xref: /linux/fs/bcachefs/util.h (revision 1b1934dbbdcf9aa2d507932ff488cec47999cf3f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_UTIL_H
3 #define _BCACHEFS_UTIL_H
4 
5 #include <linux/bio.h>
6 #include <linux/blkdev.h>
7 #include <linux/closure.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/clock.h>
12 #include <linux/llist.h>
13 #include <linux/log2.h>
14 #include <linux/percpu.h>
15 #include <linux/preempt.h>
16 #include <linux/ratelimit.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/workqueue.h>
20 
21 #include "mean_and_variance.h"
22 
23 #include "darray.h"
24 
25 struct closure;
26 
27 #ifdef CONFIG_BCACHEFS_DEBUG
28 #define EBUG_ON(cond)		BUG_ON(cond)
29 #else
30 #define EBUG_ON(cond)
31 #endif
32 
33 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
34 #define CPU_BIG_ENDIAN		0
35 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
36 #define CPU_BIG_ENDIAN		1
37 #endif
38 
39 /* type hackery */
40 
41 #define type_is_exact(_val, _type)					\
42 	__builtin_types_compatible_p(typeof(_val), _type)
43 
44 #define type_is(_val, _type)						\
45 	(__builtin_types_compatible_p(typeof(_val), _type) ||		\
46 	 __builtin_types_compatible_p(typeof(_val), const _type))
47 
48 /* Userspace doesn't align allocations as nicely as the kernel allocators: */
49 static inline size_t buf_pages(void *p, size_t len)
50 {
51 	return DIV_ROUND_UP(len +
52 			    ((unsigned long) p & (PAGE_SIZE - 1)),
53 			    PAGE_SIZE);
54 }
55 
56 static inline void vpfree(void *p, size_t size)
57 {
58 	if (is_vmalloc_addr(p))
59 		vfree(p);
60 	else
61 		free_pages((unsigned long) p, get_order(size));
62 }
63 
64 static inline void *vpmalloc(size_t size, gfp_t gfp_mask)
65 {
66 	return (void *) __get_free_pages(gfp_mask|__GFP_NOWARN,
67 					 get_order(size)) ?:
68 		__vmalloc(size, gfp_mask);
69 }
70 
71 static inline void kvpfree(void *p, size_t size)
72 {
73 	if (size < PAGE_SIZE)
74 		kfree(p);
75 	else
76 		vpfree(p, size);
77 }
78 
79 static inline void *kvpmalloc(size_t size, gfp_t gfp_mask)
80 {
81 	return size < PAGE_SIZE
82 		? kmalloc(size, gfp_mask)
83 		: vpmalloc(size, gfp_mask);
84 }
85 
86 int mempool_init_kvpmalloc_pool(mempool_t *, int, size_t);
87 
88 #define HEAP(type)							\
89 struct {								\
90 	size_t size, used;						\
91 	type *data;							\
92 }
93 
94 #define DECLARE_HEAP(type, name) HEAP(type) name
95 
96 #define init_heap(heap, _size, gfp)					\
97 ({									\
98 	(heap)->used = 0;						\
99 	(heap)->size = (_size);						\
100 	(heap)->data = kvpmalloc((heap)->size * sizeof((heap)->data[0]),\
101 				 (gfp));				\
102 })
103 
104 #define free_heap(heap)							\
105 do {									\
106 	kvpfree((heap)->data, (heap)->size * sizeof((heap)->data[0]));	\
107 	(heap)->data = NULL;						\
108 } while (0)
109 
110 #define heap_set_backpointer(h, i, _fn)					\
111 do {									\
112 	void (*fn)(typeof(h), size_t) = _fn;				\
113 	if (fn)								\
114 		fn(h, i);						\
115 } while (0)
116 
117 #define heap_swap(h, i, j, set_backpointer)				\
118 do {									\
119 	swap((h)->data[i], (h)->data[j]);				\
120 	heap_set_backpointer(h, i, set_backpointer);			\
121 	heap_set_backpointer(h, j, set_backpointer);			\
