xref: /linux/fs/bcachefs/util.c (revision 0b0e9cdb3d1f8fda823b592b0667b4b0595e2ba7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * random utility code, for bcache but in theory not specific to bcache
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include <linux/bio.h>
10 #include <linux/blkdev.h>
11 #include <linux/console.h>
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/freezer.h>
15 #include <linux/kthread.h>
16 #include <linux/log2.h>
17 #include <linux/math64.h>
18 #include <linux/percpu.h>
19 #include <linux/preempt.h>
20 #include <linux/random.h>
21 #include <linux/seq_file.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/sched/clock.h>
25 
26 #include "eytzinger.h"
27 #include "mean_and_variance.h"
28 #include "util.h"
29 
30 static const char si_units[] = "?kMGTPEZY";
31 
32 /* string_get_size units: */
33 static const char *const units_2[] = {
34 	"B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB", "ZiB", "YiB"
35 };
36 static const char *const units_10[] = {
37 	"B", "kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"
38 };
39 
40 static int parse_u64(const char *cp, u64 *res)
41 {
42 	const char *start = cp;
43 	u64 v = 0;
44 
45 	if (!isdigit(*cp))
46 		return -EINVAL;
47 
48 	do {
49 		if (v > U64_MAX / 10)
50 			return -ERANGE;
51 		v *= 10;
52 		if (v > U64_MAX - (*cp - '0'))
53 			return -ERANGE;
54 		v += *cp - '0';
55 		cp++;
56 	} while (isdigit(*cp));
57 
58 	*res = v;
59 	return cp - start;
60 }
61 
62 static int bch2_pow(u64 n, u64 p, u64 *res)
63 {
64 	*res = 1;
65 
66 	while (p--) {
67 		if (*res > div_u64(U64_MAX, n))
68 			return -ERANGE;
69 		*res *= n;
70 	}
71 	return 0;
72 }
73 
74 static int parse_unit_suffix(const char *cp, u64 *res)
75 {
76 	const char *start = cp;
77 	u64 base = 1024;
78 	unsigned u;
79 	int ret;
80 
81 	if (*cp == ' ')
82 		cp++;
83 
84 	for (u = 1; u < strlen(si_units); u++)
85 		if (*cp == si_units[u]) {
86 			cp++;
87 			goto got_unit;
88 		}
89 
90 	for (u = 0; u < ARRAY_SIZE(units_2); u++)
91 		if (!strncmp(cp, units_2[u], strlen(units_2[u]))) {
92 			cp += strlen(units_2[u]);
93 			goto got_unit;
94 		}
95 
96 	for (u = 0; u < ARRAY_SIZE(units_10); u++)
97 		if (!strncmp(cp, units_10[u], strlen(units_10[u]))) {
98 			cp += strlen(units_10[u]);
99 			base = 1000;
100 			goto got_unit;
101 		}
102 
103 	*res = 1;
104 	return 0;
105 got_unit:
106 	ret = bch2_pow(base, u, res);
107 	if (ret)
108 		return ret;
109 
110 	return cp - start;
111 }
112 
113 #define parse_or_ret(cp, _f)			\
114 do {						\
115 	int _ret = _f;				\
116 	if (_ret < 0)				\
117 		return _ret;			\
118 	cp += _ret;				\
119 } while (0)
120 
121 static int __bch2_strtou64_h(const char *cp, u64 *res)
122 {
123 	const char *start = cp;
124 	u64 v = 0, b, f_n = 0, f_d = 1;
125 	int ret;
126 
127 	parse_or_ret(cp, parse_u64(cp, &v));
128 
129 	if (*cp == '.') {
130 		cp++;
131 		ret = parse_u64(cp, &f_n);
132 		if (ret < 0)
133 			return ret;
134 		cp += ret;
135 
136 		ret = bch2_pow(10, ret, &f_d);
137 		if (ret)
138 			return ret;
