1 /* 2 * linux/fs/binfmt_elf.c 3 * 4 * These are the functions used to load ELF format executables as used 5 * on SVr4 machines. Information on the format may be found in the book 6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 7 * Tools". 8 * 9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/fs.h> 15 #include <linux/mm.h> 16 #include <linux/mman.h> 17 #include <linux/errno.h> 18 #include <linux/signal.h> 19 #include <linux/binfmts.h> 20 #include <linux/string.h> 21 #include <linux/file.h> 22 #include <linux/slab.h> 23 #include <linux/personality.h> 24 #include <linux/elfcore.h> 25 #include <linux/init.h> 26 #include <linux/highuid.h> 27 #include <linux/compiler.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/security.h> 31 #include <linux/random.h> 32 #include <linux/elf.h> 33 #include <linux/utsname.h> 34 #include <asm/uaccess.h> 35 #include <asm/param.h> 36 #include <asm/page.h> 37 38 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs); 39 static int load_elf_library(struct file *); 40 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *, 41 int, int, unsigned long); 42 43 /* 44 * If we don't support core dumping, then supply a NULL so we 45 * don't even try. 46 */ 47 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) 48 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit); 49 #else 50 #define elf_core_dump NULL 51 #endif 52 53 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 54 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 55 #else 56 #define ELF_MIN_ALIGN PAGE_SIZE 57 #endif 58 59 #ifndef ELF_CORE_EFLAGS 60 #define ELF_CORE_EFLAGS 0 61 #endif 62 63 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) 64 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 65 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 66 67 static struct linux_binfmt elf_format = { 68 .module = THIS_MODULE, 69 .load_binary = load_elf_binary, 70 .load_shlib = load_elf_library, 71 .core_dump = elf_core_dump, 72 .min_coredump = ELF_EXEC_PAGESIZE, 73 .hasvdso = 1 74 }; 75 76 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE) 77 78 static int set_brk(unsigned long start, unsigned long end) 79 { 80 start = ELF_PAGEALIGN(start); 81 end = ELF_PAGEALIGN(end); 82 if (end > start) { 83 unsigned long addr; 84 down_write(¤t->mm->mmap_sem); 85 addr = do_brk(start, end - start); 86 up_write(¤t->mm->mmap_sem); 87 if (BAD_ADDR(addr)) 88 return addr; 89 } 90 current->mm->start_brk = current->mm->brk = end; 91 return 0; 92 } 93 94 /* We need to explicitly zero any fractional pages 95 after the data section (i.e. bss). This would 96 contain the junk from the file that should not 97 be in memory 98 */ 99 static int padzero(unsigned long elf_bss) 100 { 101 unsigned long nbyte; 102 103 nbyte = ELF_PAGEOFFSET(elf_bss); 104 if (nbyte) { 105 nbyte = ELF_MIN_ALIGN - nbyte; 106 if (clear_user((void __user *) elf_bss, nbyte)) 107 return -EFAULT; 108 } 109 return 0; 110 } 111 112 /* Let's use some macros to make this stack manipulation a little clearer */ 113 #ifdef CONFIG_STACK_GROWSUP 114 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 115 #define STACK_ROUND(sp, items) \ 116 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 117 #define STACK_ALLOC(sp, len) ({ \ 118 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 119 old_sp; }) 120 #else 121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 122 #define STACK_ROUND(sp, items) \ 123 (((unsigned long) (sp - items)) &~ 15UL) 124 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) 125 #endif 126 127 #ifndef ELF_BASE_PLATFORM 128 /* 129 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 130 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 131 * will be copied to the user stack in the same manner as AT_PLATFORM. 132 */ 133 #define ELF_BASE_PLATFORM NULL 134 #endif 135 136 static int 137 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec, 138 unsigned long load_addr, unsigned long interp_load_addr) 139 { 140 unsigned long p = bprm->p; 141 int argc = bprm->argc; 142 int envc = bprm->envc; 143 elf_addr_t __user *argv; 144 elf_addr_t __user *envp; 145 elf_addr_t __user *sp; 146 elf_addr_t __user *u_platform; 147 elf_addr_t __user *u_base_platform; 148 elf_addr_t __user *u_rand_bytes; 149 const char *k_platform = ELF_PLATFORM; 150 const char *k_base_platform = ELF_BASE_PLATFORM; 151 unsigned char k_rand_bytes[16]; 152 int items; 153 elf_addr_t *elf_info; 154 int ei_index = 0; 155 const struct cred *cred = current_cred(); 156 struct vm_area_struct *vma; 157 158 /* 159 * In some cases (e.g. Hyper-Threading), we want to avoid L1 160 * evictions by the processes running on the same package. One 161 * thing we can do is to shuffle the initial stack for them. 162 */ 163 164 p = arch_align_stack(p); 165 166 /* 167 * If this architecture has a platform capability string, copy it 168 * to userspace. In some cases (Sparc), this info is impossible 169 * for userspace to get any other way, in others (i386) it is 170 * merely difficult. 171 */ 172 u_platform = NULL; 173 if (k_platform) { 174 size_t len = strlen(k_platform) + 1; 175 176 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 177 if (__copy_to_user(u_platform, k_platform, len)) 178 return -EFAULT; 179 } 180 181 /* 182 * If this architecture has a "base" platform capability 183 * string, copy it to userspace. 184 */ 185 u_base_platform = NULL; 186 if (k_base_platform) { 187 size_t len = strlen(k_base_platform) + 1; 188 189 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 190 if (__copy_to_user(u_base_platform, k_base_platform, len)) 191 return -EFAULT; 192 } 193 194 /* 195 * Generate 16 random bytes for userspace PRNG seeding. 196 */ 197 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 198 u_rand_bytes = (elf_addr_t __user *) 199 STACK_ALLOC(p, sizeof(k_rand_bytes)); 200 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 201 return -EFAULT; 202 203 /* Create the ELF interpreter info */ 204 elf_info = (elf_addr_t *)current->mm->saved_auxv; 205 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 206 #define NEW_AUX_ENT(id, val) \ 207 do { \ 208 elf_info[ei_index++] = id; \ 209 elf_info[ei_index++] = val; \ 210 } while (0) 211 212 #ifdef ARCH_DLINFO 213 /* 214 * ARCH_DLINFO must come first so PPC can do its special alignment of 215 * AUXV. 216 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 217 * ARCH_DLINFO changes 218 */ 219 ARCH_DLINFO; 220 #endif 221 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 222 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 223 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 224 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); 225 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 226 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 227 NEW_AUX_ENT(AT_BASE, interp_load_addr); 228 NEW_AUX_ENT(AT_FLAGS, 0); 229 NEW_AUX_ENT(AT_ENTRY, exec->e_entry); 230 NEW_AUX_ENT(AT_UID, cred->uid); 231 NEW_AUX_ENT(AT_EUID, cred->euid); 232 NEW_AUX_ENT(AT_GID, cred->gid); 233 NEW_AUX_ENT(AT_EGID, cred->egid); 234 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm)); 235 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 236 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 237 if (k_platform) { 238 NEW_AUX_ENT(AT_PLATFORM, 239 (elf_addr_t)(unsigned long)u_platform); 240 } 241 if (k_base_platform) { 242 NEW_AUX_ENT(AT_BASE_PLATFORM, 243 (elf_addr_t)(unsigned long)u_base_platform); 244 } 245 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) { 246 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data); 247 } 248 #undef NEW_AUX_ENT 249 /* AT_NULL is zero; clear the rest too */ 250 memset(&elf_info[ei_index], 0, 251 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]); 252 253 /* And advance past the AT_NULL entry. */ 254 ei_index += 2; 255 256 sp = STACK_ADD(p, ei_index); 257 258 items = (argc + 1) + (envc + 1) + 1; 259 bprm->p = STACK_ROUND(sp, items); 260 261 /* Point sp at the lowest address on the stack */ 262 #ifdef CONFIG_STACK_GROWSUP 263 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 264 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 265 #else 266 sp = (elf_addr_t __user *)bprm->p; 267 #endif 268 269 270 /* 271 * Grow the stack manually; some architectures have a limit on how 272 * far ahead a user-space access may be in order to grow the stack. 