1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _BCACHEFS_UTIL_H 3 #define _BCACHEFS_UTIL_H 4 5 #include <linux/bio.h> 6 #include <linux/blkdev.h> 7 #include <linux/closure.h> 8 #include <linux/errno.h> 9 #include <linux/freezer.h> 10 #include <linux/kernel.h> 11 #include <linux/min_heap.h> 12 #include <linux/sched/clock.h> 13 #include <linux/llist.h> 14 #include <linux/log2.h> 15 #include <linux/percpu.h> 16 #include <linux/preempt.h> 17 #include <linux/ratelimit.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/workqueue.h> 21 22 #include "mean_and_variance.h" 23 24 #include "darray.h" 25 #include "time_stats.h" 26 27 struct closure; 28 29 #ifdef CONFIG_BCACHEFS_DEBUG 30 #define EBUG_ON(cond) BUG_ON(cond) 31 #else 32 #define EBUG_ON(cond) 33 #endif 34 35 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 36 #define CPU_BIG_ENDIAN 0 37 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 38 #define CPU_BIG_ENDIAN 1 39 #endif 40 41 /* type hackery */ 42 43 #define type_is_exact(_val, _type) \ 44 __builtin_types_compatible_p(typeof(_val), _type) 45 46 #define type_is(_val, _type) \ 47 (__builtin_types_compatible_p(typeof(_val), _type) || \ 48 __builtin_types_compatible_p(typeof(_val), const _type)) 49 50 /* Userspace doesn't align allocations as nicely as the kernel allocators: */ 51 static inline size_t buf_pages(void *p, size_t len) 52 { 53 return DIV_ROUND_UP(len + 54 ((unsigned long) p & (PAGE_SIZE - 1)), 55 PAGE_SIZE); 56 } 57 58 static inline void *bch2_kvmalloc(size_t n, gfp_t flags) 59 { 60 void *p = unlikely(n >= INT_MAX) 61 ? vmalloc(n) 62 : kvmalloc(n, flags & ~__GFP_ZERO); 63 if (p && (flags & __GFP_ZERO)) 64 memset(p, 0, n); 65 return p; 66 } 67 68 #define init_heap(heap, _size, gfp) \ 69 ({ \ 70 (heap)->nr = 0; \ 71 (heap)->size = (_size); \ 72 (heap)->data = kvmalloc((heap)->size * sizeof((heap)->data[0]),\ 73 (gfp)); \ 74 }) 75 76 #define free_heap(heap) \ 77 do { \ 78 kvfree((heap)->data); \ 79 (heap)->data = NULL; \ 80 } while (0) 81 82 #define ANYSINT_MAX(t) \ 83 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) 84 85 #include "printbuf.h" 86 87 #define prt_vprintf(_out, ...) bch2_prt_vprintf(_out, __VA_ARGS__) 88 #define prt_printf(_out, ...) bch2_prt_printf(_out, __VA_ARGS__) 89 #define printbuf_str(_buf) bch2_printbuf_str(_buf) 90 #define printbuf_exit(_buf) bch2_printbuf_exit(_buf) 91 92 #define printbuf_tabstops_reset(_buf) bch2_printbuf_tabstops_reset(_buf) 93 #define printbuf_tabstop_pop(_buf) bch2_printbuf_tabstop_pop(_buf) 94 #define printbuf_tabstop_push(_buf, _n) bch2_printbuf_tabstop_push(_buf, _n) 95 96 #define printbuf_indent_add(_out, _n) bch2_printbuf_indent_add(_out, _n) 97 #define printbuf_indent_sub(_out, _n) bch2_printbuf_indent_sub(_out, _n) 98 99 #define prt_newline(_out) bch2_prt_newline(_out) 100 #define prt_tab(_out) bch2_prt_tab(_out) 101 #define prt_tab_rjust(_out) bch2_prt_tab_rjust(_out) 102 103 #define prt_bytes_indented(...) bch2_prt_bytes_indented(__VA_ARGS__) 104 #define prt_u64(_out, _v) prt_printf(_out, "%llu", (u64) (_v)) 105 #define prt_human_readable_u64(...) bch2_prt_human_readable_u64(__VA_ARGS__) 106 #define prt_human_readable_s64(...) bch2_prt_human_readable_s64(__VA_ARGS__) 107 #define prt_units_u64(...) bch2_prt_units_u64(__VA_ARGS__) 108 #define prt_units_s64(...) bch2_prt_units_s64(__VA_ARGS__) 