xref: /linux/fs/bcachefs/util.h (revision b1a54551dd9ed5ef1763b97b35a0999ca002b95c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_UTIL_H
3 #define _BCACHEFS_UTIL_H
4 
5 #include <linux/bio.h>
6 #include <linux/blkdev.h>
7 #include <linux/closure.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/clock.h>
12 #include <linux/llist.h>
13 #include <linux/log2.h>
14 #include <linux/percpu.h>
15 #include <linux/preempt.h>
16 #include <linux/ratelimit.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/workqueue.h>
20 
21 #include "mean_and_variance.h"
22 
23 #include "darray.h"
24 
25 struct closure;
26 
27 #ifdef CONFIG_BCACHEFS_DEBUG
28 #define EBUG_ON(cond)		BUG_ON(cond)
29 #else
30 #define EBUG_ON(cond)
31 #endif
32 
33 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
34 #define CPU_BIG_ENDIAN		0
35 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
36 #define CPU_BIG_ENDIAN		1
37 #endif
38 
39 /* type hackery */
40 
41 #define type_is_exact(_val, _type)					\
42 	__builtin_types_compatible_p(typeof(_val), _type)
43 
44 #define type_is(_val, _type)						\
45 	(__builtin_types_compatible_p(typeof(_val), _type) ||		\
46 	 __builtin_types_compatible_p(typeof(_val), const _type))
47 
48 /* Userspace doesn't align allocations as nicely as the kernel allocators: */
49 static inline size_t buf_pages(void *p, size_t len)
50 {
51 	return DIV_ROUND_UP(len +
52 			    ((unsigned long) p & (PAGE_SIZE - 1)),
53 			    PAGE_SIZE);
54 }
55 
56 static inline void vpfree(void *p, size_t size)
57 {
58 	if (is_vmalloc_addr(p))
59 		vfree(p);
60 	else
61 		free_pages((unsigned long) p, get_order(size));
62 }
63 
64 static inline void *vpmalloc(size_t size, gfp_t gfp_mask)
65 {
66 	return (void *) __get_free_pages(gfp_mask|__GFP_NOWARN,
67 					 get_order(size)) ?:
68 		__vmalloc(size, gfp_mask);
69 }
70 
71 static inline void kvpfree(void *p, size_t size)
72 {
73 	if (size < PAGE_SIZE)
74 		kfree(p);
75 	else
76 		vpfree(p, size);
77 }
78 
79 static inline void *kvpmalloc(size_t size, gfp_t gfp_mask)
80 {
81 	return size < PAGE_SIZE
82 		? kmalloc(size, gfp_mask)
83 		: vpmalloc(size, gfp_mask);
84 }
85 
86 int mempool_init_kvpmalloc_pool(mempool_t *, int, size_t);
87 
88 #define HEAP(type)							\
89 struct {								\
90 	size_t size, used;						\
91 	type *data;							\
92 }
93 
94 #define DECLARE_HEAP(type, name) HEAP(type) name
95 
96 #define init_heap(heap, _size, gfp)					\
97 ({									\
98 	(heap)->used = 0;						\
99 	(heap)->size = (_size);						\
100 	(heap)->data = kvpmalloc((heap)->size * sizeof((heap)->data[0]),\
101 				 (gfp));				\
102 })
103 
104 #define free_heap(heap)							\
105 do {									\
106 	kvpfree((heap)->data, (heap)->size * sizeof((heap)->data[0]));	\
107 	(heap)->data = NULL;						\
108 } while (0)
109 
110 #define heap_set_backpointer(h, i, _fn)					\
111 do {									\
112 	void (*fn)(typeof(h), size_t) = _fn;				\
113 	if (fn)								\
114 		fn(h, i);						\
115 } while (0)
116 
117 #define heap_swap(h, i, j, set_backpointer)				\
118 do {									\
119 	swap((h)->data[i], (h)->data[j]);				\
120 	heap_set_backpointer(h, i, set_backpointer);			\
121 	heap_set_backpointer(h, j, set_backpointer);			\
122 } while (0)
