xref: /linux/fs/bcachefs/util.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * random utiility code, for bcache but in theory not specific to bcache
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include <linux/bio.h>
10 #include <linux/blkdev.h>
11 #include <linux/console.h>
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/freezer.h>
15 #include <linux/kthread.h>
16 #include <linux/log2.h>
17 #include <linux/math64.h>
18 #include <linux/percpu.h>
19 #include <linux/preempt.h>
20 #include <linux/random.h>
21 #include <linux/seq_file.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/sched/clock.h>
25 
26 #include "eytzinger.h"
27 #include "mean_and_variance.h"
28 #include "util.h"
29 
30 static const char si_units[] = "?kMGTPEZY";
31 
32 /* string_get_size units: */
33 static const char *const units_2[] = {
34 	"B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB", "ZiB", "YiB"
35 };
36 static const char *const units_10[] = {
37 	"B", "kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"
38 };
39 
40 static int parse_u64(const char *cp, u64 *res)
41 {
42 	const char *start = cp;
43 	u64 v = 0;
44 
45 	if (!isdigit(*cp))
46 		return -EINVAL;
47 
48 	do {
49 		if (v > U64_MAX / 10)
50 			return -ERANGE;
51 		v *= 10;
52 		if (v > U64_MAX - (*cp - '0'))
53 			return -ERANGE;
54 		v += *cp - '0';
55 		cp++;
56 	} while (isdigit(*cp));
57 
58 	*res = v;
59 	return cp - start;
60 }
61 
62 static int bch2_pow(u64 n, u64 p, u64 *res)
63 {
64 	*res = 1;
65 
66 	while (p--) {
67 		if (*res > div_u64(U64_MAX, n))
68 			return -ERANGE;
69 		*res *= n;
70 	}
71 	return 0;
72 }
73 
74 static int parse_unit_suffix(const char *cp, u64 *res)
75 {
76 	const char *start = cp;
77 	u64 base = 1024;
78 	unsigned u;
79 	int ret;
80 
81 	if (*cp == ' ')
82 		cp++;
83 
84 	for (u = 1; u < strlen(si_units); u++)
85 		if (*cp == si_units[u]) {
86 			cp++;
87 			goto got_unit;
88 		}
89 
90 	for (u = 0; u < ARRAY_SIZE(units_2); u++)
91 		if (!strncmp(cp, units_2[u], strlen(units_2[u]))) {
92 			cp += strlen(units_2[u]);
93 			goto got_unit;
94 		}
95 
96 	for (u = 0; u < ARRAY_SIZE(units_10); u++)
97 		if (!strncmp(cp, units_10[u], strlen(units_10[u]))) {
98 			cp += strlen(units_10[u]);
99 			base = 1000;
100 			goto got_unit;
101 		}
102 
103 	*res = 1;
104 	return 0;
105 got_unit:
106 	ret = bch2_pow(base, u, res);
107 	if (ret)
108 		return ret;
109 
110 	return cp - start;
111 }
112 
113 #define parse_or_ret(cp, _f)			\
114 do {						\
115 	int _ret = _f;				\
116 	if (_ret < 0)				\
117 		return _ret;			\
118 	cp += _ret;				\
119 } while (0)
120 
121 static int __bch2_strtou64_h(const char *cp, u64 *res)
122 {
123 	const char *start = cp;
124 	u64 v = 0, b, f_n = 0, f_d = 1;
125 	int ret;
126 
127 	parse_or_ret(cp, parse_u64(cp, &v));
128 
129 	if (*cp == '.') {
130 		cp++;
131 		ret = parse_u64(cp, &f_n);
132 		if (ret < 0)
133 			return ret;
134 		cp += ret;
135 
136 		ret = bch2_pow(10, ret, &f_d);
137 		if (ret)
138 			return ret;
139 	}
140 
141 	parse_or_ret(cp, parse_unit_suffix(cp, &b));
142 
143 	if (v > div_u64(U64_MAX, b))
144 		return -ERANGE;
145 	v *= b;
146 
147 	if (f_n > div_u64(U64_MAX, b))
148 		return -ERANGE;
149 
150 	f_n = div_u64(f_n * b, f_d);
151 	if (v + f_n < v)
152 		return -ERANGE;
153 	v += f_n;
154 
155 	*res = v;
156 	return cp - start;
157 }
158 
159 static int __bch2_strtoh(const char *cp, u64 *res,
160 			 u64 t_max, bool t_signed)
161 {
162 	bool positive = *cp != '-';
163 	u64 v = 0;
164 
165 	if (*cp == '+' || *cp == '-')
166 		cp++;
167 
168 	parse_or_ret(cp, __bch2_strtou64_h(cp, &v));
169 
170 	if (*cp == '\n')
171 		cp++;
172 	if (*cp)
173 		return -EINVAL;
174 
175 	if (positive) {
176 		if (v > t_max)
177 			return -ERANGE;
178 	} else {
179 		if (v && !t_signed)
180 			return -ERANGE;
181 
182 		if (v > t_max + 1)