139 	}
140 
141 	parse_or_ret(cp, parse_unit_suffix(cp, &b));
142 
143 	if (v > div_u64(U64_MAX, b))
144 		return -ERANGE;
145 	v *= b;
146 
147 	if (f_n > div_u64(U64_MAX, b))
148 		return -ERANGE;
149 
150 	f_n = div_u64(f_n * b, f_d);
151 	if (v + f_n < v)
152 		return -ERANGE;
153 	v += f_n;
154 
155 	*res = v;
156 	return cp - start;
157 }
158 
159 static int __bch2_strtoh(const char *cp, u64 *res,
160 			 u64 t_max, bool t_signed)
161 {
162 	bool positive = *cp != '-';
163 	u64 v = 0;
164 
165 	if (*cp == '+' || *cp == '-')
166 		cp++;
167 
168 	parse_or_ret(cp, __bch2_strtou64_h(cp, &v));
169 
170 	if (*cp == '\n')
171 		cp++;
172 	if (*cp)
173 		return -EINVAL;
174 
175 	if (positive) {
176 		if (v > t_max)
177 			return -ERANGE;
178 	} else {
179 		if (v && !t_signed)
180 			return -ERANGE;
181 
182 		if (v > t_max + 1)
183 			return -ERANGE;
184 		v = -v;
185 	}
186 
187 	*res = v;
188 	return 0;
189 }
190 
191 #define STRTO_H(name, type)					\
192 int bch2_ ## name ## _h(const char *cp, type *res)		\
193 {								\
194 	u64 v = 0;						\
195 	int ret = __bch2_strtoh(cp, &v, ANYSINT_MAX(type),	\
196 			ANYSINT_MAX(type) != ((type) ~0ULL));	\
197 	*res = v;						\
198 	return ret;						\
199 }
200 
201 STRTO_H(strtoint, int)
202 STRTO_H(strtouint, unsigned int)
203 STRTO_H(strtoll, long long)
204 STRTO_H(strtoull, unsigned long long)
205 STRTO_H(strtou64, u64)
206 
207 u64 bch2_read_flag_list(char *opt, const char * const list[])
208 {
209 	u64 ret = 0;
210 	char *p, *s, *d = kstrdup(opt, GFP_KERNEL);
211 
212 	if (!d)
213 		return -ENOMEM;
214 
215 	s = strim(d);
216 
217 	while ((p = strsep(&s, ","))) {
218 		int flag = match_string(list, -1, p);
219 
220 		if (flag < 0) {
221 			ret = -1;
222 			break;
223 		}
224 
225 		ret |= 1 << flag;
226 	}
227 
228 	kfree(d);
229 
230 	return ret;
231 }
232 
233 bool bch2_is_zero(const void *_p, size_t n)
234 {
235 	const char *p = _p;
236 	size_t i;
237 
238 	for (i = 0; i < n; i++)
239 		if (p[i])
240 			return false;
241 	return true;
242 }
243 
244 void bch2_prt_u64_base2_nbits(struct printbuf *out, u64 v, unsigned nr_bits)
245 {
246 	while (nr_bits)
247 		prt_char(out, '0' + ((v >> --nr_bits) & 1));
248 }
249 
250 void bch2_prt_u64_base2(struct printbuf *out, u64 v)
251 {
252 	bch2_prt_u64_base2_nbits(out, v, fls64(v) ?: 1);
253 }
254 
255 static void __bch2_print_string_as_lines(const char *prefix, const char *lines,
256 					 bool nonblocking)
257 {
258 	bool locked = false;
259 	const char *p;
260 
261 	if (!lines) {
262 		printk("%s (null)\n", prefix);
263 		return;
264 	}
265 
266 	if (!nonblocking) {
267 		console_lock();
268 		locked = true;
269 	} else {
270 		locked = console_trylock();
271 	}
272 
273 	while (1) {
274 		p = strchrnul(lines, '\n');
275 		printk("%s%.*s\n", prefix, (int) (p - lines), lines);
276 		if (!*p)
277 			break;
278 		lines = p + 1;
279 	}
280 	if (locked)
281 		console_unlock();
282 }
283 
284 void bch2_print_string_as_lines(const char *prefix, const char *lines)
285 {
