1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/binfmt_elf.c 4 * 5 * These are the functions used to load ELF format executables as used 6 * on SVr4 machines. Information on the format may be found in the book 7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 8 * Tools". 9 * 10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 11 */ 12 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/fs.h> 16 #include <linux/log2.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/errno.h> 20 #include <linux/signal.h> 21 #include <linux/binfmts.h> 22 #include <linux/string.h> 23 #include <linux/file.h> 24 #include <linux/slab.h> 25 #include <linux/personality.h> 26 #include <linux/elfcore.h> 27 #include <linux/init.h> 28 #include <linux/highuid.h> 29 #include <linux/compiler.h> 30 #include <linux/highmem.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vmalloc.h> 34 #include <linux/security.h> 35 #include <linux/random.h> 36 #include <linux/elf.h> 37 #include <linux/elf-randomize.h> 38 #include <linux/utsname.h> 39 #include <linux/coredump.h> 40 #include <linux/sched.h> 41 #include <linux/sched/coredump.h> 42 #include <linux/sched/task_stack.h> 43 #include <linux/sched/cputime.h> 44 #include <linux/sizes.h> 45 #include <linux/types.h> 46 #include <linux/cred.h> 47 #include <linux/dax.h> 48 #include <linux/uaccess.h> 49 #include <linux/rseq.h> 50 #include <asm/param.h> 51 #include <asm/page.h> 52 53 #ifndef ELF_COMPAT 54 #define ELF_COMPAT 0 55 #endif 56 57 #ifndef user_long_t 58 #define user_long_t long 59 #endif 60 #ifndef user_siginfo_t 61 #define user_siginfo_t siginfo_t 62 #endif 63 64 /* That's for binfmt_elf_fdpic to deal with */ 65 #ifndef elf_check_fdpic 66 #define elf_check_fdpic(ex) false 67 #endif 68 69 static int load_elf_binary(struct linux_binprm *bprm); 70 71 #ifdef CONFIG_USELIB 72 static int load_elf_library(struct file *); 73 #else 74 #define load_elf_library NULL 75 #endif 76 77 /* 78 * If we don't support core dumping, then supply a NULL so we 79 * don't even try. 80 */ 81 #ifdef CONFIG_ELF_CORE 82 static int elf_core_dump(struct coredump_params *cprm); 83 #else 84 #define elf_core_dump NULL 85 #endif 86 87 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 88 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 89 #else 90 #define ELF_MIN_ALIGN PAGE_SIZE 91 #endif 92 93 #ifndef ELF_CORE_EFLAGS 94 #define ELF_CORE_EFLAGS 0 95 #endif 96 97 #define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1)) 98 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 99 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 100 101 static struct linux_binfmt elf_format = { 102 .module = THIS_MODULE, 103 .load_binary = load_elf_binary, 104 .load_shlib = load_elf_library, 105 #ifdef CONFIG_COREDUMP 106 .core_dump = elf_core_dump, 107 .min_coredump = ELF_EXEC_PAGESIZE, 108 #endif 109 }; 110 111 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE)) 112 113 /* 114 * We need to explicitly zero any trailing portion of the page that follows 115 * p_filesz when it ends before the page ends (e.g. bss), otherwise this 116 * memory will contain the junk from the file that should not be present. 117 */ 118 static int padzero(unsigned long address) 119 { 120 unsigned long nbyte; 121 122 nbyte = ELF_PAGEOFFSET(address); 123 if (nbyte) { 124 nbyte = ELF_MIN_ALIGN - nbyte; 125 if (clear_user((void __user *)address, nbyte)) 126 return -EFAULT; 127 } 128 return 0; 129 } 130 131 /* Let's use some macros to make this stack manipulation a little clearer */ 132 #ifdef CONFIG_STACK_GROWSUP 133 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 134 #define STACK_ROUND(sp, items) \ 135 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 136 #define STACK_ALLOC(sp, len) ({ \ 137 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 138 old_sp; }) 139 #else 140 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 141 #define STACK_ROUND(sp, items) \ 142 (((unsigned long) (sp - items)) &~ 15UL) 143 #define STACK_ALLOC(sp, len) (sp -= len) 144 #endif 145 146 #ifndef ELF_BASE_PLATFORM 147 /* 148 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 149 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 150 * will be copied to the user stack in the same manner as AT_PLATFORM. 151 */ 152 #define ELF_BASE_PLATFORM NULL 153 #endif 154 155 static int 156 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec, 157 unsigned long interp_load_addr, 158 unsigned long e_entry, unsigned long phdr_addr) 159 { 160 struct mm_struct *mm = current->mm; 161 unsigned long p = bprm->p; 162 int argc = bprm->argc; 163 int envc = bprm->envc; 164 elf_addr_t __user *sp; 165 elf_addr_t __user *u_platform; 166 elf_addr_t __user *u_base_platform; 167 elf_addr_t __user *u_rand_bytes; 168 const char *k_platform = ELF_PLATFORM; 169 const char *k_base_platform = ELF_BASE_PLATFORM; 170 unsigned char k_rand_bytes[16]; 171 int items; 172 elf_addr_t *elf_info; 173 elf_addr_t flags = 0; 174 int ei_index; 175 const struct cred *cred = current_cred(); 176 struct vm_area_struct *vma; 177 178 /* 179 * In some cases (e.g. Hyper-Threading), we want to avoid L1 180 * evictions by the processes running on the same package. One 181 * thing we can do is to shuffle the initial stack for them. 182 */ 183 184 p = arch_align_stack(p); 185 186 /* 187 * If this architecture has a platform capability string, copy it 188 * to userspace. In some cases (Sparc), this info is impossible 189 * for userspace to get any other way, in others (i386) it is 190 * merely difficult. 191 */ 192 u_platform = NULL; 193 if (k_platform) { 194 size_t len = strlen(k_platform) + 1; 195 196 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 197 if (copy_to_user(u_platform, k_platform, len)) 198 return -EFAULT; 199 } 200 201 /* 202 * If this architecture has a "base" platform capability 203 * string, copy it to userspace. 204 */ 205 u_base_platform = NULL; 206 if (k_base_platform) { 207 size_t len = strlen(k_base_platform) + 1; 208 209 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 210 if (copy_to_user(u_base_platform, k_base_platform, len)) 211 return -EFAULT; 212 } 213 214 /* 215 * Generate 16 random bytes for userspace PRNG seeding. 216 */ 217 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 218 u_rand_bytes = (elf_addr_t __user *) 219 STACK_ALLOC(p, sizeof(k_rand_bytes)); 220 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 221 return -EFAULT; 222 223 /* Create the ELF interpreter info */ 224 elf_info = (elf_addr_t *)mm->saved_auxv; 225 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 226 #define NEW_AUX_ENT(id, val) \ 227 do { \ 228 *elf_info++ = id; \ 229 *elf_info++ = val; \ 230 } while (0) 231 232 #ifdef ARCH_DLINFO 233 /* 234 * ARCH_DLINFO must come first so PPC can do its special alignment of 235 * AUXV. 236 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 237 * ARCH_DLINFO changes 238 */ 239 ARCH_DLINFO; 240 #endif 241 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 242 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 243 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 244 NEW_AUX_ENT(AT_PHDR, phdr_addr); 245 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 246 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 247 NEW_AUX_ENT(AT_BASE, interp_load_addr); 248 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0) 249 flags |= AT_FLAGS_PRESERVE_ARGV0; 250 NEW_AUX_ENT(AT_FLAGS, flags); 251 NEW_AUX_ENT(AT_ENTRY, e_entry); 252 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); 253 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); 254 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); 255 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); 256 NEW_AUX_ENT(AT_SECURE, bprm->secureexec); 257 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 258 #ifdef ELF_HWCAP2 259 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2); 