xref: /linux/fs/bcachefs/util.c (revision 24b10e5f8e0d2bee1a10fc67011ea5d936c1a389)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * random utiility code, for bcache but in theory not specific to bcache
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include <linux/bio.h>
10 #include <linux/blkdev.h>
11 #include <linux/console.h>
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/freezer.h>
15 #include <linux/kthread.h>
16 #include <linux/log2.h>
17 #include <linux/math64.h>
18 #include <linux/percpu.h>
19 #include <linux/preempt.h>
20 #include <linux/random.h>
21 #include <linux/seq_file.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/sched/clock.h>
25 
26 #include "eytzinger.h"
27 #include "mean_and_variance.h"
28 #include "util.h"
29 
30 static const char si_units[] = "?kMGTPEZY";
31 
32 /* string_get_size units: */
33 static const char *const units_2[] = {
34 	"B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB", "ZiB", "YiB"
35 };
36 static const char *const units_10[] = {
37 	"B", "kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"
38 };
39 
40 static int parse_u64(const char *cp, u64 *res)
41 {
42 	const char *start = cp;
43 	u64 v = 0;
44 
45 	if (!isdigit(*cp))
46 		return -EINVAL;
47 
48 	do {
49 		if (v > U64_MAX / 10)
50 			return -ERANGE;
51 		v *= 10;
52 		if (v > U64_MAX - (*cp - '0'))
53 			return -ERANGE;
54 		v += *cp - '0';
55 		cp++;
56 	} while (isdigit(*cp));
57 
58 	*res = v;
59 	return cp - start;
60 }
61 
62 static int bch2_pow(u64 n, u64 p, u64 *res)
63 {
64 	*res = 1;
65 
66 	while (p--) {
67 		if (*res > div_u64(U64_MAX, n))
68 			return -ERANGE;
69 		*res *= n;
70 	}
71 	return 0;
72 }
73 
74 static int parse_unit_suffix(const char *cp, u64 *res)
75 {
76 	const char *start = cp;
77 	u64 base = 1024;
78 	unsigned u;
79 	int ret;
80 
81 	if (*cp == ' ')
82 		cp++;
83 
84 	for (u = 1; u < strlen(si_units); u++)
85 		if (*cp == si_units[u]) {
86 			cp++;
87 			goto got_unit;
88 		}
89 
90 	for (u = 0; u < ARRAY_SIZE(units_2); u++)
91 		if (!strncmp(cp, units_2[u], strlen(units_2[u]))) {
92 			cp += strlen(units_2[u]);
93 			goto got_unit;
94 		}
95 
96 	for (u = 0; u < ARRAY_SIZE(units_10); u++)
97 		if (!strncmp(cp, units_10[u], strlen(units_10[u]))) {
98 			cp += strlen(units_10[u]);
99 			base = 1000;
100 			goto got_unit;
101 		}
102 
103 	*res = 1;
104 	return 0;
105 got_unit:
106 	ret = bch2_pow(base, u, res);
107 	if (ret)
108 		return ret;
109 
110 	return cp - start;
111 }
112 
113 #define parse_or_ret(cp, _f)			\
114 do {						\
115 	int _ret = _f;				\
116 	if (_ret < 0)				\
117 		return _ret;			\
118 	cp += _ret;				\
119 } while (0)
120 
121 static int __bch2_strtou64_h(const char *cp, u64 *res)
122 {
123 	const char *start = cp;
124 	u64 v = 0, b, f_n = 0, f_d = 1;
125 	int ret;
126 
127 	parse_or_ret(cp, parse_u64(cp, &v));
128 
129 	if (*cp == '.') {
130 		cp++;
131 		ret = parse_u64(cp, &f_n);
132 		if (ret < 0)
133 			return ret;
134 		cp += ret;
135 
136 		ret = bch2_pow(10, ret, &f_d);
137 		if (ret)
138 			return ret;
139 	}
140 
141 	parse_or_ret(cp, parse_unit_suffix(cp, &b));
142 
143 	if (v > div_u64(U64_MAX, b))
144 		return -ERANGE;
145 	v *= b;
146 
147 	if (f_n > div_u64(U64_MAX, b))
148 		return -ERANGE;
149 
150 	f_n = div_u64(f_n * b, f_d);
151 	if (v + f_n < v)
152 		return -ERANGE;
153 	v += f_n;
154 
155 	*res = v;
156 	return cp - start;
157 }
158 
159 static int __bch2_strtoh(const char *cp, u64 *res,
160 			 u64 t_max, bool t_signed)
161 {
162 	bool positive = *cp != '-';
163 	u64 v = 0;
164 
165 	if (*cp == '+' || *cp == '-')
166 		cp++;
167 
168 	parse_or_ret(cp, __bch2_strtou64_h(cp, &v));
169 
170 	if (*cp == '\n')
171 		cp++;
172 	if (*cp)
173 		return -EINVAL;
174 
175 	if (positive) {
176 		if (v > t_max)
177 			return -ERANGE;
178 	} else {
179 		if (v && !t_signed)
180 			return -ERANGE;
181 
182 		if (v > t_max + 1)
183 			return -ERANGE;
184 		v = -v;
185 	}
186 
187 	*res = v;
188 	return 0;
189 }
190 
191 #define STRTO_H(name, type)					\