286 	return __bch2_print_string_as_lines(prefix, lines, false);
287 }
288 
289 void bch2_print_string_as_lines_nonblocking(const char *prefix, const char *lines)
290 {
291 	return __bch2_print_string_as_lines(prefix, lines, true);
292 }
293 
294 int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *task, unsigned skipnr,
295 			gfp_t gfp)
296 {
297 #ifdef CONFIG_STACKTRACE
298 	unsigned nr_entries = 0;
299 
300 	stack->nr = 0;
301 	int ret = darray_make_room_gfp(stack, 32, gfp);
302 	if (ret)
303 		return ret;
304 
305 	if (!down_read_trylock(&task->signal->exec_update_lock))
306 		return -1;
307 
308 	do {
309 		nr_entries = stack_trace_save_tsk(task, stack->data, stack->size, skipnr + 1);
310 	} while (nr_entries == stack->size &&
311 		 !(ret = darray_make_room_gfp(stack, stack->size * 2, gfp)));
312 
313 	stack->nr = nr_entries;
314 	up_read(&task->signal->exec_update_lock);
315 
316 	return ret;
317 #else
318 	return 0;
319 #endif
320 }
321 
322 void bch2_prt_backtrace(struct printbuf *out, bch_stacktrace *stack)
323 {
324 	darray_for_each(*stack, i) {
325 		prt_printf(out, "[<0>] %pB", (void *) *i);
326 		prt_newline(out);
327 	}
328 }
329 
330 int bch2_prt_task_backtrace(struct printbuf *out, struct task_struct *task, unsigned skipnr, gfp_t gfp)
331 {
332 	bch_stacktrace stack = { 0 };
333 	int ret = bch2_save_backtrace(&stack, task, skipnr + 1, gfp);
334 
335 	bch2_prt_backtrace(out, &stack);
336 	darray_exit(&stack);
337 	return ret;
338 }
339 
340 #ifndef __KERNEL__
341 #include <time.h>
342 void bch2_prt_datetime(struct printbuf *out, time64_t sec)
343 {
344 	time_t t = sec;
345 	char buf[64];
346 	ctime_r(&t, buf);
347 	strim(buf);
348 	prt_str(out, buf);
349 }
350 #else
351 void bch2_prt_datetime(struct printbuf *out, time64_t sec)
352 {
353 	char buf[64];
354 	snprintf(buf, sizeof(buf), "%ptT", &sec);
355 	prt_u64(out, sec);
356 }
357 #endif
358 
359 void bch2_pr_time_units(struct printbuf *out, u64 ns)
360 {
361 	const struct time_unit *u = bch2_pick_time_units(ns);
362 
363 	prt_printf(out, "%llu %s", div_u64(ns, u->nsecs), u->name);
364 }
365 
366 static void bch2_pr_time_units_aligned(struct printbuf *out, u64 ns)
367 {
368 	const struct time_unit *u = bch2_pick_time_units(ns);
369 
370 	prt_printf(out, "%llu \r%s", div64_u64(ns, u->nsecs), u->name);
371 }
372 
373 static inline void pr_name_and_units(struct printbuf *out, const char *name, u64 ns)
374 {
375 	prt_printf(out, "%s\t", name);
376 	bch2_pr_time_units_aligned(out, ns);
377 	prt_newline(out);
378 }
379 
380 #define TABSTOP_SIZE 12
381 
382 void bch2_time_stats_to_text(struct printbuf *out, struct bch2_time_stats *stats)
383 {
384 	struct quantiles *quantiles = time_stats_to_quantiles(stats);
385 	s64 f_mean = 0, d_mean = 0;
386 	u64 f_stddev = 0, d_stddev = 0;
387 
388 	if (stats->buffer) {
389 		int cpu;
390 
391 		spin_lock_irq(&stats->lock);
392 		for_each_possible_cpu(cpu)
393 			__bch2_time_stats_clear_buffer(stats, per_cpu_ptr(stats->buffer, cpu));
394 		spin_unlock_irq(&stats->lock);
395 	}
396 
397 	/*