183 			return -ERANGE;
184 		v = -v;
185 	}
186 
187 	*res = v;
188 	return 0;
189 }
190 
191 #define STRTO_H(name, type)					\
192 int bch2_ ## name ## _h(const char *cp, type *res)		\
193 {								\
194 	u64 v = 0;						\
195 	int ret = __bch2_strtoh(cp, &v, ANYSINT_MAX(type),	\
196 			ANYSINT_MAX(type) != ((type) ~0ULL));	\
197 	*res = v;						\
198 	return ret;						\
199 }
200 
201 STRTO_H(strtoint, int)
202 STRTO_H(strtouint, unsigned int)
203 STRTO_H(strtoll, long long)
204 STRTO_H(strtoull, unsigned long long)
205 STRTO_H(strtou64, u64)
206 
207 u64 bch2_read_flag_list(char *opt, const char * const list[])
208 {
209 	u64 ret = 0;
210 	char *p, *s, *d = kstrdup(opt, GFP_KERNEL);
211 
212 	if (!d)
213 		return -ENOMEM;
214 
215 	s = strim(d);
216 
217 	while ((p = strsep(&s, ","))) {
218 		int flag = match_string(list, -1, p);
219 
220 		if (flag < 0) {
221 			ret = -1;
222 			break;
223 		}
224 
225 		ret |= 1 << flag;
226 	}
227 
228 	kfree(d);
229 
230 	return ret;
231 }
232 
233 bool bch2_is_zero(const void *_p, size_t n)
234 {
235 	const char *p = _p;
236 	size_t i;
237 
238 	for (i = 0; i < n; i++)
239 		if (p[i])
240 			return false;
241 	return true;
242 }
243 
244 void bch2_prt_u64_binary(struct printbuf *out, u64 v, unsigned nr_bits)
245 {
246 	while (nr_bits)
247 		prt_char(out, '0' + ((v >> --nr_bits) & 1));
248 }
249 
250 void bch2_print_string_as_lines(const char *prefix, const char *lines)
251 {
252 	const char *p;
253 
254 	if (!lines) {
255 		printk("%s (null)\n", prefix);
256 		return;
257 	}
258 
259 	console_lock();
260 	while (1) {
261 		p = strchrnul(lines, '\n');
262 		printk("%s%.*s\n", prefix, (int) (p - lines), lines);
263 		if (!*p)
264 			break;
265 		lines = p + 1;
266 	}
267 	console_unlock();
268 }
269 
270 int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *task)
271 {
272 #ifdef CONFIG_STACKTRACE
273 	unsigned nr_entries = 0;
274 	int ret = 0;
275 
276 	stack->nr = 0;
277 	ret = darray_make_room(stack, 32);
278 	if (ret)
279 		return ret;
280 
281 	if (!down_read_trylock(&task->signal->exec_update_lock))
282 		return -1;
283 
284 	do {
285 		nr_entries = stack_trace_save_tsk(task, stack->data, stack->size, 0);
286 	} while (nr_entries == stack->size &&
287 		 !(ret = darray_make_room(stack, stack->size * 2)));
288 
289 	stack->nr = nr_entries;
290 	up_read(&task->signal->exec_update_lock);
291 
292 	return ret;
293 #else
294 	return 0;
295 #endif
296 }
297 
298 void bch2_prt_backtrace(struct printbuf *out, bch_stacktrace *stack)
299 {
300 	unsigned long *i;
301 
302 	darray_for_each(*stack, i) {
303 		prt_printf(out, "[<0>] %pB", (void *) *i);
304 		prt_newline(out);
305 	}
306 }
307 
308 int bch2_prt_task_backtrace(struct printbuf *out, struct task_struct *task)
309 {
310 	bch_stacktrace stack = { 0 };
311 	int ret = bch2_save_backtrace(&stack, task);
312 
313 	bch2_prt_backtrace(out, &stack);
314 	darray_exit(&stack);
315 	return ret;
316 }
317 
318 /* time stats: */
319 
320 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
321 static void bch2_quantiles_update(struct bch2_quantiles *q, u64 v)
322 {
323 	unsigned i = 0;
324 
325 	while (i < ARRAY_SIZE(q->entries)) {
326 		struct bch2_quantile_entry *e = q->entries + i;
327 
328 		if (unlikely(!e->step)) {
329 			e->m = v;
330 			e->step = max_t(unsigned, v / 2, 1024);
331 		} else if (e->m > v) {
332 			e->m = e->m >= e->step
333 				? e->m - e->step
334 				: 0;
335 		} else if (e->m < v) {
336 			e->m = e->m + e->step > e->m
337 				? e->m + e->step
338 				: U32_MAX;
339 		}
340 
341 		if ((e->m > v ? e->m - v : v - e->m) < e->step)
342 			e->step = max_t(unsigned, e->step / 2, 1);
343 
344 		if (v >= e->m)
345 			break;
346 
347 		i = eytzinger0_child(i, v > e->m);
348 	}
349 }
350 
351 static inline void bch2_time_stats_update_one(struct bch2_time_stats *stats,