122 } while (0)
123 
124 #define heap_peek(h)							\
125 ({									\
126 	EBUG_ON(!(h)->used);						\
127 	(h)->data[0];							\
128 })
129 
130 #define heap_full(h)	((h)->used == (h)->size)
131 
132 #define heap_sift_down(h, i, cmp, set_backpointer)			\
133 do {									\
134 	size_t _c, _j = i;						\
135 									\
136 	for (; _j * 2 + 1 < (h)->used; _j = _c) {			\
137 		_c = _j * 2 + 1;					\
138 		if (_c + 1 < (h)->used &&				\
139 		    cmp(h, (h)->data[_c], (h)->data[_c + 1]) >= 0)	\
140 			_c++;						\
141 									\
142 		if (cmp(h, (h)->data[_c], (h)->data[_j]) >= 0)		\
143 			break;						\
144 		heap_swap(h, _c, _j, set_backpointer);			\
145 	}								\
146 } while (0)
147 
148 #define heap_sift_up(h, i, cmp, set_backpointer)			\
149 do {									\
150 	while (i) {							\
151 		size_t p = (i - 1) / 2;					\
152 		if (cmp(h, (h)->data[i], (h)->data[p]) >= 0)		\
153 			break;						\
154 		heap_swap(h, i, p, set_backpointer);			\
155 		i = p;							\
156 	}								\
157 } while (0)
158 
159 #define __heap_add(h, d, cmp, set_backpointer)				\
160 ({									\
161 	size_t _i = (h)->used++;					\
162 	(h)->data[_i] = d;						\
163 	heap_set_backpointer(h, _i, set_backpointer);			\
164 									\
165 	heap_sift_up(h, _i, cmp, set_backpointer);			\
166 	_i;								\
167 })
168 
169 #define heap_add(h, d, cmp, set_backpointer)				\
170 ({									\
171 	bool _r = !heap_full(h);					\
172 	if (_r)								\
173 		__heap_add(h, d, cmp, set_backpointer);			\
174 	_r;								\
175 })
176 
177 #define heap_add_or_replace(h, new, cmp, set_backpointer)		\
178 do {									\
179 	if (!heap_add(h, new, cmp, set_backpointer) &&			\
180 	    cmp(h, new, heap_peek(h)) >= 0) {				\
181 		(h)->data[0] = new;					\
182 		heap_set_backpointer(h, 0, set_backpointer);		\
183 		heap_sift_down(h, 0, cmp, set_backpointer);		\
184 	}								\
185 } while (0)
186 
187 #define heap_del(h, i, cmp, set_backpointer)				\
188 do {									\
189 	size_t _i = (i);						\
190 									\
191 	BUG_ON(_i >= (h)->used);					\
192 	(h)->used--;							\
193 	if ((_i) < (h)->used) {						\
194 		heap_swap(h, _i, (h)->used, set_backpointer);		\
195 		heap_sift_up(h, _i, cmp, set_backpointer);		\
196 		heap_sift_down(h, _i, cmp, set_backpointer);		\
197 	}								\
198 } while (0)
199 
200 #define heap_pop(h, d, cmp, set_backpointer)				\
201 ({									\
202 	bool _r = (h)->used;						\
203 	if (_r) {							\
204 		(d) = (h)->data[0];					\
205 		heap_del(h, 0, cmp, set_backpointer);			\
206 	}								\
207 	_r;								\
208 })
209 
210 #define heap_resort(heap, cmp, set_backpointer)				\
211 do {									\
212 	ssize_t _i;							\
213 	for (_i = (ssize_t) (heap)->used / 2 -  1; _i >= 0; --_i)	\
214 		heap_sift_down(heap, _i, cmp, set_backpointer);		\
215 } while (0)
216 
217 #define ANYSINT_MAX(t)							\
218 	((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
219 
220 #include "printbuf.h"
221 
222 #define prt_vprintf(_out, ...)		bch2_prt_vprintf(_out, __VA_ARGS__)
223 #define prt_printf(_out, ...)		bch2_prt_printf(_out, __VA_ARGS__)
224 #define printbuf_str(_buf)		bch2_printbuf_str(_buf)
225 #define printbuf_exit(_buf)		bch2_printbuf_exit(_buf)
226 
