xref: /linux/fs/binfmt_elf.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <asm/uaccess.h>
37 #include <asm/param.h>
38 #include <asm/page.h>
39 
40 #ifndef user_long_t
41 #define user_long_t long
42 #endif
43 #ifndef user_siginfo_t
44 #define user_siginfo_t siginfo_t
45 #endif
46 
47 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
48 static int load_elf_library(struct file *);
49 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
50 				int, int, unsigned long);
51 
52 /*
53  * If we don't support core dumping, then supply a NULL so we
54  * don't even try.
55  */
56 #ifdef CONFIG_ELF_CORE
57 static int elf_core_dump(struct coredump_params *cprm);
58 #else
59 #define elf_core_dump	NULL
60 #endif
61 
62 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
63 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
64 #else
65 #define ELF_MIN_ALIGN	PAGE_SIZE
66 #endif
67 
68 #ifndef ELF_CORE_EFLAGS
69 #define ELF_CORE_EFLAGS	0
70 #endif
71 
72 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
73 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
74 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
75 
76 static struct linux_binfmt elf_format = {
77 	.module		= THIS_MODULE,
78 	.load_binary	= load_elf_binary,
79 	.load_shlib	= load_elf_library,
80 	.core_dump	= elf_core_dump,
81 	.min_coredump	= ELF_EXEC_PAGESIZE,
82 };
83 
84 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
85 
86 static int set_brk(unsigned long start, unsigned long end)
87 {
88 	start = ELF_PAGEALIGN(start);
89 	end = ELF_PAGEALIGN(end);
90 	if (end > start) {
91 		unsigned long addr;
92 		addr = vm_brk(start, end - start);
93 		if (BAD_ADDR(addr))
94 			return addr;
95 	}
96 	current->mm->start_brk = current->mm->brk = end;
97 	return 0;
98 }
99 
100 /* We need to explicitly zero any fractional pages
101    after the data section (i.e. bss).  This would
102    contain the junk from the file that should not
103    be in memory
104  */
105 static int padzero(unsigned long elf_bss)
106 {
107 	unsigned long nbyte;
108 
109 	nbyte = ELF_PAGEOFFSET(elf_bss);
110 	if (nbyte) {
111 		nbyte = ELF_MIN_ALIGN - nbyte;
112 		if (clear_user((void __user *) elf_bss, nbyte))
113 			return -EFAULT;
114 	}
115 	return 0;
116 }
117 
118 /* Let's use some macros to make this stack manipulation a little clearer */
119 #ifdef CONFIG_STACK_GROWSUP
120 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
121 #define STACK_ROUND(sp, items) \
122 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
123 #define STACK_ALLOC(sp, len) ({ \
124 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
125 	old_sp; })
126 #else
127 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
128 #define STACK_ROUND(sp, items) \
129 	(((unsigned long) (sp - items)) &~ 15UL)
130 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
131 #endif
132 
133 #ifndef ELF_BASE_PLATFORM
134 /*
135  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
136  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
137  * will be copied to the user stack in the same manner as AT_PLATFORM.
138  */
139 #define ELF_BASE_PLATFORM NULL
140 #endif
141 
142 static int
143 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
144 		unsigned long load_addr, unsigned long interp_load_addr)
145 {
146 	unsigned long p = bprm->p;
147 	int argc = bprm->argc;
148 	int envc = bprm->envc;
149 	elf_addr_t __user *argv;
150 	elf_addr_t __user *envp;
151 	elf_addr_t __user *sp;
152 	elf_addr_t __user *u_platform;
153 	elf_addr_t __user *u_base_platform;
154 	elf_addr_t __user *u_rand_bytes;
155 	const char *k_platform = ELF_PLATFORM;
156 	const char *k_base_platform = ELF_BASE_PLATFORM;
157 	unsigned char k_rand_bytes[16];
158 	int items;
159 	elf_addr_t *elf_info;
160 	int ei_index = 0;
161 	const struct cred *cred = current_cred();
162 	struct vm_area_struct *vma;
163 
164 	/*
165 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
166 	 * evictions by the processes running on the same package. One
167 	 * thing we can do is to shuffle the initial stack for them.
168 	 */
169 
170 	p = arch_align_stack(p);
171 
172 	/*
173 	 * If this architecture has a platform capability string, copy it
174 	 * to userspace.  In some cases (Sparc), this info is impossible
175 	 * for userspace to get any other way, in others (i386) it is
176 	 * merely difficult.
177 	 */
178 	u_platform = NULL;
179 	if (k_platform) {
180 		size_t len = strlen(k_platform) + 1;
181 
182 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
183 		if (__copy_to_user(u_platform, k_platform, len))
184 			return -EFAULT;
185 	}
186 
187 	/*
188 	 * If this architecture has a "base" platform capability
189 	 * string, copy it to userspace.
190 	 */
191 	u_base_platform = NULL;
192 	if (k_base_platform) {
193 		size_t len = strlen(k_base_platform) + 1;
194 
195 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
196 		if (__copy_to_user(u_base_platform, k_base_platform, len))
197 			return -EFAULT;
198 	}
199 
200 	/*
201 	 * Generate 16 random bytes for userspace PRNG seeding.
202 	 */
203 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
204 	u_rand_bytes = (elf_addr_t __user *)
205 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
206 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
207 		return -EFAULT;
208 
209 	/* Create the ELF interpreter info */
210 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
211 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
212 #define NEW_AUX_ENT(id, val) \
213 	do { \
214 		elf_info[ei_index++] = id; \
215 		elf_info[ei_index++] = val; \
216 	} while (0)
217 
218 #ifdef ARCH_DLINFO
219 	/*
220 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
221 	 * AUXV.
222 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
223 	 * ARCH_DLINFO changes
224 	 */
225 	ARCH_DLINFO;
226 #endif
227 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
228 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
229 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
230 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
231 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
232 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
233 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
234 	NEW_AUX_ENT(AT_FLAGS, 0);
235 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
236 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
237 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
238 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
239 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
240  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
241 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
242 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
243 	if (k_platform) {
244 		NEW_AUX_ENT(AT_PLATFORM,
245 			    (elf_addr_t)(unsigned long)u_platform);
246 	}
247 	if (k_base_platform) {
248 		NEW_AUX_ENT(AT_BASE_PLATFORM,
249 			    (elf_addr_t)(unsigned long)u_base_platform);
250 	}
251 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
252 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
253 	}
254 #undef NEW_AUX_ENT
255 	/* AT_NULL is zero; clear the rest too */
256 	memset(&elf_info[ei_index], 0,
257 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
258 
259 	/* And advance past the AT_NULL entry.  */
260 	ei_index += 2;
261 
262 	sp = STACK_ADD(p, ei_index);
263 
264 	items = (argc + 1) + (envc + 1) + 1;
265 	bprm->p = STACK_ROUND(sp, items);
266 
267 	/* Point sp at the lowest address on the stack */
268 #ifdef CONFIG_STACK_GROWSUP
269 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
270 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
271 #else
272 	sp = (elf_addr_t __user *)bprm->p;
273 #endif
274 
275 
276 	/*
277 	 * Grow the stack manually; some architectures have a limit on how
278 	 * far ahead a user-space access may be in order to grow the stack.
279 	 */
280 	vma = find_extend_vma(current->mm, bprm->p);
281 	if (!vma)
282 		return -EFAULT;
283 
284 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
285 	if (__put_user(argc, sp++))
286 		return -EFAULT;
287 	argv = sp;
288 	envp = argv + argc + 1;
289 
290 	/* Populate argv and envp */
291 	p = current->mm->arg_end = current->mm->arg_start;
292 	while (argc-- > 0) {
293 		size_t len;
294 		if (__put_user((elf_addr_t)p, argv++))
295 			return -EFAULT;
296 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
297 		if (!len || len > MAX_ARG_STRLEN)
298 			return -EINVAL;
299 		p += len;
300 	}
301 	if (__put_user(0, argv))
302 		return -EFAULT;
303 	current->mm->arg_end = current->mm->env_start = p;
304 	while (envc-- > 0) {
305 		size_t len;
306 		if (__put_user((elf_addr_t)p, envp++))
307 			return -EFAULT;
308 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
309 		if (!len || len > MAX_ARG_STRLEN)
310 			return -EINVAL;
311 		p += len;
312 	}
313 	if (__put_user(0, envp))
314 		return -EFAULT;
315 	current->mm->env_end = p;
316 
317 	/* Put the elf_info on the stack in the right place.  */
318 	sp = (elf_addr_t __user *)envp + 1;
319 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
320 		return -EFAULT;
321 	return 0;
322 }
323 
324 static unsigned long elf_map(struct file *filep, unsigned long addr,
325 		struct elf_phdr *eppnt, int prot, int type,
326 		unsigned long total_size)
327 {
328 	unsigned long map_addr;
329 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
330 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
331 	addr = ELF_PAGESTART(addr);
332 	size = ELF_PAGEALIGN(size);
333 
334 	/* mmap() will return -EINVAL if given a zero size, but a
335 	 * segment with zero filesize is perfectly valid */
336 	if (!size)
337 		return addr;
338 
339 	/*
340 	* total_size is the size of the ELF (interpreter) image.
