1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _BCACHEFS_UTIL_H 3 #define _BCACHEFS_UTIL_H 4 5 #include <linux/bio.h> 6 #include <linux/blkdev.h> 7 #include <linux/closure.h> 8 #include <linux/errno.h> 9 #include <linux/freezer.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/clock.h> 12 #include <linux/llist.h> 13 #include <linux/log2.h> 14 #include <linux/percpu.h> 15 #include <linux/preempt.h> 16 #include <linux/ratelimit.h> 17 #include <linux/slab.h> 18 #include <linux/vmalloc.h> 19 #include <linux/workqueue.h> 20 21 #include "mean_and_variance.h" 22 23 #include "darray.h" 24 25 struct closure; 26 27 #ifdef CONFIG_BCACHEFS_DEBUG 28 #define EBUG_ON(cond) BUG_ON(cond) 29 #else 30 #define EBUG_ON(cond) 31 #endif 32 33 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 34 #define CPU_BIG_ENDIAN 0 35 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 36 #define CPU_BIG_ENDIAN 1 37 #endif 38 39 /* type hackery */ 40 41 #define type_is_exact(_val, _type) \ 42 __builtin_types_compatible_p(typeof(_val), _type) 43 44 #define type_is(_val, _type) \ 45 (__builtin_types_compatible_p(typeof(_val), _type) || \ 46 __builtin_types_compatible_p(typeof(_val), const _type)) 47 48 /* Userspace doesn't align allocations as nicely as the kernel allocators: */ 49 static inline size_t buf_pages(void *p, size_t len) 50 { 51 return DIV_ROUND_UP(len + 52 ((unsigned long) p & (PAGE_SIZE - 1)), 53 PAGE_SIZE); 54 } 55 56 static inline void vpfree(void *p, size_t size) 57 { 58 if (is_vmalloc_addr(p)) 59 vfree(p); 60 else 61 free_pages((unsigned long) p, get_order(size)); 62 } 63 64 static inline void *vpmalloc(size_t size, gfp_t gfp_mask) 65 { 66 return (void *) __get_free_pages(gfp_mask|__GFP_NOWARN, 67 get_order(size)) ?: 68 __vmalloc(size, gfp_mask); 69 } 70 71 static inline void kvpfree(void *p, size_t size) 72 { 73 if (size < PAGE_SIZE) 74 kfree(p); 75 else 76 vpfree(p, size); 77 } 78 79 static inline void *kvpmalloc(size_t size, gfp_t gfp_mask) 80 { 81 return size < PAGE_SIZE 82 ? kmalloc(size, gfp_mask) 83 : vpmalloc(size, gfp_mask); 84 } 85 86 int mempool_init_kvpmalloc_pool(mempool_t *, int, size_t); 87 88 #define HEAP(type) \ 89 struct { \ 90 size_t size, used; \ 91 type *data; \ 92 } 93 94 #define DECLARE_HEAP(type, name) HEAP(type) name 95 96 #define init_heap(heap, _size, gfp) \ 97 ({ \ 98 (heap)->used = 0; \ 99 (heap)->size = (_size); \ 100 (heap)->data = kvpmalloc((heap)->size * sizeof((heap)->data[0]),\ 101 (gfp)); \ 102 }) 103 104 #define free_heap(heap) \ 105 do { \ 106 kvpfree((heap)->data, (heap)->size * sizeof((heap)->data[0])); \ 107 (heap)->data = NULL; \ 108 } while (0) 109 110 #define heap_set_backpointer(h, i, _fn) \ 111 do { \ 112 void (*fn)(typeof(h), size_t) = _fn; \ 113 if (fn) \ 114 fn(h, i); \ 115 } while (0) 116 117 #define heap_swap(h, i, j, set_backpointer) \ 118 do { \ 119 swap((h)->data[i], (h)->data[j]); \ 120 heap_set_backpointer(h, i, set_backpointer); \ 121 heap_set_backpointer(h, j, set_backpointer); \ 122 } while (0) 123 124 #define heap_peek(h) \ 125 ({ \ 126 EBUG_ON(!