227 #define printbuf_tabstops_reset(_buf)	bch2_printbuf_tabstops_reset(_buf)
228 #define printbuf_tabstop_pop(_buf)	bch2_printbuf_tabstop_pop(_buf)
229 #define printbuf_tabstop_push(_buf, _n)	bch2_printbuf_tabstop_push(_buf, _n)
230 
231 #define printbuf_indent_add(_out, _n)	bch2_printbuf_indent_add(_out, _n)
232 #define printbuf_indent_sub(_out, _n)	bch2_printbuf_indent_sub(_out, _n)
233 
234 #define prt_newline(_out)		bch2_prt_newline(_out)
235 #define prt_tab(_out)			bch2_prt_tab(_out)
236 #define prt_tab_rjust(_out)		bch2_prt_tab_rjust(_out)
237 
238 #define prt_bytes_indented(...)		bch2_prt_bytes_indented(__VA_ARGS__)
239 #define prt_u64(_out, _v)		prt_printf(_out, "%llu", (u64) (_v))
240 #define prt_human_readable_u64(...)	bch2_prt_human_readable_u64(__VA_ARGS__)
241 #define prt_human_readable_s64(...)	bch2_prt_human_readable_s64(__VA_ARGS__)
242 #define prt_units_u64(...)		bch2_prt_units_u64(__VA_ARGS__)
243 #define prt_units_s64(...)		bch2_prt_units_s64(__VA_ARGS__)
244 #define prt_string_option(...)		bch2_prt_string_option(__VA_ARGS__)
245 #define prt_bitflags(...)		bch2_prt_bitflags(__VA_ARGS__)
246 #define prt_bitflags_vector(...)	bch2_prt_bitflags_vector(__VA_ARGS__)
247 
248 void bch2_pr_time_units(struct printbuf *, u64);
249 void bch2_prt_datetime(struct printbuf *, time64_t);
250 
251 #ifdef __KERNEL__
252 static inline void uuid_unparse_lower(u8 *uuid, char *out)
253 {
254 	sprintf(out, "%pUb", uuid);
255 }
256 #else
257 #include <uuid/uuid.h>
258 #endif
259 
260 static inline void pr_uuid(struct printbuf *out, u8 *uuid)
261 {
262 	char uuid_str[40];
263 
264 	uuid_unparse_lower(uuid, uuid_str);
265 	prt_printf(out, "%s", uuid_str);
266 }
267 
268 int bch2_strtoint_h(const char *, int *);
269 int bch2_strtouint_h(const char *, unsigned int *);
270 int bch2_strtoll_h(const char *, long long *);
271 int bch2_strtoull_h(const char *, unsigned long long *);
272 int bch2_strtou64_h(const char *, u64 *);
273 
274 static inline int bch2_strtol_h(const char *cp, long *res)
275 {
276 #if BITS_PER_LONG == 32
277 	return bch2_strtoint_h(cp, (int *) res);
278 #else
279 	return bch2_strtoll_h(cp, (long long *) res);
280 #endif
281 }
282 
283 static inline int bch2_strtoul_h(const char *cp, long *res)
284 {
285 #if BITS_PER_LONG == 32
286 	return bch2_strtouint_h(cp, (unsigned int *) res);
287 #else
288 	return bch2_strtoull_h(cp, (unsigned long long *) res);
289 #endif
290 }
291 
292 #define strtoi_h(cp, res)						\
293 	( type_is(*res, int)		? bch2_strtoint_h(cp, (void *) res)\
294 	: type_is(*res, long)		? bch2_strtol_h(cp, (void *) res)\
295 	: type_is(*res, long long)	? bch2_strtoll_h(cp, (void *) res)\
296 	: type_is(*res, unsigned)	? bch2_strtouint_h(cp, (void *) res)\
297 	: type_is(*res, unsigned long)	? bch2_strtoul_h(cp, (void *) res)\
298 	: type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\
299 	: -EINVAL)
300 
301 #define strtoul_safe(cp, var)						\
302 ({									\
303 	unsigned long _v;						\
304 	int _r = kstrtoul(cp, 10, &_v);					\
305 	if (!_r)							\
306 		var = _v;						\
307 	_r;								\
308 })
309 
310 #define strtoul_safe_clamp(cp, var, min, max)				\
311 ({									\
312 	unsigned long _v;						\
313 	int _r = kstrtoul(cp, 10, &_v);					\