352 					      u64 start, u64 end)
353 {
354 	u64 duration, freq;
355 
356 	if (time_after64(end, start)) {
357 		duration = end - start;
358 		mean_and_variance_update(&stats->duration_stats, duration);
359 		mean_and_variance_weighted_update(&stats->duration_stats_weighted, duration);
360 		stats->max_duration = max(stats->max_duration, duration);
361 		stats->min_duration = min(stats->min_duration, duration);
362 		bch2_quantiles_update(&stats->quantiles, duration);
363 	}
364 
365 	if (time_after64(end, stats->last_event)) {
366 		freq = end - stats->last_event;
367 		mean_and_variance_update(&stats->freq_stats, freq);
368 		mean_and_variance_weighted_update(&stats->freq_stats_weighted, freq);
369 		stats->max_freq = max(stats->max_freq, freq);
370 		stats->min_freq = min(stats->min_freq, freq);
371 		stats->last_event = end;
372 	}
373 }
374 
375 static noinline void bch2_time_stats_clear_buffer(struct bch2_time_stats *stats,
376 						  struct bch2_time_stat_buffer *b)
377 {
378 	struct bch2_time_stat_buffer_entry *i;
379 	unsigned long flags;
380 
381 	spin_lock_irqsave(&stats->lock, flags);
382 	for (i = b->entries;
383 	     i < b->entries + ARRAY_SIZE(b->entries);
384 	     i++)
385 		bch2_time_stats_update_one(stats, i->start, i->end);
386 	spin_unlock_irqrestore(&stats->lock, flags);
387 
388 	b->nr = 0;
389 }
390 
391 void __bch2_time_stats_update(struct bch2_time_stats *stats, u64 start, u64 end)
392 {
393 	unsigned long flags;
394 
395 	WARN_RATELIMIT(!stats->min_duration || !stats->min_freq,
396 		       "time_stats: min_duration = %llu, min_freq = %llu",
397 		       stats->min_duration, stats->min_freq);
398 
399 	if (!stats->buffer) {
400 		spin_lock_irqsave(&stats->lock, flags);
401 		bch2_time_stats_update_one(stats, start, end);
402 
403 		if (mean_and_variance_weighted_get_mean(stats->freq_stats_weighted) < 32 &&
404 		    stats->duration_stats.n > 1024)
405 			stats->buffer =
406 				alloc_percpu_gfp(struct bch2_time_stat_buffer,
407 						 GFP_ATOMIC);
408 		spin_unlock_irqrestore(&stats->lock, flags);
409 	} else {
410 		struct bch2_time_stat_buffer *b;
411 
412 		preempt_disable();
413 		b = this_cpu_ptr(stats->buffer);
414 
415 		BUG_ON(b->nr >= ARRAY_SIZE(b->entries));
416 		b->entries[b->nr++] = (struct bch2_time_stat_buffer_entry) {
417 			.start = start,
418 			.end = end
419 		};
420 
421 		if (unlikely(b->nr == ARRAY_SIZE(b->entries)))
422 			bch2_time_stats_clear_buffer(stats, b);
423 		preempt_enable();
424 	}
425 }
426 #endif
427 
428 static const struct time_unit {
429 	const char	*name;
430 	u64		nsecs;
431 } time_units[] = {
432 	{ "ns",		1		 },
433 	{ "us",		NSEC_PER_USEC	 },
434 	{ "ms",		NSEC_PER_MSEC	 },
435 	{ "s",		NSEC_PER_SEC	 },
436 	{ "m",          (u64) NSEC_PER_SEC * 60},
437 	{ "h",          (u64) NSEC_PER_SEC * 3600},
438 	{ "eon",        U64_MAX          },
439 };
440 
441 static const struct time_unit *pick_time_units(u64 ns)
442 {
443 	const struct time_unit *u;
444 
445 	for (u = time_units;
446 	     u + 1 < time_units + ARRAY_SIZE(time_units) &&
447 	     ns >= u[1].nsecs << 1;
448 	     u++)
449 		;
450 
451 	return u;
452 }
453 
454 void bch2_pr_time_units(struct printbuf *out, u64 ns)
455 {
456 	const struct time_unit *u = pick_time_units(ns);
457 
458 	prt_printf(out, "%llu %s", div_u64(ns, u->nsecs), u->name);
459 }
460 
461 static void bch2_pr_time_units_aligned(struct printbuf *out, u64 ns)
462 {
463 	const struct time_unit *u = pick_time_units(ns);
464 
465 	prt_printf(out, "%llu ", div64_u64(ns, u->nsecs));
466 	prt_tab_rjust(out);
467 	prt_printf(out, "%s", u->name);
468 }
469 
470 #ifndef __KERNEL__
471 #include <time.h>
472 void bch2_prt_datetime(struct printbuf *out, time64_t sec)
473 {
474 	time_t t = sec;
475 	char buf[64];
476 	ctime_r(&t, buf);
477 	prt_str(out, buf);
478 }