192 int bch2_ ## name ## _h(const char *cp, type *res)		\
193 {								\
194 	u64 v = 0;						\
195 	int ret = __bch2_strtoh(cp, &v, ANYSINT_MAX(type),	\
196 			ANYSINT_MAX(type) != ((type) ~0ULL));	\
197 	*res = v;						\
198 	return ret;						\
199 }
200 
201 STRTO_H(strtoint, int)
202 STRTO_H(strtouint, unsigned int)
203 STRTO_H(strtoll, long long)
204 STRTO_H(strtoull, unsigned long long)
205 STRTO_H(strtou64, u64)
206 
207 u64 bch2_read_flag_list(char *opt, const char * const list[])
208 {
209 	u64 ret = 0;
210 	char *p, *s, *d = kstrdup(opt, GFP_KERNEL);
211 
212 	if (!d)
213 		return -ENOMEM;
214 
215 	s = strim(d);
216 
217 	while ((p = strsep(&s, ","))) {
218 		int flag = match_string(list, -1, p);
219 
220 		if (flag < 0) {
221 			ret = -1;
222 			break;
223 		}
224 
225 		ret |= 1 << flag;
226 	}
227 
228 	kfree(d);
229 
230 	return ret;
231 }
232 
233 bool bch2_is_zero(const void *_p, size_t n)
234 {
235 	const char *p = _p;
236 	size_t i;
237 
238 	for (i = 0; i < n; i++)
239 		if (p[i])
240 			return false;
241 	return true;
242 }
243 
244 void bch2_prt_u64_base2_nbits(struct printbuf *out, u64 v, unsigned nr_bits)
245 {
246 	while (nr_bits)
247 		prt_char(out, '0' + ((v >> --nr_bits) & 1));
248 }
249 
250 void bch2_prt_u64_base2(struct printbuf *out, u64 v)
251 {
252 	bch2_prt_u64_base2_nbits(out, v, fls64(v) ?: 1);
253 }
254 
255 void bch2_print_string_as_lines(const char *prefix, const char *lines)
256 {
257 	const char *p;
258 
259 	if (!lines) {
260 		printk("%s (null)\n", prefix);
261 		return;
262 	}
263 
264 	console_lock();
265 	while (1) {
266 		p = strchrnul(lines, '\n');
267 		printk("%s%.*s\n", prefix, (int) (p - lines), lines);
268 		if (!*p)
269 			break;
270 		lines = p + 1;
271 	}
272 	console_unlock();
273 }
274 
275 int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *task, unsigned skipnr)
276 {
277 #ifdef CONFIG_STACKTRACE
278 	unsigned nr_entries = 0;
279 	int ret = 0;
280 
281 	stack->nr = 0;
282 	ret = darray_make_room(stack, 32);
283 	if (ret)
284 		return ret;
285 
286 	if (!down_read_trylock(&task->signal->exec_update_lock))
287 		return -1;
288 
289 	do {
290 		nr_entries = stack_trace_save_tsk(task, stack->data, stack->size, skipnr + 1);
291 	} while (nr_entries == stack->size &&
292 		 !(ret = darray_make_room(stack, stack->size * 2)));
293 
294 	stack->nr = nr_entries;
295 	up_read(&task->signal->exec_update_lock);
296 
297 	return ret;
298 #else
299 	return 0;
300 #endif
301 }
302 
303 void bch2_prt_backtrace(struct printbuf *out, bch_stacktrace *stack)
304 {
305 	darray_for_each(*stack, i) {
306 		prt_printf(out, "[<0>] %pB", (void *) *i);
307 		prt_newline(out);
308 	}
309 }
310 
311 int bch2_prt_task_backtrace(struct printbuf *out, struct task_struct *task, unsigned skipnr)
312 {
313 	bch_stacktrace stack = { 0 };
314 	int ret = bch2_save_backtrace(&stack, task, skipnr + 1);
315 
316 	bch2_prt_backtrace(out, &stack);
317 	darray_exit(&stack);
318 	return ret;
319 }
320 
321 #ifndef __KERNEL__
322 #include <time.h>
323 void bch2_prt_datetime(struct printbuf *out, time64_t sec)
324 {
325 	time_t t = sec;
326 	char buf[64];
327 	ctime_r(&t, buf);
328 	strim(buf);
329 	prt_str(out, buf);
330 }
331 #else
332 void bch2_prt_datetime(struct printbuf *out, time64_t sec)
333 {
334 	char buf[64];
335 	snprintf(buf, sizeof(buf), "%ptT", &sec);
336 	prt_u64(out, sec);
337 }
338 #endif
339 
340 static const struct time_unit {
341 	const char	*name;
342 	u64		nsecs;
343 } time_units[] = {
344 	{ "ns",		1		 },
345 	{ "us",		NSEC_PER_USEC	 },
346 	{ "ms",		NSEC_PER_MSEC	 },
347 	{ "s",		NSEC_PER_SEC	 },
348 	{ "m",          (u64) NSEC_PER_SEC * 60},
349 	{ "h",          (u64) NSEC_PER_SEC * 3600},
350 	{ "eon",        U64_MAX          },
351 };
352 
353 static const struct time_unit *pick_time_units(u64 ns)
354 {
355 	const struct time_unit *u;
356 
357 	for (u = time_units;
358 	     u + 1 < time_units + ARRAY_SIZE(time_units) &&
359 	     ns >= u[1].nsecs << 1;
360 	     u++)
361 		;
362 
363 	return u;
364 }
365 
