xref: /linux/fs/befs/btree.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  * linux/fs/befs/btree.c
3  *
4  * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com>
5  *
6  * Licensed under the GNU GPL. See the file COPYING for details.
7  *
8  * 2002-02-05: Sergey S. Kostyliov added binary search within
9  * 		btree nodes.
10  *
11  * Many thanks to:
12  *
13  * Dominic Giampaolo, author of "Practical File System
14  * Design with the Be File System", for such a helpful book.
15  *
16  * Marcus J. Ranum, author of the b+tree package in
17  * comp.sources.misc volume 10. This code is not copied from that
18  * work, but it is partially based on it.
19  *
20  * Makoto Kato, author of the original BeFS for linux filesystem
21  * driver.
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/string.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/buffer_head.h>
29 
30 #include "befs.h"
31 #include "btree.h"
32 #include "datastream.h"
33 
34 /*
35  * The btree functions in this file are built on top of the
36  * datastream.c interface, which is in turn built on top of the
37  * io.c interface.
38  */
39 
40 /* Befs B+tree structure:
41  *
42  * The first thing in the tree is the tree superblock. It tells you
43  * all kinds of useful things about the tree, like where the rootnode
44  * is located, and the size of the nodes (always 1024 with current version
45  * of BeOS).
46  *
47  * The rest of the tree consists of a series of nodes. Nodes contain a header
48  * (struct befs_btree_nodehead), the packed key data, an array of shorts
49  * containing the ending offsets for each of the keys, and an array of
50  * befs_off_t values. In interior nodes, the keys are the ending keys for
51  * the childnode they point to, and the values are offsets into the
52  * datastream containing the tree.
53  */
54 
55 /* Note:
56  *
57  * The book states 2 confusing things about befs b+trees. First,
58  * it states that the overflow field of node headers is used by internal nodes
59  * to point to another node that "effectively continues this one". Here is what
60  * I believe that means. Each key in internal nodes points to another node that
61  * contains key values less than itself. Inspection reveals that the last key
62  * in the internal node is not the last key in the index. Keys that are
63  * greater than the last key in the internal node go into the overflow node.
64  * I imagine there is a performance reason for this.
65  *
66  * Second, it states that the header of a btree node is sufficient to
67  * distinguish internal nodes from leaf nodes. Without saying exactly how.
68  * After figuring out the first, it becomes obvious that internal nodes have
69  * overflow nodes and leafnodes do not.
70  */
71 
72 /*
73  * Currently, this code is only good for directory B+trees.
74  * In order to be used for other BFS indexes, it needs to be extended to handle
75  * duplicate keys and non-string keytypes (int32, int64, float, double).
76  */
77 
78 /*
79  * In memory structure of each btree node
80  */
81 typedef struct {
82 	befs_host_btree_nodehead head;	/* head of node converted to cpu byteorder */
83 	struct buffer_head *bh;
84 	befs_btree_nodehead *od_node;	/* on disk node */
85 } befs_btree_node;
86 
87 /* local constants */
88 static const befs_off_t befs_bt_inval = 0xffffffffffffffffULL;
89 
90 /* local functions */
91 static int befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds,
92 			       befs_btree_super * bt_super,
93 			       befs_btree_node * this_node,
94 			       befs_off_t * node_off);
95 
96 static int befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
97 			      befs_btree_super * sup);
98 
99 static int befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
100 			     befs_btree_node * node, befs_off_t node_off);
101 
102 static int befs_leafnode(befs_btree_node * node);
103 
104 static fs16 *befs_bt_keylen_index(befs_btree_node * node);
105 
106 static fs64 *befs_bt_valarray(befs_btree_node * node);
107 
108 static char *befs_bt_keydata(befs_btree_node * node);
109 
110 static int befs_find_key(struct super_block *sb, befs_btree_node * node,
111 			 const char *findkey, befs_off_t * value);
112 
113 static char *befs_bt_get_key(struct super_block *sb, befs_btree_node * node,
114 			     int index, u16 * keylen);
115 
116 static int befs_compare_strings(const void *key1, int keylen1,
117 				const void *key2, int keylen2);
118 
119 /**
120  * befs_bt_read_super - read in btree superblock convert to cpu byteorder
121  * @sb: Filesystem superblock
122  * @ds: Datastream to read from
123  * @sup: Buffer in which to place the btree superblock
124  *
125  * Calls befs_read_datastream to read in the btree superblock and
126  * makes sure it is in cpu byteorder, byteswapping if necessary.