479 #else
480 void bch2_prt_datetime(struct printbuf *out, time64_t sec)
481 {
482 	char buf[64];
483 	snprintf(buf, sizeof(buf), "%ptT", &sec);
484 	prt_u64(out, sec);
485 }
486 #endif
487 
488 #define TABSTOP_SIZE 12
489 
490 static inline void pr_name_and_units(struct printbuf *out, const char *name, u64 ns)
491 {
492 	prt_str(out, name);
493 	prt_tab(out);
494 	bch2_pr_time_units_aligned(out, ns);
495 	prt_newline(out);
496 }
497 
498 void bch2_time_stats_to_text(struct printbuf *out, struct bch2_time_stats *stats)
499 {
500 	const struct time_unit *u;
501 	s64 f_mean = 0, d_mean = 0;
502 	u64 q, last_q = 0, f_stddev = 0, d_stddev = 0;
503 	int i;
504 	/*
505 	 * avoid divide by zero
506 	 */
507 	if (stats->freq_stats.n) {
508 		f_mean = mean_and_variance_get_mean(stats->freq_stats);
509 		f_stddev = mean_and_variance_get_stddev(stats->freq_stats);
510 		d_mean = mean_and_variance_get_mean(stats->duration_stats);
511 		d_stddev = mean_and_variance_get_stddev(stats->duration_stats);
512 	}
513 
514 	printbuf_tabstop_push(out, out->indent + TABSTOP_SIZE);
515 	prt_printf(out, "count:");
516 	prt_tab(out);
517 	prt_printf(out, "%llu ",
518 			 stats->duration_stats.n);
519 	printbuf_tabstop_pop(out);
520 	prt_newline(out);
521 
522 	printbuf_tabstops_reset(out);
523 
524 	printbuf_tabstop_push(out, out->indent + 20);
525 	printbuf_tabstop_push(out, TABSTOP_SIZE + 2);
526 	printbuf_tabstop_push(out, 0);
527 	printbuf_tabstop_push(out, TABSTOP_SIZE + 2);
528 
529 	prt_tab(out);
530 	prt_printf(out, "since mount");
531 	prt_tab_rjust(out);
532 	prt_tab(out);
533 	prt_printf(out, "recent");
534 	prt_tab_rjust(out);
535 	prt_newline(out);
536 
537 	printbuf_tabstops_reset(out);
538 	printbuf_tabstop_push(out, out->indent + 20);
539 	printbuf_tabstop_push(out, TABSTOP_SIZE);
540 	printbuf_tabstop_push(out, 2);
541 	printbuf_tabstop_push(out, TABSTOP_SIZE);
542 
543 	prt_printf(out, "duration of events");
544 	prt_newline(out);
545 	printbuf_indent_add(out, 2);
546 
547 	pr_name_and_units(out, "min:", stats->min_duration);
548 	pr_name_and_units(out, "max:", stats->max_duration);
549 
550 	prt_printf(out, "mean:");
551 	prt_tab(out);
552 	bch2_pr_time_units_aligned(out, d_mean);
553 	prt_tab(out);
554 	bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_mean(stats->duration_stats_weighted));
555 	prt_newline(out);
556 
557 	prt_printf(out, "stddev:");
558 	prt_tab(out);
559 	bch2_pr_time_units_aligned(out, d_stddev);
560 	prt_tab(out);
561 	bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_stddev(stats->duration_stats_weighted));
562 
563 	printbuf_indent_sub(out, 2);
564 	prt_newline(out);
565 
566 	prt_printf(out, "time between events");
567 	prt_newline(out);
568 	printbuf_indent_add(out, 2);
569 
570 	pr_name_and_units(out, "min:", stats->min_freq);
571 	pr_name_and_units(out, "max:", stats->max_freq);
572 
573 	prt_printf(out, "mean:");
574 	prt_tab(out);
575 	bch2_pr_time_units_aligned(out, f_mean);
576 	prt_tab(out);
577 	bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_mean(stats->freq_stats_weighted));
578 	prt_newline(out);
579 
580 	prt_printf(out, "stddev:");
581 	prt_tab(out);
582 	bch2_pr_time_units_aligned(out, f_stddev);
583 	prt_tab(out);
584 	bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_stddev(stats->freq_stats_weighted));
585 
586 	printbuf_indent_sub(out, 2);
587 	prt_newline(out);
588 
589 	printbuf_tabstops_reset(out);
590 
591 	i = eytzinger0_first(NR_QUANTILES);
592 	u = pick_time_units(stats->quantiles.entries[i].m);
593 
594 	prt_printf(out, "quantiles (%s):\t", u->name);
595 	eytzinger0_for_each(i, NR_QUANTILES) {
596 		bool is_last = eytzinger0_next(i, NR_QUANTILES) == -1;
597 
598 		q = max(stats->quantiles.entries[i].m, last_q);
599 		prt_printf(out, "%llu ",
600 		       div_u64(q, u->nsecs));
601 		if (is_last)