314 	if (!_r)							\
315 		var = clamp_t(typeof(var), _v, min, max);		\
316 	_r;								\
317 })
318 
319 #define strtoul_safe_restrict(cp, var, min, max)			\
320 ({									\
321 	unsigned long _v;						\
322 	int _r = kstrtoul(cp, 10, &_v);					\
323 	if (!_r && _v >= min && _v <= max)				\
324 		var = _v;						\
325 	else								\
326 		_r = -EINVAL;						\
327 	_r;								\
328 })
329 
330 #define snprint(out, var)						\
331 	prt_printf(out,							\
332 		   type_is(var, int)		? "%i\n"		\
333 		 : type_is(var, unsigned)	? "%u\n"		\
334 		 : type_is(var, long)		? "%li\n"		\
335 		 : type_is(var, unsigned long)	? "%lu\n"		\
336 		 : type_is(var, s64)		? "%lli\n"		\
337 		 : type_is(var, u64)		? "%llu\n"		\
338 		 : type_is(var, char *)		? "%s\n"		\
339 		 : "%i\n", var)
340 
341 bool bch2_is_zero(const void *, size_t);
342 
343 u64 bch2_read_flag_list(char *, const char * const[]);
344 
345 void bch2_prt_u64_binary(struct printbuf *, u64, unsigned);
346 
347 void bch2_print_string_as_lines(const char *prefix, const char *lines);
348 
349 typedef DARRAY(unsigned long) bch_stacktrace;
350 int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *, unsigned);
351 void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *);
352 int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *, unsigned);
353 
354 static inline void prt_bdevname(struct printbuf *out, struct block_device *bdev)
355 {
356 #ifdef __KERNEL__
357 	prt_printf(out, "%pg", bdev);
358 #else
359 	prt_str(out, bdev->name);
360 #endif
361 }
362 
363 #define NR_QUANTILES	15
364 #define QUANTILE_IDX(i)	inorder_to_eytzinger0(i, NR_QUANTILES)
365 #define QUANTILE_FIRST	eytzinger0_first(NR_QUANTILES)
366 #define QUANTILE_LAST	eytzinger0_last(NR_QUANTILES)
367 
368 struct bch2_quantiles {
369 	struct bch2_quantile_entry {
370 		u64	m;
371 		u64	step;
372 	}		entries[NR_QUANTILES];
373 };
374 
375 struct bch2_time_stat_buffer {
376 	unsigned	nr;
377 	struct bch2_time_stat_buffer_entry {
378 		u64	start;
379 		u64	end;
380 	}		entries[32];
381 };
382 
383 struct bch2_time_stats {
384 	spinlock_t	lock;
385 	/* all fields are in nanoseconds */
386 	u64             min_duration;
387 	u64		max_duration;
388 	u64		total_duration;
389 	u64             max_freq;
390 	u64             min_freq;
391 	u64		last_event;
392 	struct bch2_quantiles quantiles;
393 
394 	struct mean_and_variance	  duration_stats;
395 	struct mean_and_variance_weighted duration_stats_weighted;
396 	struct mean_and_variance	  freq_stats;
397 	struct mean_and_variance_weighted freq_stats_weighted;
398 	struct bch2_time_stat_buffer __percpu *buffer;
399 };
400 
401 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
402 void __bch2_time_stats_update(struct bch2_time_stats *stats, u64, u64);
403 
404 static inline void bch2_time_stats_update(struct bch2_time_stats *stats, u64 start)
405 {
406 	__bch2_time_stats_update(stats, start, local_clock());
407 }
408 
409 static inline bool track_event_change(struct bch2_time_stats *stats,
410 				      u64 *start, bool v)
411 {
412 	if (v != !!*start) {
413 		if (!v) {
414 			bch2_time_stats_update(stats, *start);
415 			*start = 0;
416 		} else {
