1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _BCACHEFS_UTIL_H 3 #define _BCACHEFS_UTIL_H 4 5 #include <linux/bio.h> 6 #include <linux/blkdev.h> 7 #include <linux/closure.h> 8 #include <linux/errno.h> 9 #include <linux/freezer.h> 10 #include <linux/kernel.h> 11 #include <linux/min_heap.h> 12 #include <linux/sched/clock.h> 13 #include <linux/llist.h> 14 #include <linux/log2.h> 15 #include <linux/percpu.h> 16 #include <linux/preempt.h> 17 #include <linux/ratelimit.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/workqueue.h> 21 22 #include "mean_and_variance.h" 23 24 #include "darray.h" 25 #include "time_stats.h" 26 27 struct closure; 28 29 #ifdef CONFIG_BCACHEFS_DEBUG 30 #define EBUG_ON(cond) BUG_ON(cond) 31 #else 32 #define EBUG_ON(cond) 33 #endif 34 35 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 36 #define CPU_BIG_ENDIAN 0 37 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 38 #define CPU_BIG_ENDIAN 1 39 #endif 40 41 /* type hackery */ 42 43 #define type_is_exact(_val, _type) \ 44 __builtin_types_compatible_p(typeof(_val), _type) 45 46 #define type_is(_val, _type) \ 47 (__builtin_types_compatible_p(typeof(_val), _type) || \ 48 __builtin_types_compatible_p(typeof(_val), const _type)) 49 50 /* Userspace doesn't align allocations as nicely as the kernel allocators: */ 51 static inline size_t buf_pages(void *p, size_t len) 52 { 53 return DIV_ROUND_UP(len + 54 ((unsigned long) p & (PAGE_SIZE - 1)), 55 PAGE_SIZE); 56 } 57 58 #define init_heap(heap, _size, gfp) \ 59 ({ \ 60 (heap)->nr = 0; \ 61 (heap)->size = (_size); \ 62 (heap)->data = kvmalloc((heap)->size * sizeof((heap)->data[0]),\ 63 (gfp)); \ 64 }) 65 66 #define free_heap(heap) \ 67 do { \ 68 kvfree((heap)->data); \ 69 (heap)->data = NULL; \ 70 } while (0) 71 72 #define ANYSINT_MAX(t) \ 73 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) 74 75 #include "printbuf.h" 76 77 #define prt_vprintf(_out, ...) bch2_prt_vprintf(_out, __VA_ARGS__) 78 #define prt_printf(_out, ...) bch2_prt_printf(_out, __VA_ARGS__) 79 #define printbuf_str(_buf) bch2_printbuf_str(_buf) 80 #define printbuf_exit(_buf) bch2_printbuf_exit(_buf) 81 82 #define printbuf_tabstops_reset(_buf) bch2_printbuf_tabstops_reset(_buf) 83 #define printbuf_tabstop_pop(_buf) bch2_printbuf_tabstop_pop(_buf) 84 #define printbuf_tabstop_push(_buf, _n) bch2_printbuf_tabstop_push(_buf, _n) 85 86 #define printbuf_indent_add(_out, _n) bch2_printbuf_indent_add(_out, _n) 87 #define printbuf_indent_sub(_out, _n) bch2_printbuf_indent_sub(_out, _n) 88 89 #define prt_newline(_out) bch2_prt_newline(_out) 90 #define prt_tab(_out) bch2_prt_tab(_out) 91 #define prt_tab_rjust(_out) bch2_prt_tab_rjust(_out) 92 93 #define prt_bytes_indented(...) bch2_prt_bytes_indented(__VA_ARGS__) 94 #define prt_u64(_out, _v) prt_printf(_out, "%llu", (u64) (_v)) 95 #define prt_human_readable_u64(...) bch2_prt_human_readable_u64(__VA_ARGS__) 96 #define prt_human_readable_s64(...) bch2_prt_human_readable_s64(__VA_ARGS__) 97 #define prt_units_u64(...) bch2_prt_units_u64(__VA_ARGS__) 98 #define prt_units_s64(...) bch2_prt_units_s64(__VA_ARGS__) 99 #define prt_string_option(...) bch2_prt_string_option(__VA_ARGS__) 