1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _BCACHEFS_UTIL_H 3 #define _BCACHEFS_UTIL_H 4 5 #include <linux/bio.h> 6 #include <linux/blkdev.h> 7 #include <linux/closure.h> 8 #include <linux/errno.h> 9 #include <linux/freezer.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/clock.h> 12 #include <linux/llist.h> 13 #include <linux/log2.h> 14 #include <linux/percpu.h> 15 #include <linux/preempt.h> 16 #include <linux/ratelimit.h> 17 #include <linux/slab.h> 18 #include <linux/vmalloc.h> 19 #include <linux/workqueue.h> 20 21 #include "mean_and_variance.h" 22 23 #include "darray.h" 24 25 struct closure; 26 27 #ifdef CONFIG_BCACHEFS_DEBUG 28 #define EBUG_ON(cond) BUG_ON(cond) 29 #else 30 #define EBUG_ON(cond) 31 #endif 32 33 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 34 #define CPU_BIG_ENDIAN 0 35 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 36 #define CPU_BIG_ENDIAN 1 37 #endif 38 39 /* type hackery */ 40 41 #define type_is_exact(_val, _type) \ 42 __builtin_types_compatible_p(typeof(_val), _type) 43 44 #define type_is(_val, _type) \ 45 (__builtin_types_compatible_p(typeof(_val), _type) || \ 46 __builtin_types_compatible_p(typeof(_val), const _type)) 47 48 /* Userspace doesn't align allocations as nicely as the kernel allocators: */ 49 static inline size_t buf_pages(void *p, size_t len) 50 { 51 return DIV_ROUND_UP(len + 52 ((unsigned long) p & (PAGE_SIZE - 1)), 53 PAGE_SIZE); 54 } 55 56 static inline void vpfree(void *p, size_t size) 57 { 58 if (is_vmalloc_addr(p)) 59 vfree(p); 60 else 61 free_pages((unsigned long) p, get_order(size)); 62 } 63 64 static inline void *vpmalloc(size_t size, gfp_t gfp_mask) 65 { 66 return (void *) __get_free_pages(gfp_mask|__GFP_NOWARN, 67 get_order(size)) ?: 68 __vmalloc(size, gfp_mask); 69 } 70 71 static inline void kvpfree(void *p, size_t size) 72 { 73 if (size < PAGE_SIZE) 74 kfree(p); 75 else 76 vpfree(p, size); 77 } 78 79 static inline void *kvpmalloc(size_t size, gfp_t gfp_mask) 80 { 81 return size < PAGE_SIZE 82 ? kmalloc(size, gfp_mask) 83 : vpmalloc(size, gfp_mask); 84 } 85 86 int mempool_init_kvpmalloc_pool(mempool_t *, int, size_t); 87 88 #define HEAP(type) \ 89 struct { \ 90 size_t size, used; \ 91 type *data; \ 92 } 93 94 #define DECLARE_HEAP(type, name) HEAP(type) name 95 96 #define init_heap(heap, _size, gfp) \ 97 ({ \ 98 (heap)->used = 0; \ 99 (heap)->size = (_size); \ 100 (heap)->data = kvpmalloc((heap)->size * sizeof((heap)->data[0]),\ 101 (gfp)); \ 102 }) 103 104 #define free_heap(heap) \ 105 do { \ 106 kvpfree((heap)->data, (heap)->size * sizeof((heap)->data[0])); \ 107 (heap)->data = NULL; \ 108 } while (0) 109 110 #define heap_set_backpointer(h, i, _fn) \ 111 do { \ 112 void (*fn)(typeof(h), size_t) = _fn; \ 113 if (fn) \ 114 fn(h, i); \ 115 } while (0) 116 117 #define heap_swap(h, i, j, set_backpointer) \ 118 do { \ 119 swap((h)->data[i], (h)->data[j]); \ 120 heap_set_backpointer(h, i, set_backpointer); \ 121 heap_set_backpointer(h, j, set_backpointer); \ 122 } while (0) 123 124 #define heap_peek(h) \ 125 ({ \ 126 EBUG_ON(!