417 			*start = local_clock() ?: 1;
418 			return true;
419 		}
420 	}
421 
422 	return false;
423 }
424 #else
425 static inline void __bch2_time_stats_update(struct bch2_time_stats *stats, u64 start, u64 end) {}
426 static inline void bch2_time_stats_update(struct bch2_time_stats *stats, u64 start) {}
427 static inline bool track_event_change(struct bch2_time_stats *stats,
428 				      u64 *start, bool v)
429 {
430 	bool ret = v && !*start;
431 	*start = v;
432 	return ret;
433 }
434 #endif
435 
436 void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *);
437 
438 void bch2_time_stats_exit(struct bch2_time_stats *);
439 void bch2_time_stats_init(struct bch2_time_stats *);
440 
441 #define ewma_add(ewma, val, weight)					\
442 ({									\
443 	typeof(ewma) _ewma = (ewma);					\
444 	typeof(weight) _weight = (weight);				\
445 									\
446 	(((_ewma << _weight) - _ewma) + (val)) >> _weight;		\
447 })
448 
449 struct bch_ratelimit {
450 	/* Next time we want to do some work, in nanoseconds */
451 	u64			next;
452 
453 	/*
454 	 * Rate at which we want to do work, in units per nanosecond
455 	 * The units here correspond to the units passed to
456 	 * bch2_ratelimit_increment()
457 	 */
458 	unsigned		rate;
459 };
460 
461 static inline void bch2_ratelimit_reset(struct bch_ratelimit *d)
462 {
463 	d->next = local_clock();
464 }
465 
466 u64 bch2_ratelimit_delay(struct bch_ratelimit *);
467 void bch2_ratelimit_increment(struct bch_ratelimit *, u64);
468 
469 struct bch_pd_controller {
470 	struct bch_ratelimit	rate;
471 	unsigned long		last_update;
472 
473 	s64			last_actual;
474 	s64			smoothed_derivative;
475 
476 	unsigned		p_term_inverse;
477 	unsigned		d_smooth;
478 	unsigned		d_term;
479 
480 	/* for exporting to sysfs (no effect on behavior) */
481 	s64			last_derivative;
482 	s64			last_proportional;
483 	s64			last_change;
484 	s64			last_target;
485 
486 	/*
487 	 * If true, the rate will not increase if bch2_ratelimit_delay()
488 	 * is not being called often enough.
489 	 */
490 	bool			backpressure;
491 };
492 
493 void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int);
494 void bch2_pd_controller_init(struct bch_pd_controller *);
495 void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *);
496 
497 #define sysfs_pd_controller_attribute(name)				\
498 	rw_attribute(name##_rate);					\
499 	rw_attribute(name##_rate_bytes);				\
500 	rw_attribute(name##_rate_d_term);				\
501 	rw_attribute(name##_rate_p_term_inverse);			\
502 	read_attribute(name##_rate_debug)
503 
504 #define sysfs_pd_controller_files(name)					\
505 	&sysfs_##name##_rate,						\
506 	&sysfs_##name##_rate_bytes,					\
507 	&sysfs_##name##_rate_d_term,					\
508 	&sysfs_##name##_rate_p_term_inverse,				\
509 	&sysfs_##name##_rate_debug
510 
511 #define sysfs_pd_controller_show(name, var)				\
512 do {									\
513 	sysfs_hprint(name##_rate,		(var)->rate.rate);	\
514 	sysfs_print(name##_rate_bytes,		(var)->rate.rate);	\
515 	sysfs_print(name##_rate_d_term,		(var)->d_term);		\
516 	sysfs_print(name##_rate_p_term_inverse,	(var)->p_term_inverse);	\
517 									\
518 	if (attr == &sysfs_##name##_rate_debug)				\
519 		bch2_pd_controller_debug_to_text(out, var);		\