366 void bch2_pr_time_units(struct printbuf *out, u64 ns)
367 {
368 	const struct time_unit *u = pick_time_units(ns);
369 
370 	prt_printf(out, "%llu %s", div_u64(ns, u->nsecs), u->name);
371 }
372 
373 /* time stats: */
374 
375 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
376 static void bch2_quantiles_update(struct bch2_quantiles *q, u64 v)
377 {
378 	unsigned i = 0;
379 
380 	while (i < ARRAY_SIZE(q->entries)) {
381 		struct bch2_quantile_entry *e = q->entries + i;
382 
383 		if (unlikely(!e->step)) {
384 			e->m = v;
385 			e->step = max_t(unsigned, v / 2, 1024);
386 		} else if (e->m > v) {
387 			e->m = e->m >= e->step
388 				? e->m - e->step
389 				: 0;
390 		} else if (e->m < v) {
391 			e->m = e->m + e->step > e->m
392 				? e->m + e->step
393 				: U32_MAX;
394 		}
395 
396 		if ((e->m > v ? e->m - v : v - e->m) < e->step)
397 			e->step = max_t(unsigned, e->step / 2, 1);
398 
399 		if (v >= e->m)
400 			break;
401 
402 		i = eytzinger0_child(i, v > e->m);
403 	}
404 }
405 
406 static inline void bch2_time_stats_update_one(struct bch2_time_stats *stats,
407 					      u64 start, u64 end)
408 {
409 	u64 duration, freq;
410 
411 	if (time_after64(end, start)) {
412 		duration = end - start;
413 		mean_and_variance_update(&stats->duration_stats, duration);
414 		mean_and_variance_weighted_update(&stats->duration_stats_weighted, duration);
415 		stats->max_duration = max(stats->max_duration, duration);
416 		stats->min_duration = min(stats->min_duration, duration);
417 		stats->total_duration += duration;
418 		bch2_quantiles_update(&stats->quantiles, duration);
419 	}
420 
421 	if (time_after64(end, stats->last_event)) {
422 		freq = end - stats->last_event;
423 		mean_and_variance_update(&stats->freq_stats, freq);
424 		mean_and_variance_weighted_update(&stats->freq_stats_weighted, freq);
425 		stats->max_freq = max(stats->max_freq, freq);
426 		stats->min_freq = min(stats->min_freq, freq);
427 		stats->last_event = end;
428 	}
429 }
430 
431 static void __bch2_time_stats_clear_buffer(struct bch2_time_stats *stats,
432 					   struct bch2_time_stat_buffer *b)
433 {
434 	for (struct bch2_time_stat_buffer_entry *i = b->entries;
435 	     i < b->entries + ARRAY_SIZE(b->entries);
436 	     i++)
437 		bch2_time_stats_update_one(stats, i->start, i->end);
438 	b->nr = 0;
439 }
440 
441 static noinline void bch2_time_stats_clear_buffer(struct bch2_time_stats *stats,
442 						  struct bch2_time_stat_buffer *b)
443 {
444 	unsigned long flags;
445 
446 	spin_lock_irqsave(&stats->lock, flags);
447 	__bch2_time_stats_clear_buffer(stats, b);
448 	spin_unlock_irqrestore(&stats->lock, flags);
449 }
450 
451 void __bch2_time_stats_update(struct bch2_time_stats *stats, u64 start, u64 end)
452 {
453 	unsigned long flags;
454 
455 	WARN_ONCE(!stats->duration_stats_weighted.weight ||
456 		  !stats->freq_stats_weighted.weight,
457 		  "uninitialized time_stats");
458 
459 	if (!stats->buffer) {
460 		spin_lock_irqsave(&stats->lock, flags);
461 		bch2_time_stats_update_one(stats, start, end);
462 
463 		if (mean_and_variance_weighted_get_mean(stats->freq_stats_weighted) < 32 &&
464 		    stats->duration_stats.n > 1024)
465 			stats->buffer =
466 				alloc_percpu_gfp(struct bch2_time_stat_buffer,
467 						 GFP_ATOMIC);
468 		spin_unlock_irqrestore(&stats->lock, flags);
469 	} else {
470 		struct bch2_time_stat_buffer *b;
471 
472 		preempt_disable();
473 		b = this_cpu_ptr(stats->buffer);
474 
475 		BUG_ON(b->nr >= ARRAY_SIZE(b->entries));
476 		b->entries[b->nr++] = (struct bch2_time_stat_buffer_entry) {
477 			.start = start,
478 			.end = end
479 		};
480 
481 		if (unlikely(b->nr == ARRAY_SIZE(b->entries)))
482 			bch2_time_stats_clear_buffer(stats, b);
483 		preempt_enable();
484 	}
485 }
486 
487 static void bch2_pr_time_units_aligned(struct printbuf *out, u64 ns)
488 {
489 	const struct time_unit *u = pick_time_units(ns);
490 
491 	prt_printf(out, "%llu ", div64_u64(ns, u->nsecs));
492 	prt_tab_rjust(out);
493 	prt_printf(out, "%s", u->name);
494 }
495 