(h)->used); \ 127 (h)->data[0]; \ 128 }) 129 130 #define heap_full(h) ((h)->used == (h)->size) 131 132 #define heap_sift_down(h, i, cmp, set_backpointer) \ 133 do { \ 134 size_t _c, _j = i; \ 135 \ 136 for (; _j * 2 + 1 < (h)->used; _j = _c) { \ 137 _c = _j * 2 + 1; \ 138 if (_c + 1 < (h)->used && \ 139 cmp(h, (h)->data[_c], (h)->data[_c + 1]) >= 0) \ 140 _c++; \ 141 \ 142 if (cmp(h, (h)->data[_c], (h)->data[_j]) >= 0) \ 143 break; \ 144 heap_swap(h, _c, _j, set_backpointer); \ 145 } \ 146 } while (0) 147 148 #define heap_sift_up(h, i, cmp, set_backpointer) \ 149 do { \ 150 while (i) { \ 151 size_t p = (i - 1) / 2; \ 152 if (cmp(h, (h)->data[i], (h)->data[p]) >= 0) \ 153 break; \ 154 heap_swap(h, i, p, set_backpointer); \ 155 i = p; \ 156 } \ 157 } while (0) 158 159 #define __heap_add(h, d, cmp, set_backpointer) \ 160 ({ \ 161 size_t _i = (h)->used++; \ 162 (h)->data[_i] = d; \ 163 heap_set_backpointer(h, _i, set_backpointer); \ 164 \ 165 heap_sift_up(h, _i, cmp, set_backpointer); \ 166 _i; \ 167 }) 168 169 #define heap_add(h, d, cmp, set_backpointer) \ 170 ({ \ 171 bool _r = !heap_full(h); \ 172 if (_r) \ 173 __heap_add(h, d, cmp, set_backpointer); \ 174 _r; \ 175 }) 176 177 #define heap_add_or_replace(h, new, cmp, set_backpointer) \ 178 do { \ 179 if (!heap_add(h, new, cmp, set_backpointer) && \ 180 cmp(h, new, heap_peek(h)) >= 0) { \ 181 (h)->data[0] = new; \ 182 heap_set_backpointer(h, 0, set_backpointer); \ 183 heap_sift_down(h, 0, cmp, set_backpointer); \ 184 } \ 185 } while (0) 186 187 #define heap_del(h, i, cmp, set_backpointer) \ 188 do { \ 189 size_t _i = (i); \ 190 \ 191 BUG_ON(_i >= (h)->used); \ 192 (h)->used--; \ 193 if ((_i) < (h)->used) { \ 194 heap_swap(h, _i, (h)->used, set_backpointer); \ 195 heap_sift_up(h, _i, cmp, set_backpointer); \ 196 heap_sift_down(h, _i, cmp, set_backpointer); \ 197 } \ 198 } while (0) 199 200 #define heap_pop(h, d, cmp, set_backpointer) \ 201 ({ \ 202 bool _r = (h)->used; \ 203 if (_r) { \ 204 (d) = (h)->data[0]; \ 205 heap_del(h, 0, cmp, set_backpointer); \ 206 } \ 207 _r; \ 208 }) 209 210 #define heap_resort(heap, cmp, set_backpointer) \ 211 do { \ 212 ssize_t _i; \ 213 for (_i = (ssize_t) (heap)->used / 2 - 1; _i >= 0; --_i) \ 214 heap_sift_down(heap, _i, cmp, set_backpointer); \ 215 } while (0) 216 217 #define ANYSINT_MAX(t) \ 218 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) 219 220 #include "printbuf.h" 221 222 #define prt_vprintf(_out, ...) bch2_prt_vprintf(_out, __VA_ARGS__) 223 #define prt_printf(_out, ...) bch2_prt_printf(_out, __VA_ARGS__) 224 #define printbuf_str(_buf) bch2_printbuf_str(_buf) 225 #define printbuf_exit(_buf) bch2_printbuf_exit(_buf) 226 227 #define printbuf_tabstops_reset(_buf) bch2_printbuf_tabstops_reset(_buf) 228 #define printbuf_tabstop_pop(_buf) bch2_printbuf_tabstop_pop(_buf) 229 #define