(h)->used); \ 127 (h)->data[0]; \ 128 }) 129 130 #define heap_full(h) ((h)->used == (h)->size) 131 132 #define heap_sift_down(h, i, cmp, set_backpointer) \ 133 do { \ 134 size_t _c, _j = i; \ 135 \ 136 for (; _j * 2 + 1 < (h)->used; _j = _c) { \ 137 _c = _j * 2 + 1; \ 138 if (_c + 1 < (h)->used && \ 139 cmp(h, (h)->data[_c], (h)->data[_c + 1]) >= 0) \ 140 _c++; \ 141 \ 142 if (cmp(h, (h)->data[_c], (h)->data[_j]) >= 0) \ 143 break; \ 144 heap_swap(h, _c, _j, set_backpointer); \ 145 } \ 146 } while (0) 147 148 #define heap_sift_up(h, i, cmp, set_backpointer) \ 149 do { \ 150 while (i) { \ 151 size_t p = (i - 1) / 2; \ 152 if (cmp(h, (h)->data[i], (h)->data[p]) >= 0) \ 153 break; \ 154 heap_swap(h, i, p, set_backpointer); \ 155 i = p; \ 156 } \ 157 } while (0) 158 159 #define __heap_add(h, d, cmp, set_backpointer) \ 160 ({ \ 161 size_t _i = (h)->used++; \ 162 (h)->data[_i] = d; \ 163 heap_set_backpointer(h, _i, set_backpointer); \ 164 \ 165 heap_sift_up(h, _i, cmp, set_backpointer); \ 166 _i; \ 167 }) 168 169 #define heap_add(h, d, cmp, set_backpointer) \ 170 ({ \ 171 bool _r = !heap_full(h); \ 172 if (_r) \ 173 __heap_add(h, d, cmp, set_backpointer); \ 174 _r; \ 175 }) 176 177 #define heap_add_or_replace(h, new, cmp, set_backpointer) \ 178 do { \ 179 if (!heap_add(h, new, cmp, set_backpointer) && \ 180 cmp(h, new, heap_peek(h)) >= 0) { \ 181 (h)->data[0] = new; \ 182 heap_set_backpointer(h, 0, set_backpointer); \ 183 heap_sift_down(h, 0, cmp, set_backpointer); \ 184 } \ 185 } while (0) 186 187 #define heap_del(h, i, cmp, set_backpointer) \ 188 do { \ 189 size_t _i = (i); \ 190 \ 191 BUG_ON(_i >= (h)->used); \ 192 (h)->used--; \ 193 if ((_i) < (h)->used) { \ 194 heap_swap(h, _i, (h)->used, set_backpointer); \ 195 heap_sift_up(h, _i, cmp, set_backpointer); \ 196 heap_sift_down(h, _i, cmp, set_backpointer); \ 197 } \ 198 } while (0) 199 200 #define heap_pop(h, d, cmp, set_backpointer) \ 201 ({ \ 202 bool _r = (h)->used; \ 203 if (_r) { \ 204 (d) = (h)->data[0]; \ 205 heap_del(h, 0, cmp, set_backpointer); \ 206 } \ 207 _r; \ 208 }) 209 210 #define heap_resort(heap, cmp, set_backpointer) \ 211 do { \ 212 ssize_t _i; \ 213 for (_i = (ssize_t) (heap)->used / 2 - 1; _i >= 0; --_i) \ 214 heap_sift_down(heap, _i, cmp, set_backpointer); \ 215 } while (0) 216 217 #define ANYSINT_MAX(t) \ 218 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) 219 220 #include "printbuf.h" 221 222 #define prt_vprintf(_out, ...) bch2_prt_vprintf(_out, __VA_ARGS__) 223 #define prt_printf(_out, ...) bch2_prt_printf(_out, __VA_ARGS__) 224 #define printbuf_str(_buf) bch2_printbuf_str(_buf) 225 #define printbuf_exit(_buf) bch2_printbuf_exit(_buf) 226 227 #define printbuf_tabstops_reset(_buf) bch2_printbuf_tabstops_reset(_buf) 228 #define printbuf_tabstop_pop(_buf) bch2_printbuf_tabstop_pop(_buf) 229 #define