398 	 * avoid divide by zero
399 	 */
400 	if (stats->freq_stats.n) {
401 		f_mean = mean_and_variance_get_mean(stats->freq_stats);
402 		f_stddev = mean_and_variance_get_stddev(stats->freq_stats);
403 		d_mean = mean_and_variance_get_mean(stats->duration_stats);
404 		d_stddev = mean_and_variance_get_stddev(stats->duration_stats);
405 	}
406 
407 	printbuf_tabstop_push(out, out->indent + TABSTOP_SIZE);
408 	prt_printf(out, "count:\t%llu\n", stats->duration_stats.n);
409 	printbuf_tabstop_pop(out);
410 
411 	printbuf_tabstops_reset(out);
412 
413 	printbuf_tabstop_push(out, out->indent + 20);
414 	printbuf_tabstop_push(out, TABSTOP_SIZE + 2);
415 	printbuf_tabstop_push(out, 0);
416 	printbuf_tabstop_push(out, TABSTOP_SIZE + 2);
417 
418 	prt_printf(out, "\tsince mount\r\trecent\r\n");
419 	prt_printf(out, "recent");
420 
421 	printbuf_tabstops_reset(out);
422 	printbuf_tabstop_push(out, out->indent + 20);
423 	printbuf_tabstop_push(out, TABSTOP_SIZE);
424 	printbuf_tabstop_push(out, 2);
425 	printbuf_tabstop_push(out, TABSTOP_SIZE);
426 
427 	prt_printf(out, "duration of events\n");
428 	printbuf_indent_add(out, 2);
429 
430 	pr_name_and_units(out, "min:", stats->min_duration);
431 	pr_name_and_units(out, "max:", stats->max_duration);
432 	pr_name_and_units(out, "total:", stats->total_duration);
433 
434 	prt_printf(out, "mean:\t");
435 	bch2_pr_time_units_aligned(out, d_mean);
436 	prt_tab(out);
437 	bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_mean(stats->duration_stats_weighted, TIME_STATS_MV_WEIGHT));
438 	prt_newline(out);
439 
440 	prt_printf(out, "stddev:\t");
441 	bch2_pr_time_units_aligned(out, d_stddev);
442 	prt_tab(out);
443 	bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_stddev(stats->duration_stats_weighted, TIME_STATS_MV_WEIGHT));
444 
445 	printbuf_indent_sub(out, 2);
446 	prt_newline(out);
447 
448 	prt_printf(out, "time between events\n");
449 	printbuf_indent_add(out, 2);
450 
451 	pr_name_and_units(out, "min:", stats->min_freq);
452 	pr_name_and_units(out, "max:", stats->max_freq);
453 
454 	prt_printf(out, "mean:\t");
455 	bch2_pr_time_units_aligned(out, f_mean);
456 	prt_tab(out);
457 	bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_mean(stats->freq_stats_weighted, TIME_STATS_MV_WEIGHT));
458 	prt_newline(out);
459 
460 	prt_printf(out, "stddev:\t");
461 	bch2_pr_time_units_aligned(out, f_stddev);
462 	prt_tab(out);
463 	bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_stddev(stats->freq_stats_weighted, TIME_STATS_MV_WEIGHT));
464 
465 	printbuf_indent_sub(out, 2);
466 	prt_newline(out);
467 
468 	printbuf_tabstops_reset(out);
469 
470 	if (quantiles) {
471 		int i = eytzinger0_first(NR_QUANTILES);
472 		const struct time_unit *u =
473 			bch2_pick_time_units(quantiles->entries[i].m);
474 		u64 last_q = 0;
475 
476 		prt_printf(out, "quantiles (%s):\t", u->name);
477 		eytzinger0_for_each(i, NR_QUANTILES) {
478 			bool is_last = eytzinger0_next(i, NR_QUANTILES) == -1;
479 
480 			u64 q = max(quantiles->entries[i].m, last_q);