341 	* The _first_ mmap needs to know the full size, otherwise
342 	* randomization might put this image into an overlapping
343 	* position with the ELF binary image. (since size < total_size)
344 	* So we first map the 'big' image - and unmap the remainder at
345 	* the end. (which unmap is needed for ELF images with holes.)
346 	*/
347 	if (total_size) {
348 		total_size = ELF_PAGEALIGN(total_size);
349 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
350 		if (!BAD_ADDR(map_addr))
351 			vm_munmap(map_addr+size, total_size-size);
352 	} else
353 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
354 
355 	return(map_addr);
356 }
357 
358 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
359 {
360 	int i, first_idx = -1, last_idx = -1;
361 
362 	for (i = 0; i < nr; i++) {
363 		if (cmds[i].p_type == PT_LOAD) {
364 			last_idx = i;
365 			if (first_idx == -1)
366 				first_idx = i;
367 		}
368 	}
369 	if (first_idx == -1)
370 		return 0;
371 
372 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
373 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
374 }
375 
376 
377 /* This is much more generalized than the library routine read function,
378    so we keep this separate.  Technically the library read function
379    is only provided so that we can read a.out libraries that have
380    an ELF header */
381 
382 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
383 		struct file *interpreter, unsigned long *interp_map_addr,
384 		unsigned long no_base)
385 {
386 	struct elf_phdr *elf_phdata;
387 	struct elf_phdr *eppnt;
388 	unsigned long load_addr = 0;
389 	int load_addr_set = 0;
390 	unsigned long last_bss = 0, elf_bss = 0;
391 	unsigned long error = ~0UL;
392 	unsigned long total_size;
393 	int retval, i, size;
394 
395 	/* First of all, some simple consistency checks */
396 	if (interp_elf_ex->e_type != ET_EXEC &&
397 	    interp_elf_ex->e_type != ET_DYN)
398 		goto out;
399 	if (!elf_check_arch(interp_elf_ex))
400 		goto out;
401 	if (!interpreter->f_op || !interpreter->f_op->mmap)
402 		goto out;
403 
404 	/*
405 	 * If the size of this structure has changed, then punt, since
406 	 * we will be doing the wrong thing.
407 	 */
408 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
409 		goto out;
410 	if (interp_elf_ex->e_phnum < 1 ||
411 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
412 		goto out;
413 
414 	/* Now read in all of the header information */
415 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
416 	if (size > ELF_MIN_ALIGN)
417 		goto out;
418 	elf_phdata = kmalloc(size, GFP_KERNEL);
419 	if (!elf_phdata)
420 		goto out;
421 
422 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
423 			     (char *)elf_phdata, size);
424 	error = -EIO;
425 	if (retval != size) {
426 		if (retval < 0)
427 			error = retval;
428 		goto out_close;
429 	}
430 
431 	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
432 	if (!total_size) {
433 		error = -EINVAL;
434 		goto out_close;
435 	}
436 
437 	eppnt = elf_phdata;
438 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
439 		if (eppnt->p_type == PT_LOAD) {
440 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
441 			int elf_prot = 0;
442 			unsigned long vaddr = 0;
443 			unsigned long k, map_addr;
444 
445 			if (eppnt->p_flags & PF_R)
446 		    		elf_prot = PROT_READ;
447 			if (eppnt->p_flags & PF_W)
448 				elf_prot |= PROT_WRITE;
449 			if (eppnt->p_flags & PF_X)
450 				elf_prot |= PROT_EXEC;
451 			vaddr = eppnt->p_vaddr;
452 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
453 				elf_type |= MAP_FIXED;
454 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
455 				load_addr = -vaddr;
456 
457 			map_addr = elf_map(interpreter, load_addr + vaddr,
458 					eppnt, elf_prot, elf_type, total_size);
459 			total_size = 0;
460 			if (!*interp_map_addr)
461 				*interp_map_addr = map_addr;
462 			error = map_addr;
463 			if (BAD_ADDR(map_addr))
464 				goto out_close;
465 
466 			if (!load_addr_set &&
467 			    interp_elf_ex->e_type == ET_DYN) {
468 				load_addr = map_addr - ELF_PAGESTART(vaddr);
469 				load_addr_set = 1;
470 			}
471 
472 			/*
473 			 * Check to see if the section's size will overflow the
474 			 * allowed task size. Note that p_filesz must always be
475 			 * <= p_memsize so it's only necessary to check p_memsz.
476 			 */
477 			k = load_addr + eppnt->p_vaddr;
478 			if (BAD_ADDR(k) ||
479 			    eppnt->p_filesz > eppnt->p_memsz ||
480 			    eppnt->p_memsz > TASK_SIZE ||
481 			    TASK_SIZE - eppnt->p_memsz < k) {
482 				error = -ENOMEM;
483 				goto out_close;
484 			}
485 
486 			/*
487 			 * Find the end of the file mapping for this phdr, and
488 			 * keep track of the largest address we see for this.
489 			 */
490 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
491 			if (k > elf_bss)
492 				elf_bss = k;
493 
494 			/*
495 			 * Do the same thing for the memory mapping - between
496 			 * elf_bss and last_bss is the bss section.
497 			 */
498 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
499 			if (k > last_bss)
500 				last_bss = k;
501 		}
502 	}
503 
504 	if (last_bss > elf_bss) {
505 		/*
506 		 * Now fill out the bss section.  First pad the last page up
507 		 * to the page boundary, and then perform a mmap to make sure
508 		 * that there are zero-mapped pages up to and including the
509 		 * last bss page.
510 		 */
511 		if (padzero(elf_bss)) {
512 			error = -EFAULT;
513 			goto out_close;
514 		}
515 
516 		/* What we have mapped so far */
517 		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
518 
519 		/* Map the last of the bss segment */
520 		error = vm_brk(elf_bss, last_bss - elf_bss);
521 		if (BAD_ADDR(error))
522 			goto out_close;
523 	}
524 
525 	error = load_addr;
526 
527 out_close:
528 	kfree(elf_phdata);
529 out:
530 	return error;
531 }
532 
533 /*
534  * These are the functions used to load ELF style executables and shared
535  * libraries.  There is no binary dependent code anywhere else.