printbuf_tabstop_push(_buf, _n) bch2_printbuf_tabstop_push(_buf, _n) 230 231 #define printbuf_indent_add(_out, _n) bch2_printbuf_indent_add(_out, _n) 232 #define printbuf_indent_sub(_out, _n) bch2_printbuf_indent_sub(_out, _n) 233 234 #define prt_newline(_out) bch2_prt_newline(_out) 235 #define prt_tab(_out) bch2_prt_tab(_out) 236 #define prt_tab_rjust(_out) bch2_prt_tab_rjust(_out) 237 238 #define prt_bytes_indented(...) bch2_prt_bytes_indented(__VA_ARGS__) 239 #define prt_u64(_out, _v) prt_printf(_out, "%llu", (u64) (_v)) 240 #define prt_human_readable_u64(...) bch2_prt_human_readable_u64(__VA_ARGS__) 241 #define prt_human_readable_s64(...) bch2_prt_human_readable_s64(__VA_ARGS__) 242 #define prt_units_u64(...) bch2_prt_units_u64(__VA_ARGS__) 243 #define prt_units_s64(...) bch2_prt_units_s64(__VA_ARGS__) 244 #define prt_string_option(...) bch2_prt_string_option(__VA_ARGS__) 245 #define prt_bitflags(...) bch2_prt_bitflags(__VA_ARGS__) 246 #define prt_bitflags_vector(...) bch2_prt_bitflags_vector(__VA_ARGS__) 247 248 void bch2_pr_time_units(struct printbuf *, u64); 249 void bch2_prt_datetime(struct printbuf *, time64_t); 250 251 #ifdef __KERNEL__ 252 static inline void uuid_unparse_lower(u8 *uuid, char *out) 253 { 254 sprintf(out, "%pUb", uuid); 255 } 256 #else 257 #include <uuid/uuid.h> 258 #endif 259 260 static inline void pr_uuid(struct printbuf *out, u8 *uuid) 261 { 262 char uuid_str[40]; 263 264 uuid_unparse_lower(uuid, uuid_str); 265 prt_printf(out, "%s", uuid_str); 266 } 267 268 int bch2_strtoint_h(const char *, int *); 269 int bch2_strtouint_h(const char *, unsigned int *); 270 int bch2_strtoll_h(const char *, long long *); 271 int bch2_strtoull_h(const char *, unsigned long long *); 272 int bch2_strtou64_h(const char *, u64 *); 273 274 static inline int bch2_strtol_h(const char *cp, long *res) 275 { 276 #if BITS_PER_LONG == 32 277 return bch2_strtoint_h(cp, (int *) res); 278 #else 279 return bch2_strtoll_h(cp, (long long *) res); 280 #endif 281 } 282 283 static inline int bch2_strtoul_h(const char *cp, long *res) 284 { 285 #if BITS_PER_LONG == 32 286 return bch2_strtouint_h(cp, (unsigned int *) res); 287 #else 288 return bch2_strtoull_h(cp, (unsigned long long *) res); 289 #endif 290 } 291 292 #define strtoi_h(cp, res) \ 293 ( type_is(*res, int) ? bch2_strtoint_h(cp, (void *) res)\ 294 : type_is(*res, long) ? bch2_strtol_h(cp, (void *) res)\ 295 : type_is(*res, long long) ? bch2_strtoll_h(cp, (void *) res)\ 296 : type_is(*res, unsigned) ? bch2_strtouint_h(cp, (void *) res)\ 297 : type_is(*res, unsigned long) ? bch2_strtoul_h(cp, (void *) res)\ 298 : type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\ 299 : -EINVAL) 300 301 #define strtoul_safe(cp, var) \ 302 ({ \ 303 unsigned long _v; \ 304 int _r = kstrtoul(cp, 10, &_v); \ 305 if (!_r) \ 306 var = _v; \ 307 _r; \ 308 }) 309 310 #define strtoul_safe_clamp(cp, var, min, max) \ 311 ({ \ 312 unsigned long _v; \ 313 int _r = kstrtoul(cp, 10, &_v); \ 314 if (!