273 */ 274 vma = find_extend_vma(current->mm, bprm->p); 275 if (!vma) 276 return -EFAULT; 277 278 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 279 if (__put_user(argc, sp++)) 280 return -EFAULT; 281 argv = sp; 282 envp = argv + argc + 1; 283 284 /* Populate argv and envp */ 285 p = current->mm->arg_end = current->mm->arg_start; 286 while (argc-- > 0) { 287 size_t len; 288 if (__put_user((elf_addr_t)p, argv++)) 289 return -EFAULT; 290 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 291 if (!len || len > MAX_ARG_STRLEN) 292 return -EINVAL; 293 p += len; 294 } 295 if (__put_user(0, argv)) 296 return -EFAULT; 297 current->mm->arg_end = current->mm->env_start = p; 298 while (envc-- > 0) { 299 size_t len; 300 if (__put_user((elf_addr_t)p, envp++)) 301 return -EFAULT; 302 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 303 if (!len || len > MAX_ARG_STRLEN) 304 return -EINVAL; 305 p += len; 306 } 307 if (__put_user(0, envp)) 308 return -EFAULT; 309 current->mm->env_end = p; 310 311 /* Put the elf_info on the stack in the right place. */ 312 sp = (elf_addr_t __user *)envp + 1; 313 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t))) 314 return -EFAULT; 315 return 0; 316 } 317 318 #ifndef elf_map 319 320 static unsigned long elf_map(struct file *filep, unsigned long addr, 321 struct elf_phdr *eppnt, int prot, int type, 322 unsigned long total_size) 323 { 324 unsigned long map_addr; 325 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 326 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 327 addr = ELF_PAGESTART(addr); 328 size = ELF_PAGEALIGN(size); 329 330 /* mmap() will return -EINVAL if given a zero size, but a 331 * segment with zero filesize is perfectly valid */ 332 if (!size) 333 return addr; 334 335 down_write(¤t->mm->mmap_sem); 336 /* 337 * total_size is the size of the ELF (interpreter) image. 338 * The _first_ mmap needs to know the full size, otherwise 339 * randomization might put this image into an overlapping 340 * position with the ELF binary image. (since size < total_size) 341 * So we first map the 'big' image - and unmap the remainder at 342 * the end. (which unmap is needed for ELF images with holes.) 343 */ 344 if (total_size) { 345 total_size = ELF_PAGEALIGN(total_size); 346 map_addr = do_mmap(filep, addr, total_size, prot, type, off); 347 if (!BAD_ADDR(map_addr)) 348 do_munmap(current->mm, map_addr+size, total_size-size); 349 } else 350 map_addr = do_mmap(filep, addr, size, prot, type, off); 351 352 up_write(¤t->mm->mmap_sem); 353 return(map_addr); 354 } 355 356 #endif /* !elf_map */ 357 358 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr) 359 { 360 int i, first_idx = -1, last_idx = -1; 361 362 for (i = 0; i < nr; i++) { 363 if (cmds[i].p_type == PT_LOAD) { 364 last_idx = i; 365 if (first_idx == -1) 366 first_idx = i; 367 } 368 } 369 if (first_idx == -1) 370 return 0; 371 372 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - 373 ELF_PAGESTART(cmds[first_idx].p_vaddr); 374 } 375 376 377 /* This is much more generalized than the library routine read function, 378 so we keep this separate. Technically the library read function 379 is only provided so that we can read a.out libraries that have 380 an ELF header */ 381 382 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 383 struct file *interpreter, unsigned long *interp_map_addr, 384 unsigned long no_base) 385 { 386 struct elf_phdr *elf_phdata; 387 struct elf_phdr *eppnt; 388 unsigned long load_addr = 0; 389 int load_addr_set = 0; 390 unsigned long last_bss = 0, elf_bss = 0; 391 unsigned long error = ~0UL; 392 unsigned long total_size; 393 int retval, i, size; 394 395 /* First of all, some simple consistency checks */ 396 if (interp_elf_ex->e_type != ET_EXEC && 397 interp_elf_ex->e_type != ET_DYN) 398 goto out; 399 if (!elf_check_arch(interp_elf_ex)) 400 goto out; 401 if (!interpreter->f_op || !interpreter->f_op->mmap) 402 goto out; 403 404 /* 405 * If the size of this structure has changed, then punt, since 406 * we will be doing the wrong thing. 407 */ 408 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) 409 goto out; 410 if (interp_elf_ex->e_phnum < 1 || 411 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr)) 412 goto out; 413 414 /* Now read in all of the header information */ 415 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum; 416 if (size > ELF_MIN_ALIGN) 417 goto out; 418 elf_phdata = kmalloc(size, GFP_KERNEL); 419 if (!elf_phdata) 420 goto out; 421 422 retval = kernel_read(interpreter, interp_elf_ex->e_phoff, 423 (char *)elf_phdata,size); 424 error = -EIO; 425 if (retval != size) { 426 if (retval < 0) 427 error = retval; 428 goto out_close; 429 } 430 431 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum); 432 if (!total_size) { 433 error = -EINVAL; 434 goto out_close; 435 } 436 437 eppnt = elf_phdata; 438 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 439 if (eppnt->p_type == PT_LOAD) { 440 int elf_type = MAP_PRIVATE | MAP_DENYWRITE; 441 int elf_prot = 0; 442 unsigned long vaddr = 0; 443 unsigned long k, map_addr; 444 445 if (eppnt->p_flags & PF_R) 446 elf_prot = PROT_READ; 447 if (eppnt->p_flags & PF_W) 448 elf_prot |= PROT_WRITE; 449 if (eppnt->p_flags & PF_X) 450 elf_prot |= PROT_EXEC; 451 vaddr = eppnt->p_vaddr; 452 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 453 elf_type |= MAP_FIXED; 454 else if (no_base && interp_elf_ex->e_type == ET_DYN) 455 load_addr = -vaddr; 456 457 map_addr = elf_map(interpreter, load_addr + vaddr, 458 eppnt, elf_prot, elf_type, total_size); 459 total_size = 0; 460 if (!*interp_map_addr) 461 *interp_map_addr = map_addr; 462 error = map_addr; 463 if (BAD_ADDR(map_addr)) 464 goto out_close; 465 466 if (!load_addr_set && 467 interp_elf_ex->e_type == ET_DYN) { 468 load_addr = map_addr - ELF_PAGESTART(vaddr); 469 load_addr_set = 1; 470 } 471 472 /* 473 * Check to see if the section's size will overflow the 474 * allowed task size. Note that p_filesz must always be 475 * <= p_memsize so it's only necessary to check p_memsz. 476 */ 477 k = load_addr + eppnt->p_vaddr; 478 if (BAD_ADDR(k) || 479 eppnt->p_filesz > eppnt->p_memsz || 480 eppnt->p_memsz > TASK_SIZE || 481 TASK_SIZE - eppnt->p_memsz < k) { 482 error = -ENOMEM; 483 goto out_close; 484 } 485 486 /* 487 * Find the end of the file mapping for this phdr, and 488 * keep track of the largest address we see for this. 489 */ 490 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; 491 if (k > elf_bss) 492 elf_bss = k; 493 494 /* 495 * Do the same thing for the memory mapping - between 496 * elf_bss and last_bss is the bss section. 