0; 1949 1950 for (i = 1; i < info->thread_notes; ++i) 1951 if (t->notes[i].data && 1952 !writenote(&t->notes[i], cprm)) 1953 return 0; 1954 1955 first = false; 1956 t = t->next; 1957 } while (t); 1958 1959 return 1; 1960 } 1961 1962 static void free_note_info(struct elf_note_info *info) 1963 { 1964 struct elf_thread_core_info *threads = info->thread; 1965 while (threads) { 1966 unsigned int i; 1967 struct elf_thread_core_info *t = threads; 1968 threads = t->next; 1969 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1970 for (i = 1; i < info->thread_notes; ++i) 1971 kvfree(t->notes[i].data); 1972 kfree(t); 1973 } 1974 kfree(info->psinfo.data); 1975 kvfree(info->files.data); 1976 } 1977 1978 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, 1979 elf_addr_t e_shoff, int segs) 1980 { 1981 elf->e_shoff = e_shoff; 1982 elf->e_shentsize = sizeof(*shdr4extnum); 1983 elf->e_shnum = 1; 1984 elf->e_shstrndx = SHN_UNDEF; 1985 1986 memset(shdr4extnum, 0, sizeof(*shdr4extnum)); 1987 1988 shdr4extnum->sh_type = SHT_NULL; 1989 shdr4extnum->sh_size = elf->e_shnum; 1990 shdr4extnum->sh_link = elf->e_shstrndx; 1991 shdr4extnum->sh_info = segs; 1992 } 1993 1994 /* 1995 * Actual dumper 1996 * 1997 * This is a two-pass process; first we find the offsets of the bits, 1998 * and then they are actually written out. If we run out of core limit 1999 * we just truncate. 2000 */ 2001 static int elf_core_dump(struct coredump_params *cprm) 2002 { 2003 int has_dumped = 0; 2004 int segs, i; 2005 struct elfhdr elf; 2006 loff_t offset = 0, dataoff; 2007 struct elf_note_info info = { }; 2008 struct elf_phdr *phdr4note = NULL; 2009 struct elf_shdr *shdr4extnum = NULL; 2010 Elf_Half e_phnum; 2011 elf_addr_t e_shoff; 2012 2013 /* 2014 * The number of segs are recored into ELF header as 16bit value. 2015 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. 2016 */ 2017 segs = cprm->vma_count + elf_core_extra_phdrs(cprm); 2018 2019 /* for notes section */ 2020 segs++; 2021 2022 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid 2023 * this, kernel supports extended numbering. Have a look at 2024 * include/linux/elf.h for further information. */ 2025 e_phnum = segs > PN_XNUM ? PN_XNUM : segs; 2026 2027 /* 2028 * Collect all the non-memory information about the process for the 2029 * notes. This also sets up the file header. 2030 */ 2031 if (!fill_note_info(&elf, e_phnum, &info, cprm)) 2032 goto end_coredump; 2033 2034 has_dumped = 1; 2035 2036 offset += sizeof(elf); /* ELF header */ 2037 offset += segs * sizeof(struct elf_phdr); /* Program headers */ 2038 2039 /* Write notes phdr entry */ 2040 { 2041 size_t sz = info.size; 2042 2043 /* For cell spufs */ 2044 sz += elf_coredump_extra_notes_size(); 2045 2046 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); 2047 if (!phdr4note) 2048 goto end_coredump; 2049 2050 fill_elf_note_phdr(phdr4note, sz, offset); 2051 offset += sz; 2052 } 2053 2054 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 2055 2056 offset += cprm->vma_data_size; 2057 offset += elf_core_extra_data_size(cprm); 2058 e_shoff = offset; 2059 2060 if (e_phnum == PN_XNUM) { 2061 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); 2062 if (!shdr4extnum) 2063 goto end_coredump; 2064 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs); 2065 } 2066 2067 offset = dataoff; 2068 2069 if (!dump_emit(cprm, &elf, sizeof(elf))) 2070 goto end_coredump; 2071 2072 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note))) 2073 goto end_coredump; 2074 2075 /* Write program headers for segments dump */ 2076 for (i = 0; i < cprm->vma_count; i++) { 2077 struct core_vma_metadata *meta = cprm->vma_meta + i; 2078 struct elf_phdr phdr; 2079 2080 phdr.p_type = PT_LOAD; 2081 phdr.p_offset = offset; 2082 phdr.p_vaddr = meta->start; 2083 phdr.p_paddr = 0; 2084 phdr.p_filesz = meta->dump_size; 2085 phdr.p_memsz = meta->end - meta->start; 2086 offset += phdr.p_filesz; 2087 phdr.p_flags = 0; 2088 if (meta->flags & VM_READ) 2089 phdr.p_flags |= PF_R; 2090 if (meta->flags & VM_WRITE) 2091 phdr.p_flags |= PF_W; 2092 if (meta->flags & VM_EXEC) 2093 phdr.p_flags |= PF_X; 2094 phdr.p_align = ELF_EXEC_PAGESIZE; 2095 2096 if (!dump_emit(cprm, &phdr, sizeof(phdr))) 2097 goto end_coredump; 2098 } 2099 2100 if (!elf_core_write_extra_phdrs(cprm, offset)) 2101 goto end_coredump; 2102 2103 /* write out the notes section */ 2104 if (!write_note_info(&info, cprm)) 2105 goto end_coredump; 2106 2107 /* For cell spufs */ 2108 if (elf_coredump_extra_notes_write(cprm)) 2109 goto end_coredump; 2110 2111 /* Align to page */ 2112 dump_skip_to(cprm, dataoff); 2113 2114 for (i = 0; i < cprm->vma_count; i++) { 2115 struct core_vma_metadata *meta = cprm->vma_meta + i; 2116 2117 if (!dump_user_range(cprm, meta->start, meta->dump_size)) 2118 goto end_coredump; 2119 } 2120 2121 if (!elf_core_write_extra_data(cprm)) 2122 goto end_coredump; 2123 2124 if (e_phnum == PN_XNUM) { 2125 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum))) 2126 goto end_coredump; 2127 } 2128 2129 end_coredump: 2130 free_note_info(&info); 2131 kfree(shdr4extnum); 2132 kfree(phdr4note); 2133 return has_dumped; 2134 } 2135 2136 #endif /* CONFIG_ELF_CORE */ 2137 2138 static int __init init_elf_binfmt(void) 2139 { 2140 register_binfmt(&elf_format); 2141 return 0; 2142 } 2143 2144 static void __exit exit_elf_binfmt(void) 2145 { 2146 /* Remove the COFF and ELF loaders. */ 2147 unregister_binfmt(&elf_format); 2148 } 2149 2150 core_initcall(init_elf_binfmt); 2151 module_exit(exit_elf_binfmt); 2152 2153 #ifdef CONFIG_BINFMT_ELF_KUNIT_TEST 2154 #include "binfmt_elf_test.c" 2155 #endif 2156