536  */
537 
538 #define INTERPRETER_NONE 0
539 #define INTERPRETER_ELF 2
540 
541 #ifndef STACK_RND_MASK
542 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
543 #endif
544 
545 static unsigned long randomize_stack_top(unsigned long stack_top)
546 {
547 	unsigned int random_variable = 0;
548 
549 	if ((current->flags & PF_RANDOMIZE) &&
550 		!(current->personality & ADDR_NO_RANDOMIZE)) {
551 		random_variable = get_random_int() & STACK_RND_MASK;
552 		random_variable <<= PAGE_SHIFT;
553 	}
554 #ifdef CONFIG_STACK_GROWSUP
555 	return PAGE_ALIGN(stack_top) + random_variable;
556 #else
557 	return PAGE_ALIGN(stack_top) - random_variable;
558 #endif
559 }
560 
561 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
562 {
563 	struct file *interpreter = NULL; /* to shut gcc up */
564  	unsigned long load_addr = 0, load_bias = 0;
565 	int load_addr_set = 0;
566 	char * elf_interpreter = NULL;
567 	unsigned long error;
568 	struct elf_phdr *elf_ppnt, *elf_phdata;
569 	unsigned long elf_bss, elf_brk;
570 	int retval, i;
571 	unsigned int size;
572 	unsigned long elf_entry;
573 	unsigned long interp_load_addr = 0;
574 	unsigned long start_code, end_code, start_data, end_data;
575 	unsigned long reloc_func_desc __maybe_unused = 0;
576 	int executable_stack = EXSTACK_DEFAULT;
577 	unsigned long def_flags = 0;
578 	struct {
579 		struct elfhdr elf_ex;
580 		struct elfhdr interp_elf_ex;
581 	} *loc;
582 
583 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
584 	if (!loc) {
585 		retval = -ENOMEM;
586 		goto out_ret;
587 	}
588 
589 	/* Get the exec-header */
590 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
591 
592 	retval = -ENOEXEC;
593 	/* First of all, some simple consistency checks */
594 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
595 		goto out;
596 
597 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
598 		goto out;
599 	if (!elf_check_arch(&loc->elf_ex))
600 		goto out;
601 	if (!bprm->file->f_op || !bprm->file->f_op->mmap)
602 		goto out;
603 
604 	/* Now read in all of the header information */
605 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
606 		goto out;
607 	if (loc->elf_ex.e_phnum < 1 ||
608 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
609 		goto out;
610 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
611 	retval = -ENOMEM;
612 	elf_phdata = kmalloc(size, GFP_KERNEL);
613 	if (!elf_phdata)
614 		goto out;
615 
616 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
617 			     (char *)elf_phdata, size);
618 	if (retval != size) {
619 		if (retval >= 0)
620 			retval = -EIO;
621 		goto out_free_ph;
622 	}
623 
624 	elf_ppnt = elf_phdata;
625 	elf_bss = 0;
626 	elf_brk = 0;
627 
628 	start_code = ~0UL;
629 	end_code = 0;
630 	start_data = 0;
631 	end_data = 0;
632 
633 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
634 		if (elf_ppnt->p_type == PT_INTERP) {
635 			/* This is the program interpreter used for
636 			 * shared libraries - for now assume that this
637 			 * is an a.out format binary
638 			 */
639 			retval = -ENOEXEC;
640 			if (elf_ppnt->p_filesz > PATH_MAX ||
641 			    elf_ppnt->p_filesz < 2)
642 				goto out_free_ph;
643 
644 			retval = -ENOMEM;
645 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
646 						  GFP_KERNEL);
647 			if (!elf_interpreter)
648 				goto out_free_ph;
649 
650 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
651 					     elf_interpreter,
652 					     elf_ppnt->p_filesz);
653 			if (retval != elf_ppnt->p_filesz) {
654 				if (retval >= 0)
655 					retval = -EIO;
656 				goto out_free_interp;
657 			}
658 			/* make sure path is NULL terminated */
659 			retval = -ENOEXEC;
660 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
661 				goto out_free_interp;
662 
663 			interpreter = open_exec(elf_interpreter);
664 			retval = PTR_ERR(interpreter);
665 			if (IS_ERR(interpreter))
666 				goto out_free_interp;
667 
668 			/*
669 			 * If the binary is not readable then enforce
670 			 * mm->dumpable = 0 regardless of the interpreter's
671 			 * permissions.
672 			 */
673 			would_dump(bprm, interpreter);
674 
675 			retval = kernel_read(interpreter, 0, bprm->buf,
676 					     BINPRM_BUF_SIZE);
677 			if (retval != BINPRM_BUF_SIZE) {
678 				if (retval >= 0)
679 					retval = -EIO;
680 				goto out_free_dentry;
681 			}
682 
683 			/* Get the exec headers */
684 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
685 			break;
686 		}
687 		elf_ppnt++;
688 	}
689 
690 	elf_ppnt = elf_phdata;
691 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
692 		if (elf_ppnt->p_type == PT_GNU_STACK) {
693 			if (elf_ppnt->p_flags & PF_X)
694 				executable_stack = EXSTACK_ENABLE_X;
695 			else
696 				executable_stack = EXSTACK_DISABLE_X;
697 			break;
698 		}
699 
700 	/* Some simple consistency checks for the interpreter */
701 	if (elf_interpreter) {
702 		retval = -ELIBBAD;
703 		/* Not an ELF interpreter */
704 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
705 			goto out_free_dentry;
706 		/* Verify the interpreter has a valid arch */
707 		if (!elf_check_arch(&loc->interp_elf_ex))
708 			goto out_free_dentry;
709 	}
710 
711 	/* Flush all traces of the currently running executable */
712 	retval = flush_old_exec(bprm);
713 	if (retval)
714 		goto out_free_dentry;
715 
716 	/* OK, This is the point of no return */
717 	current->mm->def_flags = def_flags;
718 
719 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
720 	   may depend on the personality.  */
721 	SET_PERSONALITY(loc->elf_ex);
722 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
723 		current->personality |= READ_IMPLIES_EXEC;
724 
725 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
726 		current->flags |= PF_RANDOMIZE;
727 
728 	setup_new_exec(bprm);
729 
730 	/* Do this so that we can load the interpreter, if need be.  We will
731 	   change some of these later */
732 	current->mm->free_area_cache = current->mm->mmap_base;
733 	current->mm->cached_hole_size = 0;
734 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
735 				 executable_stack);
736 	if (retval < 0) {
737 		send_sig(SIGKILL, current, 0);
738 		goto out_free_dentry;
739 	}
740 
741 	current->mm->start_stack = bprm->p;
742 
743 	/* Now we do a little grungy work by mmapping the ELF image into
744 	   the correct location in memory. */
745 	for(i = 0, elf_ppnt = elf_phdata;
746 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
747 		int elf_prot = 0, elf_flags;
748 		unsigned long k, vaddr;
749 
750 		if (elf_ppnt->p_type != PT_LOAD)
751 			continue;
752 
753 		if (unlikely (elf_brk > elf_bss)) {
754 			unsigned long nbyte;
755 
756 			/* There was a PT_LOAD segment with p_memsz > p_filesz
757 			   before this one. Map anonymous pages, if needed,
758 			   and clear the area.  */
759 			retval = set_brk(elf_bss + load_bias,
760 					 elf_brk + load_bias);
761 			if (retval) {
762 				send_sig(SIGKILL, current, 0);
763 				goto out_free_dentry;
764 			}
765 			nbyte = ELF_PAGEOFFSET(elf_bss);
766 			if (nbyte) {
767 				nbyte = ELF_MIN_ALIGN - nbyte;
768 				if (nbyte > elf_brk - elf_bss)
769 					nbyte = elf_brk - elf_bss;
770 				if (clear_user((void __user *)elf_bss +
771 							load_bias, nbyte)) {
772 					/*
773 					 * This bss-zeroing can fail if the ELF
774 					 * file specifies odd protections. So
775 					 * we don't check the return value
776 					 */
777 				}
778 			}
779 		}
780 
781 		if (elf_ppnt->p_flags & PF_R)
782 			elf_prot |= PROT_READ;
783 		if (elf_ppnt->p_flags & PF_W)
784 			elf_prot |= PROT_WRITE;
785 		if (elf_ppnt->p_flags & PF_X)
786 			elf_prot |= PROT_EXEC;
787 
788 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
789 
790 		vaddr = elf_ppnt->p_vaddr;
791 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
792 			elf_flags |= MAP_FIXED;
793 		} else if (loc->elf_ex.e_type == ET_DYN) {
794 			/* Try and get dynamic programs out of the way of the
795 			 * default mmap base, as well as whatever program they
796 			 * might try to exec.  This is because the brk will
797 			 * follow the loader, and is not movable.  */
798 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
799 			/* Memory randomization might have been switched off
800 			 * in runtime via sysctl.
801 			 * If that is the case, retain the original non-zero
802 			 * load_bias value in order to establish proper
803 			 * non-randomized mappings.
804 			 */
805 			if (current->flags & PF_RANDOMIZE)
806 				load_bias = 0;
807 			else
808 				load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
809 #else
810 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
811 #endif
812 		}
813 
814 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
815 				elf_prot, elf_flags, 0);
816 		if (BAD_ADDR(error)) {
817 			send_sig(SIGKILL, current, 0);
818 			retval = IS_ERR((void *)error) ?
819 				PTR_ERR((void*)error) : -EINVAL;
820 			goto out_free_dentry;
821 		}
822 
823 		if (!load_addr_set) {
824 			load_addr_set = 1;
825 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
826 			if (loc->elf_ex.e_type == ET_DYN) {
827 				load_bias += error -
828 				             ELF_PAGESTART(load_bias + vaddr);
829 				load_addr += load_bias;
830 				reloc_func_desc = load_bias;
831 			}
832 		}
833 		k = elf_ppnt->p_vaddr;
834 		if (k < start_code)
835 			start_code = k;
836 		if (start_data < k)
837 			start_data = k;
838 
839 		/*
840 		 * Check to see if the section's size will overflow the
841 		 * allowed task size. Note that p_filesz must always be
842 		 * <= p_memsz so it is only necessary to check p_memsz.
843 		 */
844 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
845 		    elf_ppnt->p_memsz > TASK_SIZE ||
846 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
847 			/* set_brk can never work. Avoid overflows. */
848 			send_sig(SIGKILL, current, 0);
849 			retval = -EINVAL;
850 			goto out_free_dentry;
851 		}
852 
853 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
854 
855 		if (k > elf_bss)
856 			elf_bss = k;
857 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
858 			end_code = k;
859 		if (end_data < k)
860 			end_data = k;
861 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
862 		if (k > elf_brk)
863 			elf_brk = k;
864 	}
865 
866 	loc->elf_ex.e_entry += load_bias;
867 	elf_bss += load_bias;
868 	elf_brk += load_bias;
869 	start_code += load_bias;
870 	end_code += load_bias;
871 	start_data += load_bias;
872 	end_data += load_bias;
873 
874 	/* Calling set_brk effectively mmaps the pages that we need
875 	 * for the bss and break sections.  We must do this before
876 	 * mapping in the interpreter, to make sure it doesn't wind
877 	 * up getting placed where the bss needs to go.