123 
124 #define heap_peek(h)							\
125 ({									\
126 	EBUG_ON(!(h)->used);						\
127 	(h)->data[0];							\
128 })
129 
130 #define heap_full(h)	((h)->used == (h)->size)
131 
132 #define heap_sift_down(h, i, cmp, set_backpointer)			\
133 do {									\
134 	size_t _c, _j = i;						\
135 									\
136 	for (; _j * 2 + 1 < (h)->used; _j = _c) {			\
137 		_c = _j * 2 + 1;					\
138 		if (_c + 1 < (h)->used &&				\
139 		    cmp(h, (h)->data[_c], (h)->data[_c + 1]) >= 0)	\
140 			_c++;						\
141 									\
142 		if (cmp(h, (h)->data[_c], (h)->data[_j]) >= 0)		\
143 			break;						\
144 		heap_swap(h, _c, _j, set_backpointer);			\
145 	}								\
146 } while (0)
147 
148 #define heap_sift_up(h, i, cmp, set_backpointer)			\
149 do {									\
150 	while (i) {							\
151 		size_t p = (i - 1) / 2;					\
152 		if (cmp(h, (h)->data[i], (h)->data[p]) >= 0)		\
153 			break;						\
154 		heap_swap(h, i, p, set_backpointer);			\
155 		i = p;							\
156 	}								\
157 } while (0)
158 
159 #define __heap_add(h, d, cmp, set_backpointer)				\
160 ({									\
161 	size_t _i = (h)->used++;					\
162 	(h)->data[_i] = d;						\
163 	heap_set_backpointer(h, _i, set_backpointer);			\
164 									\
165 	heap_sift_up(h, _i, cmp, set_backpointer);			\
166 	_i;								\
167 })
168 
169 #define heap_add(h, d, cmp, set_backpointer)				\
170 ({									\
171 	bool _r = !heap_full(h);					\
172 	if (_r)								\
173 		__heap_add(h, d, cmp, set_backpointer);			\
174 	_r;								\
175 })
176 
177 #define heap_add_or_replace(h, new, cmp, set_backpointer)		\
178 do {									\
179 	if (!heap_add(h, new, cmp, set_backpointer) &&			\
180 	    cmp(h, new, heap_peek(h)) >= 0) {				\
181 		(h)->data[0] = new;					\
182 		heap_set_backpointer(h, 0, set_backpointer);		\
183 		heap_sift_down(h, 0, cmp, set_backpointer);		\
184 	}								\
185 } while (0)
186 
187 #define heap_del(h, i, cmp, set_backpointer)				\
188 do {									\
189 	size_t _i = (i);						\
190 									\
191 	BUG_ON(_i >= (h)->used);					\
192 	(h)->used--;							\
193 	if ((_i) < (h)->used) {						\
194 		heap_swap(h, _i, (h)->used, set_backpointer);		\
195 		heap_sift_up(h, _i, cmp, set_backpointer);		\
196 		heap_sift_down(h, _i, cmp, set_backpointer);		\
197 	}								\
198 } while (0)
199 
200 #define heap_pop(h, d, cmp, set_backpointer)				\
201 ({									\
202 	bool _r = (h)->used;						\
203 	if (_r) {							\
204 		(d) = (h)->data[0];					\
205 		heap_del(h, 0, cmp, set_backpointer);			\
206 	}								\
207 	_r;								\
208 })
209 
210 #define heap_resort(heap, cmp, set_backpointer)				\
211 do {									\
212 	ssize_t _i;							\
213 	for (_i = (ssize_t) (heap)->used / 2 -  1; _i >= 0; --_i)	\
214 		heap_sift_down(heap, _i, cmp, set_backpointer);		\
215 } while (0)
216 
217 #define ANYSINT_MAX(t)							\
218 	((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
219 
220 #include "printbuf.h"
221 
222 #define prt_vprintf(_out, ...)		bch2_prt_vprintf(_out, __VA_ARGS__)
223 #define prt_printf(_out, ...)		bch2_prt_printf(_out, __VA_ARGS__)
224 #define printbuf_str(_buf)		bch2_printbuf_str(_buf)
225 #define printbuf_exit(_buf)		bch2_printbuf_exit(_buf)
226 
227 #define printbuf_tabstops_reset(_buf)	bch2_printbuf_tabstops_reset(_buf)