_r) \ 315 var = clamp_t(typeof(var), _v, min, max); \ 316 _r; \ 317 }) 318 319 #define strtoul_safe_restrict(cp, var, min, max) \ 320 ({ \ 321 unsigned long _v; \ 322 int _r = kstrtoul(cp, 10, &_v); \ 323 if (!_r && _v >= min && _v <= max) \ 324 var = _v; \ 325 else \ 326 _r = -EINVAL; \ 327 _r; \ 328 }) 329 330 #define snprint(out, var) \ 331 prt_printf(out, \ 332 type_is(var, int) ? "%i\n" \ 333 : type_is(var, unsigned) ? "%u\n" \ 334 : type_is(var, long) ? "%li\n" \ 335 : type_is(var, unsigned long) ? "%lu\n" \ 336 : type_is(var, s64) ? "%lli\n" \ 337 : type_is(var, u64) ? "%llu\n" \ 338 : type_is(var, char *) ? "%s\n" \ 339 : "%i\n", var) 340 341 bool bch2_is_zero(const void *, size_t); 342 343 u64 bch2_read_flag_list(char *, const char * const[]); 344 345 void bch2_prt_u64_binary(struct printbuf *, u64, unsigned); 346 347 void bch2_print_string_as_lines(const char *prefix, const char *lines); 348 349 typedef DARRAY(unsigned long) bch_stacktrace; 350 int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *, unsigned); 351 void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *); 352 int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *, unsigned); 353 354 static inline void prt_bdevname(struct printbuf *out, struct block_device *bdev) 355 { 356 #ifdef __KERNEL__ 357 prt_printf(out, "%pg", bdev); 358 #else 359 prt_str(out, bdev->name); 360 #endif 361 } 362 363 #define NR_QUANTILES 15 364 #define QUANTILE_IDX(i) inorder_to_eytzinger0(i, NR_QUANTILES) 365 #define QUANTILE_FIRST eytzinger0_first(NR_QUANTILES) 366 #define QUANTILE_LAST eytzinger0_last(NR_QUANTILES) 367 368 struct bch2_quantiles { 369 struct bch2_quantile_entry { 370 u64 m; 371 u64 step; 372 } entries[NR_QUANTILES]; 373 }; 374 375 struct bch2_time_stat_buffer { 376 unsigned nr; 377 struct bch2_time_stat_buffer_entry { 378 u64 start; 379 u64 end; 380 } entries[32]; 381 }; 382 383 struct bch2_time_stats { 384 spinlock_t lock; 385 /* all fields are in nanoseconds */ 386 u64 min_duration; 387 u64 max_duration; 388 u64 total_duration; 389 u64 max_freq; 390 u64 min_freq; 391 u64 last_event; 392 struct bch2_quantiles quantiles; 393 394 struct mean_and_variance duration_stats; 395 struct mean_and_variance_weighted duration_stats_weighted; 396 struct mean_and_variance freq_stats; 397 struct mean_and_variance_weighted freq_stats_weighted; 398 struct bch2_time_stat_buffer __percpu *buffer; 399 }; 400 401 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 402 void __bch2_time_stats_update(struct bch2_time_stats *stats, u64, u64); 403 404 static inline void bch2_time_stats_update(struct bch2_time_stats *stats, u64 start) 405 { 406 __bch2_time_stats_update(stats, start, local_clock()); 407 } 408 409 static inline bool track_event_change(struct bch2_time_stats *stats, 410 u64 *start, bool v) 411 { 412 if (v != !!