109 #define prt_string_option(...) bch2_prt_string_option(__VA_ARGS__) 110 #define prt_bitflags(...) bch2_prt_bitflags(__VA_ARGS__) 111 #define prt_bitflags_vector(...) bch2_prt_bitflags_vector(__VA_ARGS__) 112 113 void bch2_pr_time_units(struct printbuf *, u64); 114 void bch2_prt_datetime(struct printbuf *, time64_t); 115 116 #ifdef __KERNEL__ 117 static inline void uuid_unparse_lower(u8 *uuid, char *out) 118 { 119 sprintf(out, "%pUb", uuid); 120 } 121 #else 122 #include <uuid/uuid.h> 123 #endif 124 125 static inline void pr_uuid(struct printbuf *out, u8 *uuid) 126 { 127 char uuid_str[40]; 128 129 uuid_unparse_lower(uuid, uuid_str); 130 prt_printf(out, "%s", uuid_str); 131 } 132 133 int bch2_strtoint_h(const char *, int *); 134 int bch2_strtouint_h(const char *, unsigned int *); 135 int bch2_strtoll_h(const char *, long long *); 136 int bch2_strtoull_h(const char *, unsigned long long *); 137 int bch2_strtou64_h(const char *, u64 *); 138 139 static inline int bch2_strtol_h(const char *cp, long *res) 140 { 141 #if BITS_PER_LONG == 32 142 return bch2_strtoint_h(cp, (int *) res); 143 #else 144 return bch2_strtoll_h(cp, (long long *) res); 145 #endif 146 } 147 148 static inline int bch2_strtoul_h(const char *cp, long *res) 149 { 150 #if BITS_PER_LONG == 32 151 return bch2_strtouint_h(cp, (unsigned int *) res); 152 #else 153 return bch2_strtoull_h(cp, (unsigned long long *) res); 154 #endif 155 } 156 157 #define strtoi_h(cp, res) \ 158 ( type_is(*res, int) ? bch2_strtoint_h(cp, (void *) res)\ 159 : type_is(*res, long) ? bch2_strtol_h(cp, (void *) res)\ 160 : type_is(*res, long long) ? bch2_strtoll_h(cp, (void *) res)\ 161 : type_is(*res, unsigned) ? bch2_strtouint_h(cp, (void *) res)\ 162 : type_is(*res, unsigned long) ? bch2_strtoul_h(cp, (void *) res)\ 163 : type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\ 164 : -EINVAL) 165 166 #define strtoul_safe(cp, var) \ 167 ({ \ 168 unsigned long _v; \ 169 int _r = kstrtoul(cp, 10, &_v); \ 170 if (!_r) \ 171 var = _v; \ 172 _r; \ 173 }) 174 175 #define strtoul_safe_clamp(cp, var, min, max) \ 176 ({ \ 177 unsigned long _v; \ 178 int _r = kstrtoul(cp, 10, &_v); \ 179 if (!_r) \ 180 var = clamp_t(typeof(var), _v, min, max); \ 181 _r; \ 182 }) 183 184 #define strtoul_safe_restrict(cp, var, min, max) \ 185 ({ \ 186 unsigned long _v; \ 187 int _r = kstrtoul(cp, 10, &_v); \ 188 if (!_r && _v >= min && _v <= max) \ 189 var = _v; \ 190 else \ 191 _r = -EINVAL; \ 192 _r; \ 193 }) 194 195 #define snprint(out, var) \ 196 prt_printf(out, \ 197 type_is(var, int) ? "%i\n" \ 198 : type_is(var, unsigned) ? "%u\n" \ 199 : type_is(var, long) ? "%li\n" \ 200 : type_is(var, unsigned long) ? "%lu\n" \ 201 : type_is(var, s64) ? "%lli\n" \ 202 : type_is(var, u64) ? "%llu\n" \ 203 : type_is(var, char *) ? "%s\n" \ 204 : "%i\n", var) 205 206 bool bch2_is_zero(const void *, size_t); 207 208 u64 bch2_read_flag_list(const char *, const char * const[]); 209 210 void bch2_prt_u64_base2_nbits(struct printbuf *, u64, unsigned); 211 void bch2_prt_u64_base2(struct printbuf *, u64); 212 213 void bch2_print_string_as_lines(const char *prefix, const char *lines); 214 void bch2_print_string_as_lines_nonblocking(const char *prefix, const char *lines); 215 216 typedef DARRAY(unsigned long) bch_stacktrace; 217 