481 			prt_printf(out, "%llu ", div_u64(q, u->nsecs));
482 			if (is_last)
483 				prt_newline(out);
484 			last_q = q;
485 		}
486 	}
487 }
488 
489 /* ratelimit: */
490 
491 /**
492  * bch2_ratelimit_delay() - return how long to delay until the next time to do
493  *		some work
494  * @d:		the struct bch_ratelimit to update
495  * Returns:	the amount of time to delay by, in jiffies
496  */
497 u64 bch2_ratelimit_delay(struct bch_ratelimit *d)
498 {
499 	u64 now = local_clock();
500 
501 	return time_after64(d->next, now)
502 		? nsecs_to_jiffies(d->next - now)
503 		: 0;
504 }
505 
506 /**
507  * bch2_ratelimit_increment() - increment @d by the amount of work done
508  * @d:		the struct bch_ratelimit to update
509  * @done:	the amount of work done, in arbitrary units
510  */
511 void bch2_ratelimit_increment(struct bch_ratelimit *d, u64 done)
512 {
513 	u64 now = local_clock();
514 
515 	d->next += div_u64(done * NSEC_PER_SEC, d->rate);
516 
517 	if (time_before64(now + NSEC_PER_SEC, d->next))
518 		d->next = now + NSEC_PER_SEC;
519 
520 	if (time_after64(now - NSEC_PER_SEC * 2, d->next))
521 		d->next = now - NSEC_PER_SEC * 2;
522 }
523 
524 /* pd controller: */
525 
526 /*
527  * Updates pd_controller. Attempts to scale inputed values to units per second.
528  * @target: desired value
529  * @actual: current value
530  *
531  * @sign: 1 or -1; 1 if increasing the rate makes actual go up, -1 if increasing
532  * it makes actual go down.
533  */
534 void bch2_pd_controller_update(struct bch_pd_controller *pd,
535 			      s64 target, s64 actual, int sign)
536 {
537 	s64 proportional, derivative, change;
538 
539 	unsigned long seconds_since_update = (jiffies - pd->last_update) / HZ;
540 
541 	if (seconds_since_update == 0)
542 		return;
543 
544 	pd->last_update = jiffies;
545 
546 	proportional = actual - target;
547 	proportional *= seconds_since_update;
548 	proportional = div_s64(proportional, pd->p_term_inverse);
549 
550 	derivative = actual - pd->last_actual;
551 	derivative = div_s64(derivative, seconds_since_update);
552 	derivative = ewma_add(pd->smoothed_derivative, derivative,
553 			      (pd->d_term / seconds_since_update) ?: 1);
554 	derivative = derivative * pd->d_term;
555 	derivative = div_s64(derivative, pd->p_term_inverse);
556 
557 	change = proportional + derivative;
558 
559 	/* Don't increase rate if not keeping up */
560 	if (change > 0 &&
561 	    pd->backpressure &&
562 	    time_after64(local_clock(),
563 			 pd->rate.next + NSEC_PER_MSEC))
564 		change = 0;
565 
566 	change *= (sign * -1);
567 
568 	pd->rate.rate = clamp_t(s64, (s64) pd->rate.rate + change,
569 				1, UINT_MAX);
570 
571 	pd->last_actual		= actual;
572 	pd->last_derivative	= derivative;
573 	pd->last_proportional	= proportional;
574 	pd->last_change		= change;
575 	pd->last_target		= target;
576 }
577 
578 void bch2_pd_controller_init(struct bch_pd_controller *pd)
579 {
580 	pd->rate.rate		= 1024;
581 	pd->last_update		= jiffies;
582 	pd->p_term_inverse	= 6000;
583 	pd->d_term		= 30;
584 	pd->d_smooth		= pd->d_term;