228 #define printbuf_tabstop_pop(_buf)	bch2_printbuf_tabstop_pop(_buf)
229 #define printbuf_tabstop_push(_buf, _n)	bch2_printbuf_tabstop_push(_buf, _n)
230 
231 #define printbuf_indent_add(_out, _n)	bch2_printbuf_indent_add(_out, _n)
232 #define printbuf_indent_sub(_out, _n)	bch2_printbuf_indent_sub(_out, _n)
233 
234 #define prt_newline(_out)		bch2_prt_newline(_out)
235 #define prt_tab(_out)			bch2_prt_tab(_out)
236 #define prt_tab_rjust(_out)		bch2_prt_tab_rjust(_out)
237 
238 #define prt_bytes_indented(...)		bch2_prt_bytes_indented(__VA_ARGS__)
239 #define prt_u64(_out, _v)		prt_printf(_out, "%llu", (u64) (_v))
240 #define prt_human_readable_u64(...)	bch2_prt_human_readable_u64(__VA_ARGS__)
241 #define prt_human_readable_s64(...)	bch2_prt_human_readable_s64(__VA_ARGS__)
242 #define prt_units_u64(...)		bch2_prt_units_u64(__VA_ARGS__)
243 #define prt_units_s64(...)		bch2_prt_units_s64(__VA_ARGS__)
244 #define prt_string_option(...)		bch2_prt_string_option(__VA_ARGS__)
245 #define prt_bitflags(...)		bch2_prt_bitflags(__VA_ARGS__)
246 #define prt_bitflags_vector(...)	bch2_prt_bitflags_vector(__VA_ARGS__)
247 
248 void bch2_pr_time_units(struct printbuf *, u64);
249 void bch2_prt_datetime(struct printbuf *, time64_t);
250 
251 #ifdef __KERNEL__
252 static inline void uuid_unparse_lower(u8 *uuid, char *out)
253 {
254 	sprintf(out, "%pUb", uuid);
255 }
256 #else
257 #include <uuid/uuid.h>
258 #endif
259 
260 static inline void pr_uuid(struct printbuf *out, u8 *uuid)
261 {
262 	char uuid_str[40];
263 
264 	uuid_unparse_lower(uuid, uuid_str);
265 	prt_printf(out, "%s", uuid_str);
266 }
267 
268 int bch2_strtoint_h(const char *, int *);
269 int bch2_strtouint_h(const char *, unsigned int *);
270 int bch2_strtoll_h(const char *, long long *);
271 int bch2_strtoull_h(const char *, unsigned long long *);
272 int bch2_strtou64_h(const char *, u64 *);
273 
274 static inline int bch2_strtol_h(const char *cp, long *res)
275 {
276 #if BITS_PER_LONG == 32
277 	return bch2_strtoint_h(cp, (int *) res);
278 #else
279 	return bch2_strtoll_h(cp, (long long *) res);
280 #endif
281 }
282 
283 static inline int bch2_strtoul_h(const char *cp, long *res)
284 {
285 #if BITS_PER_LONG == 32
286 	return bch2_strtouint_h(cp, (unsigned int *) res);
287 #else
288 	return bch2_strtoull_h(cp, (unsigned long long *) res);
289 #endif
290 }
291 
292 #define strtoi_h(cp, res)						\
293 	( type_is(*res, int)		? bch2_strtoint_h(cp, (void *) res)\
294 	: type_is(*res, long)		? bch2_strtol_h(cp, (void *) res)\
295 	: type_is(*res, long long)	? bch2_strtoll_h(cp, (void *) res)\
296 	: type_is(*res, unsigned)	? bch2_strtouint_h(cp, (void *) res)\
297 	: type_is(*res, unsigned long)	? bch2_strtoul_h(cp, (void *) res)\
298 	: type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\
299 	: -EINVAL)
300 
301 #define strtoul_safe(cp, var)						\
302 ({									\
303 	unsigned long _v;						\
304 	int _r = kstrtoul(cp, 10, &_v);					\
305 	if (!_r)							\
306 		var = _v;						\
307 	_r;								\
308 })
309 
310 #define strtoul_safe_clamp(cp, var, min, max)				\
311 ({									\
312 	unsigned long _v;						\
313 	int _r = kstrtoul(cp, 10, &_v);					\