printbuf_tabstop_push(_buf, _n) bch2_printbuf_tabstop_push(_buf, _n) 230 231 #define printbuf_indent_add(_out, _n) bch2_printbuf_indent_add(_out, _n) 232 #define printbuf_indent_sub(_out, _n) bch2_printbuf_indent_sub(_out, _n) 233 234 #define prt_newline(_out) bch2_prt_newline(_out) 235 #define prt_tab(_out) bch2_prt_tab(_out) 236 #define prt_tab_rjust(_out) bch2_prt_tab_rjust(_out) 237 238 #define prt_bytes_indented(...) bch2_prt_bytes_indented(__VA_ARGS__) 239 #define prt_u64(_out, _v) prt_printf(_out, "%llu", (u64) (_v)) 240 #define prt_human_readable_u64(...) bch2_prt_human_readable_u64(__VA_ARGS__) 241 #define prt_human_readable_s64(...) bch2_prt_human_readable_s64(__VA_ARGS__) 242 #define prt_units_u64(...) bch2_prt_units_u64(__VA_ARGS__) 243 #define prt_units_s64(...) bch2_prt_units_s64(__VA_ARGS__) 244 #define prt_string_option(...) bch2_prt_string_option(__VA_ARGS__) 245 #define prt_bitflags(...) bch2_prt_bitflags(__VA_ARGS__) 246 #define prt_bitflags_vector(...) bch2_prt_bitflags_vector(__VA_ARGS__) 247 248 void bch2_pr_time_units(struct printbuf *, u64); 249 void bch2_prt_datetime(struct printbuf *, time64_t); 250 251 #ifdef __KERNEL__ 252 static inline void uuid_unparse_lower(u8 *uuid, char *out) 253 { 254 sprintf(out, "%pUb", uuid); 255 } 256 #else 257 #include <uuid/uuid.h> 258 #endif 259 260 static inline void pr_uuid(struct printbuf *out, u8 *uuid) 261 { 262 char uuid_str[40]; 263 264 uuid_unparse_lower(uuid, uuid_str); 265 prt_printf(out, "%s", uuid_str); 266 } 267 268 int bch2_strtoint_h(const char *, int *); 269 int bch2_strtouint_h(const char *, unsigned int *); 270 int bch2_strtoll_h(const char *, long long *); 271 int bch2_strtoull_h(const char *, unsigned long long *); 272 int bch2_strtou64_h(const char *, u64 *); 273 274 static inline int bch2_strtol_h(const char *cp, long *res) 275 { 276 #if BITS_PER_LONG == 32 277 return bch2_strtoint_h(cp, (int *) res); 278 #else 279 return bch2_strtoll_h(cp, (long long *) res); 280 #endif 281 } 282 283 static inline int bch2_strtoul_h(const char *cp, long *res) 284 { 285 #if BITS_PER_LONG == 32 286 return bch2_strtouint_h(cp, (unsigned int *) res); 287 #else 288 return bch2_strtoull_h(cp, (unsigned long long *) res); 289 #endif 290 } 291 292 #define strtoi_h(cp, res) \ 293 ( type_is(*res, int) ? bch2_strtoint_h(cp, (void *) res)\ 294 : type_is(*res, long) ? bch2_strtol_h(cp, (void *) res)\ 295 : type_is(*res, long long) ? bch2_strtoll_h(cp, (void *) res)\ 296 : type_is(*res, unsigned) ? bch2_strtouint_h(cp, (void *) res)\ 297 : type_is(*res, unsigned long) ? bch2_strtoul_h(cp, (void *) res)\ 298 : type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\ 299 : -EINVAL) 300 301 #define strtoul_safe(cp, var) \ 302 ({ \ 303 unsigned long _v; \ 304 int _r = kstrtoul(cp, 10, &_v); \ 305 if (!_r) \ 306 var = _v; \ 307 _r; \ 308 }) 309 310 #define strtoul_safe_clamp(cp, var, min, max) \ 311 ({ \ 312 unsigned long _v; \ 313 int _r = kstrtoul(cp, 10, &_v); \ 314 if (!