100 #define prt_bitflags(...) bch2_prt_bitflags(__VA_ARGS__) 101 #define prt_bitflags_vector(...) bch2_prt_bitflags_vector(__VA_ARGS__) 102 103 void bch2_pr_time_units(struct printbuf *, u64); 104 void bch2_prt_datetime(struct printbuf *, time64_t); 105 106 #ifdef __KERNEL__ 107 static inline void uuid_unparse_lower(u8 *uuid, char *out) 108 { 109 sprintf(out, "%pUb", uuid); 110 } 111 #else 112 #include <uuid/uuid.h> 113 #endif 114 115 static inline void pr_uuid(struct printbuf *out, u8 *uuid) 116 { 117 char uuid_str[40]; 118 119 uuid_unparse_lower(uuid, uuid_str); 120 prt_printf(out, "%s", uuid_str); 121 } 122 123 int bch2_strtoint_h(const char *, int *); 124 int bch2_strtouint_h(const char *, unsigned int *); 125 int bch2_strtoll_h(const char *, long long *); 126 int bch2_strtoull_h(const char *, unsigned long long *); 127 int bch2_strtou64_h(const char *, u64 *); 128 129 static inline int bch2_strtol_h(const char *cp, long *res) 130 { 131 #if BITS_PER_LONG == 32 132 return bch2_strtoint_h(cp, (int *) res); 133 #else 134 return bch2_strtoll_h(cp, (long long *) res); 135 #endif 136 } 137 138 static inline int bch2_strtoul_h(const char *cp, long *res) 139 { 140 #if BITS_PER_LONG == 32 141 return bch2_strtouint_h(cp, (unsigned int *) res); 142 #else 143 return bch2_strtoull_h(cp, (unsigned long long *) res); 144 #endif 145 } 146 147 #define strtoi_h(cp, res) \ 148 ( type_is(*res, int) ? bch2_strtoint_h(cp, (void *) res)\ 149 : type_is(*res, long) ? bch2_strtol_h(cp, (void *) res)\ 150 : type_is(*res, long long) ? bch2_strtoll_h(cp, (void *) res)\ 151 : type_is(*res, unsigned) ? bch2_strtouint_h(cp, (void *) res)\ 152 : type_is(*res, unsigned long) ? bch2_strtoul_h(cp, (void *) res)\ 153 : type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\ 154 : -EINVAL) 155 156 #define strtoul_safe(cp, var) \ 157 ({ \ 158 unsigned long _v; \ 159 int _r = kstrtoul(cp, 10, &_v); \ 160 if (!_r) \ 161 var = _v; \ 162 _r; \ 163 }) 164 165 #define strtoul_safe_clamp(cp, var, min, max) \ 166 ({ \ 167 unsigned long _v; \ 168 int _r = kstrtoul(cp, 10, &_v); \ 169 if (!_r) \ 170 var = clamp_t(typeof(var), _v, min, max); \ 171 _r; \ 172 }) 173 174 #define strtoul_safe_restrict(cp, var, min, max) \ 175 ({ \ 176 unsigned long _v; \ 177 int _r = kstrtoul(cp, 10, &_v); \ 178 if (!_r && _v >= min && _v <= max) \ 179 var = _v; \ 180 else \ 181 _r = -EINVAL; \ 182 _r; \ 183 }) 184 185 #define snprint(out, var) \ 186 prt_printf(out, \ 187 type_is(var, int) ? "%i\n" \ 188 : type_is(var, unsigned) ? "%u\n" \ 189 : type_is(var, long) ? "%li\n" \ 190 : type_is(var, unsigned long) ? "%lu\n" \ 191 : type_is(var, s64) ? "%lli\n" \ 192 : type_is(var, u64) ? "%llu\n" \ 193 : type_is(var, char *) ? "%s\n" \ 194 : "%i\n", var) 195 196 bool bch2_is_zero(const void *, size_t); 197 198 u64 bch2_read_flag_list(char *, const char * const[]); 199 200 void bch2_prt_u64_base2_nbits(struct printbuf *, u64, unsigned); 201 void bch2_prt_u64_base2(struct printbuf *, u64); 202 203 void bch2_print_string_as_lines(const char *prefix, const char *lines); 204 void bch2_print_string_as_lines_nonblocking(const char *prefix, const