314 	if (!_r)							\
315 		var = clamp_t(typeof(var), _v, min, max);		\
316 	_r;								\
317 })
318 
319 #define strtoul_safe_restrict(cp, var, min, max)			\
320 ({									\
321 	unsigned long _v;						\
322 	int _r = kstrtoul(cp, 10, &_v);					\
323 	if (!_r && _v >= min && _v <= max)				\
324 		var = _v;						\
325 	else								\
326 		_r = -EINVAL;						\
327 	_r;								\
328 })
329 
330 #define snprint(out, var)						\
331 	prt_printf(out,							\
332 		   type_is(var, int)		? "%i\n"		\
333 		 : type_is(var, unsigned)	? "%u\n"		\
334 		 : type_is(var, long)		? "%li\n"		\
335 		 : type_is(var, unsigned long)	? "%lu\n"		\
336 		 : type_is(var, s64)		? "%lli\n"		\
337 		 : type_is(var, u64)		? "%llu\n"		\
338 		 : type_is(var, char *)		? "%s\n"		\
339 		 : "%i\n", var)
340 
341 bool bch2_is_zero(const void *, size_t);
342 
343 u64 bch2_read_flag_list(char *, const char * const[]);
344 
345 void bch2_prt_u64_base2_nbits(struct printbuf *, u64, unsigned);
346 void bch2_prt_u64_base2(struct printbuf *, u64);
347 
348 void bch2_print_string_as_lines(const char *prefix, const char *lines);
349 
350 typedef DARRAY(unsigned long) bch_stacktrace;
351 int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *, unsigned);
352 void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *);
353 int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *, unsigned);
354 
355 static inline void prt_bdevname(struct printbuf *out, struct block_device *bdev)
356 {
357 #ifdef __KERNEL__
358 	prt_printf(out, "%pg", bdev);
359 #else
360 	prt_str(out, bdev->name);
361 #endif
362 }
363 
364 #define NR_QUANTILES	15
365 #define QUANTILE_IDX(i)	inorder_to_eytzinger0(i, NR_QUANTILES)
366 #define QUANTILE_FIRST	eytzinger0_first(NR_QUANTILES)
367 #define QUANTILE_LAST	eytzinger0_last(NR_QUANTILES)
368 
369 struct bch2_quantiles {
370 	struct bch2_quantile_entry {
371 		u64	m;
372 		u64	step;
373 	}		entries[NR_QUANTILES];
374 };
375 
376 struct bch2_time_stat_buffer {
377 	unsigned	nr;
378 	struct bch2_time_stat_buffer_entry {
379 		u64	start;
380 		u64	end;
381 	}		entries[32];
382 };
383 
384 struct bch2_time_stats {
385 	spinlock_t	lock;
386 	/* all fields are in nanoseconds */
387 	u64             min_duration;
388 	u64		max_duration;
389 	u64		total_duration;
390 	u64             max_freq;
391 	u64             min_freq;
392 	u64		last_event;
393 	struct bch2_quantiles quantiles;
394 
395 	struct mean_and_variance	  duration_stats;
396 	struct mean_and_variance_weighted duration_stats_weighted;
397 	struct mean_and_variance	  freq_stats;
398 	struct mean_and_variance_weighted freq_stats_weighted;
399 	struct bch2_time_stat_buffer __percpu *buffer;
400 };
401 
402 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
403 void __bch2_time_stats_update(struct bch2_time_stats *stats, u64, u64);
404 
405 static inline void bch2_time_stats_update(struct bch2_time_stats *stats, u64 start)
406 {
407 	__bch2_time_stats_update(stats, start, local_clock());
408 }
409 
410 static inline bool track_event_change(struct bch2_time_stats *stats,
411 				      u64 *start, bool v)
412 {
413 	if (v != !!*start) {
414 		if (!v) {
415 			bch2_time_stats_update(stats, *start);
416 			*start = 0;