497 */ 498 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; 499 if (k > last_bss) 500 last_bss = k; 501 } 502 } 503 504 if (last_bss > elf_bss) { 505 /* 506 * Now fill out the bss section. First pad the last page up 507 * to the page boundary, and then perform a mmap to make sure 508 * that there are zero-mapped pages up to and including the 509 * last bss page. 510 */ 511 if (padzero(elf_bss)) { 512 error = -EFAULT; 513 goto out_close; 514 } 515 516 /* What we have mapped so far */ 517 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1); 518 519 /* Map the last of the bss segment */ 520 down_write(¤t->mm->mmap_sem); 521 error = do_brk(elf_bss, last_bss - elf_bss); 522 up_write(¤t->mm->mmap_sem); 523 if (BAD_ADDR(error)) 524 goto out_close; 525 } 526 527 error = load_addr; 528 529 out_close: 530 kfree(elf_phdata); 531 out: 532 return error; 533 } 534 535 /* 536 * These are the functions used to load ELF style executables and shared 537 * libraries. There is no binary dependent code anywhere else. 538 */ 539 540 #define INTERPRETER_NONE 0 541 #define INTERPRETER_ELF 2 542 543 #ifndef STACK_RND_MASK 544 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 545 #endif 546 547 static unsigned long randomize_stack_top(unsigned long stack_top) 548 { 549 unsigned int random_variable = 0; 550 551 if ((current->flags & PF_RANDOMIZE) && 552 !(current->personality & ADDR_NO_RANDOMIZE)) { 553 random_variable = get_random_int() & STACK_RND_MASK; 554 random_variable <<= PAGE_SHIFT; 555 } 556 #ifdef CONFIG_STACK_GROWSUP 557 return PAGE_ALIGN(stack_top) + random_variable; 558 #else 559 return PAGE_ALIGN(stack_top) - random_variable; 560 #endif 561 } 562 563 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs) 564 { 565 struct file *interpreter = NULL; /* to shut gcc up */ 566 unsigned long load_addr = 0, load_bias = 0; 567 int load_addr_set = 0; 568 char * elf_interpreter = NULL; 569 unsigned long error; 570 struct elf_phdr *elf_ppnt, *elf_phdata; 571 unsigned long elf_bss, elf_brk; 572 int retval, i; 573 unsigned int size; 574 unsigned long elf_entry; 575 unsigned long interp_load_addr = 0; 576 unsigned long start_code, end_code, start_data, end_data; 577 unsigned long reloc_func_desc = 0; 578 int executable_stack = EXSTACK_DEFAULT; 579 unsigned long def_flags = 0; 580 struct { 581 struct elfhdr elf_ex; 582 struct elfhdr interp_elf_ex; 583 } *loc; 584 585 loc = kmalloc(sizeof(*loc), GFP_KERNEL); 586 if (!loc) { 587 retval = -ENOMEM; 588 goto out_ret; 589 } 590 591 /* Get the exec-header */ 592 loc->elf_ex = *((struct elfhdr *)bprm->buf); 593 594 retval = -ENOEXEC; 595 /* First of all, some simple consistency checks */ 596 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 597 goto out; 598 599 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN) 600 goto out; 601 if (!elf_check_arch(&loc->elf_ex)) 602 goto out; 603 if (!bprm->file->f_op||!bprm->file->f_op->mmap) 604 goto out; 605 606 /* Now read in all of the header information */ 607 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr)) 608 goto out; 609 if (loc->elf_ex.e_phnum < 1 || 610 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr)) 611 goto out; 612 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr); 613 retval = -ENOMEM; 614 elf_phdata = kmalloc(size, GFP_KERNEL); 615 if (!elf_phdata) 616 goto out; 617 618 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff, 619 (char *)elf_phdata, size); 620 if (retval != size) { 621 if (retval >= 0) 622 retval = -EIO; 623 goto out_free_ph; 624 } 625 626 elf_ppnt = elf_phdata; 627 elf_bss = 0; 628 elf_brk = 0; 629 630 start_code = ~0UL; 631 end_code = 0; 632 start_data = 0; 633 end_data = 0; 634 635 for (i = 0; i < loc->elf_ex.e_phnum; i++) { 636 if (elf_ppnt->p_type == PT_INTERP) { 637 /* This is the program interpreter used for 638 * shared libraries - for now assume that this 639 * is an a.out format binary 640 */ 641 retval = -ENOEXEC; 642 if (elf_ppnt->p_filesz > PATH_MAX || 643 elf_ppnt->p_filesz < 2) 644 goto out_free_ph; 645 646 retval = -ENOMEM; 647 elf_interpreter = kmalloc(elf_ppnt->p_filesz, 648 GFP_KERNEL); 649 if (!elf_interpreter) 650 goto out_free_ph; 651 652 retval = kernel_read(bprm->file, elf_ppnt->p_offset, 653 elf_interpreter, 654 elf_ppnt->p_filesz); 655 if (retval != elf_ppnt->p_filesz) { 656 if (retval >= 0) 657 retval = -EIO; 658 goto out_free_interp; 659 } 660 /* make sure path is NULL terminated */ 661 retval = -ENOEXEC; 662 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 663 goto out_free_interp; 664 665 /* 666 * The early SET_PERSONALITY here is so that the lookup 667 * for the interpreter happens in the namespace of the 668 * to-be-execed image. SET_PERSONALITY can select an 669 * alternate root. 670 * 671 * However, SET_PERSONALITY is NOT allowed to switch 672 * this task into the new images's memory mapping 673 * policy - that is, TASK_SIZE must still evaluate to 674 * that which is appropriate to the execing application. 675 * This is because exit_mmap() needs to have TASK_SIZE 676 * evaluate to the size of the old image. 677 * 678 * So if (say) a 64-bit application is execing a 32-bit 679 * application it is the architecture's responsibility 680 * to defer changing the value of TASK_SIZE until the 681 * switch really is going to happen - do this in 682 * flush_thread(). - akpm 683 */ 684 SET_PERSONALITY(loc->elf_ex); 685 686 interpreter = open_exec(elf_interpreter); 687 retval = PTR_ERR(interpreter); 688 if (IS_ERR(interpreter)) 689 goto out_free_interp; 690 691 /* 692 * If the binary is not readable then enforce 693 * mm->dumpable = 0 regardless of the interpreter's 694 * permissions. 695 */ 696 if (file_permission(interpreter, MAY_READ) < 0) 697 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 698 699 retval = kernel_read(interpreter, 0, bprm->buf, 700 BINPRM_BUF_SIZE); 701 if (retval != BINPRM_BUF_SIZE) { 702 if (retval >= 0) 703 retval = -EIO; 704 goto out_free_dentry; 705 } 706 707 /* Get the exec headers */ 708 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf); 709 break; 710 } 711 elf_ppnt++; 712 } 713 714 elf_ppnt = elf_phdata; 715 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) 716 if (elf_ppnt->p_type == PT_GNU_STACK) { 717 if (elf_ppnt->p_flags & PF_X) 718 executable_stack = EXSTACK_ENABLE_X; 719 else 720 executable_stack = EXSTACK_DISABLE_X; 721 break; 722 } 723 724 /* Some simple consistency checks for the interpreter */ 725 if (elf_interpreter) { 726 retval = -ELIBBAD; 727 /* Not an ELF interpreter */ 728 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 729 goto out_free_dentry; 730 /* Verify the interpreter has a valid arch */ 731 if (!elf_check_arch(&loc->interp_elf_ex)) 732 goto out_free_dentry; 733 } else { 734 /* Executables without an interpreter also need a personality */ 735 SET_PERSONALITY(loc->elf_ex); 736 } 737 738 /* Flush all traces of the currently running executable */ 739 retval = flush_old_exec(bprm); 740 if (retval) 741 goto out_free_dentry; 742 743 /* OK, This is the point of no return */ 744 current->flags &= ~PF_FORKNOEXEC; 745 current->mm->def_flags = def_flags; 746 747 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 748 may depend on the personality. */ 749 SET_PERSONALITY(loc->elf_ex); 750 if (elf_read_implies_exec(loc->elf_ex, executable_stack)) 751 current->personality |= READ_IMPLIES_EXEC; 752 753 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 754 current->flags |= PF_RANDOMIZE; 755 arch_pick_mmap_layout(current->mm); 756 757 /* Do this so that we can load the interpreter, if need be. We will 758 change some of these later */ 759 current->mm->free_area_cache = current->mm->mmap_base; 760 current->mm->cached_hole_size = 0; 761 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 762 executable_stack); 763 if (retval < 0) { 764 send_sig(SIGKILL, current, 0); 765 goto out_free_dentry; 766 } 767 768 current->mm->start_stack = bprm->p; 769 770 /* Now we do a little grungy work by mmaping the ELF image into 771 the correct location in memory. */ 772 for(i = 0, elf_ppnt = elf_phdata; 773 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) { 774 int elf_prot = 0, elf_flags; 775 unsigned long k, vaddr; 776 777 if (elf_ppnt->p_type != PT_LOAD) 778 continue; 779 780 if (unlikely (elf_brk > elf_bss)) { 781 unsigned long nbyte; 782 783 /* There was a PT_LOAD segment with p_memsz > p_filesz 784 before this one. Map anonymous pages, if needed, 785 and clear the area. */ 786 retval = set_brk (elf_bss + load_bias, 787 elf_brk + load_bias); 788 if (retval) { 789 send_sig(SIGKILL, current, 0); 790 goto out_free_dentry; 791 } 792 nbyte = ELF_PAGEOFFSET(elf_bss); 793 if (nbyte) { 794 nbyte = ELF_MIN_ALIGN - nbyte; 795 if (nbyte > elf_brk - elf_bss) 796 nbyte = elf_brk - elf_bss; 797 if (clear_user((void __user *)elf_bss + 798 load_bias, nbyte)) { 799 /* 800 * This bss-zeroing can fail if the ELF 801 * file specifies odd protections. So 802 * we don't check the return value 803 */ 804 } 805 } 806 } 807 808 if (elf_ppnt->p_flags & PF_R) 809 elf_prot |= PROT_READ; 810 if (elf_ppnt->p_flags & PF_W) 811 elf_prot |= PROT_WRITE; 812 if (elf_ppnt->p_flags & PF_X) 813 elf_prot |= PROT_EXEC; 814 815 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE; 816 817 vaddr = elf_ppnt->p_vaddr; 818 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) { 819 elf_flags |= MAP_FIXED; 820 } else if (loc->elf_ex.e_type == ET_DYN) { 821 /* Try and get dynamic programs out of the way of the 822 * default mmap base, as well as whatever program they 823 * might try to exec. This is because the brk will 824 * follow the loader, and is not movable. */ 825 #ifdef CONFIG_X86 826 load_bias = 0; 827 #else 828 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); 829 #endif 830 } 831 832 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, 833 elf_prot, elf_flags, 0); 834 if (BAD_ADDR(error)) { 835 send_sig(SIGKILL, current, 0); 836 retval = IS_ERR((void *)error) ? 837 PTR_ERR((void*)error) : -EINVAL; 838 goto out_free_dentry; 839 } 840 841 if (!load_addr_set) { 842 load_addr_set = 1; 843 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); 844 if (loc->elf_ex.e_type == ET_DYN) { 845 load_bias += error - 846 ELF_PAGESTART(load_bias + vaddr); 847 load_addr += load_bias; 848 reloc_func_desc = load_bias; 849 } 850 } 851 k = elf_ppnt->p_vaddr; 852 if (k < start_code) 853 start_code = k; 854 if (start_data < k) 855 start_data = k; 856 857 /* 858 * Check to see if the section's size will overflow the 859 * allowed task size. Note that p_filesz must always be 860 * <= p_memsz so it is only necessary to check p_memsz. 861 */ 862 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 863 elf_ppnt->p_memsz > TASK_SIZE || 864 TASK_SIZE - elf_ppnt->p_memsz < k) { 865 /* set_brk can never work. Avoid overflows. */ 866 send_sig(SIGKILL, current, 0); 867 retval = -EINVAL; 868 goto out_free_dentry; 869 } 870 871 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 872 873 if (k > elf_bss) 874 elf_bss = k; 875 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 876 end_code = k; 877 if (end_data < k) 878 end_data = k; 879 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 880 if (k > elf_brk) 881 elf_brk = k; 882 } 883 884 loc->elf_ex.e_entry += load_bias; 885 elf_bss += load_bias; 886 elf_brk += load_bias; 887 start_code += load_bias; 888 end_code += load_bias; 889 start_data += load_bias; 890 end_data += load_bias; 891 892 /* Calling set_brk effectively mmaps the pages that we need 893 * for the bss and break sections. We must do this before 894 * mapping in the interpreter, to make sure it doesn't wind 895 * up getting placed where the bss needs to go. 896 */ 897 retval = set_brk(elf_bss, elf_brk); 898 if (retval) { 899 send_sig(SIGKILL, current, 0); 900 goto out_free_dentry; 901 } 902 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { 903 send_sig(SIGSEGV, current, 0); 904 retval = -EFAULT; /* Nobody gets to see this, but.. */ 905 goto out_free_dentry; 906 } 907 908 if (elf_interpreter) { 909 unsigned long uninitialized_var(interp_map_addr); 910 911 elf_entry = load_elf_interp(&loc->interp_elf_ex, 912 interpreter, 913 &interp_map_addr, 914 load_bias); 915 if (!IS_ERR((void *)elf_entry)) { 916 /* 917 * load_elf_interp() returns relocation 918 * adjustment 919 */ 920 interp_load_addr = elf_entry; 921 elf_entry += loc->interp_elf_ex.e_entry; 922 } 923 if (BAD_ADDR(elf_entry)) { 924 force_sig(SIGSEGV, current); 925 retval = IS_ERR((void *)elf_entry) ? 926 (int)elf_entry : -EINVAL; 927 goto out_free_dentry; 928 } 929 reloc_func_desc = interp_load_addr; 930 931 allow_write_access(interpreter); 932 fput(interpreter); 933 kfree(elf_interpreter); 934 } else { 935 elf_entry = loc->elf_ex.e_entry; 936 if (BAD_ADDR(elf_entry)) { 937 force_sig(SIGSEGV, current); 938 retval = -EINVAL; 939 goto out_free_dentry; 940 } 941 } 942 943 kfree(elf_phdata); 944 945 set_binfmt(&elf_format); 946 947 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 948 retval = arch_setup_additional_pages(bprm, !!elf_interpreter); 949 if (retval < 0) { 950 send_sig(SIGKILL, current, 0); 951 goto out; 952 } 953 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 954 955 install_exec_creds(bprm); 956 current->flags &= ~PF_FORKNOEXEC; 957 retval = create_elf_tables(bprm, &loc->elf_ex, 958 load_addr, interp_load_addr); 959 if (retval < 0) { 960 send_sig(SIGKILL, current, 0); 961 goto out; 962 } 963 /* N.B. passed_fileno might not be initialized? */ 964 current->mm->end_code = end_code; 965 current->mm->start_code = start_code; 966 current->mm->start_data = start_data; 967 current->mm->end_data = end_data; 968 current->mm->start_stack = bprm->p; 969 970 #ifdef arch_randomize_brk 971 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) 972 current->mm->brk = current->mm->start_brk = 973 arch_randomize_brk(current->mm); 974 #endif 975 976 if (current->personality & MMAP_PAGE_ZERO) { 977 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 978 and some applications "depend" upon this behavior. 979 Since we do not have the power to recompile these, we 980 emulate the SVr4 behavior. Sigh. */ 981 down_write(¤t->mm->mmap_sem); 982 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 983 MAP_FIXED | MAP_PRIVATE, 0); 984 up_write(¤t->mm->mmap_sem); 985 } 986 987 #ifdef ELF_PLAT_INIT 988 /* 989 * The ABI may specify that certain registers be set up in special 990 * ways (on i386 %edx is the address of a DT_FINI function, for 991 * example. In addition, it may also specify (eg, PowerPC64 ELF) 992 * that the e_entry field is the address of the function descriptor 993 * for the startup routine, rather than the address of the startup 994 * routine itself. This macro performs whatever initialization to 995 * the regs structure is required as well as any relocations to the 996 * function descriptor entries when executing dynamically links apps. 997 */ 998 ELF_PLAT_INIT(regs, reloc_func_desc); 999 #endif 1000 1001 start_thread(regs, elf_entry, bprm->p); 1002 retval = 0; 1003 out: 1004 kfree(loc); 1005 out_ret: 1006 return retval; 1007 1008 /* error cleanup */ 1009 out_free_dentry: 1010 allow_write_access(interpreter); 1011 if (interpreter) 1012 fput(interpreter); 1013 out_free_interp: 1014 kfree(elf_interpreter); 1015 out_free_ph: 1016 kfree(elf_phdata); 1017 goto out; 1018 } 1019 1020 /* This is really simpleminded and specialized - we are loading an 1021 a.out library that is given an ELF header. */ 1022 static int load_elf_library(struct file *file) 1023 { 1024 struct elf_phdr *elf_phdata; 1025 struct elf_phdr *eppnt; 1026 unsigned long elf_bss, bss, len; 1027 int retval, error, i, j; 1028 struct elfhdr elf_ex; 1029 1030 error = -ENOEXEC; 1031 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex)); 1032 if (retval != sizeof(elf_ex)) 1033 goto out; 1034 1035 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1036 goto out; 1037 1038 /* First of all, some simple consistency checks */ 1039 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1040 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap) 1041 goto out; 1042 1043 /* Now read in all of the header information */ 1044 1045 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1046 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1047 1048 error = -ENOMEM; 1049 elf_phdata = kmalloc(j, GFP_KERNEL); 1050 if (!elf_phdata) 1051 goto out; 1052 1053 eppnt = elf_phdata; 1054 error = -ENOEXEC; 1055 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j); 1056 if (retval != j) 1057 goto out_free_ph; 1058 1059 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1060 if ((eppnt + i)->p_type == PT_LOAD) 1061 j++; 1062 if (j != 1) 1063 goto out_free_ph; 1064 1065 while (eppnt->p_type != PT_LOAD) 1066 eppnt++; 1067 1068 /* Now use mmap to map the library into memory. */ 1069 down_write(¤t->mm->mmap_sem); 1070 error = do_mmap(file, 1071 ELF_PAGESTART(eppnt->p_vaddr), 1072 (eppnt->p_filesz + 1073 ELF_PAGEOFFSET(eppnt->p_vaddr)), 1074 PROT_READ | PROT_WRITE | PROT_EXEC, 1075 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, 1076 (eppnt->p_offset - 1077 ELF_PAGEOFFSET(eppnt->p_vaddr))); 1078 up_write(¤t->mm->mmap_sem); 1079 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1080 goto out_free_ph; 1081 1082 elf_bss = eppnt->p_vaddr + eppnt->p_filesz; 1083 if (padzero(elf_bss)) { 1084 error = -EFAULT; 1085 goto out_free_ph; 1086 } 1087 1088 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr + 1089 ELF_MIN_ALIGN - 1); 1090 bss = eppnt->p_memsz + eppnt->p_vaddr; 1091 if (bss > len) { 1092 down_write(¤t->mm->mmap_sem); 1093 do_brk(len, bss - len); 1094 up_write(¤t->mm->mmap_sem); 1095 } 1096 error = 0; 1097 1098 out_free_ph: 1099 kfree(elf_phdata); 1100 out: 1101 return error; 1102 } 1103 1104 /* 1105 * Note that some platforms still use traditional core dumps and not 1106 * the ELF core dump. Each platform can select it as appropriate. 1107 */ 1108 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) 1109 1110 /* 1111 * ELF core dumper 1112 * 1113 * Modelled on fs/exec.c:aout_core_dump() 1114 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1115 */ 1116 /* 1117 * These are the only things you should do on a core-file: use only these 1118 * functions to write out all the necessary info. 1119 */ 1120 static int dump_write(struct file *file, const void *addr, int nr) 1121 { 1122 return file->f_op->write(file, addr, nr, &file->f_pos) == nr; 1123 } 1124 1125 static int dump_seek(struct file *file, loff_t off) 1126 { 1127 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 1128 if (file->f_op->llseek(file, off, SEEK_CUR) < 0) 1129 return 0; 1130 } else { 1131 char *buf = (char *)get_zeroed_page(GFP_KERNEL); 1132 if (!buf) 1133 return 0; 1134 while (off > 0) { 1135 unsigned long n = off; 1136 if (n > PAGE_SIZE) 1137 n = PAGE_SIZE; 1138 if (!dump_write(file, buf, n)) 1139 return 0; 1140 off -= n; 1141 } 1142 free_page((unsigned long)buf); 1143 } 1144 return 1; 1145 } 1146 1147 /* 1148 * Decide what to dump of a segment, part, all or none. 1149 */ 1150 static unsigned long vma_dump_size(struct vm_area_struct *vma, 1151 unsigned long mm_flags) 1152 { 1153 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) 1154 1155 /* The vma can be set up to tell us the answer directly. */ 1156 if (vma->vm_flags & VM_ALWAYSDUMP) 1157 goto whole; 1158 1159 /* Hugetlb memory check */ 1160 if (vma->vm_flags & VM_HUGETLB) { 1161 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) 1162 goto whole; 1163 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) 1164 goto whole; 1165 } 1166 1167 /* Do not dump I/O mapped devices or special mappings */ 1168 if (vma->vm_flags & (VM_IO | VM_RESERVED)) 1169 return 0; 1170 1171 /* By default, dump shared memory if mapped from an anonymous file. */ 1172 if (vma->vm_flags & VM_SHARED) { 1173 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ? 1174 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) 1175 goto whole; 1176 return 0; 1177 } 1178 1179 /* Dump segments that have been written to. */ 1180 if (vma->anon_vma && FILTER(ANON_PRIVATE)) 1181 goto whole; 1182 if (vma->vm_file == NULL) 1183 return 0; 1184 1185 if (FILTER(MAPPED_PRIVATE)) 1186 goto whole; 1187 1188 /* 1189 * If this looks like the beginning of a DSO or executable mapping, 1190 * check for an ELF header. If we find one, dump the first page to 1191 * aid in determining what was mapped here. 1192 */ 1193 if (FILTER(ELF_HEADERS) && 1194 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) { 1195 u32 __user *header = (u32 __user *) vma->vm_start; 1196 u32 word; 1197 mm_segment_t fs = get_fs(); 1198 /* 1199 * Doing it this way gets the constant folded by GCC. 1200 */ 1201 union { 1202 u32 cmp; 1203 char elfmag[SELFMAG]; 1204 } magic; 1205 BUILD_BUG_ON(SELFMAG != sizeof word); 1206 magic.elfmag[EI_MAG0] = ELFMAG0; 1207 magic.elfmag[EI_MAG1] = ELFMAG1; 1208 magic.elfmag[EI_MAG2] = ELFMAG2; 1209 magic.elfmag[EI_MAG3] = ELFMAG3; 1210 /* 1211 * Switch to the user "segment" for get_user(), 1212 * then put back what elf_core_dump() had in place. 1213 */ 1214 set_fs(USER_DS); 1215 if (unlikely(get_user(word, header))) 1216 word = 0; 1217 set_fs(fs); 1218 if (word == magic.cmp) 1219 return PAGE_SIZE; 1220 } 1221 1222 #undef FILTER 1223 1224 return 0; 1225 1226 whole: 1227 return vma->vm_end - vma->vm_start; 1228 } 1229 1230 /* An ELF note in memory */ 1231 struct memelfnote 1232 { 1233 const char *name; 1234 int type; 1235 unsigned int datasz; 1236 void *data; 1237 }; 1238 1239 static int notesize(struct memelfnote *en) 1240 { 1241 int sz; 1242 1243 sz = sizeof(struct elf_note); 1244 sz += roundup(strlen(en->name) + 1, 4); 1245 sz += roundup(en->datasz, 4); 1246 1247 return sz; 1248 } 1249 1250 #define DUMP_WRITE(addr, nr, foffset) \ 1251 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0) 1252 1253 static int alignfile(struct file *file, loff_t *foffset) 1254 { 1255 static const char buf[4] = { 0, }; 1256 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset); 1257 return 1; 1258 } 1259 1260 static int writenote(struct memelfnote *men, struct file *file, 1261 loff_t *foffset) 1262 { 1263 struct elf_note en; 1264 en.n_namesz = strlen(men->name) + 1; 1265 en.n_descsz = men->datasz; 1266 en.n_type = men->type; 1267 1268 DUMP_WRITE(&en, sizeof(en), foffset); 1269 DUMP_WRITE(men->name, en.n_namesz, foffset); 1270 if (!alignfile(file, foffset)) 1271 return 0; 1272 DUMP_WRITE(men->data, men->datasz, foffset); 1273 if (!alignfile(file, foffset)) 1274 return 0; 1275 1276 return 1; 1277 } 1278 #undef DUMP_WRITE 1279 1280 #define DUMP_WRITE(addr, nr) \ 1281 if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \ 1282 goto end_coredump; 1283 1284 static void