char *lines); 205 206 typedef DARRAY(unsigned long) bch_stacktrace; 207 int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *, unsigned, gfp_t); 208 void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *); 209 int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *, unsigned, gfp_t); 210 211 static inline void prt_bdevname(struct printbuf *out, struct block_device *bdev) 212 { 213 #ifdef __KERNEL__ 214 prt_printf(out, "%pg", bdev); 215 #else 216 prt_str(out, bdev->name); 217 #endif 218 } 219 220 void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *); 221 222 #define ewma_add(ewma, val, weight) \ 223 ({ \ 224 typeof(ewma) _ewma = (ewma); \ 225 typeof(weight) _weight = (weight); \ 226 \ 227 (((_ewma << _weight) - _ewma) + (val)) >> _weight; \ 228 }) 229 230 struct bch_ratelimit { 231 /* Next time we want to do some work, in nanoseconds */ 232 u64 next; 233 234 /* 235 * Rate at which we want to do work, in units per nanosecond 236 * The units here correspond to the units passed to 237 * bch2_ratelimit_increment() 238 */ 239 unsigned rate; 240 }; 241 242 static inline void bch2_ratelimit_reset(struct bch_ratelimit *d) 243 { 244 d->next = local_clock(); 245 } 246 247 u64 bch2_ratelimit_delay(struct bch_ratelimit *); 248 void bch2_ratelimit_increment(struct bch_ratelimit *, u64); 249 250 struct bch_pd_controller { 251 struct bch_ratelimit rate; 252 unsigned long last_update; 253 254 s64 last_actual; 255 s64 smoothed_derivative; 256 257 unsigned p_term_inverse; 258 unsigned d_smooth; 259 unsigned d_term; 260 261 /* for exporting to sysfs (no effect on behavior) */ 262 s64 last_derivative; 263 s64 last_proportional; 264 s64 last_change; 265 s64 last_target; 266 267 /* 268 * If true, the rate will not increase if bch2_ratelimit_delay() 269 * is not being called often enough. 270 */ 271 bool backpressure; 272 }; 273 274 void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int); 275 void bch2_pd_controller_init(struct bch_pd_controller *); 276 void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *); 277 278 #define sysfs_pd_controller_attribute(name) \ 279 rw_attribute(name##_rate); \ 280 rw_attribute(name##_rate_bytes); \ 281 rw_attribute(name##_rate_d_term); \ 282 rw_attribute(name##_rate_p_term_inverse); \ 283 read_attribute(name##_rate_debug) 284 285 #define sysfs_pd_controller_files(name) \ 286 &sysfs_##name##_rate, \ 287 &sysfs_##name##_rate_bytes, \ 288 &sysfs_##name##_rate_d_term, \ 289 &sysfs_##name##_rate_p_term_inverse, \ 290 &sysfs_##name##_rate_debug 291 292 #define sysfs_pd_controller_show(name, var) \ 293 do { \ 294 sysfs_hprint(name##_rate, (var)->rate.rate); \ 295 sysfs_print(name##_rate_bytes, (var)->rate.rate); \ 296 sysfs_print(name##_rate_d_term, (var)->d_term); \ 297 sysfs_print(name##_rate_p_term_inverse, (var)->p_term_inverse); \ 298 \ 299 if (attr == &sysfs_##name##_rate_debug) \ 300 bch2_pd_controller_debug_to_text(out, var); \ 301 } while (0) 302 303 #define sysfs_pd_controller_store(name, var) \ 304 do { \ 305 sysfs_strtoul_clamp(name##_rate, \ 306 (var)->rate.rate, 1, UINT_MAX); \ 307 sysfs_strtoul_clamp(name##_rate_bytes, \ 308 (var)->rate.rate, 