260 #endif 261 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 262 if (k_platform) { 263 NEW_AUX_ENT(AT_PLATFORM, 264 (elf_addr_t)(unsigned long)u_platform); 265 } 266 if (k_base_platform) { 267 NEW_AUX_ENT(AT_BASE_PLATFORM, 268 (elf_addr_t)(unsigned long)u_base_platform); 269 } 270 if (bprm->have_execfd) { 271 NEW_AUX_ENT(AT_EXECFD, bprm->execfd); 272 } 273 #ifdef CONFIG_RSEQ 274 NEW_AUX_ENT(AT_RSEQ_FEATURE_SIZE, offsetof(struct rseq, end)); 275 NEW_AUX_ENT(AT_RSEQ_ALIGN, __alignof__(struct rseq)); 276 #endif 277 #undef NEW_AUX_ENT 278 /* AT_NULL is zero; clear the rest too */ 279 memset(elf_info, 0, (char *)mm->saved_auxv + 280 sizeof(mm->saved_auxv) - (char *)elf_info); 281 282 /* And advance past the AT_NULL entry. */ 283 elf_info += 2; 284 285 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv; 286 sp = STACK_ADD(p, ei_index); 287 288 items = (argc + 1) + (envc + 1) + 1; 289 bprm->p = STACK_ROUND(sp, items); 290 291 /* Point sp at the lowest address on the stack */ 292 #ifdef CONFIG_STACK_GROWSUP 293 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 294 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 295 #else 296 sp = (elf_addr_t __user *)bprm->p; 297 #endif 298 299 300 /* 301 * Grow the stack manually; some architectures have a limit on how 302 * far ahead a user-space access may be in order to grow the stack. 303 */ 304 if (mmap_write_lock_killable(mm)) 305 return -EINTR; 306 vma = find_extend_vma_locked(mm, bprm->p); 307 mmap_write_unlock(mm); 308 if (!vma) 309 return -EFAULT; 310 311 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 312 if (put_user(argc, sp++)) 313 return -EFAULT; 314 315 /* Populate list of argv pointers back to argv strings. */ 316 p = mm->arg_end = mm->arg_start; 317 while (argc-- > 0) { 318 size_t len; 319 if (put_user((elf_addr_t)p, sp++)) 320 return -EFAULT; 321 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 322 if (!len || len > MAX_ARG_STRLEN) 323 return -EINVAL; 324 p += len; 325 } 326 if (put_user(0, sp++)) 327 return -EFAULT; 328 mm->arg_end = p; 329 330 /* Populate list of envp pointers back to envp strings. */ 331 mm->env_end = mm->env_start = p; 332 while (envc-- > 0) { 333 size_t len; 334 if (put_user((elf_addr_t)p, sp++)) 335 return -EFAULT; 336 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 337 if (!len || len > MAX_ARG_STRLEN) 338 return -EINVAL; 339 p += len; 340 } 341 if (put_user(0, sp++)) 342 return -EFAULT; 343 mm->env_end = p; 344 345 /* Put the elf_info on the stack in the right place. */ 346 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t))) 347 return -EFAULT; 348 return 0; 349 } 350 351 /* 352 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset" 353 * into memory at "addr". (Note that p_filesz is rounded up to the 354 * next page, so any extra bytes from the file must be wiped.) 355 */ 356 static unsigned long elf_map(struct file *filep, unsigned long addr, 357 const struct elf_phdr *eppnt, int prot, int type, 358 unsigned long total_size) 359 { 360 unsigned long map_addr; 361 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 362 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 363 addr = ELF_PAGESTART(addr); 364 size = ELF_PAGEALIGN(size); 365 366 /* mmap() will return -EINVAL if given a zero size, but a 367 * segment with zero filesize is perfectly valid */ 368 if (!size) 369 return addr; 370 371 /* 372 * total_size is the size of the ELF (interpreter) image. 373 * The _first_ mmap needs to know the full size, otherwise 374 * randomization might put this image into an overlapping 375 * position with the ELF binary image. (since size < total_size) 376 * So we first map the 'big' image - and unmap the remainder at 377 * the end. (which unmap is needed for ELF images with holes.) 378 */ 379 if (total_size) { 380 total_size = ELF_PAGEALIGN(total_size); 381 map_addr = vm_mmap(filep, addr, total_size, prot, type, off); 382 if (!BAD_ADDR(map_addr)) 383 vm_munmap(map_addr+size, total_size-size); 384 } else 385 map_addr = vm_mmap(filep, addr, size, prot, type, off); 386 387 if ((type & MAP_FIXED_NOREPLACE) && 388 PTR_ERR((void *)map_addr) == -EEXIST) 389 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n", 390 task_pid_nr(current), current->comm, (void *)addr); 391 392 return(map_addr); 393 } 394 395 /* 396 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset" 397 * into memory at "addr". Memory from "p_filesz" through "p_memsz" 398 * rounded up to the next page is zeroed. 399 */ 400 static unsigned long elf_load(struct file *filep, unsigned long addr, 401 const struct elf_phdr *eppnt, int prot, int type, 402 unsigned long total_size) 403 { 404 unsigned long zero_start, zero_end; 405 unsigned long map_addr; 406 407 if (eppnt->p_filesz) { 408 map_addr = elf_map(filep, addr, eppnt, prot, type, total_size); 409 if (BAD_ADDR(map_addr)) 410 return map_addr; 411 if (eppnt->p_memsz > eppnt->p_filesz) { 412 zero_start = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) + 413 eppnt->p_filesz; 414 zero_end = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) + 415 eppnt->p_memsz; 416 417 /* 418 * Zero the end of the last mapped page but ignore 419 * any errors if the segment isn't writable. 420 */ 421 if (padzero(zero_start) && (prot & PROT_WRITE)) 422 return -EFAULT; 423 } 424 } else { 425 map_addr = zero_start = ELF_PAGESTART(addr); 426 zero_end = zero_start + ELF_PAGEOFFSET(eppnt->p_vaddr) + 427 eppnt->p_memsz; 428 } 429 if (eppnt->p_memsz > eppnt->p_filesz) { 430 /* 431 * Map the last of the segment. 432 * If the header is requesting these pages to be 433 * executable, honour that (ppc32 needs this). 434 */ 435 int error; 436 437 zero_start = ELF_PAGEALIGN(zero_start); 438 zero_end = ELF_PAGEALIGN(zero_end); 439 440 error = vm_brk_flags(zero_start, zero_end - zero_start, 441 prot & PROT_EXEC ? VM_EXEC : 0); 442 if (error) 443 map_addr = error; 444 } 445 return map_addr; 446 } 447 448 449 static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr) 450 { 451 elf_addr_t min_addr = -1; 452 elf_addr_t max_addr = 0; 453 bool pt_load = false; 454 int i; 455 456 for (i = 0; i < nr; i++) { 457 if (phdr[i].p_type == PT_LOAD) { 458 min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr)); 459 max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz); 460 pt_load = true; 461 } 462 } 463 return pt_load ? (max_addr - min_addr) : 0; 464 } 465 466 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos) 467 { 468 ssize_t rv; 469 470 rv = kernel_read(file, buf, len, &pos); 471 if (unlikely(rv != len)) { 472 return (rv < 0) ? rv : -EIO; 473 } 474 return 0; 475 } 476 477 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr) 478 { 479 unsigned long alignment = 0; 480 int i; 481 482 for (i = 0; i < nr; i++) { 483 if (cmds[i].p_type == PT_LOAD) { 484 unsigned long p_align = cmds[i].p_align; 485 486 /* skip non-power of two alignments as invalid */ 487 if (!is_power_of_2(p_align)) 488 continue; 489 alignment = max(alignment, p_align); 490 } 491 } 492 493 /* ensure we align to at least one page */ 494 return ELF_PAGEALIGN(alignment); 495 } 496 497 /** 498 * load_elf_phdrs() - load ELF program headers 499 * @elf_ex: ELF header of the binary whose program headers should be loaded 500 * @elf_file: the opened ELF binary file 501 * 502 * Loads ELF program headers from the binary file elf_file, which has the ELF 503 * header pointed to by elf_ex, into a newly allocated array. The caller is 504 * responsible for freeing the allocated data. Returns NULL upon failure. 505 */ 506 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex, 507 struct file *elf_file) 508 { 509 struct elf_phdr *elf_phdata = NULL; 510 int retval = -1; 511 unsigned int size; 512 513 /* 514 * If the size of this structure has changed, then punt, since 515 * we will be doing the wrong thing. 