*start) { 413 if (!v) { 414 bch2_time_stats_update(stats, *start); 415 *start = 0; 416 } else { 417 *start = local_clock() ?: 1; 418 return true; 419 } 420 } 421 422 return false; 423 } 424 #else 425 static inline void __bch2_time_stats_update(struct bch2_time_stats *stats, u64 start, u64 end) {} 426 static inline void bch2_time_stats_update(struct bch2_time_stats *stats, u64 start) {} 427 static inline bool track_event_change(struct bch2_time_stats *stats, 428 u64 *start, bool v) 429 { 430 bool ret = v && !*start; 431 *start = v; 432 return ret; 433 } 434 #endif 435 436 void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *); 437 438 void bch2_time_stats_exit(struct bch2_time_stats *); 439 void bch2_time_stats_init(struct bch2_time_stats *); 440 441 #define ewma_add(ewma, val, weight) \ 442 ({ \ 443 typeof(ewma) _ewma = (ewma); \ 444 typeof(weight) _weight = (weight); \ 445 \ 446 (((_ewma << _weight) - _ewma) + (val)) >> _weight; \ 447 }) 448 449 struct bch_ratelimit { 450 /* Next time we want to do some work, in nanoseconds */ 451 u64 next; 452 453 /* 454 * Rate at which we want to do work, in units per nanosecond 455 * The units here correspond to the units passed to 456 * bch2_ratelimit_increment() 457 */ 458 unsigned rate; 459 }; 460 461 static inline void bch2_ratelimit_reset(struct bch_ratelimit *d) 462 { 463 d->next = local_clock(); 464 } 465 466 u64 bch2_ratelimit_delay(struct bch_ratelimit *); 467 void bch2_ratelimit_increment(struct bch_ratelimit *, u64); 468 469 struct bch_pd_controller { 470 struct bch_ratelimit rate; 471 unsigned long last_update; 472 473 s64 last_actual; 474 s64 smoothed_derivative; 475 476 unsigned p_term_inverse; 477 unsigned d_smooth; 478 unsigned d_term; 479 480 /* for exporting to sysfs (no effect on behavior) */ 481 s64 last_derivative; 482 s64 last_proportional; 483 s64 last_change; 484 s64 last_target; 485 486 /* 487 * If true, the rate will not increase if bch2_ratelimit_delay() 488 * is not being called often enough. 489 */ 490 bool backpressure; 491 }; 492 493 void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int); 494 void bch2_pd_controller_init(struct bch_pd_controller *); 495 void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *); 496 497 #define sysfs_pd_controller_attribute(name) \ 498 rw_attribute(name##_rate); \ 499 rw_attribute(name##_rate_bytes); \ 500 rw_attribute(name##_rate_d_term); \ 501 rw_attribute(name##_rate_p_term_inverse); \ 502 read_attribute(name##_rate_debug) 503 504 #define sysfs_pd_controller_files(name) \ 505 &sysfs_##name##_rate, \ 506 &sysfs_##name##_rate_bytes, \ 507 &sysfs_##name##_rate_d_term, \ 508 &sysfs_##name##_rate_p_term_inverse, \ 509 &sysfs_##name##_rate_debug 510 511 #define sysfs_pd_controller_show(name, var) \ 512 do { \ 513 sysfs_hprint(name##_rate, (var)->rate.rate); \ 514 sysfs_print(name##_rate_bytes, (var)->rate.rate); \ 515 sysfs_print(name##_rate_d_term, (var)->d_term); \ 516 sysfs_print(name##_rate_p_term_inverse, (var)->p_term_inverse); \ 517 \ 518 if (attr == &sysfs_##name##_rate_debug) \ 519 bch2_pd_controller_debug_to_text(out, var); \ 520 } while (0) 521 522 #define sysfs_pd_controller_store(name, var) \ 523 do { \ 524 sysfs_strtoul_clamp(name##_rate, \ 525 (var)->rate.rate, 1, UINT_MAX); \ 526 sysfs_strtoul_clamp(name##_rate_bytes, \ 527 (var)->rate.rate, 1, UINT_MAX); \ 528 sysfs_strtoul(name##_rate_d_term, (var)->d_term); \ 529 sysfs_strtoul_clamp(name##_rate_p_term_inverse, \ 530 (var)->p_term_inverse, 1, INT_MAX); \ 531 } while (0) 532 533 #define container_of_or_null(ptr, type, member) \ 534 ({ \ 535 typeof(ptr) _ptr = ptr; \ 536 _ptr ? container_of(_ptr, type, member) : NULL; \ 537 }) 538 539 /* Does linear interpolation between powers of two */ 540 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits) 541 { 542 unsigned fract = x & ~(~0 << fract_bits); 543 544 x >>= fract_bits; 545 x = 1 << x; 546 x += (x * fract) >> fract_bits; 547 548 return x; 549 } 550 551 void bch2_bio_map(struct bio *bio, void *base, size_t); 552 int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t); 553 554 static inline sector_t bdev_sectors(struct block_device *bdev) 555 { 556 return bdev->bd_inode->i_size >> 9; 557 } 558 559 #define closure_bio_submit(bio, cl) \ 560 do { \ 561 closure_get(cl); \ 562 submit_bio(bio); \ 563 } while (0) 564 565 #define kthread_wait(cond) \ 566 ({ \ 567 int _ret = 0; \ 568 \ 569 while (1) { \ 570 set_current_state(TASK_INTERRUPTIBLE); \ 571 if (kthread_should_stop()) { \ 572 _ret = -1; \ 573 break; \ 574 } \ 575 \ 576 if (cond) \ 577 break; \ 578 \ 579 schedule(); \ 580 } \ 581 set_current_state(TASK_RUNNING); \ 582 _ret; \ 583 }) 584 585 #define kthread_wait_freezable(cond) \ 586 ({ \ 587 int _ret = 0; \ 588 while (1) { \ 589 set_current_state(TASK_INTERRUPTIBLE); \ 590 if (kthread_should_stop()) { \ 591 _ret = -1; \ 592 break; \ 593 } \ 594 \ 595 if (cond) \ 596 break; \ 597 \ 598 schedule(); \ 599 try_to_freeze(); \ 600 } \ 601 set_current_state(TASK_RUNNING); \ 602 _ret; \ 603 }) 604 605 size_t bch2_rand_range(size_t); 606 607 void memcpy_to_bio(struct bio *, struct bvec_iter, const void *); 608 void memcpy_from_bio(void *, struct bio *, struct bvec_iter); 609 610 static inline void memcpy_u64s_small(void *dst, const void *src, 611 unsigned u64s) 612 { 613 u64 *d = dst; 614 const u64 *s = src; 615 616 while (u64s--) 617 *d++ = *s++; 618 } 619 620 static inline void __memcpy_u64s(void *dst, const void *src, 621 unsigned u64s) 622 { 623 #ifdef CONFIG_X86_64 624 long d0, d1, d2; 625 626 asm volatile("rep ; movsq" 627 : "=&c" (d0), "=&D" (d1), "=&S" (d2) 628 : "0" (u64s), "1" (dst), "2" (src) 629 : "memory"); 630 #else 631 u64 *d = dst; 632 const u64 *s = src; 633 634 while (u64s--) 635 *d++ = *s++; 636 #endif 637 } 638 639 static inline void memcpy_u64s(void *dst, const void *src, 640 unsigned u64s) 641 { 642 EBUG_ON(!