127  *
128  * On success, returns BEFS_OK and *@sup contains the btree superblock,
129  * in cpu byte order.
130  *
131  * On failure, BEFS_ERR is returned.
132  */
133 static int
134 befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
135 		   befs_btree_super * sup)
136 {
137 	struct buffer_head *bh = NULL;
138 	befs_disk_btree_super *od_sup = NULL;
139 
140 	befs_debug(sb, "---> befs_btree_read_super()");
141 
142 	bh = befs_read_datastream(sb, ds, 0, NULL);
143 
144 	if (!bh) {
145 		befs_error(sb, "Couldn't read index header.");
146 		goto error;
147 	}
148 	od_sup = (befs_disk_btree_super *) bh->b_data;
149 	befs_dump_index_entry(sb, od_sup);
150 
151 	sup->magic = fs32_to_cpu(sb, od_sup->magic);
152 	sup->node_size = fs32_to_cpu(sb, od_sup->node_size);
153 	sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth);
154 	sup->data_type = fs32_to_cpu(sb, od_sup->data_type);
155 	sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr);
156 	sup->free_node_ptr = fs64_to_cpu(sb, od_sup->free_node_ptr);
157 	sup->max_size = fs64_to_cpu(sb, od_sup->max_size);
158 
159 	brelse(bh);
160 	if (sup->magic != BEFS_BTREE_MAGIC) {
161 		befs_error(sb, "Index header has bad magic.");
162 		goto error;
163 	}
164 
165 	befs_debug(sb, "<--- befs_btree_read_super()");
166 	return BEFS_OK;
167 
168       error:
169 	befs_debug(sb, "<--- befs_btree_read_super() ERROR");
170 	return BEFS_ERR;
171 }
172 
173 /**
174  * befs_bt_read_node - read in btree node and convert to cpu byteorder
175  * @sb: Filesystem superblock
176  * @ds: Datastream to read from
177  * @node: Buffer in which to place the btree node
178  * @node_off: Starting offset (in bytes) of the node in @ds
179  *
180  * Calls befs_read_datastream to read in the indicated btree node and
181  * makes sure its header fields are in cpu byteorder, byteswapping if
182  * necessary.
183  * Note: node->bh must be NULL when this function called first
184  * time. Don't forget brelse(node->bh) after last call.
185  *
186  * On success, returns BEFS_OK and *@node contains the btree node that
187  * starts at @node_off, with the node->head fields in cpu byte order.
188  *
189  * On failure, BEFS_ERR is returned.