520 } while (0)
521 
522 #define sysfs_pd_controller_store(name, var)				\
523 do {									\
524 	sysfs_strtoul_clamp(name##_rate,				\
525 			    (var)->rate.rate, 1, UINT_MAX);		\
526 	sysfs_strtoul_clamp(name##_rate_bytes,				\
527 			    (var)->rate.rate, 1, UINT_MAX);		\
528 	sysfs_strtoul(name##_rate_d_term,	(var)->d_term);		\
529 	sysfs_strtoul_clamp(name##_rate_p_term_inverse,			\
530 			    (var)->p_term_inverse, 1, INT_MAX);		\
531 } while (0)
532 
533 #define container_of_or_null(ptr, type, member)				\
534 ({									\
535 	typeof(ptr) _ptr = ptr;						\
536 	_ptr ? container_of(_ptr, type, member) : NULL;			\
537 })
538 
539 /* Does linear interpolation between powers of two */
540 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
541 {
542 	unsigned fract = x & ~(~0 << fract_bits);
543 
544 	x >>= fract_bits;
545 	x   = 1 << x;
546 	x  += (x * fract) >> fract_bits;
547 
548 	return x;
549 }
550 
551 void bch2_bio_map(struct bio *bio, void *base, size_t);
552 int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t);
553 
554 static inline sector_t bdev_sectors(struct block_device *bdev)
555 {
556 	return bdev->bd_inode->i_size >> 9;
557 }
558 
559 #define closure_bio_submit(bio, cl)					\
560 do {									\
561 	closure_get(cl);						\
562 	submit_bio(bio);						\
563 } while (0)
564 
565 #define kthread_wait(cond)						\
566 ({									\
567 	int _ret = 0;							\
568 									\
569 	while (1) {							\
570 		set_current_state(TASK_INTERRUPTIBLE);			\
571 		if (kthread_should_stop()) {				\
572 			_ret = -1;					\
573 			break;						\
574 		}							\
575 									\
576 		if (cond)						\
577 			break;						\
578 									\
579 		schedule();						\
580 	}								\
581 	set_current_state(TASK_RUNNING);				\
582 	_ret;								\
583 })
584 
585 #define kthread_wait_freezable(cond)					\
586 ({									\
587 	int _ret = 0;							\
588 	while (1) {							\
589 		set_current_state(TASK_INTERRUPTIBLE);			\
590 		if (kthread_should_stop()) {				\
591 			_ret = -1;					\
592 			break;						\
593 		}							\
594 									\
595 		if (cond)						\
596 			break;						\
597 									\
598 		schedule();						\
599 		try_to_freeze();					\
600 	}								\
601 	set_current_state(TASK_RUNNING);				\
602 	_ret;								\
603 })
604 
605 size_t bch2_rand_range(size_t);
606 
607 void memcpy_to_bio(struct bio *, struct bvec_iter, const void *);
608 void memcpy_from_bio(void *, struct bio *, struct bvec_iter);
609 
610 static inline void memcpy_u64s_small(void *dst, const void *src,
611 				     unsigned u64s)
612 {
613 	u64 *d = dst;
614 	const u64 *s = src;
615 
616 	while (u64s--)
617 		*d++ = *s++;
618 }
619 
620 static inline void __memcpy_u64s(void *dst, const void *src,
621 				 unsigned u64s)
622 {
623 #ifdef CONFIG_X86_64
624 	long d0, d1, d2;
625 
626 	asm volatile("rep ; movsq"
627 		     : "=&c" (d0), "=&D" (d1), "=&S" (d2)
628 		     : "0" (u64s), "1" (dst), "2" (src)
629 		     : "memory");
630 #else
631 	u64 *d = dst;
632 	const u64 *s = src;
633 
634 	while (u64s--)
635 		*d++ = *s++;
636 #endif
637 }
638 
639 static inline void memcpy_u64s(void *dst, const void *src,
640 			       unsigned u64s)
641 {
642 	EBUG_ON(!(dst >= src + u64s * sizeof(u64) ||