fill_elf_header(struct elfhdr *elf, int segs, 1285 u16 machine, u32 flags, u8 osabi) 1286 { 1287 memset(elf, 0, sizeof(*elf)); 1288 1289 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1290 elf->e_ident[EI_CLASS] = ELF_CLASS; 1291 elf->e_ident[EI_DATA] = ELF_DATA; 1292 elf->e_ident[EI_VERSION] = EV_CURRENT; 1293 elf->e_ident[EI_OSABI] = ELF_OSABI; 1294 1295 elf->e_type = ET_CORE; 1296 elf->e_machine = machine; 1297 elf->e_version = EV_CURRENT; 1298 elf->e_phoff = sizeof(struct elfhdr); 1299 elf->e_flags = flags; 1300 elf->e_ehsize = sizeof(struct elfhdr); 1301 elf->e_phentsize = sizeof(struct elf_phdr); 1302 elf->e_phnum = segs; 1303 1304 return; 1305 } 1306 1307 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1308 { 1309 phdr->p_type = PT_NOTE; 1310 phdr->p_offset = offset; 1311 phdr->p_vaddr = 0; 1312 phdr->p_paddr = 0; 1313 phdr->p_filesz = sz; 1314 phdr->p_memsz = 0; 1315 phdr->p_flags = 0; 1316 phdr->p_align = 0; 1317 return; 1318 } 1319 1320 static void fill_note(struct memelfnote *note, const char *name, int type, 1321 unsigned int sz, void *data) 1322 { 1323 note->name = name; 1324 note->type = type; 1325 note->datasz = sz; 1326 note->data = data; 1327 return; 1328 } 1329 1330 /* 1331 * fill up all the fields in prstatus from the given task struct, except 1332 * registers which need to be filled up separately. 1333 */ 1334 static void fill_prstatus(struct elf_prstatus *prstatus, 1335 struct task_struct *p, long signr) 1336 { 1337 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1338 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1339 prstatus->pr_sighold = p->blocked.sig[0]; 1340 rcu_read_lock(); 1341 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1342 rcu_read_unlock(); 1343 prstatus->pr_pid = task_pid_vnr(p); 1344 prstatus->pr_pgrp = task_pgrp_vnr(p); 1345 prstatus->pr_sid = task_session_vnr(p); 1346 if (thread_group_leader(p)) { 1347 struct task_cputime cputime; 1348 1349 /* 1350 * This is the record for the group leader. It shows the 1351 * group-wide total, not its individual thread total. 1352 */ 1353 thread_group_cputime(p, &cputime); 1354 cputime_to_timeval(cputime.utime, &prstatus->pr_utime); 1355 cputime_to_timeval(cputime.stime, &prstatus->pr_stime); 1356 } else { 1357 cputime_to_timeval(p->utime, &prstatus->pr_utime); 1358 cputime_to_timeval(p->stime, &prstatus->pr_stime); 1359 } 1360 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime); 1361 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime); 1362 } 1363 1364 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1365 struct mm_struct *mm) 1366 { 1367 const struct cred *cred; 1368 unsigned int i, len; 1369 1370 /* first copy the parameters from user space */ 1371 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1372 1373 len = mm->arg_end - mm->arg_start; 1374 if (len >= ELF_PRARGSZ) 1375 len = ELF_PRARGSZ-1; 1376 if (copy_from_user(&psinfo->pr_psargs, 1377 (const char __user *)mm->arg_start, len)) 1378 return -EFAULT; 1379 for(i = 0; i < len; i++) 1380 if (psinfo->pr_psargs[i] == 0) 1381 psinfo->pr_psargs[i] = ' '; 1382 psinfo->pr_psargs[len] = 0; 1383 1384 rcu_read_lock(); 1385 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1386 rcu_read_unlock(); 1387 psinfo->pr_pid = task_pid_vnr(p); 1388 psinfo->pr_pgrp = task_pgrp_vnr(p); 1389 psinfo->pr_sid = task_session_vnr(p); 1390 1391 i = p->state ? ffz(~p->state) + 1 : 0; 1392 psinfo->pr_state = i; 1393 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1394 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1395 psinfo->pr_nice = task_nice(p); 1396 psinfo->pr_flag = p->flags; 1397 rcu_read_lock(); 1398 cred = __task_cred(p); 1399 SET_UID(psinfo->pr_uid, cred->uid); 1400 SET_GID(psinfo->pr_gid, cred->gid); 1401 rcu_read_unlock(); 1402 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); 1403 1404 return 0; 1405 } 1406 1407 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1408 { 1409 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1410 int i = 0; 1411 do 1412 i += 2; 1413 while (auxv[i - 2] != AT_NULL); 1414 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1415 } 1416 1417 #ifdef CORE_DUMP_USE_REGSET 1418 #include <linux/regset.h> 1419 1420 struct elf_thread_core_info { 1421 struct elf_thread_core_info *next; 1422 struct task_struct *task; 1423 struct elf_prstatus prstatus; 1424 struct memelfnote notes[0]; 1425 }; 1426 1427 struct elf_note_info { 1428 struct elf_thread_core_info *thread; 1429 struct memelfnote psinfo; 1430 struct memelfnote auxv; 1431 size_t size; 1432 int thread_notes; 1433 }; 1434 1435 /* 1436 * When a regset has a writeback hook, we call it on each thread before 1437 * dumping user memory. On register window machines, this makes sure the 1438 * user memory backing the register data is up to date before we read it. 1439 */ 1440 static void do_thread_regset_writeback(struct task_struct *task, 1441 const struct user_regset *regset) 1442 { 1443 if (regset->writeback) 1444 regset->writeback(task, regset, 1); 1445 } 1446 1447 static int fill_thread_core_info(struct elf_thread_core_info *t, 1448 const struct user_regset_view *view, 1449 long signr, size_t *total) 1450 { 1451 unsigned int i; 1452 1453 /* 1454 * NT_PRSTATUS is the one special case, because the regset data 1455 * goes into the pr_reg field inside the note contents, rather 1456 * than being the whole note contents. We fill the reset in here. 1457 * We assume that regset 0 is NT_PRSTATUS. 1458 */ 1459 fill_prstatus(&t->prstatus, t->task, signr); 1460 (void) view->regsets[0].get(t->task, &view->regsets[0], 1461 0, sizeof(t->prstatus.pr_reg), 1462 &t->prstatus.pr_reg, NULL); 1463 1464 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1465 sizeof(t->prstatus), &t->prstatus); 1466 *total += notesize(&t->notes[0]); 1467 1468 do_thread_regset_writeback(t->task, &view->regsets[0]); 1469 1470 /* 1471 * Each other regset might generate a note too. For each regset 1472 * that has no core_note_type or is inactive, we leave t->notes[i] 1473 * all zero and we'll know to skip writing it later. 1474 */ 1475 for (i = 1; i < view->n; ++i) { 1476 const struct user_regset *regset = &view->regsets[i]; 1477 do_thread_regset_writeback(t->task, regset); 1478 if (regset->core_note_type && 1479 (!regset->active || regset->active(t->task, regset))) { 1480 int ret; 1481 size_t size = regset->n * regset->size; 1482 void *data = kmalloc(size, GFP_KERNEL); 1483 if (unlikely(!data)) 1484 return 0; 1485 ret = regset->get(t->task, regset, 1486 0, size, data, NULL); 1487 if (unlikely(ret)) 1488 kfree(data); 1489 else { 1490 if (regset->core_note_type != NT_PRFPREG) 1491 fill_note(&t->notes[i], "LINUX", 1492 regset->core_note_type, 1493 size, data); 1494 else { 1495 t->prstatus.pr_fpvalid = 1; 1496 fill_note(&t->notes[i], "CORE", 1497 NT_PRFPREG, size, data); 1498 } 1499 *total += notesize(&t->notes[i]); 1500 } 1501 } 1502 } 1503 1504 return 1; 1505 } 1506 1507 static int fill_note_info(struct elfhdr *elf, int phdrs, 1508 struct elf_note_info *info, 1509 long signr, struct pt_regs *regs) 1510 { 1511 struct task_struct *dump_task = current; 1512 const struct user_regset_view *view = task_user_regset_view(dump_task); 1513 struct elf_thread_core_info *t; 1514 struct elf_prpsinfo *psinfo; 1515 struct core_thread *ct; 1516 unsigned int i; 1517 1518 info->size = 0; 1519 info->thread = NULL; 1520 1521 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1522 if (psinfo == NULL) 1523 return 0; 1524 1525 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1526 1527 /* 1528 * Figure out how many notes we're going to need for each thread. 