190  */
191 
192 static int
193 befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
194 		  befs_btree_node * node, befs_off_t node_off)
195 {
196 	uint off = 0;
197 
198 	befs_debug(sb, "---> befs_bt_read_node()");
199 
200 	if (node->bh)
201 		brelse(node->bh);
202 
203 	node->bh = befs_read_datastream(sb, ds, node_off, &off);
204 	if (!node->bh) {
205 		befs_error(sb, "befs_bt_read_node() failed to read "
206 			   "node at %Lu", node_off);
207 		befs_debug(sb, "<--- befs_bt_read_node() ERROR");
208 
209 		return BEFS_ERR;
210 	}
211 	node->od_node =
212 	    (befs_btree_nodehead *) ((void *) node->bh->b_data + off);
213 
214 	befs_dump_index_node(sb, node->od_node);
215 
216 	node->head.left = fs64_to_cpu(sb, node->od_node->left);
217 	node->head.right = fs64_to_cpu(sb, node->od_node->right);
218 	node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow);
219 	node->head.all_key_count =
220 	    fs16_to_cpu(sb, node->od_node->all_key_count);
221 	node->head.all_key_length =
222 	    fs16_to_cpu(sb, node->od_node->all_key_length);
223 
224 	befs_debug(sb, "<--- befs_btree_read_node()");
225 	return BEFS_OK;
226 }
227 
228 /**
229  * befs_btree_find - Find a key in a befs B+tree
230  * @sb: Filesystem superblock
231  * @ds: Datastream containing btree
232  * @key: Key string to lookup in btree
233  * @value: Value stored with @key
234  *
235  * On success, returns BEFS_OK and sets *@value to the value stored
236  * with @key (usually the disk block number of an inode).
237  *
238  * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND.
239  *
240  * Algorithm:
241  *   Read the superblock and rootnode of the b+tree.
242  *   Drill down through the interior nodes using befs_find_key().
243  *   Once at the correct leaf node, use befs_find_key() again to get the
244  *   actuall value stored with the key.
245  */
246 int
247 befs_btree_find(struct super_block *sb, befs_data_stream * ds,
248 		const char *key, befs_off_t * value)
249 {
250 	befs_btree_node *this_node = NULL;
251 	befs_btree_super bt_super;
252 	befs_off_t node_off;
253 	int res;
254 
255 	befs_debug(sb, "---> befs_btree_find() Key: %s", key);
256 
257 	if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
258 		befs_error(sb,
259 			   "befs_btree_find() failed to read index superblock");
260 		goto error;
261 	}
262 
263 	this_node = kmalloc(sizeof (befs_btree_node),
264 						GFP_NOFS);
265 	if (!this_node) {
266 		befs_error(sb, "befs_btree_find() failed to allocate %u "
267 			   "bytes of memory", sizeof (befs_btree_node));
268 		goto error;
269 	}
270 
271 	this_node->bh = NULL;
272 
273 	/* read in root node */
274 	node_off = bt_super.root_node_ptr;
275 	if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
276 		befs_error(sb, "befs_btree_find() failed to read "
277 			   "node at %Lu", node_off);
278 		goto error_alloc;
279 	}
280 
281 	while (!befs_leafnode(this_node)) {
282 		res = befs_find_key(sb, this_node, key, &node_off);
283 		if (res == BEFS_BT_NOT_FOUND)
284 			node_off = this_node->head.overflow;
285 		/* if no match, go to overflow node */
286 		if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
287 			befs_error(sb, "befs_btree_find() failed to read "
288 				   "node at %Lu", node_off);
289 			goto error_alloc;
290 		}
291 	}
292 
293 	/* at the correct leaf node now */
294 
295 	res = befs_find_key(sb, this_node, key, value);
296 
297 	brelse(this_node->bh);
298 	kfree(this_node);
299 
300 	if (res != BEFS_BT_MATCH) {
301 		befs_debug(sb, "<--- befs_btree_find() Key %s not found", key);
302 		*value = 0;
303 		return BEFS_BT_NOT_FOUND;
304 	}
305 	befs_debug(sb, "<--- befs_btree_find() Found key %s, value %Lu",
306 		   key, *value);
307 	return BEFS_OK;
308 
309       error_alloc:
310 	kfree(this_node);
311       error:
312 	*value = 0;
313 	befs_debug(sb, "<--- befs_btree_find() ERROR");
314 	return BEFS_ERR;
315 }
316 
317 /**
318  * befs_find_key - Search for a key within a node
319  * @sb: Filesystem superblock
320  * @node: Node to find the key within
321  * @key: Keystring to search for
322  * @value: If key is found, the value stored with the key is put here
323  *
324  * finds exact match if one exists, and returns BEFS_BT_MATCH
325  * If no exact match, finds first key in node that is greater
326  * (alphabetically) than the search key and returns BEFS_BT_PARMATCH
327  * (for partial match, I guess). Can you think of something better to
328  * call it?