496 static inline void pr_name_and_units(struct printbuf *out, const char *name, u64 ns)
497 {
498 	prt_str(out, name);
499 	prt_tab(out);
500 	bch2_pr_time_units_aligned(out, ns);
501 	prt_newline(out);
502 }
503 
504 #define TABSTOP_SIZE 12
505 
506 void bch2_time_stats_to_text(struct printbuf *out, struct bch2_time_stats *stats)
507 {
508 	const struct time_unit *u;
509 	s64 f_mean = 0, d_mean = 0;
510 	u64 q, last_q = 0, f_stddev = 0, d_stddev = 0;
511 	int i;
512 
513 	if (stats->buffer) {
514 		int cpu;
515 
516 		spin_lock_irq(&stats->lock);
517 		for_each_possible_cpu(cpu)
518 			__bch2_time_stats_clear_buffer(stats, per_cpu_ptr(stats->buffer, cpu));
519 		spin_unlock_irq(&stats->lock);
520 	}
521 
522 	/*
523 	 * avoid divide by zero
524 	 */
525 	if (stats->freq_stats.n) {
526 		f_mean = mean_and_variance_get_mean(stats->freq_stats);
527 		f_stddev = mean_and_variance_get_stddev(stats->freq_stats);
528 		d_mean = mean_and_variance_get_mean(stats->duration_stats);
529 		d_stddev = mean_and_variance_get_stddev(stats->duration_stats);
530 	}
531 
532 	printbuf_tabstop_push(out, out->indent + TABSTOP_SIZE);
533 	prt_printf(out, "count:");
534 	prt_tab(out);
535 	prt_printf(out, "%llu ",
536 			 stats->duration_stats.n);
537 	printbuf_tabstop_pop(out);
538 	prt_newline(out);
539 
540 	printbuf_tabstops_reset(out);
541 
542 	printbuf_tabstop_push(out, out->indent + 20);
543 	printbuf_tabstop_push(out, TABSTOP_SIZE + 2);
544 	printbuf_tabstop_push(out, 0);
545 	printbuf_tabstop_push(out, TABSTOP_SIZE + 2);
546 
547 	prt_tab(out);
548 	prt_printf(out, "since mount");
549 	prt_tab_rjust(out);
550 	prt_tab(out);
551 	prt_printf(out, "recent");
552 	prt_tab_rjust(out);
553 	prt_newline(out);
554 
555 	printbuf_tabstops_reset(out);
556 	printbuf_tabstop_push(out, out->indent + 20);
557 	printbuf_tabstop_push(out, TABSTOP_SIZE);
558 	printbuf_tabstop_push(out, 2);
559 	printbuf_tabstop_push(out, TABSTOP_SIZE);
560 
561 	prt_printf(out, "duration of events");
562 	prt_newline(out);
563 	printbuf_indent_add(out, 2);
564 
565 	pr_name_and_units(out, "min:", stats->min_duration);
566 	pr_name_and_units(out, "max:", stats->max_duration);
567 	pr_name_and_units(out, "total:", stats->total_duration);
568 
569 	prt_printf(out, "mean:");
570 	prt_tab(out);
571 	bch2_pr_time_units_aligned(out, d_mean);
572 	prt_tab(out);
573 	bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_mean(stats->duration_stats_weighted));
574 	prt_newline(out);
575 
576 	prt_printf(out, "stddev:");
577 	prt_tab(out);
578 	bch2_pr_time_units_aligned(out, d_stddev);
579 	prt_tab(out);
580 	bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_stddev(stats->duration_stats_weighted));
581 
582 	printbuf_indent_sub(out, 2);
583 	prt_newline(out);
584 
585 	prt_printf(out, "time between events");
586 	prt_newline(out);
587 	printbuf_indent_add(out, 2);
588 
589 	pr_name_and_units(out, "min:", stats->min_freq);
590 	pr_name_and_units(out, "max:", stats->max_freq);
591 
592 	prt_printf(out, "mean:");
593 	prt_tab(out);
594 	bch2_pr_time_units_aligned(out, f_mean);
595 	prt_tab(out);
596 	bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_mean(stats->freq_stats_weighted));
597 	prt_newline(out);
598 
599 	prt_printf(out, "stddev:");
600 	prt_tab(out);
601 	bch2_pr_time_units_aligned(out, f_stddev);
602 	prt_tab(out);
603 	bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_stddev(stats->freq_stats_weighted));
604 
605 	printbuf_indent_sub(out, 2);
606 	prt_newline(out);
607 
608 	printbuf_tabstops_reset(out);
609 
610 	i = eytzinger0_first(NR_QUANTILES);
611 	u = pick_time_units(stats->quantiles.entries[i].m);
612 
613 	prt_printf(out, "quantiles (%s):\t", u->name);
614 	eytzinger0_for_each(i, NR_QUANTILES) {
615 		bool is_last = eytzinger0_next(i, NR_QUANTILES) == -1;
616 
617 		q = max(stats->quantiles.entries[i].m, last_q);
618 		prt_printf(out, "%llu ",
619 		       div_u64(q, u->nsecs));
620 		if (is_last)
621 			prt_newline(out);
622 		last_q = q;
623 	}
624 }
625 #else