516 */ 517 if (elf_ex->e_phentsize != sizeof(struct elf_phdr)) 518 goto out; 519 520 /* Sanity check the number of program headers... */ 521 /* ...and their total size. */ 522 size = sizeof(struct elf_phdr) * elf_ex->e_phnum; 523 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN) 524 goto out; 525 526 elf_phdata = kmalloc(size, GFP_KERNEL); 527 if (!elf_phdata) 528 goto out; 529 530 /* Read in the program headers */ 531 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff); 532 533 out: 534 if (retval) { 535 kfree(elf_phdata); 536 elf_phdata = NULL; 537 } 538 return elf_phdata; 539 } 540 541 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE 542 543 /** 544 * struct arch_elf_state - arch-specific ELF loading state 545 * 546 * This structure is used to preserve architecture specific data during 547 * the loading of an ELF file, throughout the checking of architecture 548 * specific ELF headers & through to the point where the ELF load is 549 * known to be proceeding (ie. SET_PERSONALITY). 550 * 551 * This implementation is a dummy for architectures which require no 552 * specific state. 553 */ 554 struct arch_elf_state { 555 }; 556 557 #define INIT_ARCH_ELF_STATE {} 558 559 /** 560 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header 561 * @ehdr: The main ELF header 562 * @phdr: The program header to check 563 * @elf: The open ELF file 564 * @is_interp: True if the phdr is from the interpreter of the ELF being 565 * loaded, else false. 566 * @state: Architecture-specific state preserved throughout the process 567 * of loading the ELF. 568 * 569 * Inspects the program header phdr to validate its correctness and/or 570 * suitability for the system. Called once per ELF program header in the 571 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its 572 * interpreter. 573 * 574 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 575 * with that return code. 576 */ 577 static inline int arch_elf_pt_proc(struct elfhdr *ehdr, 578 struct elf_phdr *phdr, 579 struct file *elf, bool is_interp, 580 struct arch_elf_state *state) 581 { 582 /* Dummy implementation, always proceed */ 583 return 0; 584 } 585 586 /** 587 * arch_check_elf() - check an ELF executable 588 * @ehdr: The main ELF header 589 * @has_interp: True if the ELF has an interpreter, else false. 590 * @interp_ehdr: The interpreter's ELF header 591 * @state: Architecture-specific state preserved throughout the process 592 * of loading the ELF. 593 * 594 * Provides a final opportunity for architecture code to reject the loading 595 * of the ELF & cause an exec syscall to return an error. This is called after 596 * all program headers to be checked by arch_elf_pt_proc have been. 597 * 598 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 599 * with that return code. 600 */ 601 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp, 602 struct elfhdr *interp_ehdr, 603 struct arch_elf_state *state) 604 { 605 /* Dummy implementation, always proceed */ 606 return 0; 607 } 608 609 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */ 610 611 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state, 612 bool has_interp, bool is_interp) 613 { 614 int prot = 0; 615 616 if (p_flags & PF_R) 617 prot |= PROT_READ; 618 if (p_flags & PF_W) 619 prot |= PROT_WRITE; 620 if (p_flags & PF_X) 621 prot |= PROT_EXEC; 622 623 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp); 624 } 625 626 /* This is much more generalized than the library routine read function, 627 so we keep this separate. Technically the library read function 628 is only provided so that we can read a.out libraries that have 629 an ELF header */ 630 631 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 632 struct file *interpreter, 633 unsigned long no_base, struct elf_phdr *interp_elf_phdata, 634 struct arch_elf_state *arch_state) 635 { 636 struct elf_phdr *eppnt; 637 unsigned long load_addr = 0; 638 int load_addr_set = 0; 639 unsigned long error = ~0UL; 640 unsigned long total_size; 641 int i; 642 643 /* First of all, some simple consistency checks */ 644 if (interp_elf_ex->e_type != ET_EXEC && 645 interp_elf_ex->e_type != ET_DYN) 646 goto out; 647 if (!elf_check_arch(interp_elf_ex) || 648 elf_check_fdpic(interp_elf_ex)) 649 goto out; 650 if (!interpreter->f_op->mmap) 651 goto out; 652 653 total_size = total_mapping_size(interp_elf_phdata, 654 interp_elf_ex->e_phnum); 655 if (!total_size) { 656 error = -EINVAL; 657 goto out; 658 } 659 660 eppnt = interp_elf_phdata; 661 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 662 if (eppnt->p_type == PT_LOAD) { 663 int elf_type = MAP_PRIVATE; 664 int elf_prot = make_prot(eppnt->p_flags, arch_state, 665 true, true); 666 unsigned long vaddr = 0; 667 unsigned long k, map_addr; 668 669 vaddr = eppnt->p_vaddr; 670 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 671 elf_type |= MAP_FIXED; 672 else if (no_base && interp_elf_ex->e_type == ET_DYN) 673 load_addr = -vaddr; 674 675 map_addr = elf_load(interpreter, load_addr + vaddr, 676 eppnt, elf_prot, elf_type, total_size); 677 total_size = 0; 678 error = map_addr; 679 if (BAD_ADDR(map_addr)) 680 goto out; 681 682 if (!load_addr_set && 683 interp_elf_ex->e_type == ET_DYN) { 684 load_addr = map_addr - ELF_PAGESTART(vaddr); 685 load_addr_set = 1; 686 } 687 688 /* 689 * Check to see if the section's size will overflow the 690 * allowed task size. Note that p_filesz must always be 691 * <= p_memsize so it's only necessary to check p_memsz. 692 */ 693 k = load_addr + eppnt->p_vaddr; 694 if (BAD_ADDR(k) || 695 eppnt->p_filesz > eppnt->p_memsz || 696 eppnt->p_memsz > TASK_SIZE || 697 TASK_SIZE - eppnt->p_memsz < k) { 698 error = -ENOMEM; 699 goto out; 700 } 701 } 702 } 703 704 error = load_addr; 705 out: 706 return error; 707 } 708 709 /* 710 * These are the functions used to load ELF style executables and shared 711 * libraries. There is no binary dependent code anywhere else. 712 */ 713 714 static int parse_elf_property(const char *data, size_t *off, size_t datasz, 715 struct arch_elf_state *arch, 716 bool have_prev_type, u32 *prev_type) 717 { 718 size_t o, step; 719 const struct gnu_property *pr; 720 int ret; 721 722 if (*off == datasz) 723 return -ENOENT; 724 725 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN)) 726 return -EIO; 727 o = *off; 728 datasz -= *off; 729 730 if (datasz < sizeof(*pr)) 731 return -ENOEXEC; 732 pr = (const struct gnu_property *)(data + o); 733 o += sizeof(*pr); 734 datasz -= sizeof(*pr); 735 736 if (pr->pr_datasz > datasz) 737 return -ENOEXEC; 738 739 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN); 740 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN); 741 if (step > datasz) 742 return -ENOEXEC; 743 744 /* Properties are supposed to be unique and sorted on pr_type: */ 745 if (have_prev_type && pr->pr_type <= *prev_type) 746 return -ENOEXEC; 747 *prev_type = pr->pr_type; 748 749 ret = arch_parse_elf_property(pr->pr_type, data + o, 750 pr->pr_datasz, ELF_COMPAT, arch); 751 if (ret) 752 return ret; 753 754 *off = o + step; 755 return 0; 756 } 757 758 #define NOTE_DATA_SZ SZ_1K 759 #define GNU_PROPERTY_TYPE_0_NAME "GNU" 760 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME)) 761 762 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr, 763 struct arch_elf_state *arch) 764 { 765 union { 766 struct elf_note nhdr; 767 char data[NOTE_DATA_SZ]; 768 } note; 769 loff_t pos; 770 ssize_t n; 771 size_t off, datasz; 772 int ret; 773 bool have_prev_type; 774 u32 prev_type; 775 776 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr) 777 return 0; 778 779 /* load_elf_binary() shouldn't call us unless this is true... */ 780 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY)) 781 return -ENOEXEC; 782 783 /* If the properties are crazy large, that's too bad (for now): */ 784 if (phdr->p_filesz > sizeof(note)) 785 return -ENOEXEC; 786 787 pos = phdr->p_offset; 788 n = kernel_read(f, ¬e, phdr->p_filesz, &pos); 789 790 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ); 791 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ) 792 return -EIO; 793 794 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 795 note.nhdr.n_namesz != NOTE_NAME_SZ || 796 strncmp(note.data + sizeof(note.nhdr), 797 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr))) 798 return -ENOEXEC; 799 800 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ, 801 ELF_GNU_PROPERTY_ALIGN); 802 if (off > n) 803 return -ENOEXEC; 804 805 if (note.nhdr.n_descsz > n - off) 806 return -ENOEXEC; 807 datasz = off + note.nhdr.n_descsz; 808 809 have_prev_type = false; 810 do { 811 ret = parse_elf_property(note.data, &off, datasz, arch, 812 have_prev_type, &prev_type); 813 have_prev_type = true; 814 } while (!ret); 815 816 return ret == -ENOENT ? 