329  *
330  * If no key was a match or greater than the search key, return
331  * BEFS_BT_NOT_FOUND.
332  *
333  * Use binary search instead of a linear.
334  */
335 static int
336 befs_find_key(struct super_block *sb, befs_btree_node * node,
337 	      const char *findkey, befs_off_t * value)
338 {
339 	int first, last, mid;
340 	int eq;
341 	u16 keylen;
342 	int findkey_len;
343 	char *thiskey;
344 	fs64 *valarray;
345 
346 	befs_debug(sb, "---> befs_find_key() %s", findkey);
347 
348 	*value = 0;
349 
350 	findkey_len = strlen(findkey);
351 
352 	/* if node can not contain key, just skeep this node */
353 	last = node->head.all_key_count - 1;
354 	thiskey = befs_bt_get_key(sb, node, last, &keylen);
355 
356 	eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
357 	if (eq < 0) {
358 		befs_debug(sb, "<--- befs_find_key() %s not found", findkey);
359 		return BEFS_BT_NOT_FOUND;
360 	}
361 
362 	valarray = befs_bt_valarray(node);
363 
364 	/* simple binary search */
365 	first = 0;
366 	mid = 0;
367 	while (last >= first) {
368 		mid = (last + first) / 2;
369 		befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
370 			   mid);
371 		thiskey = befs_bt_get_key(sb, node, mid, &keylen);
372 		eq = befs_compare_strings(thiskey, keylen, findkey,
373 					  findkey_len);
374 
375 		if (eq == 0) {
376 			befs_debug(sb, "<--- befs_find_key() found %s at %d",
377 				   thiskey, mid);
378 
379 			*value = fs64_to_cpu(sb, valarray[mid]);
380 			return BEFS_BT_MATCH;
381 		}
382 		if (eq > 0)
383 			last = mid - 1;
384 		else
385 			first = mid + 1;
386 	}
387 	if (eq < 0)
388 		*value = fs64_to_cpu(sb, valarray[mid + 1]);
389 	else
390 		*value = fs64_to_cpu(sb, valarray[mid]);
391 	befs_debug(sb, "<--- befs_find_key() found %s at %d", thiskey, mid);
392 	return BEFS_BT_PARMATCH;
393 }
394 
395 /**
396  * befs_btree_read - Traverse leafnodes of a btree
397  * @sb: Filesystem superblock
398  * @ds: Datastream containing btree
399  * @key_no: Key number (alphabetical order) of key to read
400  * @bufsize: Size of the buffer to return key in
401  * @keybuf: Pointer to a buffer to put the key in
402  * @keysize: Length of the returned key
403  * @value: Value stored with the returned key
404  *
405  * Heres how it works: Key_no is the index of the key/value pair to
406  * return in keybuf/value.
407  * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is
408  * the number of charecters in the key (just a convenience).
409  *
410  * Algorithm:
411  *   Get the first leafnode of the tree. See if the requested key is in that
412  *   node. If not, follow the node->right link to the next leafnode. Repeat
413  *   until the (key_no)th key is found or the tree is out of keys.