585 	pd->backpressure	= 1;
586 }
587 
588 void bch2_pd_controller_debug_to_text(struct printbuf *out, struct bch_pd_controller *pd)
589 {
590 	if (!out->nr_tabstops)
591 		printbuf_tabstop_push(out, 20);
592 
593 	prt_printf(out, "rate:\t");
594 	prt_human_readable_s64(out, pd->rate.rate);
595 	prt_newline(out);
596 
597 	prt_printf(out, "target:\t");
598 	prt_human_readable_u64(out, pd->last_target);
599 	prt_newline(out);
600 
601 	prt_printf(out, "actual:\t");
602 	prt_human_readable_u64(out, pd->last_actual);
603 	prt_newline(out);
604 
605 	prt_printf(out, "proportional:\t");
606 	prt_human_readable_s64(out, pd->last_proportional);
607 	prt_newline(out);
608 
609 	prt_printf(out, "derivative:\t");
610 	prt_human_readable_s64(out, pd->last_derivative);
611 	prt_newline(out);
612 
613 	prt_printf(out, "change:\t");
614 	prt_human_readable_s64(out, pd->last_change);
615 	prt_newline(out);
616 
617 	prt_printf(out, "next io:\t%llims\n", div64_s64(pd->rate.next - local_clock(), NSEC_PER_MSEC));
618 }
619 
620 /* misc: */
621 
622 void bch2_bio_map(struct bio *bio, void *base, size_t size)
623 {
624 	while (size) {
625 		struct page *page = is_vmalloc_addr(base)
626 				? vmalloc_to_page(base)
627 				: virt_to_page(base);
628 		unsigned offset = offset_in_page(base);
629 		unsigned len = min_t(size_t, PAGE_SIZE - offset, size);
630 
631 		BUG_ON(!bio_add_page(bio, page, len, offset));
632 		size -= len;
633 		base += len;
634 	}
635 }
636 
637 int bch2_bio_alloc_pages(struct bio *bio, size_t size, gfp_t gfp_mask)
638 {
639 	while (size) {
640 		struct page *page = alloc_pages(gfp_mask, 0);
641 		unsigned len = min_t(size_t, PAGE_SIZE, size);
642 
643 		if (!page)
644 			return -ENOMEM;
645 
646 		if (unlikely(!bio_add_page(bio, page, len, 0))) {
647 			__free_page(page);
648 			break;
649 		}
650 
651 		size -= len;
652 	}
653 
654 	return 0;
655 }
656 
657 size_t bch2_rand_range(size_t max)
658 {
659 	size_t rand;
660 
661 	if (!max)
662 		return 0;
663 
664 	do {
665 		rand = get_random_long();
666 		rand &= roundup_pow_of_two(max) - 1;
667 	} while (rand >= max);
668 
669 	return rand;
670 }
671 
672 void memcpy_to_bio(struct bio *dst, struct bvec_iter dst_iter, const void *src)
673 {
674 	struct bio_vec bv;
675 	struct bvec_iter iter;
676 
677 	__bio_for_each_segment(bv, dst, iter, dst_iter) {
678 		void *dstp = kmap_local_page(bv.bv_page);
679 
680 		memcpy(dstp + bv.bv_offset, src, bv.bv_len);
681 		kunmap_local(dstp);
682 
683 		src += bv.bv_len;
684 	}
685 }
686 
687 void memcpy_from_bio(void *dst, struct bio *src, struct bvec_iter src_iter)
688 {
689 	struct bio_vec bv;
690 	struct bvec_iter iter;
691 
692 	__bio_for_each_segment(bv, src, iter, src_iter) {
693 		void *srcp = kmap_local_page(bv.bv_page);
694 
695 		memcpy(dst, srcp + bv.bv_offset, bv.bv_len);
696 		kunmap_local(srcp);
697 
698 		dst += bv.bv_len;
699 	}
700 }
701 
702 #if 0
703 void eytzinger1_test(void)
704 {
705 	unsigned inorder, eytz, size;
706 
707 	pr_info("1 based eytzinger test:");
708 