_r) \ 315 var = clamp_t(typeof(var), _v, min, max); \ 316 _r; \ 317 }) 318 319 #define strtoul_safe_restrict(cp, var, min, max) \ 320 ({ \ 321 unsigned long _v; \ 322 int _r = kstrtoul(cp, 10, &_v); \ 323 if (!_r && _v >= min && _v <= max) \ 324 var = _v; \ 325 else \ 326 _r = -EINVAL; \ 327 _r; \ 328 }) 329 330 #define snprint(out, var) \ 331 prt_printf(out, \ 332 type_is(var, int) ? "%i\n" \ 333 : type_is(var, unsigned) ? "%u\n" \ 334 : type_is(var, long) ? "%li\n" \ 335 : type_is(var, unsigned long) ? "%lu\n" \ 336 : type_is(var, s64) ? "%lli\n" \ 337 : type_is(var, u64) ? "%llu\n" \ 338 : type_is(var, char *) ? "%s\n" \ 339 : "%i\n", var) 340 341 bool bch2_is_zero(const void *, size_t); 342 343 u64 bch2_read_flag_list(char *, const char * const[]); 344 345 void bch2_prt_u64_base2_nbits(struct printbuf *, u64, unsigned); 346 void bch2_prt_u64_base2(struct printbuf *, u64); 347 348 void bch2_print_string_as_lines(const char *prefix, const char *lines); 349 350 typedef DARRAY(unsigned long) bch_stacktrace; 351 int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *, unsigned); 352 void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *); 353 int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *, unsigned); 354 355 static inline void prt_bdevname(struct printbuf *out, struct block_device *bdev) 356 { 357 #ifdef __KERNEL__ 358 prt_printf(out, "%pg", bdev); 359 #else 360 prt_str(out, bdev->name); 361 #endif 362 } 363 364 #define NR_QUANTILES 15 365 #define QUANTILE_IDX(i) inorder_to_eytzinger0(i, NR_QUANTILES) 366 #define QUANTILE_FIRST eytzinger0_first(NR_QUANTILES) 367 #define QUANTILE_LAST eytzinger0_last(NR_QUANTILES) 368 369 struct bch2_quantiles { 370 struct bch2_quantile_entry { 371 u64 m; 372 u64 step; 373 } entries[NR_QUANTILES]; 374 }; 375 376 struct bch2_time_stat_buffer { 377 unsigned nr; 378 struct bch2_time_stat_buffer_entry { 379 u64 start; 380 u64 end; 381 } entries[32]; 382 }; 383 384 struct bch2_time_stats { 385 spinlock_t lock; 386 /* all fields are in nanoseconds */ 387 u64 min_duration; 388 u64 max_duration; 389 u64 total_duration; 390 u64 max_freq; 391 u64 min_freq; 392 u64 last_event; 393 struct bch2_quantiles quantiles; 394 395 struct mean_and_variance duration_stats; 396 struct mean_and_variance_weighted duration_stats_weighted; 397 struct mean_and_variance freq_stats; 398 struct mean_and_variance_weighted freq_stats_weighted; 399 struct bch2_time_stat_buffer __percpu *buffer; 400 }; 401 402 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 403 void __bch2_time_stats_update(struct bch2_time_stats *stats, u64, u64); 404 405 static inline void bch2_time_stats_update(struct bch2_time_stats *stats, u64 start) 406 { 407 __bch2_time_stats_update(stats, start, local_clock()); 408 } 409 410 static inline bool track_event_change(struct bch2_time_stats *stats, 411 u64 *start, bool v) 412 { 413 if (v != !!