602 			prt_newline(out);
603 		last_q = q;
604 	}
605 }
606 
607 void bch2_time_stats_exit(struct bch2_time_stats *stats)
608 {
609 	free_percpu(stats->buffer);
610 }
611 
612 void bch2_time_stats_init(struct bch2_time_stats *stats)
613 {
614 	memset(stats, 0, sizeof(*stats));
615 	stats->duration_stats_weighted.weight = 8;
616 	stats->freq_stats_weighted.weight = 8;
617 	stats->min_duration = U64_MAX;
618 	stats->min_freq = U64_MAX;
619 	spin_lock_init(&stats->lock);
620 }
621 
622 /* ratelimit: */
623 
624 /**
625  * bch2_ratelimit_delay() - return how long to delay until the next time to do
626  *		some work
627  * @d:		the struct bch_ratelimit to update
628  * Returns:	the amount of time to delay by, in jiffies
629  */
630 u64 bch2_ratelimit_delay(struct bch_ratelimit *d)
631 {
632 	u64 now = local_clock();
633 
634 	return time_after64(d->next, now)
635 		? nsecs_to_jiffies(d->next - now)
636 		: 0;
637 }
638 
639 /**
640  * bch2_ratelimit_increment() - increment @d by the amount of work done
641  * @d:		the struct bch_ratelimit to update
642  * @done:	the amount of work done, in arbitrary units
643  */
644 void bch2_ratelimit_increment(struct bch_ratelimit *d, u64 done)
645 {
646 	u64 now = local_clock();
647 
648 	d->next += div_u64(done * NSEC_PER_SEC, d->rate);
649 
650 	if (time_before64(now + NSEC_PER_SEC, d->next))
651 		d->next = now + NSEC_PER_SEC;
652 
653 	if (time_after64(now - NSEC_PER_SEC * 2, d->next))
654 		d->next = now - NSEC_PER_SEC * 2;
655 }
656 
657 /* pd controller: */
658 
659 /*
660  * Updates pd_controller. Attempts to scale inputed values to units per second.
661  * @target: desired value
662  * @actual: current value
663  *
664  * @sign: 1 or -1; 1 if increasing the rate makes actual go up, -1 if increasing
665  * it makes actual go down.
666  */
667 void bch2_pd_controller_update(struct bch_pd_controller *pd,
668 			      s64 target, s64 actual, int sign)
669 {
670 	s64 proportional, derivative, change;
671 
672 	unsigned long seconds_since_update = (jiffies - pd->last_update) / HZ;
673 
674 	if (seconds_since_update == 0)
675 		return;
676 
677 	pd->last_update = jiffies;
678 
679 	proportional = actual - target;
680 	proportional *= seconds_since_update;
681 	proportional = div_s64(proportional, pd->p_term_inverse);
682 
683 	derivative = actual - pd->last_actual;
684 	derivative = div_s64(derivative, seconds_since_update);
685 	derivative = ewma_add(pd->smoothed_derivative, derivative,
686 			      (pd->d_term / seconds_since_update) ?: 1);
687 	derivative = derivative * pd->d_term;
688 	derivative = div_s64(derivative, pd->p_term_inverse);
689 
690 	change = proportional + derivative;
691 
692 	/* Don't increase rate if not keeping up */
693 	if (change > 0 &&
694 	    pd->backpressure &&
695 	    time_after64(local_clock(),
696 			 pd->rate.next + NSEC_PER_MSEC))
697 		change = 0;
698 
699 	change *= (sign * -1);
700 
701 	pd->rate.rate = clamp_t(s64, (s64) pd->rate.rate + change,
702 				1, UINT_MAX);
703 
704 	pd->last_actual		= actual;
705 	pd->last_derivative	= derivative;
706 	pd->last_proportional	= proportional;
707 	pd->last_change		= change;
708 	pd->last_target		= target;
709 }
710 
711 void bch2_pd_controller_init(struct bch_pd_controller *pd)
712 {
713 	pd->rate.rate		= 1024;
714 	pd->last_update		= jiffies;
715 	pd->p_term_inverse	= 6000;
716 	pd->d_term		= 30;
717 	pd->d_smooth		= pd->d_term;
718 	pd->backpressure	= 1;
719 }
720 
721 void bch2_pd_controller_debug_to_text(struct printbuf *out, struct bch_pd_controller *pd)
722 {
723 	if (!out->nr_tabstops)
724 		printbuf_tabstop_push(out, 20);
725 
726 	prt_printf(out, "rate:");
727 	prt_tab(out);
728 	prt_human_readable_s64(out, pd->rate.rate);
729 	prt_newline(out);
730 
731 	prt_printf(out, "target:");
732 	prt_tab(out);
733 	prt_human_readable_u64(out, pd->last_target);