(dst >= src + u64s * sizeof(u64) || 643 dst + u64s * sizeof(u64) <= src)); 644 645 __memcpy_u64s(dst, src, u64s); 646 } 647 648 static inline void __memmove_u64s_down(void *dst, const void *src, 649 unsigned u64s) 650 { 651 __memcpy_u64s(dst, src, u64s); 652 } 653 654 static inline void memmove_u64s_down(void *dst, const void *src, 655 unsigned u64s) 656 { 657 EBUG_ON(dst > src); 658 659 __memmove_u64s_down(dst, src, u64s); 660 } 661 662 static inline void __memmove_u64s_down_small(void *dst, const void *src, 663 unsigned u64s) 664 { 665 memcpy_u64s_small(dst, src, u64s); 666 } 667 668 static inline void memmove_u64s_down_small(void *dst, const void *src, 669 unsigned u64s) 670 { 671 EBUG_ON(dst > src); 672 673 __memmove_u64s_down_small(dst, src, u64s); 674 } 675 676 static inline void __memmove_u64s_up_small(void *_dst, const void *_src, 677 unsigned u64s) 678 { 679 u64 *dst = (u64 *) _dst + u64s; 680 u64 *src = (u64 *) _src + u64s; 681 682 while (u64s--) 683 *--dst = *--src; 684 } 685 686 static inline void memmove_u64s_up_small(void *dst, const void *src, 687 unsigned u64s) 688 { 689 EBUG_ON(dst < src); 690 691 __memmove_u64s_up_small(dst, src, u64s); 692 } 693 694 static inline void __memmove_u64s_up(void *_dst, const void *_src, 695 unsigned u64s) 696 { 697 u64 *dst = (u64 *) _dst + u64s - 1; 698 u64 *src = (u64 *) _src + u64s - 1; 699 700 #ifdef CONFIG_X86_64 701 long d0, d1, d2; 702 703 asm volatile("std ;\n" 704 "rep ; movsq\n" 705 "cld ;\n" 706 : "=&c" (d0), "=&D" (d1), "=&S" (d2) 707 : "0" (u64s), "1" (dst), "2" (src) 708 : "memory"); 709 #else 710 while (u64s--) 711 *dst-- = *src--; 712 #endif 713 } 714 715 static inline void memmove_u64s_up(void *dst, const void *src, 716 unsigned u64s) 717 { 718 EBUG_ON(dst < src); 719 720 __memmove_u64s_up(dst, src, u64s); 721 } 722 723 static inline void memmove_u64s(void *dst, const void *src, 724 unsigned u64s) 725 { 726 if (dst < src) 727 __memmove_u64s_down(dst, src, u64s); 728 else 729 __memmove_u64s_up(dst, src, u64s); 730 } 731 732 /* Set the last few bytes up to a u64 boundary given an offset into a buffer. */ 733 static inline void memset_u64s_tail(void *s, int c, unsigned bytes) 734 { 735 unsigned rem = round_up(bytes, sizeof(u64)) - bytes; 736 737 memset(s + bytes, c, rem); 738 } 739 740 void sort_cmp_size(void *base, size_t num, size_t size, 741 int (*cmp_func)(const void *, const void *, size_t), 742 void (*swap_func)(void *, void *, size_t)); 743 744 /* just the memmove, doesn't update @_nr */ 745 #define __array_insert_item(_array, _nr, _pos) \ 746 memmove(&(_array)[(_pos) + 1], \ 747 &(_array)[(_pos)], \ 748 sizeof((_array)[0]) * ((_nr) - (_pos))) 749 750 #define array_insert_item(_array, _nr, _pos, _new_item) \ 751 do { \ 752 __array_insert_item(_array, _nr, _pos); \ 753 (_nr)++; \ 754 (_array)[(_pos)] = (_new_item); \ 755 } while (0) 756 757 #define array_remove_items(_array, _nr, _pos, _nr_to_remove) \ 758 do { \ 759 (_nr) -= (_nr_to_remove); \ 760 memmove(&(_array)[(_pos)], \ 761 &(_array)[(_pos) + (_nr_to_remove)], \ 762 