*start) { 414 if (!v) { 415 bch2_time_stats_update(stats, *start); 416 *start = 0; 417 } else { 418 *start = local_clock() ?: 1; 419 return true; 420 } 421 } 422 423 return false; 424 } 425 #else 426 static inline void __bch2_time_stats_update(struct bch2_time_stats *stats, u64 start, u64 end) {} 427 static inline void bch2_time_stats_update(struct bch2_time_stats *stats, u64 start) {} 428 static inline bool track_event_change(struct bch2_time_stats *stats, 429 u64 *start, bool v) 430 { 431 bool ret = v && !*start; 432 *start = v; 433 return ret; 434 } 435 #endif 436 437 void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *); 438 439 void bch2_time_stats_exit(struct bch2_time_stats *); 440 void bch2_time_stats_init(struct bch2_time_stats *); 441 442 #define ewma_add(ewma, val, weight) \ 443 ({ \ 444 typeof(ewma) _ewma = (ewma); \ 445 typeof(weight) _weight = (weight); \ 446 \ 447 (((_ewma << _weight) - _ewma) + (val)) >> _weight; \ 448 }) 449 450 struct bch_ratelimit { 451 /* Next time we want to do some work, in nanoseconds */ 452 u64 next; 453 454 /* 455 * Rate at which we want to do work, in units per nanosecond 456 * The units here correspond to the units passed to 457 * bch2_ratelimit_increment() 458 */ 459 unsigned rate; 460 }; 461 462 static inline void bch2_ratelimit_reset(struct bch_ratelimit *d) 463 { 464 d->next = local_clock(); 465 } 466 467 u64 bch2_ratelimit_delay(struct bch_ratelimit *); 468 void bch2_ratelimit_increment(struct bch_ratelimit *, u64); 469 470 struct bch_pd_controller { 471 struct bch_ratelimit rate; 472 unsigned long last_update; 473 474 s64 last_actual; 475 s64 smoothed_derivative; 476 477 unsigned p_term_inverse; 478 unsigned d_smooth; 479 unsigned d_term; 480 481 /* for exporting to sysfs (no effect on behavior) */ 482 s64 last_derivative; 483 s64 last_proportional; 484 s64 last_change; 485 s64 last_target; 486 487 /* 488 * If true, the rate will not increase if bch2_ratelimit_delay() 489 * is not being called often enough. 490 */ 491 bool backpressure; 492 }; 493 494 void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int); 495 void bch2_pd_controller_init(struct bch_pd_controller *); 496 void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *); 497 498 #define sysfs_pd_controller_attribute(name) \ 499 rw_attribute(name##_rate); \ 500 rw_attribute(name##_rate_bytes); \ 501 rw_attribute(name##_rate_d_term); \ 502 rw_attribute(name##_rate_p_term_inverse); \ 503 read_attribute(name##_rate_debug) 504 505 #define sysfs_pd_controller_files(name) \ 506 &sysfs_##name##_rate, \ 507 &sysfs_##name##_rate_bytes, \ 508 &sysfs_##name##_rate_d_term, \ 509 &sysfs_##name##_rate_p_term_inverse, \ 510 &sysfs_##name##_rate_debug 511 512 #define sysfs_pd_controller_show(name, var) \ 513 do { \ 514 sysfs_hprint(name##_rate, (var)->rate.rate); \ 515 sysfs_print(name##_rate_bytes, (var)->rate.rate); \ 516 sysfs_print(name##_rate_d_term, (var)->d_term); \ 517 sysfs_print(name##_rate_p_term_inverse, (var)->p_term_inverse); \ 518 \ 519 if (attr == &sysfs_##name##_rate_debug) \ 520 bch2_pd_controller_debug_to_text(out, var); \ 521 } while (0) 522 523 #define sysfs_pd_controller_store(name, var) \ 524 do { \ 525 sysfs_strtoul_clamp(name##_rate, \ 526 (var)->rate.rate, 1, UINT_MAX); \ 527 sysfs_strtoul_clamp(name##_rate_bytes, \ 528 (var)->rate.rate, 1, UINT_MAX); \ 529 sysfs_strtoul(name##_rate_d_term, (var)->d_term); \ 530 sysfs_strtoul_clamp(name##_rate_p_term_inverse, \ 531 (var)->p_term_inverse, 1, INT_MAX); \ 532 } while (0) 533 534 #define container_of_or_null(ptr, type, member) \ 535 ({ \ 536 typeof(ptr) _ptr = ptr; \ 537 _ptr ? container_of(_ptr, type, member) : NULL; \ 538 }) 539 540 /* Does linear interpolation between powers of two */ 541 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits) 542 { 543 unsigned fract = x & ~(~0 << fract_bits); 544 545 x >>= fract_bits; 546 x = 1 << x; 547 x += (x * fract) >> fract_bits; 548 549 return x; 550 } 551 552 void bch2_bio_map(struct bio *bio, void *base, size_t); 553 int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t); 554 555 static inline sector_t bdev_sectors(struct block_device *bdev) 556 { 557 return bdev->bd_inode->i_size >> 9; 558 } 559 560 #define closure_bio_submit(bio, cl) \ 561 do { \ 562 closure_get(cl); \ 563 submit_bio(bio); \ 564 } while (0) 565 566 #define kthread_wait(cond) \ 567 ({ \ 568 int _ret = 0; \ 569 \ 570 while (1) { \ 571 set_current_state(TASK_INTERRUPTIBLE); \ 572 if (kthread_should_stop()) { \ 573 _ret = -1; \ 574 break; \ 575 } \ 576 \ 577 if (cond) \ 578 break; \ 579 \ 580 schedule(); \ 581 } \ 582 set_current_state(TASK_RUNNING); \ 583 _ret; \ 584 }) 585 586 #define kthread_wait_freezable(cond) \ 587 ({ \ 588 int _ret = 0; \ 589 while (1) { \ 590 set_current_state(TASK_INTERRUPTIBLE); \ 591 if (kthread_should_stop()) { \ 592 _ret = -1; \ 593 break; \ 594 } \ 595 \ 596 if (cond) \ 597 break; \ 598 \ 599 schedule(); \ 600 try_to_freeze(); \ 601 } \ 602 set_current_state(TASK_RUNNING); \ 603 _ret; \ 604 }) 605 606 size_t bch2_rand_range(size_t); 607 608 void memcpy_to_bio(struct bio *, struct bvec_iter, const void *); 609 void memcpy_from_bio(void *, struct bio *, struct bvec_iter); 610 611 static inline void memcpy_u64s_small(void *dst, const void *src, 612 unsigned u64s) 613 { 614 u64 *d = dst; 615 const u64 *s = src; 616 617 while (u64s--) 618 *d++ = *s++; 619 } 620 621 static inline void __memcpy_u64s(void *dst, const void *src, 622 unsigned u64s) 623 { 624 #ifdef CONFIG_X86_64 625 long d0, d1, d2; 626 627 asm volatile("rep ; movsq" 628 : "=&c" (d0), "=&D" (d1), "=&S" (d2) 629 : "0" (u64s), "1" (dst), "2" (src) 630 : "memory"); 631 #else 632 u64 *d = dst; 633 const u64 *s = src; 634 635 while (u64s--) 636 *d++ = *s++; 637 #endif 638 } 639 640 static inline void memcpy_u64s(void *dst, const void *src, 641 unsigned u64s) 642 { 643 EBUG_ON(!