0 : ret; 817 } 818 819 static int load_elf_binary(struct linux_binprm *bprm) 820 { 821 struct file *interpreter = NULL; /* to shut gcc up */ 822 unsigned long load_bias = 0, phdr_addr = 0; 823 int first_pt_load = 1; 824 unsigned long error; 825 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL; 826 struct elf_phdr *elf_property_phdata = NULL; 827 unsigned long elf_brk; 828 int retval, i; 829 unsigned long elf_entry; 830 unsigned long e_entry; 831 unsigned long interp_load_addr = 0; 832 unsigned long start_code, end_code, start_data, end_data; 833 unsigned long reloc_func_desc __maybe_unused = 0; 834 int executable_stack = EXSTACK_DEFAULT; 835 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf; 836 struct elfhdr *interp_elf_ex = NULL; 837 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE; 838 struct mm_struct *mm; 839 struct pt_regs *regs; 840 841 retval = -ENOEXEC; 842 /* First of all, some simple consistency checks */ 843 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 844 goto out; 845 846 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN) 847 goto out; 848 if (!elf_check_arch(elf_ex)) 849 goto out; 850 if (elf_check_fdpic(elf_ex)) 851 goto out; 852 if (!bprm->file->f_op->mmap) 853 goto out; 854 855 elf_phdata = load_elf_phdrs(elf_ex, bprm->file); 856 if (!elf_phdata) 857 goto out; 858 859 elf_ppnt = elf_phdata; 860 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) { 861 char *elf_interpreter; 862 863 if (elf_ppnt->p_type == PT_GNU_PROPERTY) { 864 elf_property_phdata = elf_ppnt; 865 continue; 866 } 867 868 if (elf_ppnt->p_type != PT_INTERP) 869 continue; 870 871 /* 872 * This is the program interpreter used for shared libraries - 873 * for now assume that this is an a.out format binary. 874 */ 875 retval = -ENOEXEC; 876 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2) 877 goto out_free_ph; 878 879 retval = -ENOMEM; 880 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL); 881 if (!elf_interpreter) 882 goto out_free_ph; 883 884 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz, 885 elf_ppnt->p_offset); 886 if (retval < 0) 887 goto out_free_interp; 888 /* make sure path is NULL terminated */ 889 retval = -ENOEXEC; 890 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 891 goto out_free_interp; 892 893 interpreter = open_exec(elf_interpreter); 894 kfree(elf_interpreter); 895 retval = PTR_ERR(interpreter); 896 if (IS_ERR(interpreter)) 897 goto out_free_ph; 898 899 /* 900 * If the binary is not readable then enforce mm->dumpable = 0 901 * regardless of the interpreter's permissions. 902 */ 903 would_dump(bprm, interpreter); 904 905 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL); 906 if (!interp_elf_ex) { 907 retval = -ENOMEM; 908 goto out_free_file; 909 } 910 911 /* Get the exec headers */ 912 retval = elf_read(interpreter, interp_elf_ex, 913 sizeof(*interp_elf_ex), 0); 914 if (retval < 0) 915 goto out_free_dentry; 916 917 break; 918 919 out_free_interp: 920 kfree(elf_interpreter); 921 goto out_free_ph; 922 } 923 924 elf_ppnt = elf_phdata; 925 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) 926 switch (elf_ppnt->p_type) { 927 case PT_GNU_STACK: 928 if (elf_ppnt->p_flags & PF_X) 929 executable_stack = EXSTACK_ENABLE_X; 930 else 931 executable_stack = EXSTACK_DISABLE_X; 932 break; 933 934 case PT_LOPROC ... PT_HIPROC: 935 retval = arch_elf_pt_proc(elf_ex, elf_ppnt, 936 bprm->file, false, 937 &arch_state); 938 if (retval) 939 goto out_free_dentry; 940 break; 941 } 942 943 /* Some simple consistency checks for the interpreter */ 944 if (interpreter) { 945 retval = -ELIBBAD; 946 /* Not an ELF interpreter */ 947 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 948 goto out_free_dentry; 949 /* Verify the interpreter has a valid arch */ 950 if (!elf_check_arch(interp_elf_ex) || 951 elf_check_fdpic(interp_elf_ex)) 952 goto out_free_dentry; 953 954 /* Load the interpreter program headers */ 955 interp_elf_phdata = load_elf_phdrs(interp_elf_ex, 956 interpreter); 957 if (!interp_elf_phdata) 958 goto out_free_dentry; 959 960 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */ 961 elf_property_phdata = NULL; 962 elf_ppnt = interp_elf_phdata; 963 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++) 964 switch (elf_ppnt->p_type) { 965 case PT_GNU_PROPERTY: 966 elf_property_phdata = elf_ppnt; 967 break; 968 969 case PT_LOPROC ... PT_HIPROC: 970 retval = arch_elf_pt_proc(interp_elf_ex, 971 elf_ppnt, interpreter, 972 true, &arch_state); 973 if (retval) 974 goto out_free_dentry; 975 break; 976 } 977 } 978 979 retval = parse_elf_properties(interpreter ?: bprm->file, 980 elf_property_phdata, &arch_state); 981 if (retval) 982 goto out_free_dentry; 983 984 /* 985 * Allow arch code to reject the ELF at this point, whilst it's 986 * still possible to return an error to the code that invoked 987 * the exec syscall. 988 */ 989 retval = arch_check_elf(elf_ex, 990 !!interpreter, interp_elf_ex, 991 &arch_state); 992 if (retval) 993 goto out_free_dentry; 994 995 /* Flush all traces of the currently running executable */ 996 retval = begin_new_exec(bprm); 997 if (retval) 998 goto out_free_dentry; 999 1000 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 1001 may depend on the personality. */ 1002 SET_PERSONALITY2(*elf_ex, &arch_state); 1003 if (elf_read_implies_exec(*elf_ex, executable_stack)) 1004 current->personality |= READ_IMPLIES_EXEC; 1005 1006 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1007 current->flags |= PF_RANDOMIZE; 1008 1009 setup_new_exec(bprm); 1010 1011 /* Do this so that we can load the interpreter, if need be. We will 1012 change some of these later */ 1013 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 1014 executable_stack); 1015 if (retval < 0) 1016 goto out_free_dentry; 1017 1018 elf_brk = 0; 1019 1020 start_code = ~0UL; 1021 end_code = 0; 1022 start_data = 0; 1023 end_data = 0; 1024 1025 /* Now we do a little grungy work by mmapping the ELF image into 1026 the correct location in memory. */ 1027 for(i = 0, elf_ppnt = elf_phdata; 1028 i < elf_ex->e_phnum; i++, elf_ppnt++) { 1029 int elf_prot, elf_flags; 1030 unsigned long k, vaddr; 1031 unsigned long total_size = 0; 1032 unsigned long alignment; 1033 1034 if (elf_ppnt->p_type != PT_LOAD) 1035 continue; 1036 1037 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state, 1038 !!interpreter, false); 1039 1040 elf_flags = MAP_PRIVATE; 1041 1042 vaddr = elf_ppnt->p_vaddr; 1043 /* 1044 * The first time through the loop, first_pt_load is true: 1045 * layout will be calculated. Once set, use MAP_FIXED since 1046 * we know we've already safely mapped the entire region with 1047 * MAP_FIXED_NOREPLACE in the once-per-binary logic following. 1048 */ 1049 if (!first_pt_load) { 1050 elf_flags |= MAP_FIXED; 1051 } else if (elf_ex->e_type == ET_EXEC) { 1052 /* 1053 * This logic is run once for the first LOAD Program 1054 * Header for ET_EXEC binaries. No special handling 1055 * is needed. 