int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *, unsigned, gfp_t); 218 void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *); 219 int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *, unsigned, gfp_t); 220 221 static inline void prt_bdevname(struct printbuf *out, struct block_device *bdev) 222 { 223 #ifdef __KERNEL__ 224 prt_printf(out, "%pg", bdev); 225 #else 226 prt_str(out, bdev->name); 227 #endif 228 } 229 230 void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *); 231 232 #define ewma_add(ewma, val, weight) \ 233 ({ \ 234 typeof(ewma) _ewma = (ewma); \ 235 typeof(weight) _weight = (weight); \ 236 \ 237 (((_ewma << _weight) - _ewma) + (val)) >> _weight; \ 238 }) 239 240 struct bch_ratelimit { 241 /* Next time we want to do some work, in nanoseconds */ 242 u64 next; 243 244 /* 245 * Rate at which we want to do work, in units per nanosecond 246 * The units here correspond to the units passed to 247 * bch2_ratelimit_increment() 248 */ 249 unsigned rate; 250 }; 251 252 static inline void bch2_ratelimit_reset(struct bch_ratelimit *d) 253 { 254 d->next = local_clock(); 255 } 256 257 u64 bch2_ratelimit_delay(struct bch_ratelimit *); 258 void bch2_ratelimit_increment(struct bch_ratelimit *, u64); 259 260 struct bch_pd_controller { 261 struct bch_ratelimit rate; 262 unsigned long last_update; 263 264 s64 last_actual; 265 s64 smoothed_derivative; 266 267 unsigned p_term_inverse; 268 unsigned d_smooth; 269 unsigned d_term; 270 271 /* for exporting to sysfs (no effect on behavior) */ 272 s64 last_derivative; 273 s64 last_proportional; 274 s64 last_change; 275 s64 last_target; 276 277 /* 278 * If true, the rate will not increase if bch2_ratelimit_delay() 279 * is not being called often enough. 280 */ 281 bool backpressure; 282 }; 283 284 void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int); 285 void bch2_pd_controller_init(struct bch_pd_controller *); 286 void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *); 287 288 #define sysfs_pd_controller_attribute(name) \ 289 rw_attribute(name##_rate); \ 290 rw_attribute(name##_rate_bytes); \ 291 rw_attribute(name##_rate_d_term); \ 292 rw_attribute(name##_rate_p_term_inverse); \ 293 read_attribute(name##_rate_debug) 294 295 #define sysfs_pd_controller_files(name) \ 296 &sysfs_##name##_rate, \ 297 &sysfs_##name##_rate_bytes, \ 298 &sysfs_##name##_rate_d_term, \ 299 &sysfs_##name##_rate_p_term_inverse, \ 300 &sysfs_##name##_rate_debug 301 302 #define sysfs_pd_controller_show(name, var) \ 303 do { \ 304 sysfs_hprint(name##_rate, (var)->rate.rate); \ 305 sysfs_print(name##_rate_bytes, (var)->rate.rate); \ 306 sysfs_print(name##_rate_d_term, (var)->d_term); \ 307 sysfs_print(name##_rate_p_term_inverse, (var)->p_term_inverse); \ 308 \ 309 if (attr == &sysfs_##name##_rate_debug) \ 310 bch2_pd_controller_debug_to_text(out, var); \ 311 } while (0) 312 313 #define sysfs_pd_controller_store(name, var) \ 314 do { \ 315 sysfs_strtoul_clamp(name##_rate, \ 316 (var)->rate.rate, 1, UINT_MAX); \ 317 sysfs_strtoul_clamp(name##_rate_bytes, \ 318 (var)->rate.rate, 1, UINT_MAX); \ 319 sysfs_strtoul(name##_rate_d_term, (var)->d_term); \ 320 sysfs_strtoul_clamp(name##_rate_p_term_inverse, \ 321 (var)->p_term_inverse, 1, INT_MAX); \ 322 } while (0) 323 324 #define container_of_or_null(ptr, type, member) \ 325 ({ \ 326 typeof(ptr) _ptr = ptr; \ 327 _ptr ? container_of(_ptr, type, member) : NULL; \ 328 }) 329 330 static inline struct list_head *list_pop(struct list_head *head) 331 { 332 if (list_empty(head)) 333 return NULL; 334 335 struct list_head *ret = head->next; 336 list_del_init(ret); 337 return ret; 338 } 339 340 #define list_pop_entry(head, type, member) \ 341 container_of_or_null(list_pop(head), type, member) 342 343 /* Does linear interpolation between powers of two */ 344 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits) 345 { 346 unsigned fract = x & ~(~0 << fract_bits); 347 348 x >>= fract_bits; 349 x = 1 << x; 350 x += (x * fract) >> fract_bits; 351 352 return x; 353 } 354 355 void bch2_bio_map(struct bio *bio, void *base, size_t); 356 int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t); 357 358 #define closure_bio_submit(bio, cl) \ 359 do { \ 360 closure_get(cl); \ 361 submit_bio(bio); \ 362 } while (0) 363 364 #define kthread_wait(cond) \ 365 ({ \ 366 int _ret = 0; \ 367 \ 368 while (1) { \ 369 set_current_state(TASK_INTERRUPTIBLE); \ 370 if (kthread_should_stop()) { \ 371 _ret = -1; \ 372 break; \ 373 } \ 374 \ 375 if (cond) \ 376 break; \ 377 \ 378 schedule(); \ 379 } \ 380 set_current_state(TASK_RUNNING); \ 381 _ret; \ 382 }) 383 384 #define kthread_wait_freezable(cond) \ 385 ({ \ 386 int _ret = 0; \ 387 while (1) { \ 388 set_current_state(TASK_INTERRUPTIBLE); \ 389 if (kthread_should_stop()) { \ 390 _ret = -1; \ 391 break; \ 392 } \ 393 \ 394 if (cond) \ 395 break; \ 396 \ 397 schedule(); \ 398 try_to_freeze(); \ 399 } \ 400 set_current_state(TASK_RUNNING); \ 401 _ret; \ 402 }) 403 404 u64 bch2_get_random_u64_below(u64); 405 406 void memcpy_to_bio(struct bio *, struct bvec_iter, const void *); 407 void memcpy_from_bio(void *, struct bio *, struct bvec_iter); 408 409 #ifdef CONFIG_BCACHEFS_DEBUG 410 void bch2_corrupt_bio(struct bio *); 411 412 static inline void bch2_maybe_corrupt_bio(struct bio *bio, unsigned ratio) 413 { 414 if (ratio && !get_random_u32_below(ratio)) 415 bch2_corrupt_bio(bio); 416 } 417 #else 418 #define bch2_maybe_corrupt_bio(...) do {} while (0) 419 #endif 420 421 static inline void memcpy_u64s_small(void *dst, const void *src, 422 unsigned u64s) 423 { 424 u64 *d = dst; 425 const u64 *s = src; 426 427 while (u64s--) 428 *d++ = *s++; 429 } 430 431 static inline void __memcpy_u64s(void *dst, const void *src, 432 unsigned u64s) 433 { 434 #if defined(CONFIG_X86_64) && !defined(CONFIG_KMSAN) 435 long d0, d1, d2; 436 437 asm volatile("rep ; movsq" 438 : "=&c" (d0), "=&D" (d1), "=&S" (d2) 439 : "0" (u64s), "1" (dst), "2" (src) 440 : "memory"); 441 #else 442 u64 *d = dst; 443 const u64 *s = src; 444 445 while (u64s--) 446 *d++ = *s++; 447 #endif 448 } 449 450 static inline void memcpy_u64s(void *dst, const void *src, 451 unsigned u64s) 452 { 453 EBUG_ON(!(dst >= src + u64s * sizeof(u64) || 454 dst + u64s * sizeof(u64) <= src)); 455 456 __memcpy_u64s(dst, src, u64s); 457 } 458 459 static inline void __memmove_u64s_down(void *dst, const void *src, 460 unsigned u64s) 461 { 462 __memcpy_u64s(dst, src, u64s); 463 } 464 465 static inline void memmove_u64s_down(void *dst, const void *src, 466 unsigned u64s) 467 { 468 EBUG_ON(dst > src); 469 470 __memmove_u64s_down(dst, src, u64s); 471 } 472 473 static inline void __memmove_u64s_down_small(void *dst, const void *src, 