(dst >= src + u64s * sizeof(u64) || 644 dst + u64s * sizeof(u64) <= src)); 645 646 __memcpy_u64s(dst, src, u64s); 647 } 648 649 static inline void __memmove_u64s_down(void *dst, const void *src, 650 unsigned u64s) 651 { 652 __memcpy_u64s(dst, src, u64s); 653 } 654 655 static inline void memmove_u64s_down(void *dst, const void *src, 656 unsigned u64s) 657 { 658 EBUG_ON(dst > src); 659 660 __memmove_u64s_down(dst, src, u64s); 661 } 662 663 static inline void __memmove_u64s_down_small(void *dst, const void *src, 664 unsigned u64s) 665 { 666 memcpy_u64s_small(dst, src, u64s); 667 } 668 669 static inline void memmove_u64s_down_small(void *dst, const void *src, 670 unsigned u64s) 671 { 672 EBUG_ON(dst > src); 673 674 __memmove_u64s_down_small(dst, src, u64s); 675 } 676 677 static inline void __memmove_u64s_up_small(void *_dst, const void *_src, 678 unsigned u64s) 679 { 680 u64 *dst = (u64 *) _dst + u64s; 681 u64 *src = (u64 *) _src + u64s; 682 683 while (u64s--) 684 *--dst = *--src; 685 } 686 687 static inline void memmove_u64s_up_small(void *dst, const void *src, 688 unsigned u64s) 689 { 690 EBUG_ON(dst < src); 691 692 __memmove_u64s_up_small(dst, src, u64s); 693 } 694 695 static inline void __memmove_u64s_up(void *_dst, const void *_src, 696 unsigned u64s) 697 { 698 u64 *dst = (u64 *) _dst + u64s - 1; 699 u64 *src = (u64 *) _src + u64s - 1; 700 701 #ifdef CONFIG_X86_64 702 long d0, d1, d2; 703 704 asm volatile("std ;\n" 705 "rep ; movsq\n" 706 "cld ;\n" 707 : "=&c" (d0), "=&D" (d1), "=&S" (d2) 708 : "0" (u64s), "1" (dst), "2" (src) 709 : "memory"); 710 #else 711 while (u64s--) 712 *dst-- = *src--; 713 #endif 714 } 715 716 static inline void memmove_u64s_up(void *dst, const void *src, 717 unsigned u64s) 718 { 719 EBUG_ON(dst < src); 720 721 __memmove_u64s_up(dst, src, u64s); 722 } 723 724 static inline void memmove_u64s(void *dst, const void *src, 725 unsigned u64s) 726 { 727 if (dst < src) 728 __memmove_u64s_down(dst, src, u64s); 729 else 730 __memmove_u64s_up(dst, src, u64s); 731 } 732 733 /* Set the last few bytes up to a u64 boundary given an offset into a buffer. */ 734 static inline void memset_u64s_tail(void *s, int c, unsigned bytes) 735 { 736 unsigned rem = round_up(bytes, sizeof(u64)) - bytes; 737 738 memset(s + bytes, c, rem); 739 } 740 741 void sort_cmp_size(void *base, size_t num, size_t size, 742 int (*cmp_func)(const void *, const void *, size_t), 743 void (*swap_func)(void *, void *, size_t)); 744 745 /* just the memmove, doesn't update @_nr */ 746 #define __array_insert_item(_array, _nr, _pos) \ 747 memmove(&(_array)[(_pos) + 1], \ 748 &(_array)[(_pos)], \ 749 sizeof((_array)[0]) * ((_nr) - (_pos))) 750 751 #define array_insert_item(_array, _nr, _pos, _new_item) \ 752 do { \ 753 __array_insert_item(_array, _nr, _pos); \ 754 (_nr)++; \ 755 (_array)[(_pos)] = (_new_item); \ 756 } while (0) 757 758 #define array_remove_items(_array, _nr, _pos, _nr_to_remove) \ 759 do { \ 760 (_nr) -= (_nr_to_remove); \ 761 memmove(&(_array)[(_pos)], \ 762 &(_array)[(_pos) + (_nr_to_remove)], \ 