1056 */ 1057 elf_flags |= MAP_FIXED_NOREPLACE; 1058 } else if (elf_ex->e_type == ET_DYN) { 1059 /* 1060 * This logic is run once for the first LOAD Program 1061 * Header for ET_DYN binaries to calculate the 1062 * randomization (load_bias) for all the LOAD 1063 * Program Headers. 1064 * 1065 * There are effectively two types of ET_DYN 1066 * binaries: programs (i.e. PIE: ET_DYN with INTERP) 1067 * and loaders (ET_DYN without INTERP, since they 1068 * _are_ the ELF interpreter). The loaders must 1069 * be loaded away from programs since the program 1070 * may otherwise collide with the loader (especially 1071 * for ET_EXEC which does not have a randomized 1072 * position). For example to handle invocations of 1073 * "./ld.so someprog" to test out a new version of 1074 * the loader, the subsequent program that the 1075 * loader loads must avoid the loader itself, so 1076 * they cannot share the same load range. Sufficient 1077 * room for the brk must be allocated with the 1078 * loader as well, since brk must be available with 1079 * the loader. 1080 * 1081 * Therefore, programs are loaded offset from 1082 * ELF_ET_DYN_BASE and loaders are loaded into the 1083 * independently randomized mmap region (0 load_bias 1084 * without MAP_FIXED nor MAP_FIXED_NOREPLACE). 1085 */ 1086 if (interpreter) { 1087 load_bias = ELF_ET_DYN_BASE; 1088 if (current->flags & PF_RANDOMIZE) 1089 load_bias += arch_mmap_rnd(); 1090 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum); 1091 if (alignment) 1092 load_bias &= ~(alignment - 1); 1093 elf_flags |= MAP_FIXED_NOREPLACE; 1094 } else 1095 load_bias = 0; 1096 1097 /* 1098 * Since load_bias is used for all subsequent loading 1099 * calculations, we must lower it by the first vaddr 1100 * so that the remaining calculations based on the 1101 * ELF vaddrs will be correctly offset. The result 1102 * is then page aligned. 1103 */ 1104 load_bias = ELF_PAGESTART(load_bias - vaddr); 1105 1106 /* 1107 * Calculate the entire size of the ELF mapping 1108 * (total_size), used for the initial mapping, 1109 * due to load_addr_set which is set to true later 1110 * once the initial mapping is performed. 1111 * 1112 * Note that this is only sensible when the LOAD 1113 * segments are contiguous (or overlapping). If 1114 * used for LOADs that are far apart, this would 1115 * cause the holes between LOADs to be mapped, 1116 * running the risk of having the mapping fail, 1117 * as it would be larger than the ELF file itself. 1118 * 1119 * As a result, only ET_DYN does this, since 1120 * some ET_EXEC (e.g. ia64) may have large virtual 1121 * memory holes between LOADs. 1122 * 1123 */ 1124 total_size = total_mapping_size(elf_phdata, 1125 elf_ex->e_phnum); 1126 if (!total_size) { 1127 retval = -EINVAL; 1128 goto out_free_dentry; 1129 } 1130 } 1131 1132 error = elf_load(bprm->file, load_bias + vaddr, elf_ppnt, 1133 elf_prot, elf_flags, total_size); 1134 if (BAD_ADDR(error)) { 1135 retval = IS_ERR_VALUE(error) ? 1136 PTR_ERR((void*)error) : -EINVAL; 1137 goto out_free_dentry; 1138 } 1139 1140 if (first_pt_load) { 1141 first_pt_load = 0; 1142 if (elf_ex->e_type == ET_DYN) { 1143 load_bias += error - 1144 ELF_PAGESTART(load_bias + vaddr); 1145 reloc_func_desc = load_bias; 1146 } 1147 } 1148 1149 /* 1150 * Figure out which segment in the file contains the Program 1151 * Header table, and map to the associated memory address. 1152 */ 1153 if (elf_ppnt->p_offset <= elf_ex->e_phoff && 1154 elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) { 1155 phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset + 1156 elf_ppnt->p_vaddr; 1157 } 1158 1159 k = elf_ppnt->p_vaddr; 1160 if ((elf_ppnt->p_flags & PF_X) && k < start_code) 1161 start_code = k; 1162 if (start_data < k) 1163 start_data = k; 1164 1165 /* 1166 * Check to see if the section's size will overflow the 1167 * allowed task size. Note that p_filesz must always be 1168 * <= p_memsz so it is only necessary to check p_memsz. 1169 */ 1170 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 1171 elf_ppnt->p_memsz > TASK_SIZE || 1172 TASK_SIZE - elf_ppnt->p_memsz < k) { 1173 /* set_brk can never work. Avoid overflows. */ 1174 retval = -EINVAL; 1175 goto out_free_dentry; 1176 } 1177 1178 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 1179 1180 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 1181 end_code = k; 1182 if (end_data < k) 1183 end_data = k; 1184 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 1185 if (k > elf_brk) 1186 elf_brk = k; 1187 } 1188 1189 e_entry = elf_ex->e_entry + load_bias; 1190 phdr_addr += load_bias; 1191 elf_brk += load_bias; 1192 start_code += load_bias; 1193 end_code += load_bias; 1194 start_data += load_bias; 1195 end_data += load_bias; 1196 1197 current->mm->start_brk = current->mm->brk = ELF_PAGEALIGN(elf_brk); 1198 1199 if (interpreter) { 1200 elf_entry = load_elf_interp(interp_elf_ex, 1201 interpreter, 1202 load_bias, interp_elf_phdata, 1203 &arch_state); 1204 if (!IS_ERR_VALUE(elf_entry)) { 1205 /* 1206 * load_elf_interp() returns relocation 1207 * adjustment 1208 */ 1209 interp_load_addr = elf_entry; 1210 elf_entry += interp_elf_ex->e_entry; 1211 } 1212 if (BAD_ADDR(elf_entry)) { 1213 retval = IS_ERR_VALUE(elf_entry) ? 1214 (int)elf_entry : -EINVAL; 1215 goto out_free_dentry; 1216 } 1217 reloc_func_desc = interp_load_addr; 1218 1219 allow_write_access(interpreter); 1220 fput(interpreter); 1221 1222 kfree(interp_elf_ex); 1223 kfree(interp_elf_phdata); 1224 } else { 1225 elf_entry = e_entry; 1226 if (BAD_ADDR(elf_entry)) { 1227 retval = -EINVAL; 1228 goto out_free_dentry; 1229 } 1230 } 1231 1232 kfree(elf_phdata); 1233 1234 set_binfmt(&elf_format); 1235 1236 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 1237 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter); 1238 if (retval < 0) 1239 goto out; 1240 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 1241 1242 retval = create_elf_tables(bprm, elf_ex, interp_load_addr, 1243 e_entry, phdr_addr); 1244 if (retval < 0) 1245 goto out; 1246 1247 mm = current->mm; 1248 mm->end_code = end_code; 1249 mm->start_code = start_code; 1250 mm->start_data = start_data; 1251 mm->end_data = end_data; 1252 mm->start_stack = bprm->p; 1253 1254 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { 1255 /* 1256 * For architectures with ELF randomization, when executing 1257 * a loader directly (i.e. no interpreter listed in ELF 1258 * headers), move the brk area out of the mmap region 1259 * (since it grows up, and may collide early with the stack 1260 * growing down), and into the unused ELF_ET_DYN_BASE region. 1261 */ 1262 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && 1263 elf_ex->e_type == ET_DYN && !interpreter) { 1264 mm->brk = mm->start_brk = ELF_ET_DYN_BASE; 1265 } else { 1266 /* Otherwise leave a gap between .bss and brk. */ 1267 mm->brk = mm->start_brk = mm->brk + PAGE_SIZE; 1268 } 1269 1270 mm->brk = mm->start_brk = arch_randomize_brk(mm); 1271 #ifdef compat_brk_randomized 1272 current->brk_randomized = 1; 1273 #endif 1274 } 1275 1276 if (current->personality & MMAP_PAGE_ZERO) { 1277 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 1278 and some applications "depend" upon this behavior. 