414  */
415 int
416 befs_btree_read(struct super_block *sb, befs_data_stream * ds,
417 		loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize,
418 		befs_off_t * value)
419 {
420 	befs_btree_node *this_node;
421 	befs_btree_super bt_super;
422 	befs_off_t node_off = 0;
423 	int cur_key;
424 	fs64 *valarray;
425 	char *keystart;
426 	u16 keylen;
427 	int res;
428 
429 	uint key_sum = 0;
430 
431 	befs_debug(sb, "---> befs_btree_read()");
432 
433 	if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
434 		befs_error(sb,
435 			   "befs_btree_read() failed to read index superblock");
436 		goto error;
437 	}
438 
439 	if ((this_node = kmalloc(sizeof (befs_btree_node), GFP_NOFS)) == NULL) {
440 		befs_error(sb, "befs_btree_read() failed to allocate %u "
441 			   "bytes of memory", sizeof (befs_btree_node));
442 		goto error;
443 	}
444 
445 	node_off = bt_super.root_node_ptr;
446 	this_node->bh = NULL;
447 
448 	/* seeks down to first leafnode, reads it into this_node */
449 	res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off);
450 	if (res == BEFS_BT_EMPTY) {
451 		brelse(this_node->bh);
452 		kfree(this_node);
453 		*value = 0;
454 		*keysize = 0;
455 		befs_debug(sb, "<--- befs_btree_read() Tree is EMPTY");
456 		return BEFS_BT_EMPTY;
457 	} else if (res == BEFS_ERR) {
458 		goto error_alloc;
459 	}
460 
461 	/* find the leaf node containing the key_no key */
462 
463 	while (key_sum + this_node->head.all_key_count <= key_no) {
464 
465 		/* no more nodes to look in: key_no is too large */
466 		if (this_node->head.right == befs_bt_inval) {
467 			*keysize = 0;
468 			*value = 0;
469 			befs_debug(sb,
470 				   "<--- befs_btree_read() END of keys at %Lu",
471 				   key_sum + this_node->head.all_key_count);
472 			brelse(this_node->bh);
473 			kfree(this_node);
474 			return BEFS_BT_END;
475 		}
476 
477 		key_sum += this_node->head.all_key_count;
478 		node_off = this_node->head.right;
479 
480 		if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
481 			befs_error(sb, "befs_btree_read() failed to read "
482 				   "node at %Lu", node_off);
483 			goto error_alloc;
484 		}
485 	}
486 
487 	/* how many keys into this_node is key_no */
488 	cur_key = key_no - key_sum;
489 
490 	/* get pointers to datastructures within the node body */
491 	valarray = befs_bt_valarray(this_node);
492 
493 	keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen);
494 
495 	befs_debug(sb, "Read [%Lu,%d]: keysize %d", node_off, cur_key, keylen);
496 
497 	if (bufsize < keylen + 1) {
498 		befs_error(sb, "befs_btree_read() keybuf too small (%u) "
499 			   "for key of size %d", bufsize, keylen);
500 		brelse(this_node->bh);
501 		goto error_alloc;
502 	};
503 
504 	strncpy(keybuf, keystart, keylen);
505 	*value = fs64_to_cpu(sb, valarray[cur_key]);
506 	*keysize = keylen;
507 	keybuf[keylen] = '\0';
508 
509 	befs_debug(sb, "Read [%Lu,%d]: Key \"%.*s\", Value %Lu", node_off,
510 		   cur_key, keylen, keybuf, *value);
511 
512 	brelse(this_node->bh);
513 	kfree(this_node);
514 
515 	befs_debug(sb, "<--- befs_btree_read()");
516 
517 	return BEFS_OK;
518 
519       error_alloc:
520 	kfree(this_node);
521 
522       error:
523 	*keysize = 0;
524 	*value = 0;
525 	befs_debug(sb, "<--- befs_btree_read() ERROR");
526 	return BEFS_ERR;
527 }
528 
529 /**
530  * befs_btree_seekleaf - Find the first leafnode in the btree
531  * @sb: Filesystem superblock
532  * @ds: Datastream containing btree
533  * @bt_super: Pointer to the superblock of the btree
534  * @this_node: Buffer to return the leafnode in
535  * @node_off: Pointer to offset of current node within datastream. Modified
536  * 		by the function.
537  *
538  *
539  * Helper function for btree traverse. Moves the current position to the
540  * start of the first leaf node.
541  *
542  * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY.