sizeof((_array)[0]) * ((_nr) - (_pos))); \ 763 } while (0) 764 765 #define array_remove_item(_array, _nr, _pos) \ 766 array_remove_items(_array, _nr, _pos, 1) 767 768 static inline void __move_gap(void *array, size_t element_size, 769 size_t nr, size_t size, 770 size_t old_gap, size_t new_gap) 771 { 772 size_t gap_end = old_gap + size - nr; 773 774 if (new_gap < old_gap) { 775 size_t move = old_gap - new_gap; 776 777 memmove(array + element_size * (gap_end - move), 778 array + element_size * (old_gap - move), 779 element_size * move); 780 } else if (new_gap > old_gap) { 781 size_t move = new_gap - old_gap; 782 783 memmove(array + element_size * old_gap, 784 array + element_size * gap_end, 785 element_size * move); 786 } 787 } 788 789 /* Move the gap in a gap buffer: */ 790 #define move_gap(_array, _nr, _size, _old_gap, _new_gap) \ 791 __move_gap(_array, sizeof(_array[0]), _nr, _size, _old_gap, _new_gap) 792 793 #define bubble_sort(_base, _nr, _cmp) \ 794 do { \ 795 ssize_t _i, _last; \ 796 bool _swapped = true; \ 797 \ 798 for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\ 799 _swapped = false; \ 800 for (_i = 0; _i < _last; _i++) \ 801 if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) { \ 802 swap((_base)[_i], (_base)[_i + 1]); \ 803 _swapped = true; \ 804 } \ 805 } \ 806 } while (0) 807 808 static inline u64 percpu_u64_get(u64 __percpu *src) 809 { 810 u64 ret = 0; 811 int cpu; 812 813 for_each_possible_cpu(cpu) 814 ret += *per_cpu_ptr(src, cpu); 815 return ret; 816 } 817 818 static inline void percpu_u64_set(u64 __percpu *dst, u64 src) 819 { 820 int cpu; 821 822 for_each_possible_cpu(cpu) 823 *per_cpu_ptr(dst, cpu) = 0; 824 this_cpu_write(*dst, src); 825 } 826 827 static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr) 828 { 829 unsigned i; 830 831 for (i = 0; i < nr; i++) 832 acc[i] += src[i]; 833 } 834 835 static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src, 836 unsigned nr) 837 { 838 int cpu; 839 840 for_each_possible_cpu(cpu) 841 acc_u64s(acc, per_cpu_ptr(src, cpu), nr); 842 } 843 844 static inline void percpu_memset(void __percpu *p, int c, size_t bytes) 845 { 846 int cpu; 847 848 for_each_possible_cpu(cpu) 849 memset(per_cpu_ptr(p, cpu), c, bytes); 850 } 851 852 u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned); 853 854 #define cmp_int(l, r) ((l > r) - (l < r)) 855 856 static inline int u8_cmp(u8 l, u8 r) 857 { 858 return cmp_int(l, r); 859 } 860 861 static inline int cmp_le32(__le32 l, __le32 r) 862 { 863 return cmp_int(le32_to_cpu(l), le32_to_cpu(r)); 864 } 865 866 #include <linux/uuid.h> 867 868 #define QSTR(n) { { { .len = strlen(n) } }, .name = n } 869 870 static inline bool qstr_eq(const struct qstr l, const struct qstr r) 871 { 872 return l.len == r.len && !memcmp(l.name, r.name, l.len); 873 } 874 875 void bch2_darray_str_exit(darray_str *); 876 int bch2_split_devs(const char *, darray_str *); 877 878 #endif /* _BCACHEFS_UTIL_H */ 879