1, UINT_MAX); \ 309 sysfs_strtoul(name##_rate_d_term, (var)->d_term); \ 310 sysfs_strtoul_clamp(name##_rate_p_term_inverse, \ 311 (var)->p_term_inverse, 1, INT_MAX); \ 312 } while (0) 313 314 #define container_of_or_null(ptr, type, member) \ 315 ({ \ 316 typeof(ptr) _ptr = ptr; \ 317 _ptr ? container_of(_ptr, type, member) : NULL; \ 318 }) 319 320 /* Does linear interpolation between powers of two */ 321 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits) 322 { 323 unsigned fract = x & ~(~0 << fract_bits); 324 325 x >>= fract_bits; 326 x = 1 << x; 327 x += (x * fract) >> fract_bits; 328 329 return x; 330 } 331 332 void bch2_bio_map(struct bio *bio, void *base, size_t); 333 int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t); 334 335 #define closure_bio_submit(bio, cl) \ 336 do { \ 337 closure_get(cl); \ 338 submit_bio(bio); \ 339 } while (0) 340 341 #define kthread_wait(cond) \ 342 ({ \ 343 int _ret = 0; \ 344 \ 345 while (1) { \ 346 set_current_state(TASK_INTERRUPTIBLE); \ 347 if (kthread_should_stop()) { \ 348 _ret = -1; \ 349 break; \ 350 } \ 351 \ 352 if (cond) \ 353 break; \ 354 \ 355 schedule(); \ 356 } \ 357 set_current_state(TASK_RUNNING); \ 358 _ret; \ 359 }) 360 361 #define kthread_wait_freezable(cond) \ 362 ({ \ 363 int _ret = 0; \ 364 while (1) { \ 365 set_current_state(TASK_INTERRUPTIBLE); \ 366 if (kthread_should_stop()) { \ 367 _ret = -1; \ 368 break; \ 369 } \ 370 \ 371 if (cond) \ 372 break; \ 373 \ 374 schedule(); \ 375 try_to_freeze(); \ 376 } \ 377 set_current_state(TASK_RUNNING); \ 378 _ret; \ 379 }) 380 381 size_t bch2_rand_range(size_t); 382 383 void memcpy_to_bio(struct bio *, struct bvec_iter, const void *); 384 void memcpy_from_bio(void *, struct bio *, struct bvec_iter); 385 386 static inline void memcpy_u64s_small(void *dst, const void *src, 387 unsigned u64s) 388 { 389 u64 *d = dst; 390 const u64 *s = src; 391 392 while (u64s--) 393 *d++ = *s++; 394 } 395 396 static inline void __memcpy_u64s(void *dst, const void *src, 397 unsigned u64s) 398 { 399 #ifdef CONFIG_X86_64 400 long d0, d1, d2; 401 402 asm volatile("rep ; movsq" 403 : "=&c" (d0), "=&D" (d1), "=&S" (d2) 404 : "0" (u64s), "1" (dst), "2" (src) 405 : "memory"); 406 #else 407 u64 *d = dst; 408 const u64 *s = src; 409 410 while (u64s--) 411 *d++ = *s++; 412 #endif 413 } 414 415 static inline void memcpy_u64s(void *dst, const void *src, 416 unsigned u64s) 417 { 418 EBUG_ON(!(dst >= src + u64s * sizeof(u64) || 419 dst + u64s * sizeof(u64) <= src)); 420 421 __memcpy_u64s(dst, src, u64s); 422 } 423 424 static inline void __memmove_u64s_down(void *dst, const void *src, 425 unsigned u64s) 426 { 427 __memcpy_u64s(dst, src, u64s); 428 } 429 430 static inline void memmove_u64s_down(void *dst, const void *src, 431 unsigned u64s) 432 { 433 EBUG_ON(dst > src); 434 435 __memmove_u64s_down(dst, src, u64s); 436 } 437 438 static inline void __memmove_u64s_down_small(void *dst, const void *src, 439 unsigned u64s) 440 { 441 memcpy_u64s_small(dst, src, u64s); 442 } 443 444 static inline void memmove_u64s_down_small(void *dst, const void *src, 445 unsigned u64s) 446 { 447 EBUG_ON(dst > src); 448 449 __memmove_u64s_down_small(dst, src, u64s); 450 } 451 452 static inline void __memmove_u64s_up_small(void *_dst, const void *_src, 453 unsigned u64s) 454 { 455 u64 *dst = (u64 *) _dst + u64s; 456 u64 *src = (u64 *) _src + u64s; 457 458 while (u64s--) 459 *--dst = *--src; 460 } 461 462 static inline void memmove_u64s_up_small(void *dst, const void *src, 463 unsigned u64s) 464 { 465 EBUG_ON(dst < src); 466 467 __memmove_u64s_up_small(dst, src, u64s); 468 } 469 470 static inline void __memmove_u64s_up(void *_dst, const void *_src, 471 unsigned u64s) 472 { 473 u64 *dst = (u64 *) _dst + u64s - 1; 474 u64 *src = (u64 *) _src + u64s - 1; 475 476 #ifdef CONFIG_X86_64 477 long d0, d1, d2; 478 479 asm volatile("std ;\n" 480 "rep ; movsq\n" 481 "cld ;\n" 482 : "=&c" (d0), "=&D" (d1), "=&S" (d2) 483 : "0" (u64s), "1" (dst), "2" (src) 484 : "memory"); 485 #else 486 while (u64s--) 487 *dst-- = *src--; 488 #endif 489 } 490 491 static inline void memmove_u64s_up(void *dst, const void *src, 492 unsigned u64s) 493 { 494 EBUG_ON(dst < src); 495 496 __memmove_u64s_up(dst, src, u64s); 497 } 498 499 static inline void memmove_u64s(void *dst, const void *src, 500 unsigned u64s) 501 { 502 if (dst < src) 503 __memmove_u64s_down(dst, src, u64s); 504 else 505 __memmove_u64s_up(dst, src, u64s); 506 } 507 508 /* Set the last few bytes up to a u64 boundary given an offset into a buffer. */ 509 static inline void memset_u64s_tail(void *s, int c, unsigned bytes) 510 { 511 unsigned rem = round_up(bytes, sizeof(u64)) - bytes; 512 513 memset(s + bytes, c, rem); 514 } 515 516 /* just the memmove, doesn't update @_nr */ 517 #define __array_insert_item(_array, _nr, _pos) \ 518 memmove(&(_array)[(_pos) + 1], \ 519 &(_array)[(_pos)], \ 520 sizeof((_array)[0]) * ((_nr) - (_pos))) 521 522 #define array_insert_item(_array, _nr, _pos, _new_item) \ 523 do { \ 524 __array_insert_item(_array, _nr, _pos); \ 525 (_nr)++; \ 526 (_array)[(_pos)] = (_new_item); \ 527 } while (0) 528 529 #define array_remove_items(_array, _nr, _pos, _nr_to_remove) \ 530 do { \ 531 (_nr) -= (_nr_to_remove); \ 532 memmove(&(_array)[(_pos)], \ 533 &(_array)[(_pos) + (_nr_to_remove)], \ 534 sizeof((_array)[0]) * ((_nr) - (_pos))); \ 535 } while (0) 536 537 #define array_remove_item(_array, _nr, _pos) \ 538 array_remove_items(_array, _nr, _pos, 1) 539 540 static inline void __move_gap(void *array, size_t element_size, 541 size_t nr, size_t size, 542 size_t old_gap, size_t new_gap) 543 { 544 size_t gap_end = old_gap + size - nr; 545 546 if (new_gap < old_gap) { 547 size_t move = old_gap - new_gap; 548 549 memmove(array + element_size * (gap_end - move), 550 array + element_size * (old_gap - move), 551 element_size * move); 552 } else if (new_gap > old_gap) { 553 size_t move = new_gap - old_gap; 554 555 memmove(array + element_size * old_gap, 556 array + element_size * gap_end, 557 element_size * move); 558 } 559 } 560 561 /* Move the gap in a gap buffer: */ 562 #define move_gap(_d, _new_gap) \ 563 do { \ 564 BUG_ON(_new_gap > (_d)->nr); \ 565 BUG_ON((_d)->gap > (_d)->nr); \ 566 \ 567 __move_gap((_d)->data, sizeof((_d)->data[0]), \ 568 (_d)->nr, (_d)->size, (_d)->gap, _new_gap); \ 