1279 Since we do not have the power to recompile these, we 1280 emulate the SVr4 behavior. Sigh. */ 1281 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 1282 MAP_FIXED | MAP_PRIVATE, 0); 1283 } 1284 1285 regs = current_pt_regs(); 1286 #ifdef ELF_PLAT_INIT 1287 /* 1288 * The ABI may specify that certain registers be set up in special 1289 * ways (on i386 %edx is the address of a DT_FINI function, for 1290 * example. In addition, it may also specify (eg, PowerPC64 ELF) 1291 * that the e_entry field is the address of the function descriptor 1292 * for the startup routine, rather than the address of the startup 1293 * routine itself. This macro performs whatever initialization to 1294 * the regs structure is required as well as any relocations to the 1295 * function descriptor entries when executing dynamically links apps. 1296 */ 1297 ELF_PLAT_INIT(regs, reloc_func_desc); 1298 #endif 1299 1300 finalize_exec(bprm); 1301 START_THREAD(elf_ex, regs, elf_entry, bprm->p); 1302 retval = 0; 1303 out: 1304 return retval; 1305 1306 /* error cleanup */ 1307 out_free_dentry: 1308 kfree(interp_elf_ex); 1309 kfree(interp_elf_phdata); 1310 out_free_file: 1311 allow_write_access(interpreter); 1312 if (interpreter) 1313 fput(interpreter); 1314 out_free_ph: 1315 kfree(elf_phdata); 1316 goto out; 1317 } 1318 1319 #ifdef CONFIG_USELIB 1320 /* This is really simpleminded and specialized - we are loading an 1321 a.out library that is given an ELF header. */ 1322 static int load_elf_library(struct file *file) 1323 { 1324 struct elf_phdr *elf_phdata; 1325 struct elf_phdr *eppnt; 1326 int retval, error, i, j; 1327 struct elfhdr elf_ex; 1328 1329 error = -ENOEXEC; 1330 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0); 1331 if (retval < 0) 1332 goto out; 1333 1334 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1335 goto out; 1336 1337 /* First of all, some simple consistency checks */ 1338 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1339 !elf_check_arch(&elf_ex) || !file->f_op->mmap) 1340 goto out; 1341 if (elf_check_fdpic(&elf_ex)) 1342 goto out; 1343 1344 /* Now read in all of the header information */ 1345 1346 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1347 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1348 1349 error = -ENOMEM; 1350 elf_phdata = kmalloc(j, GFP_KERNEL); 1351 if (!elf_phdata) 1352 goto out; 1353 1354 eppnt = elf_phdata; 1355 error = -ENOEXEC; 1356 retval = elf_read(file, eppnt, j, elf_ex.e_phoff); 1357 if (retval < 0) 1358 goto out_free_ph; 1359 1360 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1361 if ((eppnt + i)->p_type == PT_LOAD) 1362 j++; 1363 if (j != 1) 1364 goto out_free_ph; 1365 1366 while (eppnt->p_type != PT_LOAD) 1367 eppnt++; 1368 1369 /* Now use mmap to map the library into memory. */ 1370 error = elf_load(file, ELF_PAGESTART(eppnt->p_vaddr), 1371 eppnt, 1372 PROT_READ | PROT_WRITE | PROT_EXEC, 1373 MAP_FIXED_NOREPLACE | MAP_PRIVATE, 1374 0); 1375 1376 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1377 goto out_free_ph; 1378 1379 error = 0; 1380 1381 out_free_ph: 1382 kfree(elf_phdata); 1383 out: 1384 return error; 1385 } 1386 #endif /* #ifdef CONFIG_USELIB */ 1387 1388 #ifdef CONFIG_ELF_CORE 1389 /* 1390 * ELF core dumper 1391 * 1392 * Modelled on fs/exec.c:aout_core_dump() 1393 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1394 */ 1395 1396 /* An ELF note in memory */ 1397 struct memelfnote 1398 { 1399 const char *name; 1400 int type; 1401 unsigned int datasz; 1402 void *data; 1403 }; 1404 1405 static int notesize(struct memelfnote *en) 1406 { 1407 int sz; 1408 1409 sz = sizeof(struct elf_note); 1410 sz += roundup(strlen(en->name) + 1, 4); 1411 sz += roundup(en->datasz, 4); 1412 1413 return sz; 1414 } 1415 1416 static int writenote(struct memelfnote *men, struct coredump_params *cprm) 1417 { 1418 struct elf_note en; 1419 en.n_namesz = strlen(men->name) + 1; 1420 en.n_descsz = men->datasz; 1421 en.n_type = men->type; 1422 1423 return dump_emit(cprm, &en, sizeof(en)) && 1424 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) && 1425 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4); 1426 } 1427 1428 static void fill_elf_header(struct elfhdr *elf, int segs, 1429 u16 machine, u32 flags) 1430 { 1431 memset(elf, 0, sizeof(*elf)); 1432 1433 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1434 elf->e_ident[EI_CLASS] = ELF_CLASS; 1435 elf->e_ident[EI_DATA] = ELF_DATA; 1436 elf->e_ident[EI_VERSION] = EV_CURRENT; 1437 elf->e_ident[EI_OSABI] = ELF_OSABI; 1438 1439 elf->e_type = ET_CORE; 1440 elf->e_machine = machine; 1441 elf->e_version = EV_CURRENT; 1442 elf->e_phoff = sizeof(struct elfhdr); 1443 elf->e_flags = flags; 1444 elf->e_ehsize = sizeof(struct elfhdr); 1445 elf->e_phentsize = sizeof(struct elf_phdr); 1446 elf->e_phnum = segs; 1447 } 1448 1449 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1450 { 1451 phdr->p_type = PT_NOTE; 1452 phdr->p_offset = offset; 1453 phdr->p_vaddr = 0; 1454 phdr->p_paddr = 0; 1455 phdr->p_filesz = sz; 1456 phdr->p_memsz = 0; 1457 phdr->p_flags = 0; 1458 phdr->p_align = 4; 1459 } 1460 1461 static void fill_note(struct memelfnote *note, const char *name, int type, 1462 unsigned int sz, void *data) 1463 { 1464 note->name = name; 1465 note->type = type; 1466 note->datasz = sz; 1467 note->data = data; 1468 } 1469 1470 /* 1471 * fill up all the fields in prstatus from the given task struct, except 1472 * registers which need to be filled up separately. 1473 */ 1474 static void fill_prstatus(struct elf_prstatus_common *prstatus, 1475 struct task_struct *p, long signr) 1476 { 1477 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1478 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1479 prstatus->pr_sighold = p->blocked.sig[0]; 1480 rcu_read_lock(); 1481 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1482 rcu_read_unlock(); 1483 prstatus->pr_pid = task_pid_vnr(p); 1484 prstatus->pr_pgrp = task_pgrp_vnr(p); 1485 prstatus->pr_sid = task_session_vnr(p); 1486 if (thread_group_leader(p)) { 1487 struct task_cputime cputime; 1488 1489 /* 1490 * This is the record for the group leader. It shows the 1491 * group-wide total, not its individual thread total. 1492 */ 1493 thread_group_cputime(p, &cputime); 1494 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime); 1495 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime); 1496 } else { 1497 u64 utime, stime; 1498 1499 task_cputime(p, &utime, &stime); 1500 prstatus->pr_utime = ns_to_kernel_old_timeval(utime); 1501 prstatus->pr_stime = ns_to_kernel_old_timeval(stime); 1502 } 1503 1504 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime); 1505 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime); 1506 } 1507 1508 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1509 struct mm_struct *mm) 1510 { 1511 const struct cred *cred; 1512 unsigned int i, len; 1513 unsigned int state; 1514 1515 /* first copy the parameters from user space */ 1516 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1517 1518 len = mm->arg_end - mm->arg_start; 1519 if (len >= ELF_PRARGSZ) 1520 len = ELF_PRARGSZ-1; 1521 if (copy_from_user(&psinfo->pr_psargs, 1522 (const char __user *)mm->arg_start, len)) 1523 return -EFAULT; 1524 for(i = 0; i < len; i++) 1525 if (psinfo->pr_psargs[i] == 0) 1526 psinfo->pr_psargs[i] = ' '; 1527 psinfo->pr_psargs[len] = 0; 1528 1529 rcu_read_lock(); 1530 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1531 rcu_read_unlock(); 1532 psinfo->pr_pid = task_pid_vnr(p); 1533 psinfo->pr_pgrp = task_pgrp_vnr(p); 1534 psinfo->pr_sid = task_session_vnr(p); 1535 1536 state = READ_ONCE(p->__state); 1537 i = state ? ffz(~state) + 1 : 0; 1538 psinfo->pr_state = i; 1539 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1540 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1541 psinfo->pr_nice = task_nice(p); 1542 psinfo->pr_flag = p->flags; 1543 rcu_read_lock(); 1544 cred = __task_cred(p); 1545 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); 1546 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); 1547 rcu_read_unlock(); 1548 get_task_comm(psinfo->pr_fname, p); 1549 1550 return 0; 1551 } 1552 1553 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1554 { 1555 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1556 int i = 0; 1557 do 1558 i += 2; 1559 while (auxv[i - 2] != AT_NULL); 1560 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1561 } 1562 1563 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, 1564 const kernel_siginfo_t *siginfo) 1565 { 1566 copy_siginfo_to_external(csigdata, siginfo); 1567 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata); 1568 } 1569 1570 /* 1571 * Format of NT_FILE note: 1572 * 1573 * long count -- how many files are mapped 1574 * long page_size -- units for file_ofs 1575 * array of [COUNT] elements of 1576 * long start 1577 * long end 1578 * long file_ofs 1579 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... 