734 	prt_newline(out);
735 
736 	prt_printf(out, "actual:");
737 	prt_tab(out);
738 	prt_human_readable_u64(out, pd->last_actual);
739 	prt_newline(out);
740 
741 	prt_printf(out, "proportional:");
742 	prt_tab(out);
743 	prt_human_readable_s64(out, pd->last_proportional);
744 	prt_newline(out);
745 
746 	prt_printf(out, "derivative:");
747 	prt_tab(out);
748 	prt_human_readable_s64(out, pd->last_derivative);
749 	prt_newline(out);
750 
751 	prt_printf(out, "change:");
752 	prt_tab(out);
753 	prt_human_readable_s64(out, pd->last_change);
754 	prt_newline(out);
755 
756 	prt_printf(out, "next io:");
757 	prt_tab(out);
758 	prt_printf(out, "%llims", div64_s64(pd->rate.next - local_clock(), NSEC_PER_MSEC));
759 	prt_newline(out);
760 }
761 
762 /* misc: */
763 
764 void bch2_bio_map(struct bio *bio, void *base, size_t size)
765 {
766 	while (size) {
767 		struct page *page = is_vmalloc_addr(base)
768 				? vmalloc_to_page(base)
769 				: virt_to_page(base);
770 		unsigned offset = offset_in_page(base);
771 		unsigned len = min_t(size_t, PAGE_SIZE - offset, size);
772 
773 		BUG_ON(!bio_add_page(bio, page, len, offset));
774 		size -= len;
775 		base += len;
776 	}
777 }
778 
779 int bch2_bio_alloc_pages(struct bio *bio, size_t size, gfp_t gfp_mask)
780 {
781 	while (size) {
782 		struct page *page = alloc_pages(gfp_mask, 0);
783 		unsigned len = min_t(size_t, PAGE_SIZE, size);
784 
785 		if (!page)
786 			return -ENOMEM;
787 
788 		if (unlikely(!bio_add_page(bio, page, len, 0))) {
789 			__free_page(page);
790 			break;
791 		}
792 
793 		size -= len;
794 	}
795 
796 	return 0;
797 }
798 
799 size_t bch2_rand_range(size_t max)
800 {
801 	size_t rand;
802 
803 	if (!max)
804 		return 0;
805 
806 	do {
807 		rand = get_random_long();
808 		rand &= roundup_pow_of_two(max) - 1;
809 	} while (rand >= max);
810 
811 	return rand;
812 }
813 
814 void memcpy_to_bio(struct bio *dst, struct bvec_iter dst_iter, const void *src)
815 {
816 	struct bio_vec bv;
817 	struct bvec_iter iter;
818 
819 	__bio_for_each_segment(bv, dst, iter, dst_iter) {
820 		void *dstp = kmap_local_page(bv.bv_page);
821 
822 		memcpy(dstp + bv.bv_offset, src, bv.bv_len);
823 		kunmap_local(dstp);
824 
825 		src += bv.bv_len;
826 	}
827 }
828 
829 void memcpy_from_bio(void *dst, struct bio *src, struct bvec_iter src_iter)
830 {
831 	struct bio_vec bv;
832 	struct bvec_iter iter;
833 
834 	__bio_for_each_segment(bv, src, iter, src_iter) {
835 		void *srcp = kmap_local_page(bv.bv_page);
836 
837 		memcpy(dst, srcp + bv.bv_offset, bv.bv_len);
838 		kunmap_local(srcp);
839 
840 		dst += bv.bv_len;
841 	}
842 }
843 
844 static int alignment_ok(const void *base, size_t align)
845 {
846 	return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
847 		((unsigned long)base & (align - 1)) == 0;
848 }
849 
850 static void u32_swap(void *a, void *b, size_t size)
851 {
852 	u32 t = *(u32 *)a;
853 	*(u32 *)a = *(u32 *)b;
854 	*(u32 *)b = t;
855 }
856 
857 static void u64_swap(void *a, void *b, size_t size)
858 {
859 	u64 t = *(u64 *)a;
860 	*(u64 *)a = *(u64 *)b;
861 	*(u64 *)b = t;
862 }
863 
864 static void generic_swap(void *a, void *b, size_t size)
865 {
866 	char t;
867 
868 	do {
869 		t = *(char *)a;
870 		*(char *)a++ = *(char *)b;
871 		*(char *)b++ = t;
872 	} while (--size > 0);
873 }
874 
875 static inline int do_cmp(void *base, size_t n, size_t size,
876 			 int (*cmp_func)(const void *, const void *, size_t),
877 			 size_t l, size_t r)
878 {
879 	return cmp_func(base + inorder_to_eytzinger0(l, n) * size,
880 			base + inorder_to_eytzinger0(r, n) * size,
881 			size);
882 }
883 
884 static inline void do_swap(void *base, size_t n, size_t size,
885 			   void (*swap_func)(void *, void *, size_t),
886 			   size_t l, size_t r)
887 {
888 	swap_func(base + inorder_to_eytzinger0(l, n) * size,