417 		} else {
418 			*start = local_clock() ?: 1;
419 			return true;
420 		}
421 	}
422 
423 	return false;
424 }
425 #else
426 static inline void __bch2_time_stats_update(struct bch2_time_stats *stats, u64 start, u64 end) {}
427 static inline void bch2_time_stats_update(struct bch2_time_stats *stats, u64 start) {}
428 static inline bool track_event_change(struct bch2_time_stats *stats,
429 				      u64 *start, bool v)
430 {
431 	bool ret = v && !*start;
432 	*start = v;
433 	return ret;
434 }
435 #endif
436 
437 void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *);
438 
439 void bch2_time_stats_exit(struct bch2_time_stats *);
440 void bch2_time_stats_init(struct bch2_time_stats *);
441 
442 #define ewma_add(ewma, val, weight)					\
443 ({									\
444 	typeof(ewma) _ewma = (ewma);					\
445 	typeof(weight) _weight = (weight);				\
446 									\
447 	(((_ewma << _weight) - _ewma) + (val)) >> _weight;		\
448 })
449 
450 struct bch_ratelimit {
451 	/* Next time we want to do some work, in nanoseconds */
452 	u64			next;
453 
454 	/*
455 	 * Rate at which we want to do work, in units per nanosecond
456 	 * The units here correspond to the units passed to
457 	 * bch2_ratelimit_increment()
458 	 */
459 	unsigned		rate;
460 };
461 
462 static inline void bch2_ratelimit_reset(struct bch_ratelimit *d)
463 {
464 	d->next = local_clock();
465 }
466 
467 u64 bch2_ratelimit_delay(struct bch_ratelimit *);
468 void bch2_ratelimit_increment(struct bch_ratelimit *, u64);
469 
470 struct bch_pd_controller {
471 	struct bch_ratelimit	rate;
472 	unsigned long		last_update;
473 
474 	s64			last_actual;
475 	s64			smoothed_derivative;
476 
477 	unsigned		p_term_inverse;
478 	unsigned		d_smooth;
479 	unsigned		d_term;
480 
481 	/* for exporting to sysfs (no effect on behavior) */
482 	s64			last_derivative;
483 	s64			last_proportional;
484 	s64			last_change;
485 	s64			last_target;
486 
487 	/*
488 	 * If true, the rate will not increase if bch2_ratelimit_delay()
489 	 * is not being called often enough.
490 	 */
491 	bool			backpressure;
492 };
493 
494 void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int);
495 void bch2_pd_controller_init(struct bch_pd_controller *);
496 void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *);
497 
498 #define sysfs_pd_controller_attribute(name)				\
499 	rw_attribute(name##_rate);					\
500 	rw_attribute(name##_rate_bytes);				\
501 	rw_attribute(name##_rate_d_term);				\
502 	rw_attribute(name##_rate_p_term_inverse);			\
503 	read_attribute(name##_rate_debug)
504 
505 #define sysfs_pd_controller_files(name)					\
506 	&sysfs_##name##_rate,						\
507 	&sysfs_##name##_rate_bytes,					\
508 	&sysfs_##name##_rate_d_term,					\
509 	&sysfs_##name##_rate_p_term_inverse,				\
510 	&sysfs_##name##_rate_debug
511 
512 #define sysfs_pd_controller_show(name, var)				\
513 do {									\
514 	sysfs_hprint(name##_rate,		(var)->rate.rate);	\
515 	sysfs_print(name##_rate_bytes,		(var)->rate.rate);	\
516 	sysfs_print(name##_rate_d_term,		(var)->d_term);		\
517 	sysfs_print(name##_rate_p_term_inverse,	(var)->p_term_inverse);	\
518 									\
519 	if (attr == &sysfs_##name##_rate_debug)				\
520 		bch2_pd_controller_debug_to_text(out, var);		\