626 void bch2_time_stats_to_text(struct printbuf *out, struct bch2_time_stats *stats) {}
627 #endif
628 
629 void bch2_time_stats_exit(struct bch2_time_stats *stats)
630 {
631 	free_percpu(stats->buffer);
632 }
633 
634 void bch2_time_stats_init(struct bch2_time_stats *stats)
635 {
636 	memset(stats, 0, sizeof(*stats));
637 	stats->duration_stats_weighted.weight = 8;
638 	stats->freq_stats_weighted.weight = 8;
639 	stats->min_duration = U64_MAX;
640 	stats->min_freq = U64_MAX;
641 	spin_lock_init(&stats->lock);
642 }
643 
644 /* ratelimit: */
645 
646 /**
647  * bch2_ratelimit_delay() - return how long to delay until the next time to do
648  *		some work
649  * @d:		the struct bch_ratelimit to update
650  * Returns:	the amount of time to delay by, in jiffies
651  */
652 u64 bch2_ratelimit_delay(struct bch_ratelimit *d)
653 {
654 	u64 now = local_clock();
655 
656 	return time_after64(d->next, now)
657 		? nsecs_to_jiffies(d->next - now)
658 		: 0;
659 }
660 
661 /**
662  * bch2_ratelimit_increment() - increment @d by the amount of work done
663  * @d:		the struct bch_ratelimit to update
664  * @done:	the amount of work done, in arbitrary units
665  */
666 void bch2_ratelimit_increment(struct bch_ratelimit *d, u64 done)
667 {
668 	u64 now = local_clock();
669 
670 	d->next += div_u64(done * NSEC_PER_SEC, d->rate);
671 
672 	if (time_before64(now + NSEC_PER_SEC, d->next))
673 		d->next = now + NSEC_PER_SEC;
674 
675 	if (time_after64(now - NSEC_PER_SEC * 2, d->next))
676 		d->next = now - NSEC_PER_SEC * 2;
677 }
678 
679 /* pd controller: */
680 
681 /*
682  * Updates pd_controller. Attempts to scale inputed values to units per second.
683  * @target: desired value
684  * @actual: current value
685  *
686  * @sign: 1 or -1; 1 if increasing the rate makes actual go up, -1 if increasing
687  * it makes actual go down.
688  */
689 void bch2_pd_controller_update(struct bch_pd_controller *pd,
690 			      s64 target, s64 actual, int sign)
691 {
692 	s64 proportional, derivative, change;
693 
694 	unsigned long seconds_since_update = (jiffies - pd->last_update) / HZ;
695 
696 	if (seconds_since_update == 0)
697 		return;
698 
699 	pd->last_update = jiffies;
700 
701 	proportional = actual - target;
702 	proportional *= seconds_since_update;
703 	proportional = div_s64(proportional, pd->p_term_inverse);
704 
705 	derivative = actual - pd->last_actual;
706 	derivative = div_s64(derivative, seconds_since_update);
707 	derivative = ewma_add(pd->smoothed_derivative, derivative,
708 			      (pd->d_term / seconds_since_update) ?: 1);
709 	derivative = derivative * pd->d_term;
710 	derivative = div_s64(derivative, pd->p_term_inverse);
711 
712 	change = proportional + derivative;
713 
714 	/* Don't increase rate if not keeping up */
715 	if (change > 0 &&
716 	    pd->backpressure &&
717 	    time_after64(local_clock(),
718 			 pd->rate.next + NSEC_PER_MSEC))
719 		change = 0;
720 
721 	change *= (sign * -1);
722 
723 	pd->rate.rate = clamp_t(s64, (s64) pd->rate.rate + change,
724 				1, UINT_MAX);
725 
726 	pd->last_actual		= actual;
727 	pd->last_derivative	= derivative;
728 	pd->last_proportional	= proportional;
729 	pd->last_change		= change;
730 	pd->last_target		= target;
731 }
732 
733 void bch2_pd_controller_init(struct bch_pd_controller *pd)
734 {
735 	pd->rate.rate		= 1024;
736 	pd->last_update		= jiffies;
737 	pd->p_term_inverse	= 6000;
738 	pd->d_term		= 30;
739 	pd->d_smooth		= pd->d_term;
740 	pd->backpressure	= 1;
741 }
742 
743 void bch2_pd_controller_debug_to_text(struct printbuf *out, struct bch_pd_controller *pd)
744 {
745 	if (!out->nr_tabstops)
746 		printbuf_tabstop_push(out, 20);
747 
748 	prt_printf(out, "rate:");
749 	prt_tab(out);
750 	prt_human_readable_s64(out, pd->rate.rate);
751 	prt_newline(out);
752 
753 	prt_printf(out, "target:");
754 	prt_tab(out);
755 	prt_human_readable_u64(out, pd->last_target);
756 	prt_newline(out);
757 
758 	prt_printf(out, "actual:");
759 	prt_tab(out);
760 	prt_human_readable_u64(out, pd->last_actual);
761 	prt_newline(out);
762 