878 	 */
879 	retval = set_brk(elf_bss, elf_brk);
880 	if (retval) {
881 		send_sig(SIGKILL, current, 0);
882 		goto out_free_dentry;
883 	}
884 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
885 		send_sig(SIGSEGV, current, 0);
886 		retval = -EFAULT; /* Nobody gets to see this, but.. */
887 		goto out_free_dentry;
888 	}
889 
890 	if (elf_interpreter) {
891 		unsigned long interp_map_addr = 0;
892 
893 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
894 					    interpreter,
895 					    &interp_map_addr,
896 					    load_bias);
897 		if (!IS_ERR((void *)elf_entry)) {
898 			/*
899 			 * load_elf_interp() returns relocation
900 			 * adjustment
901 			 */
902 			interp_load_addr = elf_entry;
903 			elf_entry += loc->interp_elf_ex.e_entry;
904 		}
905 		if (BAD_ADDR(elf_entry)) {
906 			force_sig(SIGSEGV, current);
907 			retval = IS_ERR((void *)elf_entry) ?
908 					(int)elf_entry : -EINVAL;
909 			goto out_free_dentry;
910 		}
911 		reloc_func_desc = interp_load_addr;
912 
913 		allow_write_access(interpreter);
914 		fput(interpreter);
915 		kfree(elf_interpreter);
916 	} else {
917 		elf_entry = loc->elf_ex.e_entry;
918 		if (BAD_ADDR(elf_entry)) {
919 			force_sig(SIGSEGV, current);
920 			retval = -EINVAL;
921 			goto out_free_dentry;
922 		}
923 	}
924 
925 	kfree(elf_phdata);
926 
927 	set_binfmt(&elf_format);
928 
929 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
930 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
931 	if (retval < 0) {
932 		send_sig(SIGKILL, current, 0);
933 		goto out;
934 	}
935 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
936 
937 	install_exec_creds(bprm);
938 	retval = create_elf_tables(bprm, &loc->elf_ex,
939 			  load_addr, interp_load_addr);
940 	if (retval < 0) {
941 		send_sig(SIGKILL, current, 0);
942 		goto out;
943 	}
944 	/* N.B. passed_fileno might not be initialized? */
945 	current->mm->end_code = end_code;
946 	current->mm->start_code = start_code;
947 	current->mm->start_data = start_data;
948 	current->mm->end_data = end_data;
949 	current->mm->start_stack = bprm->p;
950 
951 #ifdef arch_randomize_brk
952 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
953 		current->mm->brk = current->mm->start_brk =
954 			arch_randomize_brk(current->mm);
955 #ifdef CONFIG_COMPAT_BRK
956 		current->brk_randomized = 1;
957 #endif
958 	}
959 #endif
960 
961 	if (current->personality & MMAP_PAGE_ZERO) {
962 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
963 		   and some applications "depend" upon this behavior.
964 		   Since we do not have the power to recompile these, we
965 		   emulate the SVr4 behavior. Sigh. */
966 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
967 				MAP_FIXED | MAP_PRIVATE, 0);
968 	}
969 
970 #ifdef ELF_PLAT_INIT
971 	/*
972 	 * The ABI may specify that certain registers be set up in special
973 	 * ways (on i386 %edx is the address of a DT_FINI function, for
974 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
975 	 * that the e_entry field is the address of the function descriptor
976 	 * for the startup routine, rather than the address of the startup
977 	 * routine itself.  This macro performs whatever initialization to
978 	 * the regs structure is required as well as any relocations to the
979 	 * function descriptor entries when executing dynamically links apps.
980 	 */
981 	ELF_PLAT_INIT(regs, reloc_func_desc);
982 #endif
983 
984 	start_thread(regs, elf_entry, bprm->p);
985 	retval = 0;
986 out:
987 	kfree(loc);
988 out_ret:
989 	return retval;
990 
991 	/* error cleanup */
992 out_free_dentry:
993 	allow_write_access(interpreter);
994 	if (interpreter)
995 		fput(interpreter);
996 out_free_interp:
997 	kfree(elf_interpreter);
998 out_free_ph:
999 	kfree(elf_phdata);
1000 	goto out;
1001 }
1002 
1003 /* This is really simpleminded and specialized - we are loading an
1004    a.out library that is given an ELF header. */
1005 static int load_elf_library(struct file *file)
1006 {
1007 	struct elf_phdr *elf_phdata;
1008 	struct elf_phdr *eppnt;
1009 	unsigned long elf_bss, bss, len;
1010 	int retval, error, i, j;
1011 	struct elfhdr elf_ex;
1012 
1013 	error = -ENOEXEC;
1014 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1015 	if (retval != sizeof(elf_ex))
1016 		goto out;
1017 
1018 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1019 		goto out;
1020 
1021 	/* First of all, some simple consistency checks */
1022 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1023 	    !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1024 		goto out;
1025 
1026 	/* Now read in all of the header information */
1027 
1028 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1029 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1030 
1031 	error = -ENOMEM;
1032 	elf_phdata = kmalloc(j, GFP_KERNEL);
1033 	if (!elf_phdata)
1034 		goto out;
1035 
1036 	eppnt = elf_phdata;
1037 	error = -ENOEXEC;
1038 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1039 	if (retval != j)
1040 		goto out_free_ph;
1041 
1042 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1043 		if ((eppnt + i)->p_type == PT_LOAD)
1044 			j++;
1045 	if (j != 1)
1046 		goto out_free_ph;
1047 
1048 	while (eppnt->p_type != PT_LOAD)
1049 		eppnt++;
1050 
1051 	/* Now use mmap to map the library into memory. */
1052 	error = vm_mmap(file,
1053 			ELF_PAGESTART(eppnt->p_vaddr),
1054 			(eppnt->p_filesz +
1055 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1056 			PROT_READ | PROT_WRITE | PROT_EXEC,
1057 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1058 			(eppnt->p_offset -
1059 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1060 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1061 		goto out_free_ph;
1062 
1063 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1064 	if (padzero(elf_bss)) {
1065 		error = -EFAULT;
1066 		goto out_free_ph;
1067 	}
1068 
1069 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1070 			    ELF_MIN_ALIGN - 1);
1071 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1072 	if (bss > len)
1073 		vm_brk(len, bss - len);
1074 	error = 0;
1075 
1076 out_free_ph:
1077 	kfree(elf_phdata);
1078 out:
1079 	return error;
1080 }
1081 
1082 #ifdef CONFIG_ELF_CORE
1083 /*
1084  * ELF core dumper
1085  *
1086  * Modelled on fs/exec.c:aout_core_dump()
1087  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1088  */
1089 
1090 /*
1091  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1092  * that are useful for post-mortem analysis are included in every core dump.
1093  * In that way we ensure that the core dump is fully interpretable later
1094  * without matching up the same kernel and hardware config to see what PC values
1095  * meant. These special mappings include - vDSO, vsyscall, and other
1096  * architecture specific mappings
1097  */
1098 static bool always_dump_vma(struct vm_area_struct *vma)
1099 {
1100 	/* Any vsyscall mappings? */
1101 	if (vma == get_gate_vma(vma->vm_mm))
1102 		return true;
1103 	/*
1104 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1105 	 * such as vDSO sections.
1106 	 */
1107 	if (arch_vma_name(vma))
1108 		return true;
1109 
1110 	return false;
1111 }
1112 
1113 /*
1114  * Decide what to dump of a segment, part, all or none.
1115  */
1116 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1117 				   unsigned long mm_flags)
1118 {
1119 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1120 
1121 	/* always dump the vdso and vsyscall sections */
1122 	if (always_dump_vma(vma))
1123 		goto whole;
1124 
1125 	if (vma->vm_flags & VM_DONTDUMP)
1126 		return 0;
1127 
1128 	/* Hugetlb memory check */
1129 	if (vma->vm_flags & VM_HUGETLB) {
1130 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1131 			goto whole;
1132 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1133 			goto whole;
1134 	}
1135 
1136 	/* Do not dump I/O mapped devices or special mappings */
1137 	if (vma->vm_flags & VM_IO)
1138 		return 0;
1139 
1140 	/* By default, dump shared memory if mapped from an anonymous file. */
1141 	if (vma->vm_flags & VM_SHARED) {
1142 		if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1143 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1144 			goto whole;
1145 		return 0;
1146 	}
1147 
1148 	/* Dump segments that have been written to.  */
1149 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1150 		goto whole;
1151 	if (vma->vm_file == NULL)
1152 		return 0;
1153 
1154 	if (FILTER(MAPPED_PRIVATE))
1155 		goto whole;
1156 
1157 	/*
1158 	 * If this looks like the beginning of a DSO or executable mapping,
1159 	 * check for an ELF header.  If we find one, dump the first page to
1160 	 * aid in determining what was mapped here.