521 } while (0)
522 
523 #define sysfs_pd_controller_store(name, var)				\
524 do {									\
525 	sysfs_strtoul_clamp(name##_rate,				\
526 			    (var)->rate.rate, 1, UINT_MAX);		\
527 	sysfs_strtoul_clamp(name##_rate_bytes,				\
528 			    (var)->rate.rate, 1, UINT_MAX);		\
529 	sysfs_strtoul(name##_rate_d_term,	(var)->d_term);		\
530 	sysfs_strtoul_clamp(name##_rate_p_term_inverse,			\
531 			    (var)->p_term_inverse, 1, INT_MAX);		\
532 } while (0)
533 
534 #define container_of_or_null(ptr, type, member)				\
535 ({									\
536 	typeof(ptr) _ptr = ptr;						\
537 	_ptr ? container_of(_ptr, type, member) : NULL;			\
538 })
539 
540 /* Does linear interpolation between powers of two */
541 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
542 {
543 	unsigned fract = x & ~(~0 << fract_bits);
544 
545 	x >>= fract_bits;
546 	x   = 1 << x;
547 	x  += (x * fract) >> fract_bits;
548 
549 	return x;
550 }
551 
552 void bch2_bio_map(struct bio *bio, void *base, size_t);
553 int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t);
554 
555 static inline sector_t bdev_sectors(struct block_device *bdev)
556 {
557 	return bdev->bd_inode->i_size >> 9;
558 }
559 
560 #define closure_bio_submit(bio, cl)					\
561 do {									\
562 	closure_get(cl);						\
563 	submit_bio(bio);						\
564 } while (0)
565 
566 #define kthread_wait(cond)						\
567 ({									\
568 	int _ret = 0;							\
569 									\
570 	while (1) {							\
571 		set_current_state(TASK_INTERRUPTIBLE);			\
572 		if (kthread_should_stop()) {				\
573 			_ret = -1;					\
574 			break;						\
575 		}							\
576 									\
577 		if (cond)						\
578 			break;						\
579 									\
580 		schedule();						\
581 	}								\
582 	set_current_state(TASK_RUNNING);				\
583 	_ret;								\
584 })
585 
586 #define kthread_wait_freezable(cond)					\
587 ({									\
588 	int _ret = 0;							\
589 	while (1) {							\
590 		set_current_state(TASK_INTERRUPTIBLE);			\
591 		if (kthread_should_stop()) {				\
592 			_ret = -1;					\
593 			break;						\
594 		}							\
595 									\
596 		if (cond)						\
597 			break;						\
598 									\
599 		schedule();						\
600 		try_to_freeze();					\
601 	}								\
602 	set_current_state(TASK_RUNNING);				\
603 	_ret;								\
604 })
605 
606 size_t bch2_rand_range(size_t);
607 
608 void memcpy_to_bio(struct bio *, struct bvec_iter, const void *);
609 void memcpy_from_bio(void *, struct bio *, struct bvec_iter);
610 
611 static inline void memcpy_u64s_small(void *dst, const void *src,
612 				     unsigned u64s)
613 {
614 	u64 *d = dst;
615 	const u64 *s = src;
616 
617 	while (u64s--)
618 		*d++ = *s++;
619 }
620 
621 static inline void __memcpy_u64s(void *dst, const void *src,
622 				 unsigned u64s)
623 {
624 #ifdef CONFIG_X86_64
625 	long d0, d1, d2;
626 
627 	asm volatile("rep ; movsq"
628 		     : "=&c" (d0), "=&D" (d1), "=&S" (d2)
629 		     : "0" (u64s), "1" (dst), "2" (src)
630 		     : "memory");
631 #else
632 	u64 *d = dst;
633 	const u64 *s = src;
634 
635 	while (u64s--)
636 		*d++ = *s++;
637 #endif
638 }
639 
640 static inline void memcpy_u64s(void *dst, const void *src,
641 			       unsigned u64s)
642 {