763 	prt_printf(out, "proportional:");
764 	prt_tab(out);
765 	prt_human_readable_s64(out, pd->last_proportional);
766 	prt_newline(out);
767 
768 	prt_printf(out, "derivative:");
769 	prt_tab(out);
770 	prt_human_readable_s64(out, pd->last_derivative);
771 	prt_newline(out);
772 
773 	prt_printf(out, "change:");
774 	prt_tab(out);
775 	prt_human_readable_s64(out, pd->last_change);
776 	prt_newline(out);
777 
778 	prt_printf(out, "next io:");
779 	prt_tab(out);
780 	prt_printf(out, "%llims", div64_s64(pd->rate.next - local_clock(), NSEC_PER_MSEC));
781 	prt_newline(out);
782 }
783 
784 /* misc: */
785 
786 void bch2_bio_map(struct bio *bio, void *base, size_t size)
787 {
788 	while (size) {
789 		struct page *page = is_vmalloc_addr(base)
790 				? vmalloc_to_page(base)
791 				: virt_to_page(base);
792 		unsigned offset = offset_in_page(base);
793 		unsigned len = min_t(size_t, PAGE_SIZE - offset, size);
794 
795 		BUG_ON(!bio_add_page(bio, page, len, offset));
796 		size -= len;
797 		base += len;
798 	}
799 }
800 
801 int bch2_bio_alloc_pages(struct bio *bio, size_t size, gfp_t gfp_mask)
802 {
803 	while (size) {
804 		struct page *page = alloc_pages(gfp_mask, 0);
805 		unsigned len = min_t(size_t, PAGE_SIZE, size);
806 
807 		if (!page)
808 			return -ENOMEM;
809 
810 		if (unlikely(!bio_add_page(bio, page, len, 0))) {
811 			__free_page(page);
812 			break;
813 		}
814 
815 		size -= len;
816 	}
817 
818 	return 0;
819 }
820 
821 size_t bch2_rand_range(size_t max)
822 {
823 	size_t rand;
824 
825 	if (!max)
826 		return 0;
827 
828 	do {
829 		rand = get_random_long();
830 		rand &= roundup_pow_of_two(max) - 1;
831 	} while (rand >= max);
832 
833 	return rand;
834 }
835 
836 void memcpy_to_bio(struct bio *dst, struct bvec_iter dst_iter, const void *src)
837 {
838 	struct bio_vec bv;
839 	struct bvec_iter iter;
840 
841 	__bio_for_each_segment(bv, dst, iter, dst_iter) {
842 		void *dstp = kmap_local_page(bv.bv_page);
843 
844 		memcpy(dstp + bv.bv_offset, src, bv.bv_len);
845 		kunmap_local(dstp);
846 
847 		src += bv.bv_len;
848 	}
849 }
850 
851 void memcpy_from_bio(void *dst, struct bio *src, struct bvec_iter src_iter)
852 {
853 	struct bio_vec bv;
854 	struct bvec_iter iter;
855 
856 	__bio_for_each_segment(bv, src, iter, src_iter) {
857 		void *srcp = kmap_local_page(bv.bv_page);
858 
859 		memcpy(dst, srcp + bv.bv_offset, bv.bv_len);
860 		kunmap_local(srcp);
861 
862 		dst += bv.bv_len;
863 	}
864 }
865 
866 static int alignment_ok(const void *base, size_t align)
867 {
868 	return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
869 		((unsigned long)base & (align - 1)) == 0;
870 }
871 
872 static void u32_swap(void *a, void *b, size_t size)
873 {
874 	u32 t = *(u32 *)a;
875 	*(u32 *)a = *(u32 *)b;
876 	*(u32 *)b = t;
877 }
878 
879 static void u64_swap(void *a, void *b, size_t size)
880 {
881 	u64 t = *(u64 *)a;
882 	*(u64 *)a = *(u64 *)b;
883 	*(u64 *)b = t;
884 }
885 
886 static void generic_swap(void *a, void *b, size_t size)
887 {
888 	char t;
889 
890 	do {
891 		t = *(char *)a;
892 		*(char *)a++ = *(char *)b;
893 		*(char *)b++ = t;
894 	} while (--size > 0);
895 }
896 
897 static inline int do_cmp(void *base, size_t n, size_t size,
898 			 int (*cmp_func)(const void *, const void *, size_t),
899 			 size_t l, size_t r)
900 {
901 	return cmp_func(base + inorder_to_eytzinger0(l, n) * size,
902 			base + inorder_to_eytzinger0(r, n) * size,
903 			size);
904 }
905 
906 static inline void do_swap(void *base, size_t n, size_t size,
907 			   void (*swap_func)(void *, void *, size_t),
908 			   size_t l, size_t r)
909 {
910 	swap_func(base + inorder_to_eytzinger0(l, n) * size,
911 		  base + inorder_to_eytzinger0(r, n) * size,
912 		  size);
913 }
914 
915 void eytzinger0_sort(void *base, size_t n, size_t size,
916 		     int (*cmp_func)(const void *, const void *, size_t),
917 		     void (*swap_func)(void *, void *, size_t))
918 {
919 	int i, c, r;
920 
921 	if (!swap_func) {
922 		if (size == 4 && alignment_ok(base, 4))