543  */
544 static int
545 befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds,
546 		    befs_btree_super * bt_super, befs_btree_node * this_node,
547 		    befs_off_t * node_off)
548 {
549 
550 	befs_debug(sb, "---> befs_btree_seekleaf()");
551 
552 	if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
553 		befs_error(sb, "befs_btree_seekleaf() failed to read "
554 			   "node at %Lu", *node_off);
555 		goto error;
556 	}
557 	befs_debug(sb, "Seekleaf to root node %Lu", *node_off);
558 
559 	if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) {
560 		befs_debug(sb, "<--- befs_btree_seekleaf() Tree is EMPTY");
561 		return BEFS_BT_EMPTY;
562 	}
563 
564 	while (!befs_leafnode(this_node)) {
565 
566 		if (this_node->head.all_key_count == 0) {
567 			befs_debug(sb, "befs_btree_seekleaf() encountered "
568 				   "an empty interior node: %Lu. Using Overflow "
569 				   "node: %Lu", *node_off,
570 				   this_node->head.overflow);
571 			*node_off = this_node->head.overflow;
572 		} else {
573 			fs64 *valarray = befs_bt_valarray(this_node);
574 			*node_off = fs64_to_cpu(sb, valarray[0]);
575 		}
576 		if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
577 			befs_error(sb, "befs_btree_seekleaf() failed to read "
578 				   "node at %Lu", *node_off);
579 			goto error;
580 		}
581 
582 		befs_debug(sb, "Seekleaf to child node %Lu", *node_off);
583 	}
584 	befs_debug(sb, "Node %Lu is a leaf node", *node_off);
585 
586 	return BEFS_OK;
587 
588       error:
589 	befs_debug(sb, "<--- befs_btree_seekleaf() ERROR");
590 	return BEFS_ERR;
591 }
592 
593 /**
594  * befs_leafnode - Determine if the btree node is a leaf node or an
595  * interior node
596  * @node: Pointer to node structure to test
597  *
598  * Return 1 if leaf, 0 if interior
599  */
600 static int
601 befs_leafnode(befs_btree_node * node)
602 {
603 	/* all interior nodes (and only interior nodes) have an overflow node */
604 	if (node->head.overflow == befs_bt_inval)
605 		return 1;
606 	else
607 		return 0;
608 }
609 
610 /**
611  * befs_bt_keylen_index - Finds start of keylen index in a node
612  * @node: Pointer to the node structure to find the keylen index within
613  *
614  * Returns a pointer to the start of the key length index array
615  * of the B+tree node *@node
616  *
617  * "The length of all the keys in the node is added to the size of the
618  * header and then rounded up to a multiple of four to get the beginning
619  * of the key length index" (p.88, practical filesystem design).
620  *
621  * Except that rounding up to 8 works, and rounding up to 4 doesn't.
622  */
623 static fs16 *
624 befs_bt_keylen_index(befs_btree_node * node)
625 {
626 	const int keylen_align = 8;
627 	unsigned long int off =
628 	    (sizeof (befs_btree_nodehead) + node->head.all_key_length);
629 	ulong tmp = off % keylen_align;
630 
631 	if (tmp)
632 		off += keylen_align - tmp;
633 
634 	return (fs16 *) ((void *) node->od_node + off);
635 }
636 
637 /**
638  * befs_bt_valarray - Finds the start of value array in a node
639  * @node: Pointer to the node structure to find the value array within
640  *
641  * Returns a pointer to the start of the value array
642  * of the node pointed to by the node header
643  */
644 static fs64 *
645 befs_bt_valarray(befs_btree_node * node)
646 {
647 	void *keylen_index_start = (void *) befs_bt_keylen_index(node);
648 	size_t keylen_index_size = node->head.all_key_count * sizeof (fs16);
649 
650 	return (fs64 *) (keylen_index_start + keylen_index_size);
651 }
652 
653 /**
654  * befs_bt_keydata - Finds start of keydata array in a node
655  * @node: Pointer to the node structure to find the keydata array within
656  *
657  * Returns a pointer to the start of the keydata array
658  * of the node pointed to by the node header
659  */
660 static char *
661 befs_bt_keydata(befs_btree_node * node)
662 {
663 	return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead));
664 }
665 
666 /**
667  * befs_bt_get_key - returns a pointer to the start of a key
668  * @sb: filesystem superblock
669  * @node: node in which to look for the key
670  * @index: the index of the key to get
671  * @keylen: modified to be the length of the key at @index
672  *
673  * Returns a valid pointer into @node on success.