1161 	 */
1162 	if (FILTER(ELF_HEADERS) &&
1163 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1164 		u32 __user *header = (u32 __user *) vma->vm_start;
1165 		u32 word;
1166 		mm_segment_t fs = get_fs();
1167 		/*
1168 		 * Doing it this way gets the constant folded by GCC.
1169 		 */
1170 		union {
1171 			u32 cmp;
1172 			char elfmag[SELFMAG];
1173 		} magic;
1174 		BUILD_BUG_ON(SELFMAG != sizeof word);
1175 		magic.elfmag[EI_MAG0] = ELFMAG0;
1176 		magic.elfmag[EI_MAG1] = ELFMAG1;
1177 		magic.elfmag[EI_MAG2] = ELFMAG2;
1178 		magic.elfmag[EI_MAG3] = ELFMAG3;
1179 		/*
1180 		 * Switch to the user "segment" for get_user(),
1181 		 * then put back what elf_core_dump() had in place.
1182 		 */
1183 		set_fs(USER_DS);
1184 		if (unlikely(get_user(word, header)))
1185 			word = 0;
1186 		set_fs(fs);
1187 		if (word == magic.cmp)
1188 			return PAGE_SIZE;
1189 	}
1190 
1191 #undef	FILTER
1192 
1193 	return 0;
1194 
1195 whole:
1196 	return vma->vm_end - vma->vm_start;
1197 }
1198 
1199 /* An ELF note in memory */
1200 struct memelfnote
1201 {
1202 	const char *name;
1203 	int type;
1204 	unsigned int datasz;
1205 	void *data;
1206 };
1207 
1208 static int notesize(struct memelfnote *en)
1209 {
1210 	int sz;
1211 
1212 	sz = sizeof(struct elf_note);
1213 	sz += roundup(strlen(en->name) + 1, 4);
1214 	sz += roundup(en->datasz, 4);
1215 
1216 	return sz;
1217 }
1218 
1219 #define DUMP_WRITE(addr, nr, foffset)	\
1220 	do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1221 
1222 static int alignfile(struct file *file, loff_t *foffset)
1223 {
1224 	static const char buf[4] = { 0, };
1225 	DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1226 	return 1;
1227 }
1228 
1229 static int writenote(struct memelfnote *men, struct file *file,
1230 			loff_t *foffset)
1231 {
1232 	struct elf_note en;
1233 	en.n_namesz = strlen(men->name) + 1;
1234 	en.n_descsz = men->datasz;
1235 	en.n_type = men->type;
1236 
1237 	DUMP_WRITE(&en, sizeof(en), foffset);
1238 	DUMP_WRITE(men->name, en.n_namesz, foffset);
1239 	if (!alignfile(file, foffset))
1240 		return 0;
1241 	DUMP_WRITE(men->data, men->datasz, foffset);
1242 	if (!alignfile(file, foffset))
1243 		return 0;
1244 
1245 	return 1;
1246 }
1247 #undef DUMP_WRITE
1248 
1249 static void fill_elf_header(struct elfhdr *elf, int segs,
1250 			    u16 machine, u32 flags, u8 osabi)
1251 {
1252 	memset(elf, 0, sizeof(*elf));
1253 
1254 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1255 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1256 	elf->e_ident[EI_DATA] = ELF_DATA;
1257 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1258 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1259 
1260 	elf->e_type = ET_CORE;
1261 	elf->e_machine = machine;
1262 	elf->e_version = EV_CURRENT;
1263 	elf->e_phoff = sizeof(struct elfhdr);
1264 	elf->e_flags = flags;
1265 	elf->e_ehsize = sizeof(struct elfhdr);
1266 	elf->e_phentsize = sizeof(struct elf_phdr);
1267 	elf->e_phnum = segs;
1268 
1269 	return;
1270 }
1271 
1272 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1273 {
1274 	phdr->p_type = PT_NOTE;
1275 	phdr->p_offset = offset;
1276 	phdr->p_vaddr = 0;
1277 	phdr->p_paddr = 0;
1278 	phdr->p_filesz = sz;
1279 	phdr->p_memsz = 0;
1280 	phdr->p_flags = 0;
1281 	phdr->p_align = 0;
1282 	return;
1283 }
1284 
1285 static void fill_note(struct memelfnote *note, const char *name, int type,
1286 		unsigned int sz, void *data)
1287 {
1288 	note->name = name;
1289 	note->type = type;
1290 	note->datasz = sz;
1291 	note->data = data;
1292 	return;
1293 }
1294 
1295 /*
1296  * fill up all the fields in prstatus from the given task struct, except
1297  * registers which need to be filled up separately.
1298  */
1299 static void fill_prstatus(struct elf_prstatus *prstatus,
1300 		struct task_struct *p, long signr)
1301 {
1302 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1303 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1304 	prstatus->pr_sighold = p->blocked.sig[0];
1305 	rcu_read_lock();
1306 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1307 	rcu_read_unlock();
1308 	prstatus->pr_pid = task_pid_vnr(p);
1309 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1310 	prstatus->pr_sid = task_session_vnr(p);
1311 	if (thread_group_leader(p)) {
1312 		struct task_cputime cputime;
1313 
1314 		/*
1315 		 * This is the record for the group leader.  It shows the
1316 		 * group-wide total, not its individual thread total.
1317 		 */
1318 		thread_group_cputime(p, &cputime);
1319 		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1320 		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1321 	} else {
1322 		cputime_to_timeval(p->utime, &prstatus->pr_utime);
1323 		cputime_to_timeval(p->stime, &prstatus->pr_stime);
1324 	}
1325 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1326 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1327 }
1328 
1329 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1330 		       struct mm_struct *mm)
1331 {
1332 	const struct cred *cred;
1333 	unsigned int i, len;
1334 
1335 	/* first copy the parameters from user space */
1336 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1337 
1338 	len = mm->arg_end - mm->arg_start;
1339 	if (len >= ELF_PRARGSZ)
1340 		len = ELF_PRARGSZ-1;
1341 	if (copy_from_user(&psinfo->pr_psargs,
1342 		           (const char __user *)mm->arg_start, len))
1343 		return -EFAULT;
1344 	for(i = 0; i < len; i++)
1345 		if (psinfo->pr_psargs[i] == 0)
1346 			psinfo->pr_psargs[i] = ' ';
1347 	psinfo->pr_psargs[len] = 0;
1348 
1349 	rcu_read_lock();
1350 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1351 	rcu_read_unlock();
1352 	psinfo->pr_pid = task_pid_vnr(p);
1353 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1354 	psinfo->pr_sid = task_session_vnr(p);
1355 
1356 	i = p->state ? ffz(~p->state) + 1 : 0;
1357 	psinfo->pr_state = i;
1358 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1359 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1360 	psinfo->pr_nice = task_nice(p);
1361 	psinfo->pr_flag = p->flags;
1362 	rcu_read_lock();
1363 	cred = __task_cred(p);
1364 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1365 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1366 	rcu_read_unlock();
1367 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1368 
1369 	return 0;
1370 }
1371 
1372 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1373 {
1374 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1375 	int i = 0;
1376 	do
1377 		i += 2;
1378 	while (auxv[i - 2] != AT_NULL);
1379 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1380 }
1381 
1382 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1383 		siginfo_t *siginfo)
1384 {
1385 	mm_segment_t old_fs = get_fs();
1386 	set_fs(KERNEL_DS);
1387 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1388 	set_fs(old_fs);
1389 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1390 }
1391 
1392 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1393 /*
1394  * Format of NT_FILE note:
1395  *
1396  * long count     -- how many files are mapped
1397  * long page_size -- units for file_ofs
1398  * array of [COUNT] elements of
1399  *   long start
1400  *   long end
1401  *   long file_ofs
1402  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1403  */
1404 static void fill_files_note(struct memelfnote *note)
1405 {
1406 	struct vm_area_struct *vma;
1407 	unsigned count, size, names_ofs, remaining, n;
1408 	user_long_t *data;
1409 	user_long_t *start_end_ofs;
1410 	char *name_base, *name_curpos;
1411 
1412 	/* *Estimated* file count and total data size needed */
1413 	count = current->mm->map_count;
1414 	size = count * 64;
1415 
1416 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1417  alloc:
1418 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1419 		goto err;
1420 	size = round_up(size, PAGE_SIZE);
1421 	data = vmalloc(size);
1422 	if (!data)
1423 		goto err;
1424 
1425 	start_end_ofs = data + 2;
1426 	name_base = name_curpos = ((char *)data) + names_ofs;
1427 	remaining = size - names_ofs;
1428 	count = 0;
1429 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1430 		struct file *file;
1431 		const char *filename;
1432 
1433 		file = vma->vm_file;
1434 		if (!file)
1435 			continue;
1436 		filename = d_path(&file->f_path, name_curpos, remaining);
1437 		if (IS_ERR(filename)) {
1438 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1439 				vfree(data);
1440 				size = size * 5 / 4;
1441 				goto alloc;
1442 			}
1443 			continue;
1444 		}
1445 
1446 		/* d_path() fills at the end, move name down */
1447 		/* n = strlen(filename) + 1: */
1448 		n = (name_curpos + remaining) - filename;
1449 		remaining = filename - name_curpos;
1450 		memmove(name_curpos, filename, n);
1451 		name_curpos += n;
1452 
1453 		*start_end_ofs++ = vma->vm_start;
1454 		*start_end_ofs++ = vma->vm_end;
1455 		*start_end_ofs++ = vma->vm_pgoff;
1456 		count++;
1457 	}
1458 
1459 	/* Now we know exact count of files, can store it */
1460 	data[0] = count;
1461 	data[1] = PAGE_SIZE;
1462 	/*
1463 	 * Count usually is less than current->mm->map_count,
1464 	 * we need to move filenames down.