923 			swap_func = u32_swap;
924 		else if (size == 8 && alignment_ok(base, 8))
925 			swap_func = u64_swap;
926 		else
927 			swap_func = generic_swap;
928 	}
929 
930 	/* heapify */
931 	for (i = n / 2 - 1; i >= 0; --i) {
932 		for (r = i; r * 2 + 1 < n; r = c) {
933 			c = r * 2 + 1;
934 
935 			if (c + 1 < n &&
936 			    do_cmp(base, n, size, cmp_func, c, c + 1) < 0)
937 				c++;
938 
939 			if (do_cmp(base, n, size, cmp_func, r, c) >= 0)
940 				break;
941 
942 			do_swap(base, n, size, swap_func, r, c);
943 		}
944 	}
945 
946 	/* sort */
947 	for (i = n - 1; i > 0; --i) {
948 		do_swap(base, n, size, swap_func, 0, i);
949 
950 		for (r = 0; r * 2 + 1 < i; r = c) {
951 			c = r * 2 + 1;
952 
953 			if (c + 1 < i &&
954 			    do_cmp(base, n, size, cmp_func, c, c + 1) < 0)
955 				c++;
956 
957 			if (do_cmp(base, n, size, cmp_func, r, c) >= 0)
958 				break;
959 
960 			do_swap(base, n, size, swap_func, r, c);
961 		}
962 	}
963 }
964 
965 void sort_cmp_size(void *base, size_t num, size_t size,
966 	  int (*cmp_func)(const void *, const void *, size_t),
967 	  void (*swap_func)(void *, void *, size_t size))
968 {
969 	/* pre-scale counters for performance */
970 	int i = (num/2 - 1) * size, n = num * size, c, r;
971 
972 	if (!swap_func) {
973 		if (size == 4 && alignment_ok(base, 4))
974 			swap_func = u32_swap;
975 		else if (size == 8 && alignment_ok(base, 8))
976 			swap_func = u64_swap;
977 		else
978 			swap_func = generic_swap;
979 	}
980 
981 	/* heapify */
982 	for ( ; i >= 0; i -= size) {
983 		for (r = i; r * 2 + size < n; r  = c) {
984 			c = r * 2 + size;
985 			if (c < n - size &&
986 			    cmp_func(base + c, base + c + size, size) < 0)
987 				c += size;
988 			if (cmp_func(base + r, base + c, size) >= 0)
989 				break;
990 			swap_func(base + r, base + c, size);
991 		}
992 	}
993 
994 	/* sort */
995 	for (i = n - size; i > 0; i -= size) {
996 		swap_func(base, base + i, size);
997 		for (r = 0; r * 2 + size < i; r = c) {
998 			c = r * 2 + size;
999 			if (c < i - size &&
1000 			    cmp_func(base + c, base + c + size, size) < 0)
1001 				c += size;
1002 			if (cmp_func(base + r, base + c, size) >= 0)
1003 				break;
1004 			swap_func(base + r, base + c, size);
1005 		}
1006 	}
1007 }
1008 
1009 static void mempool_free_vp(void *element, void *pool_data)
1010 {
1011 	size_t size = (size_t) pool_data;
1012 
1013 	vpfree(element, size);
1014 }
1015 
1016 static void *mempool_alloc_vp(gfp_t gfp_mask, void *pool_data)
1017 {
1018 	size_t size = (size_t) pool_data;
1019 
1020 	return vpmalloc(size, gfp_mask);
1021 }
1022 
1023 int mempool_init_kvpmalloc_pool(mempool_t *pool, int min_nr, size_t size)
1024 {
1025 	return size < PAGE_SIZE
1026 		? mempool_init_kmalloc_pool(pool, min_nr, size)
1027 		: mempool_init(pool, min_nr, mempool_alloc_vp,
1028 			       mempool_free_vp, (void *) size);
1029 }
1030 
1031 #if 0
1032 void eytzinger1_test(void)
1033 {
1034 	unsigned inorder, eytz, size;
1035 
1036 	pr_info("1 based eytzinger test:");
1037 
1038 	for (size = 2;
1039 	     size < 65536;
1040 	     size++) {
1041 		unsigned extra = eytzinger1_extra(size);
1042 
1043 		if (!(size % 4096))
1044 			pr_info("tree size %u", size);
1045 
1046 		BUG_ON(eytzinger1_prev(0, size) != eytzinger1_last(size));
1047 		BUG_ON(eytzinger1_next(0, size) != eytzinger1_first(size));
1048 
1049 		BUG_ON(eytzinger1_prev(eytzinger1_first(size), size)	!= 0);
1050 		BUG_ON(eytzinger1_next(eytzinger1_last(size), size)	!= 0);
1051 
1052 		inorder = 1;
1053 		eytzinger1_for_each(eytz, size) {
1054 			BUG_ON(__inorder_to_eytzinger1(inorder, size, extra) != eytz);
1055 			BUG_ON(__eytzinger1_to_inorder(eytz, size, extra) != inorder);
1056 			BUG_ON(eytz != eytzinger1_last(size) &&
1057 			       eytzinger1_prev(eytzinger1_next(eytz, size), size) != eytz);
1058 
1059 			inorder++;
1060 		}
1061 	}
1062 }
1063 
1064 void eytzinger0_test(void)
1065 {
1066 
1067 	unsigned inorder, eytz, size;
1068 
1069 	pr_info("0 based eytzinger test:");
1070 
1071 	for (size = 1;
1072 	     size < 65536;