1529 */ 1530 info->thread_notes = 0; 1531 for (i = 0; i < view->n; ++i) 1532 if (view->regsets[i].core_note_type != 0) 1533 ++info->thread_notes; 1534 1535 /* 1536 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1537 * since it is our one special case. 1538 */ 1539 if (unlikely(info->thread_notes == 0) || 1540 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1541 WARN_ON(1); 1542 return 0; 1543 } 1544 1545 /* 1546 * Initialize the ELF file header. 1547 */ 1548 fill_elf_header(elf, phdrs, 1549 view->e_machine, view->e_flags, view->ei_osabi); 1550 1551 /* 1552 * Allocate a structure for each thread. 1553 */ 1554 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) { 1555 t = kzalloc(offsetof(struct elf_thread_core_info, 1556 notes[info->thread_notes]), 1557 GFP_KERNEL); 1558 if (unlikely(!t)) 1559 return 0; 1560 1561 t->task = ct->task; 1562 if (ct->task == dump_task || !info->thread) { 1563 t->next = info->thread; 1564 info->thread = t; 1565 } else { 1566 /* 1567 * Make sure to keep the original task at 1568 * the head of the list. 1569 */ 1570 t->next = info->thread->next; 1571 info->thread->next = t; 1572 } 1573 } 1574 1575 /* 1576 * Now fill in each thread's information. 1577 */ 1578 for (t = info->thread; t != NULL; t = t->next) 1579 if (!fill_thread_core_info(t, view, signr, &info->size)) 1580 return 0; 1581 1582 /* 1583 * Fill in the two process-wide notes. 1584 */ 1585 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1586 info->size += notesize(&info->psinfo); 1587 1588 fill_auxv_note(&info->auxv, current->mm); 1589 info->size += notesize(&info->auxv); 1590 1591 return 1; 1592 } 1593 1594 static size_t get_note_info_size(struct elf_note_info *info) 1595 { 1596 return info->size; 1597 } 1598 1599 /* 1600 * Write all the notes for each thread. When writing the first thread, the 1601 * process-wide notes are interleaved after the first thread-specific note. 1602 */ 1603 static int write_note_info(struct elf_note_info *info, 1604 struct file *file, loff_t *foffset) 1605 { 1606 bool first = 1; 1607 struct elf_thread_core_info *t = info->thread; 1608 1609 do { 1610 int i; 1611 1612 if (!writenote(&t->notes[0], file, foffset)) 1613 return 0; 1614 1615 if (first && !writenote(&info->psinfo, file, foffset)) 1616 return 0; 1617 if (first && !writenote(&info->auxv, file, foffset)) 1618 return 0; 1619 1620 for (i = 1; i < info->thread_notes; ++i) 1621 if (t->notes[i].data && 1622 !writenote(&t->notes[i], file, foffset)) 1623 return 0; 1624 1625 first = 0; 1626 t = t->next; 1627 } while (t); 1628 1629 return 1; 1630 } 1631 1632 static void free_note_info(struct elf_note_info *info) 1633 { 1634 struct elf_thread_core_info *threads = info->thread; 1635 while (threads) { 1636 unsigned int i; 1637 struct elf_thread_core_info *t = threads; 1638 threads = t->next; 1639 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1640 for (i = 1; i < info->thread_notes; ++i) 1641 kfree(t->notes[i].data); 1642 kfree(t); 1643 } 1644 kfree(info->psinfo.data); 1645 } 1646 1647 #else 1648 1649 /* Here is the structure in which status of each thread is captured. */ 1650 struct elf_thread_status 1651 { 1652 struct list_head list; 1653 struct elf_prstatus prstatus; /* NT_PRSTATUS */ 1654 elf_fpregset_t fpu; /* NT_PRFPREG */ 1655 struct task_struct *thread; 1656 #ifdef ELF_CORE_COPY_XFPREGS 1657 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 1658 #endif 1659 struct memelfnote notes[3]; 1660 int num_notes; 1661 }; 1662 1663 /* 1664 * In order to add the specific thread information for the elf file format, 1665 * we need to keep a linked list of every threads pr_status and then create 1666 * a single section for them in the final core file. 1667 */ 1668 static int elf_dump_thread_status(long signr, struct elf_thread_status *t) 1669 { 1670 int sz = 0; 1671 struct task_struct *p = t->thread; 1672 t->num_notes = 0; 1673 1674 fill_prstatus(&t->prstatus, p, signr); 1675 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1676 1677 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1678 &(t->prstatus)); 1679 t->num_notes++; 1680 sz += notesize(&t->notes[0]); 1681 1682 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, 1683 &t->fpu))) { 1684 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), 1685 &(t->fpu)); 1686 t->num_notes++; 1687 sz += notesize(&t->notes[1]); 1688 } 1689 1690 #ifdef ELF_CORE_COPY_XFPREGS 1691 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) { 1692 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE, 1693 sizeof(t->xfpu), &t->xfpu); 1694 t->num_notes++; 1695 sz += notesize(&t->notes[2]); 1696 } 1697 #endif 1698 return sz; 1699 } 1700 1701 struct elf_note_info { 1702 struct memelfnote *notes; 1703 struct elf_prstatus *prstatus; /* NT_PRSTATUS */ 1704 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 1705 struct list_head thread_list; 1706 elf_fpregset_t *fpu; 1707 #ifdef ELF_CORE_COPY_XFPREGS 1708 elf_fpxregset_t *xfpu; 1709 #endif 1710 int thread_status_size; 1711 int numnote; 1712 }; 1713 1714 static int fill_note_info(struct elfhdr *elf, int phdrs, 1715 struct elf_note_info *info, 1716 long signr, struct pt_regs *regs) 1717 { 1718 #define NUM_NOTES 6 1719 struct list_head *t; 1720 1721 info->notes = NULL; 1722 info->prstatus = NULL; 1723 info->psinfo = NULL; 1724 info->fpu = NULL; 1725 #ifdef ELF_CORE_COPY_XFPREGS 1726 info->xfpu = NULL; 1727 #endif 1728 INIT_LIST_HEAD(&info->thread_list); 1729 1730 info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote), 1731 GFP_KERNEL); 1732 if (!info->notes) 1733 return 0; 1734 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); 1735 if (!info->psinfo) 1736 return 0; 1737 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); 1738 if (!info->prstatus) 1739 return 0; 1740 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); 1741 if (!info->fpu) 1742 return 0; 1743 #ifdef ELF_CORE_COPY_XFPREGS 1744 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL); 1745 if (!info->xfpu) 1746 return 0; 1747 #endif 1748 1749 info->thread_status_size = 0; 1750 if (signr) { 1751 struct core_thread *ct; 1752 struct elf_thread_status *ets; 1753 1754 for (ct = current->mm->core_state->dumper.next; 1755 ct; ct = ct->next) { 1756 ets = kzalloc(sizeof(*ets), GFP_KERNEL); 1757 if (!ets) 1758 return 0; 1759 1760 ets->thread = ct->task; 1761 list_add(&ets->list, &info->thread_list); 1762 } 1763 1764 list_for_each(t, &info->thread_list) { 1765 int sz; 1766 1767 ets = list_entry(t, struct elf_thread_status, list); 1768 sz = elf_dump_thread_status(signr, ets); 1769 info->thread_status_size += sz; 1770 } 1771 } 1772 /* now collect the dump for the current */ 1773 memset(info->prstatus, 0, sizeof(*info->prstatus)); 1774 fill_prstatus(info->prstatus, current, signr); 1775 elf_core_copy_regs(&info->prstatus->pr_reg, regs); 1776 1777 /* Set up header */ 1778 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI); 1779 1780 /* 1781 * Set up the notes in similar form to SVR4 core dumps made 1782 * with info from their /proc. 1783 */ 1784 1785 fill_note(info->notes + 0, "CORE", NT_PRSTATUS, 1786 sizeof(*info->prstatus), info->prstatus); 1787 fill_psinfo(info->psinfo, current->group_leader, current->mm); 1788 fill_note(info->notes + 1, "CORE", NT_PRPSINFO, 1789 sizeof(*info->psinfo), info->psinfo); 1790 1791 info->numnote = 2; 1792 1793 fill_auxv_note(&info->notes[info->numnote++], current->mm); 1794 1795 /* Try to dump the FPU. */ 1796 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, 