674  * Returns NULL on failure (bad input) and sets *@keylen = 0
675  */
676 static char *
677 befs_bt_get_key(struct super_block *sb, befs_btree_node * node,
678 		int index, u16 * keylen)
679 {
680 	int prev_key_end;
681 	char *keystart;
682 	fs16 *keylen_index;
683 
684 	if (index < 0 || index > node->head.all_key_count) {
685 		*keylen = 0;
686 		return NULL;
687 	}
688 
689 	keystart = befs_bt_keydata(node);
690 	keylen_index = befs_bt_keylen_index(node);
691 
692 	if (index == 0)
693 		prev_key_end = 0;
694 	else
695 		prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]);
696 
697 	*keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end;
698 
699 	return keystart + prev_key_end;
700 }
701 
702 /**
703  * befs_compare_strings - compare two strings
704  * @key1: pointer to the first key to be compared
705  * @keylen1: length in bytes of key1
706  * @key2: pointer to the second key to be compared
707  * @kelen2: length in bytes of key2
708  *
709  * Returns 0 if @key1 and @key2 are equal.
710  * Returns >0 if @key1 is greater.
711  * Returns <0 if @key2 is greater..
712  */
713 static int
714 befs_compare_strings(const void *key1, int keylen1,
715 		     const void *key2, int keylen2)
716 {
717 	int len = min_t(int, keylen1, keylen2);
718 	int result = strncmp(key1, key2, len);
719 	if (result == 0)
720 		result = keylen1 - keylen2;
721 	return result;
722 }
723 
724 /* These will be used for non-string keyed btrees */
725 #if 0
726 static int
727 btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2)
728 {
729 	return *(int32_t *) key1 - *(int32_t *) key2;
730 }
731 
732 static int
733 btree_compare_uint32(cont void *key1, int keylen1,
734 		     const void *key2, int keylen2)
735 {
736 	if (*(u_int32_t *) key1 == *(u_int32_t *) key2)
737 		return 0;
738 	else if (*(u_int32_t *) key1 > *(u_int32_t *) key2)
739 		return 1;
740 
741 	return -1;
742 }
743 static int
744 btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2)
745 {
746 	if (*(int64_t *) key1 == *(int64_t *) key2)
747 		return 0;
748 	else if (*(int64_t *) key1 > *(int64_t *) key2)
749 		return 1;
750 
751 	return -1;
752 }
753 
754 static int
755 btree_compare_uint64(cont void *key1, int keylen1,
756 		     const void *key2, int keylen2)
757 {
758 	if (*(u_int64_t *) key1 == *(u_int64_t *) key2)
759 		return 0;
760 	else if (*(u_int64_t *) key1 > *(u_int64_t *) key2)
761 		return 1;
762 
763 	return -1;
764 }
765 
766 static int
767 btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2)
768 {
769 	float result = *(float *) key1 - *(float *) key2;
770 	if (result == 0.0f)
771 		return 0;
772 
773 	return (result < 0.0f) ? -1 : 1;
774 }
775 
776 static int
777 btree_compare_double(cont void *key1, int keylen1,
778 		     const void *key2, int keylen2)
779 {
780 	double result = *(double *) key1 - *(double *) key2;
781 	if (result == 0.0)
782 		return 0;
783 
784 	return (result < 0.0) ? -1 : 1;
785 }
786 #endif				//0
787