1465 	 */
1466 	n = current->mm->map_count - count;
1467 	if (n != 0) {
1468 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1469 		memmove(name_base - shift_bytes, name_base,
1470 			name_curpos - name_base);
1471 		name_curpos -= shift_bytes;
1472 	}
1473 
1474 	size = name_curpos - (char *)data;
1475 	fill_note(note, "CORE", NT_FILE, size, data);
1476  err: ;
1477 }
1478 
1479 #ifdef CORE_DUMP_USE_REGSET
1480 #include <linux/regset.h>
1481 
1482 struct elf_thread_core_info {
1483 	struct elf_thread_core_info *next;
1484 	struct task_struct *task;
1485 	struct elf_prstatus prstatus;
1486 	struct memelfnote notes[0];
1487 };
1488 
1489 struct elf_note_info {
1490 	struct elf_thread_core_info *thread;
1491 	struct memelfnote psinfo;
1492 	struct memelfnote signote;
1493 	struct memelfnote auxv;
1494 	struct memelfnote files;
1495 	user_siginfo_t csigdata;
1496 	size_t size;
1497 	int thread_notes;
1498 };
1499 
1500 /*
1501  * When a regset has a writeback hook, we call it on each thread before
1502  * dumping user memory.  On register window machines, this makes sure the
1503  * user memory backing the register data is up to date before we read it.
1504  */
1505 static void do_thread_regset_writeback(struct task_struct *task,
1506 				       const struct user_regset *regset)
1507 {
1508 	if (regset->writeback)
1509 		regset->writeback(task, regset, 1);
1510 }
1511 
1512 #ifndef PR_REG_SIZE
1513 #define PR_REG_SIZE(S) sizeof(S)
1514 #endif
1515 
1516 #ifndef PRSTATUS_SIZE
1517 #define PRSTATUS_SIZE(S) sizeof(S)
1518 #endif
1519 
1520 #ifndef PR_REG_PTR
1521 #define PR_REG_PTR(S) (&((S)->pr_reg))
1522 #endif
1523 
1524 #ifndef SET_PR_FPVALID
1525 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1526 #endif
1527 
1528 static int fill_thread_core_info(struct elf_thread_core_info *t,
1529 				 const struct user_regset_view *view,
1530 				 long signr, size_t *total)
1531 {
1532 	unsigned int i;
1533 
1534 	/*
1535 	 * NT_PRSTATUS is the one special case, because the regset data
1536 	 * goes into the pr_reg field inside the note contents, rather
1537 	 * than being the whole note contents.  We fill the reset in here.
1538 	 * We assume that regset 0 is NT_PRSTATUS.
1539 	 */
1540 	fill_prstatus(&t->prstatus, t->task, signr);
1541 	(void) view->regsets[0].get(t->task, &view->regsets[0],
1542 				    0, PR_REG_SIZE(t->prstatus.pr_reg),
1543 				    PR_REG_PTR(&t->prstatus), NULL);
1544 
1545 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1546 		  PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1547 	*total += notesize(&t->notes[0]);
1548 
1549 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1550 
1551 	/*
1552 	 * Each other regset might generate a note too.  For each regset
1553 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1554 	 * all zero and we'll know to skip writing it later.
1555 	 */
1556 	for (i = 1; i < view->n; ++i) {
1557 		const struct user_regset *regset = &view->regsets[i];
1558 		do_thread_regset_writeback(t->task, regset);
1559 		if (regset->core_note_type && regset->get &&
1560 		    (!regset->active || regset->active(t->task, regset))) {
1561 			int ret;
1562 			size_t size = regset->n * regset->size;
1563 			void *data = kmalloc(size, GFP_KERNEL);
1564 			if (unlikely(!data))
1565 				return 0;
1566 			ret = regset->get(t->task, regset,
1567 					  0, size, data, NULL);
1568 			if (unlikely(ret))
1569 				kfree(data);
1570 			else {
1571 				if (regset->core_note_type != NT_PRFPREG)
1572 					fill_note(&t->notes[i], "LINUX",
1573 						  regset->core_note_type,
1574 						  size, data);
1575 				else {
1576 					SET_PR_FPVALID(&t->prstatus, 1);
1577 					fill_note(&t->notes[i], "CORE",
1578 						  NT_PRFPREG, size, data);
1579 				}
1580 				*total += notesize(&t->notes[i]);
1581 			}
1582 		}
1583 	}
1584 
1585 	return 1;
1586 }
1587 
1588 static int fill_note_info(struct elfhdr *elf, int phdrs,
1589 			  struct elf_note_info *info,
1590 			  siginfo_t *siginfo, struct pt_regs *regs)
1591 {
1592 	struct task_struct *dump_task = current;
1593 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1594 	struct elf_thread_core_info *t;
1595 	struct elf_prpsinfo *psinfo;
1596 	struct core_thread *ct;
1597 	unsigned int i;
1598 
1599 	info->size = 0;
1600 	info->thread = NULL;
1601 
1602 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1603 	if (psinfo == NULL)
1604 		return 0;
1605 
1606 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1607 
1608 	/*
1609 	 * Figure out how many notes we're going to need for each thread.
1610 	 */
1611 	info->thread_notes = 0;
1612 	for (i = 0; i < view->n; ++i)
1613 		if (view->regsets[i].core_note_type != 0)
1614 			++info->thread_notes;
1615 
1616 	/*
1617 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1618 	 * since it is our one special case.
1619 	 */
1620 	if (unlikely(info->thread_notes == 0) ||
1621 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1622 		WARN_ON(1);
1623 		return 0;
1624 	}
1625 
1626 	/*
1627 	 * Initialize the ELF file header.
1628 	 */
1629 	fill_elf_header(elf, phdrs,
1630 			view->e_machine, view->e_flags, view->ei_osabi);
1631 
1632 	/*
1633 	 * Allocate a structure for each thread.
1634 	 */
1635 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1636 		t = kzalloc(offsetof(struct elf_thread_core_info,
1637 				     notes[info->thread_notes]),
1638 			    GFP_KERNEL);
1639 		if (unlikely(!t))
1640 			return 0;
1641 
1642 		t->task = ct->task;
1643 		if (ct->task == dump_task || !info->thread) {
1644 			t->next = info->thread;
1645 			info->thread = t;
1646 		} else {
1647 			/*
1648 			 * Make sure to keep the original task at
1649 			 * the head of the list.
1650 			 */
1651 			t->next = info->thread->next;
1652 			info->thread->next = t;
1653 		}
1654 	}
1655 
1656 	/*
1657 	 * Now fill in each thread's information.
1658 	 */
1659 	for (t = info->thread; t != NULL; t = t->next)
1660 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1661 			return 0;
1662 
1663 	/*
1664 	 * Fill in the two process-wide notes.
1665 	 */
1666 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1667 	info->size += notesize(&info->psinfo);
1668 
1669 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1670 	info->size += notesize(&info->signote);
1671 
1672 	fill_auxv_note(&info->auxv, current->mm);
1673 	info->size += notesize(&info->auxv);
1674 
1675 	fill_files_note(&info->files);
1676 	info->size += notesize(&info->files);
1677 
1678 	return 1;
1679 }
1680 
1681 static size_t get_note_info_size(struct elf_note_info *info)
1682 {
1683 	return info->size;
1684 }
1685 
1686 /*
1687  * Write all the notes for each thread.  When writing the first thread, the
1688  * process-wide notes are interleaved after the first thread-specific note.