1580 */ 1581 static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm) 1582 { 1583 unsigned count, size, names_ofs, remaining, n; 1584 user_long_t *data; 1585 user_long_t *start_end_ofs; 1586 char *name_base, *name_curpos; 1587 int i; 1588 1589 /* *Estimated* file count and total data size needed */ 1590 count = cprm->vma_count; 1591 if (count > UINT_MAX / 64) 1592 return -EINVAL; 1593 size = count * 64; 1594 1595 names_ofs = (2 + 3 * count) * sizeof(data[0]); 1596 alloc: 1597 /* paranoia check */ 1598 if (size >= core_file_note_size_limit) { 1599 pr_warn_once("coredump Note size too large: %u (does kernel.core_file_note_size_limit sysctl need adjustment?\n", 1600 size); 1601 return -EINVAL; 1602 } 1603 size = round_up(size, PAGE_SIZE); 1604 /* 1605 * "size" can be 0 here legitimately. 1606 * Let it ENOMEM and omit NT_FILE section which will be empty anyway. 1607 */ 1608 data = kvmalloc(size, GFP_KERNEL); 1609 if (ZERO_OR_NULL_PTR(data)) 1610 return -ENOMEM; 1611 1612 start_end_ofs = data + 2; 1613 name_base = name_curpos = ((char *)data) + names_ofs; 1614 remaining = size - names_ofs; 1615 count = 0; 1616 for (i = 0; i < cprm->vma_count; i++) { 1617 struct core_vma_metadata *m = &cprm->vma_meta[i]; 1618 struct file *file; 1619 const char *filename; 1620 1621 file = m->file; 1622 if (!file) 1623 continue; 1624 filename = file_path(file, name_curpos, remaining); 1625 if (IS_ERR(filename)) { 1626 if (PTR_ERR(filename) == -ENAMETOOLONG) { 1627 kvfree(data); 1628 size = size * 5 / 4; 1629 goto alloc; 1630 } 1631 continue; 1632 } 1633 1634 /* file_path() fills at the end, move name down */ 1635 /* n = strlen(filename) + 1: */ 1636 n = (name_curpos + remaining) - filename; 1637 remaining = filename - name_curpos; 1638 memmove(name_curpos, filename, n); 1639 name_curpos += n; 1640 1641 *start_end_ofs++ = m->start; 1642 *start_end_ofs++ = m->end; 1643 *start_end_ofs++ = m->pgoff; 1644 count++; 1645 } 1646 1647 /* Now we know exact count of files, can store it */ 1648 data[0] = count; 1649 data[1] = PAGE_SIZE; 1650 /* 1651 * Count usually is less than mm->map_count, 1652 * we need to move filenames down. 1653 */ 1654 n = cprm->vma_count - count; 1655 if (n != 0) { 1656 unsigned shift_bytes = n * 3 * sizeof(data[0]); 1657 memmove(name_base - shift_bytes, name_base, 1658 name_curpos - name_base); 1659 name_curpos -= shift_bytes; 1660 } 1661 1662 size = name_curpos - (char *)data; 1663 fill_note(note, "CORE", NT_FILE, size, data); 1664 return 0; 1665 } 1666 1667 #include <linux/regset.h> 1668 1669 struct elf_thread_core_info { 1670 struct elf_thread_core_info *next; 1671 struct task_struct *task; 1672 struct elf_prstatus prstatus; 1673 struct memelfnote notes[]; 1674 }; 1675 1676 struct elf_note_info { 1677 struct elf_thread_core_info *thread; 1678 struct memelfnote psinfo; 1679 struct memelfnote signote; 1680 struct memelfnote auxv; 1681 struct memelfnote files; 1682 user_siginfo_t csigdata; 1683 size_t size; 1684 int thread_notes; 1685 }; 1686 1687 #ifdef CORE_DUMP_USE_REGSET 1688 /* 1689 * When a regset has a writeback hook, we call it on each thread before 1690 * dumping user memory. On register window machines, this makes sure the 1691 * user memory backing the register data is up to date before we read it. 1692 */ 1693 static void do_thread_regset_writeback(struct task_struct *task, 1694 const struct user_regset *regset) 1695 { 1696 if (regset->writeback) 1697 regset->writeback(task, regset, 1); 1698 } 1699 1700 #ifndef PRSTATUS_SIZE 1701 #define PRSTATUS_SIZE sizeof(struct elf_prstatus) 1702 #endif 1703 1704 #ifndef SET_PR_FPVALID 1705 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1) 1706 #endif 1707 1708 static int fill_thread_core_info(struct elf_thread_core_info *t, 1709 const struct user_regset_view *view, 1710 long signr, struct elf_note_info *info) 1711 { 1712 unsigned int note_iter, view_iter; 1713 1714 /* 1715 * NT_PRSTATUS is the one special case, because the regset data 1716 * goes into the pr_reg field inside the note contents, rather 1717 * than being the whole note contents. We fill the regset in here. 1718 * We assume that regset 0 is NT_PRSTATUS. 1719 */ 1720 fill_prstatus(&t->prstatus.common, t->task, signr); 1721 regset_get(t->task, &view->regsets[0], 1722 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg); 1723 1724 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1725 PRSTATUS_SIZE, &t->prstatus); 1726 info->size += notesize(&t->notes[0]); 1727 1728 do_thread_regset_writeback(t->task, &view->regsets[0]); 1729 1730 /* 1731 * Each other regset might generate a note too. For each regset 1732 * that has no core_note_type or is inactive, skip it. 1733 */ 1734 note_iter = 1; 1735 for (view_iter = 1; view_iter < view->n; ++view_iter) { 1736 const struct user_regset *regset = &view->regsets[view_iter]; 1737 int note_type = regset->core_note_type; 1738 bool is_fpreg = note_type == NT_PRFPREG; 1739 void *data; 1740 int ret; 1741 1742 do_thread_regset_writeback(t->task, regset); 1743 if (!note_type) // not for coredumps 1744 continue; 1745 if (regset->active && regset->active(t->task, regset) <= 0) 1746 continue; 1747 1748 ret = regset_get_alloc(t->task, regset, ~0U, &data); 1749 if (ret < 0) 1750 continue; 1751 1752 if (WARN_ON_ONCE(note_iter >= info->thread_notes)) 1753 break; 1754 1755 if (is_fpreg) 1756 SET_PR_FPVALID(&t->prstatus); 1757 1758 fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX", 1759 note_type, ret, data); 1760 1761 info->size += notesize(&t->notes[note_iter]); 1762 note_iter++; 1763 } 1764 1765 return 1; 1766 } 1767 #else 1768 static int fill_thread_core_info(struct elf_thread_core_info *t, 1769 const struct user_regset_view *view, 1770 long signr, struct elf_note_info *info) 1771 { 1772 struct task_struct *p = t->task; 1773 elf_fpregset_t *fpu; 1774 1775 fill_prstatus(&t->prstatus.common, p, signr); 1776 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1777 1778 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1779 &(t->prstatus)); 1780 info->size += notesize(&t->notes[0]); 1781 1782 fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL); 1783 if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) { 1784 kfree(fpu); 1785 return 1; 1786 } 1787 1788 t->prstatus.pr_fpvalid = 1; 1789 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu); 1790 info->size += notesize(&t->notes[1]); 1791 1792 return 1; 1793 } 1794 #endif 1795 1796 static int fill_note_info(struct elfhdr *elf, int phdrs, 1797 struct elf_note_info *info, 1798 struct coredump_params *cprm) 1799 { 1800 struct task_struct *dump_task = current; 1801 const struct user_regset_view *view; 1802 struct elf_thread_core_info *t; 1803 struct elf_prpsinfo *psinfo; 1804 struct core_thread *ct; 1805 1806 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1807 if (!psinfo) 1808 return 0; 1809 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1810 1811 #ifdef CORE_DUMP_USE_REGSET 1812 view = task_user_regset_view(dump_task); 1813 1814 /* 1815 * Figure out how many notes we're going to need for each thread. 1816 */ 1817 info->thread_notes = 0; 1818 for (int i = 0; i < view->n; ++i) 1819 if (view->regsets[i].core_note_type != 0) 1820 ++info->thread_notes; 1821 1822 /* 1823 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1824 * since it is our one special case. 1825 */ 1826 if (unlikely(info->thread_notes == 0) || 1827 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1828 WARN_ON(1); 1829 return 0; 1830 } 1831 1832 /* 1833 * Initialize the ELF file header. 