643 		 dst + u64s * sizeof(u64) <= src));
644 
645 	__memcpy_u64s(dst, src, u64s);
646 }
647 
648 static inline void __memmove_u64s_down(void *dst, const void *src,
649 				       unsigned u64s)
650 {
651 	__memcpy_u64s(dst, src, u64s);
652 }
653 
654 static inline void memmove_u64s_down(void *dst, const void *src,
655 				     unsigned u64s)
656 {
657 	EBUG_ON(dst > src);
658 
659 	__memmove_u64s_down(dst, src, u64s);
660 }
661 
662 static inline void __memmove_u64s_down_small(void *dst, const void *src,
663 				       unsigned u64s)
664 {
665 	memcpy_u64s_small(dst, src, u64s);
666 }
667 
668 static inline void memmove_u64s_down_small(void *dst, const void *src,
669 				     unsigned u64s)
670 {
671 	EBUG_ON(dst > src);
672 
673 	__memmove_u64s_down_small(dst, src, u64s);
674 }
675 
676 static inline void __memmove_u64s_up_small(void *_dst, const void *_src,
677 					   unsigned u64s)
678 {
679 	u64 *dst = (u64 *) _dst + u64s;
680 	u64 *src = (u64 *) _src + u64s;
681 
682 	while (u64s--)
683 		*--dst = *--src;
684 }
685 
686 static inline void memmove_u64s_up_small(void *dst, const void *src,
687 					 unsigned u64s)
688 {
689 	EBUG_ON(dst < src);
690 
691 	__memmove_u64s_up_small(dst, src, u64s);
692 }
693 
694 static inline void __memmove_u64s_up(void *_dst, const void *_src,
695 				     unsigned u64s)
696 {
697 	u64 *dst = (u64 *) _dst + u64s - 1;
698 	u64 *src = (u64 *) _src + u64s - 1;
699 
700 #ifdef CONFIG_X86_64
701 	long d0, d1, d2;
702 
703 	asm volatile("std ;\n"
704 		     "rep ; movsq\n"
705 		     "cld ;\n"
706 		     : "=&c" (d0), "=&D" (d1), "=&S" (d2)
707 		     : "0" (u64s), "1" (dst), "2" (src)
708 		     : "memory");
709 #else
710 	while (u64s--)
711 		*dst-- = *src--;
712 #endif
713 }
714 
715 static inline void memmove_u64s_up(void *dst, const void *src,
716 				   unsigned u64s)
717 {
718 	EBUG_ON(dst < src);
719 
720 	__memmove_u64s_up(dst, src, u64s);
721 }
722 
723 static inline void memmove_u64s(void *dst, const void *src,
724 				unsigned u64s)
725 {
726 	if (dst < src)
727 		__memmove_u64s_down(dst, src, u64s);
728 	else
729 		__memmove_u64s_up(dst, src, u64s);
730 }
731 
732 /* Set the last few bytes up to a u64 boundary given an offset into a buffer. */
733 static inline void memset_u64s_tail(void *s, int c, unsigned bytes)
734 {
735 	unsigned rem = round_up(bytes, sizeof(u64)) - bytes;
736 
737 	memset(s + bytes, c, rem);
738 }
739 
740 void sort_cmp_size(void *base, size_t num, size_t size,
741 	  int (*cmp_func)(const void *, const void *, size_t),
742 	  void (*swap_func)(void *, void *, size_t));
743 
744 /* just the memmove, doesn't update @_nr */
745 #define __array_insert_item(_array, _nr, _pos)				\
746 	memmove(&(_array)[(_pos) + 1],					\
747 		&(_array)[(_pos)],					\
748 		sizeof((_array)[0]) * ((_nr) - (_pos)))
749 
750 #define array_insert_item(_array, _nr, _pos, _new_item)			\
751 do {									\
752 	__array_insert_item(_array, _nr, _pos);				\
753 	(_nr)++;							\
754 	(_array)[(_pos)] = (_new_item);					\
755 } while (0)
756 
757 #define array_remove_items(_array, _nr, _pos, _nr_to_remove)		\
758 do {									\
759 	(_nr) -= (_nr_to_remove);					\