889 		  base + inorder_to_eytzinger0(r, n) * size,
890 		  size);
891 }
892 
893 void eytzinger0_sort(void *base, size_t n, size_t size,
894 		     int (*cmp_func)(const void *, const void *, size_t),
895 		     void (*swap_func)(void *, void *, size_t))
896 {
897 	int i, c, r;
898 
899 	if (!swap_func) {
900 		if (size == 4 && alignment_ok(base, 4))
901 			swap_func = u32_swap;
902 		else if (size == 8 && alignment_ok(base, 8))
903 			swap_func = u64_swap;
904 		else
905 			swap_func = generic_swap;
906 	}
907 
908 	/* heapify */
909 	for (i = n / 2 - 1; i >= 0; --i) {
910 		for (r = i; r * 2 + 1 < n; r = c) {
911 			c = r * 2 + 1;
912 
913 			if (c + 1 < n &&
914 			    do_cmp(base, n, size, cmp_func, c, c + 1) < 0)
915 				c++;
916 
917 			if (do_cmp(base, n, size, cmp_func, r, c) >= 0)
918 				break;
919 
920 			do_swap(base, n, size, swap_func, r, c);
921 		}
922 	}
923 
924 	/* sort */
925 	for (i = n - 1; i > 0; --i) {
926 		do_swap(base, n, size, swap_func, 0, i);
927 
928 		for (r = 0; r * 2 + 1 < i; r = c) {
929 			c = r * 2 + 1;
930 
931 			if (c + 1 < i &&
932 			    do_cmp(base, n, size, cmp_func, c, c + 1) < 0)
933 				c++;
934 
935 			if (do_cmp(base, n, size, cmp_func, r, c) >= 0)
936 				break;
937 
938 			do_swap(base, n, size, swap_func, r, c);
939 		}
940 	}
941 }
942 
943 void sort_cmp_size(void *base, size_t num, size_t size,
944 	  int (*cmp_func)(const void *, const void *, size_t),
945 	  void (*swap_func)(void *, void *, size_t size))
946 {
947 	/* pre-scale counters for performance */
948 	int i = (num/2 - 1) * size, n = num * size, c, r;
949 
950 	if (!swap_func) {
951 		if (size == 4 && alignment_ok(base, 4))
952 			swap_func = u32_swap;
953 		else if (size == 8 && alignment_ok(base, 8))
954 			swap_func = u64_swap;
955 		else
956 			swap_func = generic_swap;
957 	}
958 
959 	/* heapify */
960 	for ( ; i >= 0; i -= size) {
961 		for (r = i; r * 2 + size < n; r  = c) {
962 			c = r * 2 + size;
963 			if (c < n - size &&
964 			    cmp_func(base + c, base + c + size, size) < 0)
965 				c += size;
966 			if (cmp_func(base + r, base + c, size) >= 0)
967 				break;
968 			swap_func(base + r, base + c, size);
969 		}
970 	}
971 
972 	/* sort */
973 	for (i = n - size; i > 0; i -= size) {
974 		swap_func(base, base + i, size);
975 		for (r = 0; r * 2 + size < i; r = c) {
976 			c = r * 2 + size;
977 			if (c < i - size &&
978 			    cmp_func(base + c, base + c + size, size) < 0)
979 				c += size;
980 			if (cmp_func(base + r, base + c, size) >= 0)
981 				break;
982 			swap_func(base + r, base + c, size);
983 		}
984 	}
985 }
986 
987 static void mempool_free_vp(void *element, void *pool_data)
988 {
989 	size_t size = (size_t) pool_data;
990 
991 	vpfree(element, size);
992 }
993 
994 static void *mempool_alloc_vp(gfp_t gfp_mask, void *pool_data)
995 {
996 	size_t size = (size_t) pool_data;
997 
998 	return vpmalloc(size, gfp_mask);
999 }
1000 
1001 int mempool_init_kvpmalloc_pool(mempool_t *pool, int min_nr, size_t size)
1002 {
1003 	return size < PAGE_SIZE
1004 		? mempool_init_kmalloc_pool(pool, min_nr, size)
1005 		: mempool_init(pool, min_nr, mempool_alloc_vp,
1006 			       mempool_free_vp, (void *) size);
1007 }
1008 
1009 #if 0
1010 void eytzinger1_test(void)
1011 {
1012 	unsigned inorder, eytz, size;
1013 
1014 	pr_info("1 based eytzinger test:");
1015 
1016 	for (size = 2;
1017 	     size < 65536;
1018 	     size++) {
1019 		unsigned extra = eytzinger1_extra(size);
1020 
1021 		if (!(size % 4096))
1022 			pr_info("tree size %u", size);
1023 
1024 		BUG_ON(eytzinger1_prev(0, size) != eytzinger1_last(size));
1025 		BUG_ON(eytzinger1_next(0, size) != eytzinger1_first(size));
1026 
1027 		BUG_ON(eytzinger1_prev(eytzinger1_first(size), size)	!= 0);
1028 		BUG_ON(eytzinger1_next(eytzinger1_last(size), size)	!= 0);
1029 
1030 		inorder = 1;