1689  */
1690 static int write_note_info(struct elf_note_info *info,
1691 			   struct file *file, loff_t *foffset)
1692 {
1693 	bool first = 1;
1694 	struct elf_thread_core_info *t = info->thread;
1695 
1696 	do {
1697 		int i;
1698 
1699 		if (!writenote(&t->notes[0], file, foffset))
1700 			return 0;
1701 
1702 		if (first && !writenote(&info->psinfo, file, foffset))
1703 			return 0;
1704 		if (first && !writenote(&info->signote, file, foffset))
1705 			return 0;
1706 		if (first && !writenote(&info->auxv, file, foffset))
1707 			return 0;
1708 		if (first && !writenote(&info->files, file, foffset))
1709 			return 0;
1710 
1711 		for (i = 1; i < info->thread_notes; ++i)
1712 			if (t->notes[i].data &&
1713 			    !writenote(&t->notes[i], file, foffset))
1714 				return 0;
1715 
1716 		first = 0;
1717 		t = t->next;
1718 	} while (t);
1719 
1720 	return 1;
1721 }
1722 
1723 static void free_note_info(struct elf_note_info *info)
1724 {
1725 	struct elf_thread_core_info *threads = info->thread;
1726 	while (threads) {
1727 		unsigned int i;
1728 		struct elf_thread_core_info *t = threads;
1729 		threads = t->next;
1730 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1731 		for (i = 1; i < info->thread_notes; ++i)
1732 			kfree(t->notes[i].data);
1733 		kfree(t);
1734 	}
1735 	kfree(info->psinfo.data);
1736 	vfree(info->files.data);
1737 }
1738 
1739 #else
1740 
1741 /* Here is the structure in which status of each thread is captured. */
1742 struct elf_thread_status
1743 {
1744 	struct list_head list;
1745 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1746 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1747 	struct task_struct *thread;
1748 #ifdef ELF_CORE_COPY_XFPREGS
1749 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1750 #endif
1751 	struct memelfnote notes[3];
1752 	int num_notes;
1753 };
1754 
1755 /*
1756  * In order to add the specific thread information for the elf file format,
1757  * we need to keep a linked list of every threads pr_status and then create
1758  * a single section for them in the final core file.
1759  */
1760 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1761 {
1762 	int sz = 0;
1763 	struct task_struct *p = t->thread;
1764 	t->num_notes = 0;
1765 
1766 	fill_prstatus(&t->prstatus, p, signr);
1767 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1768 
1769 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1770 		  &(t->prstatus));
1771 	t->num_notes++;
1772 	sz += notesize(&t->notes[0]);
1773 
1774 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1775 								&t->fpu))) {
1776 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1777 			  &(t->fpu));
1778 		t->num_notes++;
1779 		sz += notesize(&t->notes[1]);
1780 	}
1781 
1782 #ifdef ELF_CORE_COPY_XFPREGS
1783 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1784 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1785 			  sizeof(t->xfpu), &t->xfpu);
1786 		t->num_notes++;
1787 		sz += notesize(&t->notes[2]);
1788 	}
1789 #endif
1790 	return sz;
1791 }
1792 
1793 struct elf_note_info {
1794 	struct memelfnote *notes;
1795 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1796 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1797 	struct list_head thread_list;
1798 	elf_fpregset_t *fpu;
1799 #ifdef ELF_CORE_COPY_XFPREGS
1800 	elf_fpxregset_t *xfpu;
1801 #endif
1802 	user_siginfo_t csigdata;
1803 	int thread_status_size;
1804 	int numnote;
1805 };
1806 
1807 static int elf_note_info_init(struct elf_note_info *info)
1808 {
1809 	memset(info, 0, sizeof(*info));
1810 	INIT_LIST_HEAD(&info->thread_list);
1811 
1812 	/* Allocate space for ELF notes */
1813 	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1814 	if (!info->notes)
1815 		return 0;
1816 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1817 	if (!info->psinfo)
1818 		return 0;
1819 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1820 	if (!info->prstatus)
1821 		return 0;
1822 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1823 	if (!info->fpu)
1824 		return 0;
1825 #ifdef ELF_CORE_COPY_XFPREGS
1826 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1827 	if (!info->xfpu)
1828 		return 0;
1829 #endif
1830 	return 1;
1831 }
1832 
1833 static int fill_note_info(struct elfhdr *elf, int phdrs,
1834 			  struct elf_note_info *info,
1835 			  siginfo_t *siginfo, struct pt_regs *regs)
1836 {
1837 	struct list_head *t;
1838 
1839 	if (!elf_note_info_init(info))
1840 		return 0;
1841 
1842 	if (siginfo->si_signo) {
1843 		struct core_thread *ct;
1844 		struct elf_thread_status *ets;
1845 
1846 		for (ct = current->mm->core_state->dumper.next;
1847 						ct; ct = ct->next) {
1848 			ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1849 			if (!ets)
1850 				return 0;
1851 
1852 			ets->thread = ct->task;
1853 			list_add(&ets->list, &info->thread_list);
1854 		}
1855 
1856 		list_for_each(t, &info->thread_list) {
1857 			int sz;
1858 
1859 			ets = list_entry(t, struct elf_thread_status, list);
1860 			sz = elf_dump_thread_status(siginfo->si_signo, ets);
1861 			info->thread_status_size += sz;
1862 		}
1863 	}
1864 	/* now collect the dump for the current */
1865 	memset(info->prstatus, 0, sizeof(*info->prstatus));
1866 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
1867 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1868 
1869 	/* Set up header */
1870 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1871 
1872 	/*
1873 	 * Set up the notes in similar form to SVR4 core dumps made
1874 	 * with info from their /proc.
1875 	 */
1876 
1877 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1878 		  sizeof(*info->prstatus), info->prstatus);
1879 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1880 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1881 		  sizeof(*info->psinfo), info->psinfo);
1882 
1883 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1884 	fill_auxv_note(info->notes + 3, current->mm);
1885 	fill_files_note(info->notes + 4);
1886 
1887 	info->numnote = 5;
1888 
1889 	/* Try to dump the FPU. */
1890 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1891 							       info->fpu);
1892 	if (info->prstatus->pr_fpvalid)
1893 		fill_note(info->notes + info->numnote++,
1894 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1895 #ifdef ELF_CORE_COPY_XFPREGS
1896 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
1897 		fill_note(info->notes + info->numnote++,
1898 			  "LINUX", ELF_CORE_XFPREG_TYPE,
1899 			  sizeof(*info->xfpu), info->xfpu);
1900 #endif
1901 
1902 	return 1;
1903 }
1904 
1905 static size_t get_note_info_size(struct elf_note_info *info)
1906 {
1907 	int sz = 0;
1908 	int i;
1909 
1910 	for (i = 0; i < info->numnote; i++)
1911 		sz += notesize(info->notes + i);
1912 
1913 	sz += info->thread_status_size;
1914 
1915 	return sz;
1916 }
1917 
1918 static int write_note_info(struct elf_note_info *info,
1919 			   struct file *file, loff_t *foffset)
1920 {
1921 	int i;
1922 	struct list_head *t;
1923 
1924 	for (i = 0; i < info->numnote; i++)
1925 		if (!writenote(info->notes + i, file, foffset))
1926 			return 0;
1927 
1928 	/* write out the thread status notes section */
1929 	list_for_each(t, &info->thread_list) {
1930 		struct elf_thread_status *tmp =
1931 				list_entry(t, struct elf_thread_status, list);
1932 
1933 		for (i = 0; i < tmp->num_notes; i++)
1934 			if (!writenote(&tmp->notes[i], file, foffset))
1935 				return 0;
1936 	}
1937 
1938 	return 1;
1939 }
1940 
1941 static void free_note_info(struct elf_note_info *info)
1942 {
1943 	while (!list_empty(&info->thread_list)) {
1944 		struct list_head *tmp = info->thread_list.next;
1945 		list_del(tmp);
1946 		kfree(list_entry(tmp, struct elf_thread_status, list));
1947 	}
1948 
1949 	/* Free data allocated by fill_files_note(): */
1950 	vfree(info->notes[4].data);
1951 
1952 	kfree(info->prstatus);
1953 	kfree(info->psinfo);
1954 	kfree(info->notes);
1955 	kfree(info->fpu);
1956 #ifdef ELF_CORE_COPY_XFPREGS
1957 	kfree(info->xfpu);
1958 #endif
1959 }
1960 
1961 #endif
1962 
1963 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1964 					struct vm_area_struct *gate_vma)
1965 {
1966 	struct vm_area_struct *ret = tsk->mm->mmap;
1967 
1968 	if (ret)
1969 		return ret;
1970 	return gate_vma;
1971 }
1972 /*
1973  * Helper function for iterating across a vma list.  It ensures that the caller
1974  * will visit `gate_vma' prior to terminating the search.