643 	EBUG_ON(!(dst >= src + u64s * sizeof(u64) ||
644 		 dst + u64s * sizeof(u64) <= src));
645 
646 	__memcpy_u64s(dst, src, u64s);
647 }
648 
649 static inline void __memmove_u64s_down(void *dst, const void *src,
650 				       unsigned u64s)
651 {
652 	__memcpy_u64s(dst, src, u64s);
653 }
654 
655 static inline void memmove_u64s_down(void *dst, const void *src,
656 				     unsigned u64s)
657 {
658 	EBUG_ON(dst > src);
659 
660 	__memmove_u64s_down(dst, src, u64s);
661 }
662 
663 static inline void __memmove_u64s_down_small(void *dst, const void *src,
664 				       unsigned u64s)
665 {
666 	memcpy_u64s_small(dst, src, u64s);
667 }
668 
669 static inline void memmove_u64s_down_small(void *dst, const void *src,
670 				     unsigned u64s)
671 {
672 	EBUG_ON(dst > src);
673 
674 	__memmove_u64s_down_small(dst, src, u64s);
675 }
676 
677 static inline void __memmove_u64s_up_small(void *_dst, const void *_src,
678 					   unsigned u64s)
679 {
680 	u64 *dst = (u64 *) _dst + u64s;
681 	u64 *src = (u64 *) _src + u64s;
682 
683 	while (u64s--)
684 		*--dst = *--src;
685 }
686 
687 static inline void memmove_u64s_up_small(void *dst, const void *src,
688 					 unsigned u64s)
689 {
690 	EBUG_ON(dst < src);
691 
692 	__memmove_u64s_up_small(dst, src, u64s);
693 }
694 
695 static inline void __memmove_u64s_up(void *_dst, const void *_src,
696 				     unsigned u64s)
697 {
698 	u64 *dst = (u64 *) _dst + u64s - 1;
699 	u64 *src = (u64 *) _src + u64s - 1;
700 
701 #ifdef CONFIG_X86_64
702 	long d0, d1, d2;
703 
704 	asm volatile("std ;\n"
705 		     "rep ; movsq\n"
706 		     "cld ;\n"
707 		     : "=&c" (d0), "=&D" (d1), "=&S" (d2)
708 		     : "0" (u64s), "1" (dst), "2" (src)
709 		     : "memory");
710 #else
711 	while (u64s--)
712 		*dst-- = *src--;
713 #endif
714 }
715 
716 static inline void memmove_u64s_up(void *dst, const void *src,
717 				   unsigned u64s)
718 {
719 	EBUG_ON(dst < src);
720 
721 	__memmove_u64s_up(dst, src, u64s);
722 }
723 
724 static inline void memmove_u64s(void *dst, const void *src,
725 				unsigned u64s)
726 {
727 	if (dst < src)
728 		__memmove_u64s_down(dst, src, u64s);
729 	else
730 		__memmove_u64s_up(dst, src, u64s);
731 }
732 
733 /* Set the last few bytes up to a u64 boundary given an offset into a buffer. */
734 static inline void memset_u64s_tail(void *s, int c, unsigned bytes)
735 {
736 	unsigned rem = round_up(bytes, sizeof(u64)) - bytes;
737 
738 	memset(s + bytes, c, rem);
739 }
740 
741 void sort_cmp_size(void *base, size_t num, size_t size,
742 	  int (*cmp_func)(const void *, const void *, size_t),
743 	  void (*swap_func)(void *, void *, size_t));
744 
745 /* just the memmove, doesn't update @_nr */
746 #define __array_insert_item(_array, _nr, _pos)				\
747 	memmove(&(_array)[(_pos) + 1],					\
748 		&(_array)[(_pos)],					\
749 		sizeof((_array)[0]) * ((_nr) - (_pos)))
750 
751 #define array_insert_item(_array, _nr, _pos, _new_item)			\
752 do {									\
753 	__array_insert_item(_array, _nr, _pos);				\
754 	(_nr)++;							\
755 	(_array)[(_pos)] = (_new_item);					\
756 } while (0)
757 
758 #define array_remove_items(_array, _nr, _pos, _nr_to_remove)		\
759 do {									\
760 	(_nr) -= (_nr_to_remove);					\