1031 		eytzinger1_for_each(eytz, size) {
1032 			BUG_ON(__inorder_to_eytzinger1(inorder, size, extra) != eytz);
1033 			BUG_ON(__eytzinger1_to_inorder(eytz, size, extra) != inorder);
1034 			BUG_ON(eytz != eytzinger1_last(size) &&
1035 			       eytzinger1_prev(eytzinger1_next(eytz, size), size) != eytz);
1036 
1037 			inorder++;
1038 		}
1039 	}
1040 }
1041 
1042 void eytzinger0_test(void)
1043 {
1044 
1045 	unsigned inorder, eytz, size;
1046 
1047 	pr_info("0 based eytzinger test:");
1048 
1049 	for (size = 1;
1050 	     size < 65536;
1051 	     size++) {
1052 		unsigned extra = eytzinger0_extra(size);
1053 
1054 		if (!(size % 4096))
1055 			pr_info("tree size %u", size);
1056 
1057 		BUG_ON(eytzinger0_prev(-1, size) != eytzinger0_last(size));
1058 		BUG_ON(eytzinger0_next(-1, size) != eytzinger0_first(size));
1059 
1060 		BUG_ON(eytzinger0_prev(eytzinger0_first(size), size)	!= -1);
1061 		BUG_ON(eytzinger0_next(eytzinger0_last(size), size)	!= -1);
1062 
1063 		inorder = 0;
1064 		eytzinger0_for_each(eytz, size) {
1065 			BUG_ON(__inorder_to_eytzinger0(inorder, size, extra) != eytz);
1066 			BUG_ON(__eytzinger0_to_inorder(eytz, size, extra) != inorder);
1067 			BUG_ON(eytz != eytzinger0_last(size) &&
1068 			       eytzinger0_prev(eytzinger0_next(eytz, size), size) != eytz);
1069 
1070 			inorder++;
1071 		}
1072 	}
1073 }
1074 
1075 static inline int cmp_u16(const void *_l, const void *_r, size_t size)
1076 {
1077 	const u16 *l = _l, *r = _r;
1078 
1079 	return (*l > *r) - (*r - *l);
1080 }
1081 
1082 static void eytzinger0_find_test_val(u16 *test_array, unsigned nr, u16 search)
1083 {
1084 	int i, c1 = -1, c2 = -1;
1085 	ssize_t r;
1086 
1087 	r = eytzinger0_find_le(test_array, nr,
1088 			       sizeof(test_array[0]),
1089 			       cmp_u16, &search);
1090 	if (r >= 0)
1091 		c1 = test_array[r];
1092 
1093 	for (i = 0; i < nr; i++)
1094 		if (test_array[i] <= search && test_array[i] > c2)
1095 			c2 = test_array[i];
1096 
1097 	if (c1 != c2) {
1098 		eytzinger0_for_each(i, nr)
1099 			pr_info("[%3u] = %12u", i, test_array[i]);
1100 		pr_info("find_le(%2u) -> [%2zi] = %2i should be %2i",
1101 			i, r, c1, c2);
1102 	}
1103 }
1104 
1105 void eytzinger0_find_test(void)
1106 {
1107 	unsigned i, nr, allocated = 1 << 12;
1108 	u16 *test_array = kmalloc_array(allocated, sizeof(test_array[0]), GFP_KERNEL);
1109 
1110 	for (nr = 1; nr < allocated; nr++) {
1111 		pr_info("testing %u elems", nr);
1112 
1113 		get_random_bytes(test_array, nr * sizeof(test_array[0]));
1114 		eytzinger0_sort(test_array, nr, sizeof(test_array[0]), cmp_u16, NULL);
1115 
1116 		/* verify array is sorted correctly: */
1117 		eytzinger0_for_each(i, nr)
1118 			BUG_ON(i != eytzinger0_last(nr) &&
1119 			       test_array[i] > test_array[eytzinger0_next(i, nr)]);
1120 
1121 		for (i = 0; i < U16_MAX; i += 1 << 12)
1122 			eytzinger0_find_test_val(test_array, nr, i);
1123 
1124 		for (i = 0; i < nr; i++) {
1125 			eytzinger0_find_test_val(test_array, nr, test_array[i] - 1);
1126 			eytzinger0_find_test_val(test_array, nr, test_array[i]);
1127 			eytzinger0_find_test_val(test_array, nr, test_array[i] + 1);
1128 		}
1129 	}
1130 
1131 	kfree(test_array);
1132 }
1133 #endif
1134 
1135 /*
1136  * Accumulate percpu counters onto one cpu's copy - only valid when access
1137  * against any percpu counter is guarded against
1138  */
1139 u64 *bch2_acc_percpu_u64s(u64 __percpu *p, unsigned nr)
1140 {
1141 	u64 *ret;
1142 	int cpu;
1143 
1144 	/* access to pcpu vars has to be blocked by other locking */
1145 	preempt_disable();
1146 	ret = this_cpu_ptr(p);
1147 	preempt_enable();
1148 
1149 	for_each_possible_cpu(cpu) {
1150 		u64 *i = per_cpu_ptr(p, cpu);
1151 
1152 		if (i != ret) {
1153 			acc_u64s(ret, i, nr);
1154 			memset(i, 0, nr * sizeof(u64));
1155 		}
1156 	}
1157 
1158 	return ret;
1159 }
1160