1073 	     size++) {
1074 		unsigned extra = eytzinger0_extra(size);
1075 
1076 		if (!(size % 4096))
1077 			pr_info("tree size %u", size);
1078 
1079 		BUG_ON(eytzinger0_prev(-1, size) != eytzinger0_last(size));
1080 		BUG_ON(eytzinger0_next(-1, size) != eytzinger0_first(size));
1081 
1082 		BUG_ON(eytzinger0_prev(eytzinger0_first(size), size)	!= -1);
1083 		BUG_ON(eytzinger0_next(eytzinger0_last(size), size)	!= -1);
1084 
1085 		inorder = 0;
1086 		eytzinger0_for_each(eytz, size) {
1087 			BUG_ON(__inorder_to_eytzinger0(inorder, size, extra) != eytz);
1088 			BUG_ON(__eytzinger0_to_inorder(eytz, size, extra) != inorder);
1089 			BUG_ON(eytz != eytzinger0_last(size) &&
1090 			       eytzinger0_prev(eytzinger0_next(eytz, size), size) != eytz);
1091 
1092 			inorder++;
1093 		}
1094 	}
1095 }
1096 
1097 static inline int cmp_u16(const void *_l, const void *_r, size_t size)
1098 {
1099 	const u16 *l = _l, *r = _r;
1100 
1101 	return (*l > *r) - (*r - *l);
1102 }
1103 
1104 static void eytzinger0_find_test_val(u16 *test_array, unsigned nr, u16 search)
1105 {
1106 	int i, c1 = -1, c2 = -1;
1107 	ssize_t r;
1108 
1109 	r = eytzinger0_find_le(test_array, nr,
1110 			       sizeof(test_array[0]),
1111 			       cmp_u16, &search);
1112 	if (r >= 0)
1113 		c1 = test_array[r];
1114 
1115 	for (i = 0; i < nr; i++)
1116 		if (test_array[i] <= search && test_array[i] > c2)
1117 			c2 = test_array[i];
1118 
1119 	if (c1 != c2) {
1120 		eytzinger0_for_each(i, nr)
1121 			pr_info("[%3u] = %12u", i, test_array[i]);
1122 		pr_info("find_le(%2u) -> [%2zi] = %2i should be %2i",
1123 			i, r, c1, c2);
1124 	}
1125 }
1126 
1127 void eytzinger0_find_test(void)
1128 {
1129 	unsigned i, nr, allocated = 1 << 12;
1130 	u16 *test_array = kmalloc_array(allocated, sizeof(test_array[0]), GFP_KERNEL);
1131 
1132 	for (nr = 1; nr < allocated; nr++) {
1133 		pr_info("testing %u elems", nr);
1134 
1135 		get_random_bytes(test_array, nr * sizeof(test_array[0]));
1136 		eytzinger0_sort(test_array, nr, sizeof(test_array[0]), cmp_u16, NULL);
1137 
1138 		/* verify array is sorted correctly: */
1139 		eytzinger0_for_each(i, nr)
1140 			BUG_ON(i != eytzinger0_last(nr) &&
1141 			       test_array[i] > test_array[eytzinger0_next(i, nr)]);
1142 
1143 		for (i = 0; i < U16_MAX; i += 1 << 12)
1144 			eytzinger0_find_test_val(test_array, nr, i);
1145 
1146 		for (i = 0; i < nr; i++) {
1147 			eytzinger0_find_test_val(test_array, nr, test_array[i] - 1);
1148 			eytzinger0_find_test_val(test_array, nr, test_array[i]);
1149 			eytzinger0_find_test_val(test_array, nr, test_array[i] + 1);
1150 		}
1151 	}
1152 
1153 	kfree(test_array);
1154 }
1155 #endif
1156 
1157 /*
1158  * Accumulate percpu counters onto one cpu's copy - only valid when access
1159  * against any percpu counter is guarded against
1160  */
1161 u64 *bch2_acc_percpu_u64s(u64 __percpu *p, unsigned nr)
1162 {
1163 	u64 *ret;
1164 	int cpu;
1165 
1166 	/* access to pcpu vars has to be blocked by other locking */
1167 	preempt_disable();
1168 	ret = this_cpu_ptr(p);
1169 	preempt_enable();
1170 
1171 	for_each_possible_cpu(cpu) {
1172 		u64 *i = per_cpu_ptr(p, cpu);
1173 
1174 		if (i != ret) {
1175 			acc_u64s(ret, i, nr);
1176 			memset(i, 0, nr * sizeof(u64));
1177 		}
1178 	}
1179 
1180 	return ret;
1181 }
1182 
1183 void bch2_darray_str_exit(darray_str *d)
1184 {
1185 	darray_for_each(*d, i)
1186 		kfree(*i);
1187 	darray_exit(d);
1188 }
1189 
1190 int bch2_split_devs(const char *_dev_name, darray_str *ret)
1191 {
1192 	darray_init(ret);
1193 
1194 	char *dev_name, *s, *orig;
1195 
1196 	dev_name = orig = kstrdup(_dev_name, GFP_KERNEL);
1197 	if (!dev_name)
1198 		return -ENOMEM;
1199 
1200 	while ((s = strsep(&dev_name, ":"))) {
1201 		char *p = kstrdup(s, GFP_KERNEL);
1202 		if (!p)
1203 			goto err;
1204 
1205 		if (darray_push(ret, p)) {
1206 			kfree(p);
1207 			goto err;
1208 		}
1209 	}
1210 
1211 	kfree(orig);
1212 	return 0;
1213 err:
1214 	bch2_darray_str_exit(ret);
1215 	kfree(orig);
1216 	return -ENOMEM;
1217 }
1218