761 	memmove(&(_array)[(_pos)],					\
762 		&(_array)[(_pos) + (_nr_to_remove)],			\
763 		sizeof((_array)[0]) * ((_nr) - (_pos)));		\
764 } while (0)
765 
766 #define array_remove_item(_array, _nr, _pos)				\
767 	array_remove_items(_array, _nr, _pos, 1)
768 
769 static inline void __move_gap(void *array, size_t element_size,
770 			      size_t nr, size_t size,
771 			      size_t old_gap, size_t new_gap)
772 {
773 	size_t gap_end = old_gap + size - nr;
774 
775 	if (new_gap < old_gap) {
776 		size_t move = old_gap - new_gap;
777 
778 		memmove(array + element_size * (gap_end - move),
779 			array + element_size * (old_gap - move),
780 				element_size * move);
781 	} else if (new_gap > old_gap) {
782 		size_t move = new_gap - old_gap;
783 
784 		memmove(array + element_size * old_gap,
785 			array + element_size * gap_end,
786 				element_size * move);
787 	}
788 }
789 
790 /* Move the gap in a gap buffer: */
791 #define move_gap(_array, _nr, _size, _old_gap, _new_gap)	\
792 	__move_gap(_array, sizeof(_array[0]), _nr, _size, _old_gap, _new_gap)
793 
794 #define bubble_sort(_base, _nr, _cmp)					\
795 do {									\
796 	ssize_t _i, _last;						\
797 	bool _swapped = true;						\
798 									\
799 	for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\
800 		_swapped = false;					\
801 		for (_i = 0; _i < _last; _i++)				\
802 			if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) {	\
803 				swap((_base)[_i], (_base)[_i + 1]);	\
804 				_swapped = true;			\
805 			}						\
806 	}								\
807 } while (0)
808 
809 static inline u64 percpu_u64_get(u64 __percpu *src)
810 {
811 	u64 ret = 0;
812 	int cpu;
813 
814 	for_each_possible_cpu(cpu)
815 		ret += *per_cpu_ptr(src, cpu);
816 	return ret;
817 }
818 
819 static inline void percpu_u64_set(u64 __percpu *dst, u64 src)
820 {
821 	int cpu;
822 
823 	for_each_possible_cpu(cpu)
824 		*per_cpu_ptr(dst, cpu) = 0;
825 	this_cpu_write(*dst, src);
826 }
827 
828 static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr)
829 {
830 	unsigned i;
831 
832 	for (i = 0; i < nr; i++)
833 		acc[i] += src[i];
834 }
835 
836 static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src,
837 				   unsigned nr)
838 {
839 	int cpu;
840 
841 	for_each_possible_cpu(cpu)
842 		acc_u64s(acc, per_cpu_ptr(src, cpu), nr);
843 }
844 
845 static inline void percpu_memset(void __percpu *p, int c, size_t bytes)
846 {
847 	int cpu;
848 
849 	for_each_possible_cpu(cpu)
850 		memset(per_cpu_ptr(p, cpu), c, bytes);
851 }
852 
853 u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned);
854 
855 #define cmp_int(l, r)		((l > r) - (l < r))
856 
857 static inline int u8_cmp(u8 l, u8 r)
858 {
859 	return cmp_int(l, r);
860 }
861 
862 static inline int cmp_le32(__le32 l, __le32 r)
863 {
864 	return cmp_int(le32_to_cpu(l), le32_to_cpu(r));
865 }
866 
867 #include <linux/uuid.h>
868 
869 #define QSTR(n) { { { .len = strlen(n) } }, .name = n }
870 
871 static inline bool qstr_eq(const struct qstr l, const struct qstr r)
872 {
873 	return l.len == r.len && !memcmp(l.name, r.name, l.len);
874 }
875 
876 void bch2_darray_str_exit(darray_str *);
877 int bch2_split_devs(const char *, darray_str *);
878 
879 #endif /* _BCACHEFS_UTIL_H */
880