760 	memmove(&(_array)[(_pos)],					\
761 		&(_array)[(_pos) + (_nr_to_remove)],			\
762 		sizeof((_array)[0]) * ((_nr) - (_pos)));		\
763 } while (0)
764 
765 #define array_remove_item(_array, _nr, _pos)				\
766 	array_remove_items(_array, _nr, _pos, 1)
767 
768 static inline void __move_gap(void *array, size_t element_size,
769 			      size_t nr, size_t size,
770 			      size_t old_gap, size_t new_gap)
771 {
772 	size_t gap_end = old_gap + size - nr;
773 
774 	if (new_gap < old_gap) {
775 		size_t move = old_gap - new_gap;
776 
777 		memmove(array + element_size * (gap_end - move),
778 			array + element_size * (old_gap - move),
779 				element_size * move);
780 	} else if (new_gap > old_gap) {
781 		size_t move = new_gap - old_gap;
782 
783 		memmove(array + element_size * old_gap,
784 			array + element_size * gap_end,
785 				element_size * move);
786 	}
787 }
788 
789 /* Move the gap in a gap buffer: */
790 #define move_gap(_array, _nr, _size, _old_gap, _new_gap)	\
791 	__move_gap(_array, sizeof(_array[0]), _nr, _size, _old_gap, _new_gap)
792 
793 #define bubble_sort(_base, _nr, _cmp)					\
794 do {									\
795 	ssize_t _i, _last;						\
796 	bool _swapped = true;						\
797 									\
798 	for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\
799 		_swapped = false;					\
800 		for (_i = 0; _i < _last; _i++)				\
801 			if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) {	\
802 				swap((_base)[_i], (_base)[_i + 1]);	\
803 				_swapped = true;			\
804 			}						\
805 	}								\
806 } while (0)
807 
808 static inline u64 percpu_u64_get(u64 __percpu *src)
809 {
810 	u64 ret = 0;
811 	int cpu;
812 
813 	for_each_possible_cpu(cpu)
814 		ret += *per_cpu_ptr(src, cpu);
815 	return ret;
816 }
817 
818 static inline void percpu_u64_set(u64 __percpu *dst, u64 src)
819 {
820 	int cpu;
821 
822 	for_each_possible_cpu(cpu)
823 		*per_cpu_ptr(dst, cpu) = 0;
824 	this_cpu_write(*dst, src);
825 }
826 
827 static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr)
828 {
829 	unsigned i;
830 
831 	for (i = 0; i < nr; i++)
832 		acc[i] += src[i];
833 }
834 
835 static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src,
836 				   unsigned nr)
837 {
838 	int cpu;
839 
840 	for_each_possible_cpu(cpu)
841 		acc_u64s(acc, per_cpu_ptr(src, cpu), nr);
842 }
843 
844 static inline void percpu_memset(void __percpu *p, int c, size_t bytes)
845 {
846 	int cpu;
847 
848 	for_each_possible_cpu(cpu)
849 		memset(per_cpu_ptr(p, cpu), c, bytes);
850 }
851 
852 u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned);
853 
854 #define cmp_int(l, r)		((l > r) - (l < r))
855 
856 static inline int u8_cmp(u8 l, u8 r)
857 {
858 	return cmp_int(l, r);
859 }
860 
861 static inline int cmp_le32(__le32 l, __le32 r)
862 {
863 	return cmp_int(le32_to_cpu(l), le32_to_cpu(r));
864 }
865 
866 #include <linux/uuid.h>
867 
868 #define QSTR(n) { { { .len = strlen(n) } }, .name = n }
869 
870 static inline bool qstr_eq(const struct qstr l, const struct qstr r)
871 {
872 	return l.len == r.len && !memcmp(l.name, r.name, l.len);
873 }
874 
875 void bch2_darray_str_exit(darray_str *);
876 int bch2_split_devs(const char *, darray_str *);
877 
878 #endif /* _BCACHEFS_UTIL_H */
879