1834 */ 1835 fill_elf_header(elf, phdrs, 1836 view->e_machine, view->e_flags); 1837 #else 1838 view = NULL; 1839 info->thread_notes = 2; 1840 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS); 1841 #endif 1842 1843 /* 1844 * Allocate a structure for each thread. 1845 */ 1846 info->thread = kzalloc(offsetof(struct elf_thread_core_info, 1847 notes[info->thread_notes]), 1848 GFP_KERNEL); 1849 if (unlikely(!info->thread)) 1850 return 0; 1851 1852 info->thread->task = dump_task; 1853 for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) { 1854 t = kzalloc(offsetof(struct elf_thread_core_info, 1855 notes[info->thread_notes]), 1856 GFP_KERNEL); 1857 if (unlikely(!t)) 1858 return 0; 1859 1860 t->task = ct->task; 1861 t->next = info->thread->next; 1862 info->thread->next = t; 1863 } 1864 1865 /* 1866 * Now fill in each thread's information. 1867 */ 1868 for (t = info->thread; t != NULL; t = t->next) 1869 if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info)) 1870 return 0; 1871 1872 /* 1873 * Fill in the two process-wide notes. 1874 */ 1875 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1876 info->size += notesize(&info->psinfo); 1877 1878 fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo); 1879 info->size += notesize(&info->signote); 1880 1881 fill_auxv_note(&info->auxv, current->mm); 1882 info->size += notesize(&info->auxv); 1883 1884 if (fill_files_note(&info->files, cprm) == 0) 1885 info->size += notesize(&info->files); 1886 1887 return 1; 1888 } 1889 1890 /* 1891 * Write all the notes for each thread. When writing the first thread, the 1892 * process-wide notes are interleaved after the first thread-specific note. 1893 */ 1894 static int write_note_info(struct elf_note_info *info, 1895 struct coredump_params *cprm) 1896 { 1897 bool first = true; 1898 struct elf_thread_core_info *t = info->thread; 1899 1900 do { 1901 int i; 1902 1903 if (!writenote(&t->notes[0], cprm)) 1904 return 0; 1905 1906 if (first && !writenote(&info->psinfo, cprm)) 1907 return 0; 1908 if (first && !writenote(&info->signote, cprm)) 1909 return 0; 1910 if (first && !writenote(&info->auxv, cprm)) 1911 return 0; 1912 if (first && info->files.data && 1913 !writenote(&info->files, cprm)) 1914 return 0; 1915 1916 for (i = 1; i < info->thread_notes; ++i) 1917 if (t->notes[i].data && 1918 !writenote(&t->notes[i], cprm)) 1919 return 0; 1920 1921 first = false; 1922 t = t->next; 1923 } while (t); 1924 1925 return 1; 1926 } 1927 1928 static void free_note_info(struct elf_note_info *info) 1929 { 1930 struct elf_thread_core_info *threads = info->thread; 1931 while (threads) { 1932 unsigned int i; 1933 struct elf_thread_core_info *t = threads; 1934 threads = t->next; 1935 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1936 for (i = 1; i < info->thread_notes; ++i) 1937 kvfree(t->notes[i].data); 1938 kfree(t); 1939 } 1940 kfree(info->psinfo.data); 1941 kvfree(info->files.data); 1942 } 1943 1944 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, 1945 elf_addr_t e_shoff, int segs) 1946 { 1947 elf->e_shoff = e_shoff; 1948 elf->e_shentsize = sizeof(*shdr4extnum); 1949 elf->e_shnum = 1; 1950 elf->e_shstrndx = SHN_UNDEF; 1951 1952 memset(shdr4extnum, 0, sizeof(*shdr4extnum)); 1953 1954 shdr4extnum->sh_type = SHT_NULL; 1955 shdr4extnum->sh_size = elf->e_shnum; 1956 shdr4extnum->sh_link = elf->e_shstrndx; 1957 shdr4extnum->sh_info = segs; 1958 } 1959 1960 /* 1961 * Actual dumper 1962 * 1963 * This is a two-pass process; first we find the offsets of the bits, 1964 * and then they are actually written out. If we run out of core limit 1965 * we just truncate. 1966 */ 1967 static int elf_core_dump(struct coredump_params *cprm) 1968 { 1969 int has_dumped = 0; 1970 int segs, i; 1971 struct elfhdr elf; 1972 loff_t offset = 0, dataoff; 1973 struct elf_note_info info = { }; 1974 struct elf_phdr *phdr4note = NULL; 1975 struct elf_shdr *shdr4extnum = NULL; 1976 Elf_Half e_phnum; 1977 elf_addr_t e_shoff; 1978 1979 /* 1980 * The number of segs are recored into ELF header as 16bit value. 1981 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. 1982 */ 1983 segs = cprm->vma_count + elf_core_extra_phdrs(cprm); 1984 1985 /* for notes section */ 1986 segs++; 1987 1988 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid 1989 * this, kernel supports extended numbering. Have a look at 1990 * include/linux/elf.h for further information. */ 1991 e_phnum = segs > PN_XNUM ? PN_XNUM : segs; 1992 1993 /* 1994 * Collect all the non-memory information about the process for the 1995 * notes. This also sets up the file header. 1996 */ 1997 if (!fill_note_info(&elf, e_phnum, &info, cprm)) 1998 goto end_coredump; 1999 2000 has_dumped = 1; 2001 2002 offset += sizeof(elf); /* ELF header */ 2003 offset += segs * sizeof(struct elf_phdr); /* Program headers */ 2004 2005 /* Write notes phdr entry */ 2006 { 2007 size_t sz = info.size; 2008 2009 /* For cell spufs */ 2010 sz += elf_coredump_extra_notes_size(); 2011 2012 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); 2013 if (!phdr4note) 2014 goto end_coredump; 2015 2016 fill_elf_note_phdr(phdr4note, sz, offset); 2017 offset += sz; 2018 } 2019 2020 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 2021 2022 offset += cprm->vma_data_size; 2023 offset += elf_core_extra_data_size(cprm); 2024 e_shoff = offset; 2025 2026 if (e_phnum == PN_XNUM) { 2027 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); 2028 if (!shdr4extnum) 2029 goto end_coredump; 2030 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs); 2031 } 2032 2033 offset = dataoff; 2034 2035 if (!dump_emit(cprm, &elf, sizeof(elf))) 2036 goto end_coredump; 2037 2038 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note))) 2039 goto end_coredump; 2040 2041 /* Write program headers for segments dump */ 2042 for (i = 0; i < cprm->vma_count; i++) { 2043 struct core_vma_metadata *meta = cprm->vma_meta + i; 2044 struct elf_phdr phdr; 2045 2046 phdr.p_type = PT_LOAD; 2047 phdr.p_offset = offset; 2048 phdr.p_vaddr = meta->start; 2049 phdr.p_paddr = 0; 2050 phdr.p_filesz = meta->dump_size; 2051 phdr.p_memsz = meta->end - meta->start; 2052 offset += phdr.p_filesz; 2053 phdr.p_flags = 0; 2054 if (meta->flags & VM_READ) 2055 phdr.p_flags |= PF_R; 2056 if (meta->flags & VM_WRITE) 2057 phdr.p_flags |= PF_W; 2058 if (meta->flags & VM_EXEC) 2059 phdr.p_flags |= PF_X; 2060 phdr.p_align = ELF_EXEC_PAGESIZE; 2061 2062 if (!dump_emit(cprm, &phdr, sizeof(phdr))) 2063 goto end_coredump; 2064 } 2065 2066 if (!elf_core_write_extra_phdrs(cprm, offset)) 2067 goto end_coredump; 2068 2069 /* write out the notes section */ 2070 if (!write_note_info(&info, cprm)) 2071 goto end_coredump; 2072 2073 /* For cell spufs */ 2074 if (elf_coredump_extra_notes_write(cprm)) 2075 goto end_coredump; 2076 2077 /* Align to page */ 2078 dump_skip_to(cprm, dataoff); 2079 2080 for (i = 0; i < cprm->vma_count; i++) { 2081 struct core_vma_metadata *meta = cprm->vma_meta + i; 2082 2083 if (!dump_user_range(cprm, meta->start, meta->dump_size)) 2084 goto end_coredump; 2085 } 2086 2087 if (!elf_core_write_extra_data(cprm)) 2088 goto end_coredump; 2089 2090 if (e_phnum == PN_XNUM) { 2091 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum))) 2092 goto end_coredump; 2093 } 2094 2095 end_coredump: 2096 free_note_info(&info); 2097 kfree(shdr4extnum); 2098 kfree(phdr4note); 2099 return has_dumped; 2100 } 2101 2102 #endif /* CONFIG_ELF_CORE */ 2103 2104 static int __init init_elf_binfmt(void) 2105 { 2106 register_binfmt(&elf_format); 2107 return 0; 2108 } 2109 2110 static void __exit exit_elf_binfmt(void) 2111 { 2112 /* Remove the COFF and ELF loaders. */ 2113 unregister_binfmt(&elf_format); 2114 } 2115 2116 core_initcall(init_elf_binfmt); 2117 module_exit(exit_elf_binfmt); 2118 2119 #ifdef CONFIG_BINFMT_ELF_KUNIT_TEST 2120 #include "binfmt_elf_test.c" 2121 #endif 2122