474 unsigned u64s) 475 { 476 memcpy_u64s_small(dst, src, u64s); 477 } 478 479 static inline void memmove_u64s_down_small(void *dst, const void *src, 480 unsigned u64s) 481 { 482 EBUG_ON(dst > src); 483 484 __memmove_u64s_down_small(dst, src, u64s); 485 } 486 487 static inline void __memmove_u64s_up_small(void *_dst, const void *_src, 488 unsigned u64s) 489 { 490 u64 *dst = (u64 *) _dst + u64s; 491 u64 *src = (u64 *) _src + u64s; 492 493 while (u64s--) 494 *--dst = *--src; 495 } 496 497 static inline void memmove_u64s_up_small(void *dst, const void *src, 498 unsigned u64s) 499 { 500 EBUG_ON(dst < src); 501 502 __memmove_u64s_up_small(dst, src, u64s); 503 } 504 505 static inline void __memmove_u64s_up(void *_dst, const void *_src, 506 unsigned u64s) 507 { 508 u64 *dst = (u64 *) _dst + u64s - 1; 509 u64 *src = (u64 *) _src + u64s - 1; 510 511 #if defined(CONFIG_X86_64) && !defined(CONFIG_KMSAN) 512 long d0, d1, d2; 513 514 asm volatile("std ;\n" 515 "rep ; movsq\n" 516 "cld ;\n" 517 : "=&c" (d0), "=&D" (d1), "=&S" (d2) 518 : "0" (u64s), "1" (dst), "2" (src) 519 : "memory"); 520 #else 521 while (u64s--) 522 *dst-- = *src--; 523 #endif 524 } 525 526 static inline void memmove_u64s_up(void *dst, const void *src, 527 unsigned u64s) 528 { 529 EBUG_ON(dst < src); 530 531 __memmove_u64s_up(dst, src, u64s); 532 } 533 534 static inline void memmove_u64s(void *dst, const void *src, 535 unsigned u64s) 536 { 537 if (dst < src) 538 __memmove_u64s_down(dst, src, u64s); 539 else 540 __memmove_u64s_up(dst, src, u64s); 541 } 542 543 /* Set the last few bytes up to a u64 boundary given an offset into a buffer. */ 544 static inline void memset_u64s_tail(void *s, int c, unsigned bytes) 545 { 546 unsigned rem = round_up(bytes, sizeof(u64)) - bytes; 547 548 memset(s + bytes, c, rem); 549 } 550 551 /* just the memmove, doesn't update @_nr */ 552 #define __array_insert_item(_array, _nr, _pos) \ 553 memmove(&(_array)[(_pos) + 1], \ 554 &(_array)[(_pos)], \ 555 sizeof((_array)[0]) * ((_nr) - (_pos))) 556 557 #define array_insert_item(_array, _nr, _pos, _new_item) \ 558 do { \ 559 __array_insert_item(_array, _nr, _pos); \ 560 (_nr)++; \ 561 (_array)[(_pos)] = (_new_item); \ 562 } while (0) 563 564 #define array_remove_items(_array, _nr, _pos, _nr_to_remove) \ 565 do { \ 566 (_nr) -= (_nr_to_remove); \ 567 memmove(&(_array)[(_pos)], \ 568 &(_array)[(_pos) + (_nr_to_remove)], \ 569 sizeof((_array)[0]) * ((_nr) - (_pos))); \ 570 } while (0) 571 572 #define array_remove_item(_array, _nr, _pos) \ 573 array_remove_items(_array, _nr, _pos, 1) 574 575 static inline void __move_gap(void *array, size_t element_size, 576 size_t nr, size_t size, 577 size_t old_gap, size_t new_gap) 578 { 579 size_t gap_end = old_gap + size - nr; 580 581 if (new_gap < old_gap) { 582 size_t move = old_gap - new_gap; 583 584 memmove(array + element_size * (gap_end - move), 585 array + element_size * (old_gap - move), 586 element_size * move); 587 } else if (new_gap > old_gap) { 588 size_t move = new_gap - old_gap; 589 590 memmove(array + element_size * old_gap, 591 array + element_size * gap_end, 592 element_size * move); 593 } 594 } 595 596 /* Move the gap in a gap buffer: */ 597 #define move_gap(_d, _new_gap) \ 598 do { \ 599 BUG_ON(_new_gap > (_d)->nr); \ 600 BUG_ON((_d)->gap > (_d)->nr); \ 601 \ 602 __move_gap((_d)->data, sizeof((_d)->data[0]), \ 603 (_d)->nr, (_d)->size, (_d)->gap, _new_gap); \ 604 (_d)->gap = _new_gap; \ 605 } while (0) 606 607 #define bubble_sort(_base, _nr, _cmp) \ 608 do { \ 609 ssize_t _i, _last; \ 610 bool _swapped = true; \ 611 \ 612 for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\ 613 _swapped = false; \ 614 for (_i = 0; _i < _last; _i++) \ 615 if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) { \ 616 swap((_base)[_i], (_base)[_i + 1]); \ 617 _swapped = true; \ 618 } \ 619 } \ 620 } while (0) 621 622 #define per_cpu_sum(_p) \ 623 ({ \ 624 typeof(*_p) _ret = 0; \ 625 \ 626 int cpu; \ 627 for_each_possible_cpu(cpu) \ 628 _ret += *per_cpu_ptr(_p, cpu); \ 629 _ret; \ 630 }) 631 632 static inline u64 percpu_u64_get(u64 __percpu *src) 633 { 634 return per_cpu_sum(src); 635 } 636 637 static inline void percpu_u64_set(u64 __percpu *dst, u64 src) 638 { 639 int cpu; 640 641 for_each_possible_cpu(cpu) 642 *per_cpu_ptr(dst, cpu) = 0; 643 this_cpu_write(*dst, src); 644 } 645 646 static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr) 647 { 648 for (unsigned i = 0; i < nr; i++) 649 acc[i] += src[i]; 650 } 651 652 static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src, 653 unsigned nr) 654 { 655 int cpu; 656 657 for_each_possible_cpu(cpu) 658 acc_u64s(acc, per_cpu_ptr(src, cpu), nr); 659 } 660 661 static inline void percpu_memset(void __percpu *p, int c, size_t bytes) 662 { 663 int cpu; 664 665 for_each_possible_cpu(cpu) 666 memset(per_cpu_ptr(p, cpu), c, bytes); 667 } 668 669 u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned); 670 671 #define cmp_int(l, r) ((l > r) - (l < r)) 672 673 static inline int u8_cmp(u8 l, u8 r) 674 { 675 return cmp_int(l, r); 676 } 677 678 static inline int cmp_le32(__le32 l, __le32 r) 679 { 680 return cmp_int(le32_to_cpu(l), le32_to_cpu(r)); 681 } 682 683 #include <linux/uuid.h> 684 685 static inline bool qstr_eq(const struct qstr l, const struct qstr r) 686 { 687 return l.len == r.len && !memcmp(l.name, r.name, l.len); 688 } 689 690 void bch2_darray_str_exit(darray_str *); 691 int bch2_split_devs(const char *, darray_str *); 692 693 #ifdef __KERNEL__ 694 695 __must_check 696 static inline int copy_to_user_errcode(void __user *to, const void *from, unsigned long n) 697 { 698 return copy_to_user(to, from, n) ? -EFAULT : 0; 699 } 700 701 __must_check 702 static inline int copy_from_user_errcode(void *to, const void __user *from, unsigned long n) 703 { 704 return copy_from_user(to, from, n) ? -EFAULT : 0; 705 } 706 707 #endif 708 709 static inline void mod_bit(long nr, volatile unsigned long *addr, bool v) 710 { 711 if (v) 712 set_bit(nr, addr); 713 else 714 clear_bit(nr, addr); 715 } 716 717 static inline void __set_bit_le64(size_t bit, __le64 *addr) 718 { 719 addr[bit / 64] |= cpu_to_le64(BIT_ULL(bit % 64)); 720 } 721 722 static inline void __clear_bit_le64(size_t bit, __le64 *addr) 723 { 724 addr[bit / 64] &= ~cpu_to_le64(BIT_ULL(bit % 64)); 725 } 726 727 static inline bool test_bit_le64(size_t bit, __le64 *addr) 728 { 729 return (addr[bit / 64] & cpu_to_le64(BIT_ULL(bit % 64))) != 0; 730 } 731 732 static inline void memcpy_swab(void *_dst, void *_src, size_t len) 733 { 734 u8 *dst = _dst + len; 735 u8 *src = _src; 736 737 while (len--) 738 *--dst = *src++; 739 } 740 741 #endif /* _BCACHEFS_UTIL_H */ 742