569 (_d)->gap = _new_gap; \ 570 } while (0) 571 572 #define bubble_sort(_base, _nr, _cmp) \ 573 do { \ 574 ssize_t _i, _last; \ 575 bool _swapped = true; \ 576 \ 577 for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\ 578 _swapped = false; \ 579 for (_i = 0; _i < _last; _i++) \ 580 if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) { \ 581 swap((_base)[_i], (_base)[_i + 1]); \ 582 _swapped = true; \ 583 } \ 584 } \ 585 } while (0) 586 587 #define per_cpu_sum(_p) \ 588 ({ \ 589 typeof(*_p) _ret = 0; \ 590 \ 591 int cpu; \ 592 for_each_possible_cpu(cpu) \ 593 _ret += *per_cpu_ptr(_p, cpu); \ 594 _ret; \ 595 }) 596 597 static inline u64 percpu_u64_get(u64 __percpu *src) 598 { 599 return per_cpu_sum(src); 600 } 601 602 static inline void percpu_u64_set(u64 __percpu *dst, u64 src) 603 { 604 int cpu; 605 606 for_each_possible_cpu(cpu) 607 *per_cpu_ptr(dst, cpu) = 0; 608 this_cpu_write(*dst, src); 609 } 610 611 static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr) 612 { 613 for (unsigned i = 0; i < nr; i++) 614 acc[i] += src[i]; 615 } 616 617 static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src, 618 unsigned nr) 619 { 620 int cpu; 621 622 for_each_possible_cpu(cpu) 623 acc_u64s(acc, per_cpu_ptr(src, cpu), nr); 624 } 625 626 static inline void percpu_memset(void __percpu *p, int c, size_t bytes) 627 { 628 int cpu; 629 630 for_each_possible_cpu(cpu) 631 memset(per_cpu_ptr(p, cpu), c, bytes); 632 } 633 634 u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned); 635 636 #define cmp_int(l, r) ((l > r) - (l < r)) 637 638 static inline int u8_cmp(u8 l, u8 r) 639 { 640 return cmp_int(l, r); 641 } 642 643 static inline int cmp_le32(__le32 l, __le32 r) 644 { 645 return cmp_int(le32_to_cpu(l), le32_to_cpu(r)); 646 } 647 648 #include <linux/uuid.h> 649 650 #define QSTR(n) { { { .len = strlen(n) } }, .name = n } 651 652 static inline bool qstr_eq(const struct qstr l, const struct qstr r) 653 { 654 return l.len == r.len && !memcmp(l.name, r.name, l.len); 655 } 656 657 void bch2_darray_str_exit(darray_str *); 658 int bch2_split_devs(const char *, darray_str *); 659 660 #ifdef __KERNEL__ 661 662 __must_check 663 static inline int copy_to_user_errcode(void __user *to, const void *from, unsigned long n) 664 { 665 return copy_to_user(to, from, n) ? -EFAULT : 0; 666 } 667 668 __must_check 669 static inline int copy_from_user_errcode(void *to, const void __user *from, unsigned long n) 670 { 671 return copy_from_user(to, from, n) ? -EFAULT : 0; 672 } 673 674 #endif 675 676 static inline void mod_bit(long nr, volatile unsigned long *addr, bool v) 677 { 678 if (v) 679 set_bit(nr, addr); 680 else 681 clear_bit(nr, addr); 682 } 683 684 static inline void __set_bit_le64(size_t bit, __le64 *addr) 685 { 686 addr[bit / 64] |= cpu_to_le64(BIT_ULL(bit % 64)); 687 } 688 689 static inline void __clear_bit_le64(size_t bit, __le64 *addr) 690 { 691 addr[bit / 64] &= ~cpu_to_le64(BIT_ULL(bit % 64)); 692 } 693 694 static inline bool test_bit_le64(size_t bit, __le64 *addr) 695 { 696 return (addr[bit / 64] & cpu_to_le64(BIT_ULL(bit % 64))) != 0; 697 } 698 699 #endif /* _BCACHEFS_UTIL_H */ 700