763 sizeof((_array)[0]) * ((_nr) - (_pos))); \ 764 } while (0) 765 766 #define array_remove_item(_array, _nr, _pos) \ 767 array_remove_items(_array, _nr, _pos, 1) 768 769 static inline void __move_gap(void *array, size_t element_size, 770 size_t nr, size_t size, 771 size_t old_gap, size_t new_gap) 772 { 773 size_t gap_end = old_gap + size - nr; 774 775 if (new_gap < old_gap) { 776 size_t move = old_gap - new_gap; 777 778 memmove(array + element_size * (gap_end - move), 779 array + element_size * (old_gap - move), 780 element_size * move); 781 } else if (new_gap > old_gap) { 782 size_t move = new_gap - old_gap; 783 784 memmove(array + element_size * old_gap, 785 array + element_size * gap_end, 786 element_size * move); 787 } 788 } 789 790 /* Move the gap in a gap buffer: */ 791 #define move_gap(_array, _nr, _size, _old_gap, _new_gap) \ 792 __move_gap(_array, sizeof(_array[0]), _nr, _size, _old_gap, _new_gap) 793 794 #define bubble_sort(_base, _nr, _cmp) \ 795 do { \ 796 ssize_t _i, _last; \ 797 bool _swapped = true; \ 798 \ 799 for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\ 800 _swapped = false; \ 801 for (_i = 0; _i < _last; _i++) \ 802 if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) { \ 803 swap((_base)[_i], (_base)[_i + 1]); \ 804 _swapped = true; \ 805 } \ 806 } \ 807 } while (0) 808 809 static inline u64 percpu_u64_get(u64 __percpu *src) 810 { 811 u64 ret = 0; 812 int cpu; 813 814 for_each_possible_cpu(cpu) 815 ret += *per_cpu_ptr(src, cpu); 816 return ret; 817 } 818 819 static inline void percpu_u64_set(u64 __percpu *dst, u64 src) 820 { 821 int cpu; 822 823 for_each_possible_cpu(cpu) 824 *per_cpu_ptr(dst, cpu) = 0; 825 this_cpu_write(*dst, src); 826 } 827 828 static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr) 829 { 830 unsigned i; 831 832 for (i = 0; i < nr; i++) 833 acc[i] += src[i]; 834 } 835 836 static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src, 837 unsigned nr) 838 { 839 int cpu; 840 841 for_each_possible_cpu(cpu) 842 acc_u64s(acc, per_cpu_ptr(src, cpu), nr); 843 } 844 845 static inline void percpu_memset(void __percpu *p, int c, size_t bytes) 846 { 847 int cpu; 848 849 for_each_possible_cpu(cpu) 850 memset(per_cpu_ptr(p, cpu), c, bytes); 851 } 852 853 u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned); 854 855 #define cmp_int(l, r) ((l > r) - (l < r)) 856 857 static inline int u8_cmp(u8 l, u8 r) 858 { 859 return cmp_int(l, r); 860 } 861 862 static inline int cmp_le32(__le32 l, __le32 r) 863 { 864 return cmp_int(le32_to_cpu(l), le32_to_cpu(r)); 865 } 866 867 #include <linux/uuid.h> 868 869 #define QSTR(n) { { { .len = strlen(n) } }, .name = n } 870 871 static inline bool qstr_eq(const struct qstr l, const struct qstr r) 872 { 873 return l.len == r.len && !memcmp(l.name, r.name, l.len); 874 } 875 876 void bch2_darray_str_exit(darray_str *); 877 int bch2_split_devs(const char *, darray_str *); 878 879 #endif /* _BCACHEFS_UTIL_H */ 880