1797 info->fpu); 1798 if (info->prstatus->pr_fpvalid) 1799 fill_note(info->notes + info->numnote++, 1800 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); 1801 #ifdef ELF_CORE_COPY_XFPREGS 1802 if (elf_core_copy_task_xfpregs(current, info->xfpu)) 1803 fill_note(info->notes + info->numnote++, 1804 "LINUX", ELF_CORE_XFPREG_TYPE, 1805 sizeof(*info->xfpu), info->xfpu); 1806 #endif 1807 1808 return 1; 1809 1810 #undef NUM_NOTES 1811 } 1812 1813 static size_t get_note_info_size(struct elf_note_info *info) 1814 { 1815 int sz = 0; 1816 int i; 1817 1818 for (i = 0; i < info->numnote; i++) 1819 sz += notesize(info->notes + i); 1820 1821 sz += info->thread_status_size; 1822 1823 return sz; 1824 } 1825 1826 static int write_note_info(struct elf_note_info *info, 1827 struct file *file, loff_t *foffset) 1828 { 1829 int i; 1830 struct list_head *t; 1831 1832 for (i = 0; i < info->numnote; i++) 1833 if (!writenote(info->notes + i, file, foffset)) 1834 return 0; 1835 1836 /* write out the thread status notes section */ 1837 list_for_each(t, &info->thread_list) { 1838 struct elf_thread_status *tmp = 1839 list_entry(t, struct elf_thread_status, list); 1840 1841 for (i = 0; i < tmp->num_notes; i++) 1842 if (!writenote(&tmp->notes[i], file, foffset)) 1843 return 0; 1844 } 1845 1846 return 1; 1847 } 1848 1849 static void free_note_info(struct elf_note_info *info) 1850 { 1851 while (!list_empty(&info->thread_list)) { 1852 struct list_head *tmp = info->thread_list.next; 1853 list_del(tmp); 1854 kfree(list_entry(tmp, struct elf_thread_status, list)); 1855 } 1856 1857 kfree(info->prstatus); 1858 kfree(info->psinfo); 1859 kfree(info->notes); 1860 kfree(info->fpu); 1861 #ifdef ELF_CORE_COPY_XFPREGS 1862 kfree(info->xfpu); 1863 #endif 1864 } 1865 1866 #endif 1867 1868 static struct vm_area_struct *first_vma(struct task_struct *tsk, 1869 struct vm_area_struct *gate_vma) 1870 { 1871 struct vm_area_struct *ret = tsk->mm->mmap; 1872 1873 if (ret) 1874 return ret; 1875 return gate_vma; 1876 } 1877 /* 1878 * Helper function for iterating across a vma list. It ensures that the caller 1879 * will visit `gate_vma' prior to terminating the search. 1880 */ 1881 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, 1882 struct vm_area_struct *gate_vma) 1883 { 1884 struct vm_area_struct *ret; 1885 1886 ret = this_vma->vm_next; 1887 if (ret) 1888 return ret; 1889 if (this_vma == gate_vma) 1890 return NULL; 1891 return gate_vma; 1892 } 1893 1894 /* 1895 * Actual dumper 1896 * 1897 * This is a two-pass process; first we find the offsets of the bits, 1898 * and then they are actually written out. If we run out of core limit 1899 * we just truncate. 1900 */ 1901 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit) 1902 { 1903 int has_dumped = 0; 1904 mm_segment_t fs; 1905 int segs; 1906 size_t size = 0; 1907 struct vm_area_struct *vma, *gate_vma; 1908 struct elfhdr *elf = NULL; 1909 loff_t offset = 0, dataoff, foffset; 1910 unsigned long mm_flags; 1911 struct elf_note_info info; 1912 1913 /* 1914 * We no longer stop all VM operations. 1915 * 1916 * This is because those proceses that could possibly change map_count 1917 * or the mmap / vma pages are now blocked in do_exit on current 1918 * finishing this core dump. 1919 * 1920 * Only ptrace can touch these memory addresses, but it doesn't change 1921 * the map_count or the pages allocated. So no possibility of crashing 1922 * exists while dumping the mm->vm_next areas to the core file. 1923 */ 1924 1925 /* alloc memory for large data structures: too large to be on stack */ 1926 elf = kmalloc(sizeof(*elf), GFP_KERNEL); 1927 if (!elf) 1928 goto out; 1929 /* 1930 * The number of segs are recored into ELF header as 16bit value. 1931 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. 1932 */ 1933 segs = current->mm->map_count; 1934 #ifdef ELF_CORE_EXTRA_PHDRS 1935 segs += ELF_CORE_EXTRA_PHDRS; 1936 #endif 1937 1938 gate_vma = get_gate_vma(current); 1939 if (gate_vma != NULL) 1940 segs++; 1941 1942 /* 1943 * Collect all the non-memory information about the process for the 1944 * notes. This also sets up the file header. 1945 */ 1946 if (!fill_note_info(elf, segs + 1, /* including notes section */ 1947 &info, signr, regs)) 1948 goto cleanup; 1949 1950 has_dumped = 1; 1951 current->flags |= PF_DUMPCORE; 1952 1953 fs = get_fs(); 1954 set_fs(KERNEL_DS); 1955 1956 DUMP_WRITE(elf, sizeof(*elf)); 1957 offset += sizeof(*elf); /* Elf header */ 1958 offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */ 1959 foffset = offset; 1960 1961 /* Write notes phdr entry */ 1962 { 1963 struct elf_phdr phdr; 1964 size_t sz = get_note_info_size(&info); 1965 1966 sz += elf_coredump_extra_notes_size(); 1967 1968 fill_elf_note_phdr(&phdr, sz, offset); 1969 offset += sz; 1970 DUMP_WRITE(&phdr, sizeof(phdr)); 1971 } 1972 1973 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 1974 1975 /* 1976 * We must use the same mm->flags while dumping core to avoid 1977 * inconsistency between the program headers and bodies, otherwise an 1978 * unusable core file can be generated. 1979 */ 1980 mm_flags = current->mm->flags; 1981 1982 /* Write program headers for segments dump */ 1983 for (vma = first_vma(current, gate_vma); vma != NULL; 1984 vma = next_vma(vma, gate_vma)) { 1985 struct elf_phdr phdr; 1986 1987 phdr.p_type = PT_LOAD; 1988 phdr.p_offset = offset; 1989 phdr.p_vaddr = vma->vm_start; 1990 phdr.p_paddr = 0; 1991 phdr.p_filesz = vma_dump_size(vma, mm_flags); 1992 phdr.p_memsz = vma->vm_end - vma->vm_start; 1993 offset += phdr.p_filesz; 1994 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; 1995 if (vma->vm_flags & VM_WRITE) 1996 phdr.p_flags |= PF_W; 1997 if (vma->vm_flags & VM_EXEC) 1998 phdr.p_flags |= PF_X; 1999 phdr.p_align = ELF_EXEC_PAGESIZE; 2000 2001 DUMP_WRITE(&phdr, sizeof(phdr)); 2002 } 2003 2004 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS 2005 ELF_CORE_WRITE_EXTRA_PHDRS; 2006 #endif 2007 2008 /* write out the notes section */ 2009 if (!write_note_info(&info, file, &foffset)) 2010 goto end_coredump; 2011 2012 if (elf_coredump_extra_notes_write(file, &foffset)) 2013 goto end_coredump; 2014 2015 /* Align to page */ 2016 if (!dump_seek(file, dataoff - foffset)) 2017 goto end_coredump; 2018 2019 for (vma = first_vma(current, gate_vma); vma != NULL; 2020 vma = next_vma(vma, gate_vma)) { 2021 unsigned long addr; 2022 unsigned long end; 2023 2024 end = vma->vm_start + vma_dump_size(vma, mm_flags); 2025 2026 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) { 2027 struct page *page; 2028 int stop; 2029 2030 page = get_dump_page(addr); 2031 if (page) { 2032 void *kaddr = kmap(page); 2033 stop = ((size += PAGE_SIZE) > limit) || 2034 !dump_write(file, kaddr, PAGE_SIZE); 2035 kunmap(page); 2036 page_cache_release(page); 2037 } else 2038 stop = !dump_seek(file, PAGE_SIZE); 2039 if (stop) 2040 goto end_coredump; 2041 } 2042 } 2043 2044 #ifdef ELF_CORE_WRITE_EXTRA_DATA 2045 ELF_CORE_WRITE_EXTRA_DATA; 2046 #endif 2047 2048 end_coredump: 2049 set_fs(fs); 2050 2051 cleanup: 2052 free_note_info(&info); 2053 kfree(elf); 2054 out: 2055 return has_dumped; 2056 } 2057 2058 #endif /* USE_ELF_CORE_DUMP */ 2059 2060 static int __init init_elf_binfmt(void) 2061 { 2062 return register_binfmt(&elf_format); 2063 } 2064 2065 static void __exit exit_elf_binfmt(void) 2066 { 2067 /* Remove the COFF and ELF loaders. */ 2068 unregister_binfmt(&elf_format); 2069 } 2070 2071 core_initcall(init_elf_binfmt); 2072 module_exit(exit_elf_binfmt); 2073 MODULE_LICENSE("GPL"); 2074