1975  */
1976 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1977 					struct vm_area_struct *gate_vma)
1978 {
1979 	struct vm_area_struct *ret;
1980 
1981 	ret = this_vma->vm_next;
1982 	if (ret)
1983 		return ret;
1984 	if (this_vma == gate_vma)
1985 		return NULL;
1986 	return gate_vma;
1987 }
1988 
1989 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1990 			     elf_addr_t e_shoff, int segs)
1991 {
1992 	elf->e_shoff = e_shoff;
1993 	elf->e_shentsize = sizeof(*shdr4extnum);
1994 	elf->e_shnum = 1;
1995 	elf->e_shstrndx = SHN_UNDEF;
1996 
1997 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1998 
1999 	shdr4extnum->sh_type = SHT_NULL;
2000 	shdr4extnum->sh_size = elf->e_shnum;
2001 	shdr4extnum->sh_link = elf->e_shstrndx;
2002 	shdr4extnum->sh_info = segs;
2003 }
2004 
2005 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
2006 				     unsigned long mm_flags)
2007 {
2008 	struct vm_area_struct *vma;
2009 	size_t size = 0;
2010 
2011 	for (vma = first_vma(current, gate_vma); vma != NULL;
2012 	     vma = next_vma(vma, gate_vma))
2013 		size += vma_dump_size(vma, mm_flags);
2014 	return size;
2015 }
2016 
2017 /*
2018  * Actual dumper
2019  *
2020  * This is a two-pass process; first we find the offsets of the bits,
2021  * and then they are actually written out.  If we run out of core limit
2022  * we just truncate.
2023  */
2024 static int elf_core_dump(struct coredump_params *cprm)
2025 {
2026 	int has_dumped = 0;
2027 	mm_segment_t fs;
2028 	int segs;
2029 	size_t size = 0;
2030 	struct vm_area_struct *vma, *gate_vma;
2031 	struct elfhdr *elf = NULL;
2032 	loff_t offset = 0, dataoff, foffset;
2033 	struct elf_note_info info;
2034 	struct elf_phdr *phdr4note = NULL;
2035 	struct elf_shdr *shdr4extnum = NULL;
2036 	Elf_Half e_phnum;
2037 	elf_addr_t e_shoff;
2038 
2039 	/*
2040 	 * We no longer stop all VM operations.
2041 	 *
2042 	 * This is because those proceses that could possibly change map_count
2043 	 * or the mmap / vma pages are now blocked in do_exit on current
2044 	 * finishing this core dump.
2045 	 *
2046 	 * Only ptrace can touch these memory addresses, but it doesn't change
2047 	 * the map_count or the pages allocated. So no possibility of crashing
2048 	 * exists while dumping the mm->vm_next areas to the core file.
2049 	 */
2050 
2051 	/* alloc memory for large data structures: too large to be on stack */
2052 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2053 	if (!elf)
2054 		goto out;
2055 	/*
2056 	 * The number of segs are recored into ELF header as 16bit value.
2057 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2058 	 */
2059 	segs = current->mm->map_count;
2060 	segs += elf_core_extra_phdrs();
2061 
2062 	gate_vma = get_gate_vma(current->mm);
2063 	if (gate_vma != NULL)
2064 		segs++;
2065 
2066 	/* for notes section */
2067 	segs++;
2068 
2069 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2070 	 * this, kernel supports extended numbering. Have a look at
2071 	 * include/linux/elf.h for further information. */
2072 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2073 
2074 	/*
2075 	 * Collect all the non-memory information about the process for the
2076 	 * notes.  This also sets up the file header.
2077 	 */
2078 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2079 		goto cleanup;
2080 
2081 	has_dumped = 1;
2082 	current->flags |= PF_DUMPCORE;
2083 
2084 	fs = get_fs();
2085 	set_fs(KERNEL_DS);
2086 
2087 	offset += sizeof(*elf);				/* Elf header */
2088 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2089 	foffset = offset;
2090 
2091 	/* Write notes phdr entry */
2092 	{
2093 		size_t sz = get_note_info_size(&info);
2094 
2095 		sz += elf_coredump_extra_notes_size();
2096 
2097 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2098 		if (!phdr4note)
2099 			goto end_coredump;
2100 
2101 		fill_elf_note_phdr(phdr4note, sz, offset);
2102 		offset += sz;
2103 	}
2104 
2105 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2106 
2107 	offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
2108 	offset += elf_core_extra_data_size();
2109 	e_shoff = offset;
2110 
2111 	if (e_phnum == PN_XNUM) {
2112 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2113 		if (!shdr4extnum)
2114 			goto end_coredump;
2115 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2116 	}
2117 
2118 	offset = dataoff;
2119 
2120 	size += sizeof(*elf);
2121 	if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
2122 		goto end_coredump;
2123 
2124 	size += sizeof(*phdr4note);
2125 	if (size > cprm->limit
2126 	    || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
2127 		goto end_coredump;
2128 
2129 	/* Write program headers for segments dump */
2130 	for (vma = first_vma(current, gate_vma); vma != NULL;
2131 			vma = next_vma(vma, gate_vma)) {
2132 		struct elf_phdr phdr;
2133 
2134 		phdr.p_type = PT_LOAD;
2135 		phdr.p_offset = offset;
2136 		phdr.p_vaddr = vma->vm_start;
2137 		phdr.p_paddr = 0;
2138 		phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
2139 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2140 		offset += phdr.p_filesz;
2141 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2142 		if (vma->vm_flags & VM_WRITE)
2143 			phdr.p_flags |= PF_W;
2144 		if (vma->vm_flags & VM_EXEC)
2145 			phdr.p_flags |= PF_X;
2146 		phdr.p_align = ELF_EXEC_PAGESIZE;
2147 
2148 		size += sizeof(phdr);
2149 		if (size > cprm->limit
2150 		    || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2151 			goto end_coredump;
2152 	}
2153 
2154 	if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2155 		goto end_coredump;
2156 
2157  	/* write out the notes section */
2158 	if (!write_note_info(&info, cprm->file, &foffset))
2159 		goto end_coredump;
2160 
2161 	if (elf_coredump_extra_notes_write(cprm->file, &foffset))
2162 		goto end_coredump;
2163 
2164 	/* Align to page */
2165 	if (!dump_seek(cprm->file, dataoff - foffset))
2166 		goto end_coredump;
2167 
2168 	for (vma = first_vma(current, gate_vma); vma != NULL;
2169 			vma = next_vma(vma, gate_vma)) {
2170 		unsigned long addr;
2171 		unsigned long end;
2172 
2173 		end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2174 
2175 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2176 			struct page *page;
2177 			int stop;
2178 
2179 			page = get_dump_page(addr);
2180 			if (page) {
2181 				void *kaddr = kmap(page);
2182 				stop = ((size += PAGE_SIZE) > cprm->limit) ||
2183 					!dump_write(cprm->file, kaddr,
2184 						    PAGE_SIZE);
2185 				kunmap(page);
2186 				page_cache_release(page);
2187 			} else
2188 				stop = !dump_seek(cprm->file, PAGE_SIZE);
2189 			if (stop)
2190 				goto end_coredump;
2191 		}
2192 	}
2193 
2194 	if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2195 		goto end_coredump;
2196 
2197 	if (e_phnum == PN_XNUM) {
2198 		size += sizeof(*shdr4extnum);
2199 		if (size > cprm->limit
2200 		    || !dump_write(cprm->file, shdr4extnum,
2201 				   sizeof(*shdr4extnum)))
2202 			goto end_coredump;
2203 	}
2204 
2205 end_coredump:
2206 	set_fs(fs);
2207 
2208 cleanup:
2209 	free_note_info(&info);
2210 	kfree(shdr4extnum);
2211 	kfree(phdr4note);
2212 	kfree(elf);
2213 out:
2214 	return has_dumped;
2215 }
2216 
2217 #endif		/* CONFIG_ELF_CORE */
2218 
2219 static int __init init_elf_binfmt(void)
2220 {
2221 	register_binfmt(&elf_format);
2222 	return 0;
2223 }
2224 
2225 static void __exit exit_elf_binfmt(void)
2226 {
2227 	/* Remove the COFF and ELF loaders. */
2228 	unregister_binfmt(&elf_format);
2229 }
2230 
2231 core_initcall(init_elf_binfmt);
2232 module_exit(exit_elf_binfmt);
2233 MODULE_LICENSE("GPL");
2234