709 	for (size = 2;
710 	     size < 65536;
711 	     size++) {
712 		unsigned extra = eytzinger1_extra(size);
713 
714 		if (!(size % 4096))
715 			pr_info("tree size %u", size);
716 
717 		BUG_ON(eytzinger1_prev(0, size) != eytzinger1_last(size));
718 		BUG_ON(eytzinger1_next(0, size) != eytzinger1_first(size));
719 
720 		BUG_ON(eytzinger1_prev(eytzinger1_first(size), size)	!= 0);
721 		BUG_ON(eytzinger1_next(eytzinger1_last(size), size)	!= 0);
722 
723 		inorder = 1;
724 		eytzinger1_for_each(eytz, size) {
725 			BUG_ON(__inorder_to_eytzinger1(inorder, size, extra) != eytz);
726 			BUG_ON(__eytzinger1_to_inorder(eytz, size, extra) != inorder);
727 			BUG_ON(eytz != eytzinger1_last(size) &&
728 			       eytzinger1_prev(eytzinger1_next(eytz, size), size) != eytz);
729 
730 			inorder++;
731 		}
732 	}
733 }
734 
735 void eytzinger0_test(void)
736 {
737 
738 	unsigned inorder, eytz, size;
739 
740 	pr_info("0 based eytzinger test:");
741 
742 	for (size = 1;
743 	     size < 65536;
744 	     size++) {
745 		unsigned extra = eytzinger0_extra(size);
746 
747 		if (!(size % 4096))
748 			pr_info("tree size %u", size);
749 
750 		BUG_ON(eytzinger0_prev(-1, size) != eytzinger0_last(size));
751 		BUG_ON(eytzinger0_next(-1, size) != eytzinger0_first(size));
752 
753 		BUG_ON(eytzinger0_prev(eytzinger0_first(size), size)	!= -1);
754 		BUG_ON(eytzinger0_next(eytzinger0_last(size), size)	!= -1);
755 
756 		inorder = 0;
757 		eytzinger0_for_each(eytz, size) {
758 			BUG_ON(__inorder_to_eytzinger0(inorder, size, extra) != eytz);
759 			BUG_ON(__eytzinger0_to_inorder(eytz, size, extra) != inorder);
760 			BUG_ON(eytz != eytzinger0_last(size) &&
761 			       eytzinger0_prev(eytzinger0_next(eytz, size), size) != eytz);
762 
763 			inorder++;
764 		}
765 	}
766 }
767 
768 static inline int cmp_u16(const void *_l, const void *_r, size_t size)
769 {
770 	const u16 *l = _l, *r = _r;
771 
772 	return (*l > *r) - (*r - *l);
773 }
774 
775 static void eytzinger0_find_test_val(u16 *test_array, unsigned nr, u16 search)
776 {
777 	int i, c1 = -1, c2 = -1;
778 	ssize_t r;
779 
780 	r = eytzinger0_find_le(test_array, nr,
781 			       sizeof(test_array[0]),
782 			       cmp_u16, &search);
783 	if (r >= 0)
784 		c1 = test_array[r];
785 
786 	for (i = 0; i < nr; i++)
787 		if (test_array[i] <= search && test_array[i] > c2)
788 			c2 = test_array[i];
789 
790 	if (c1 != c2) {
791 		eytzinger0_for_each(i, nr)
792 			pr_info("[%3u] = %12u", i, test_array[i]);
793 		pr_info("find_le(%2u) -> [%2zi] = %2i should be %2i",
794 			i, r, c1, c2);
795 	}
796 }
797 
798 void eytzinger0_find_test(void)
799 {
800 	unsigned i, nr, allocated = 1 << 12;
801 	u16 *test_array = kmalloc_array(allocated, sizeof(test_array[0]), GFP_KERNEL);
802 
803 	for (nr = 1; nr < allocated; nr++) {
804 		pr_info("testing %u elems", nr);
805 
806 		get_random_bytes(test_array, nr * sizeof(test_array[0]));
807 		eytzinger0_sort(test_array, nr, sizeof(test_array[0]), cmp_u16, NULL);
808 
809 		/* verify array is sorted correctly: */
810 		eytzinger0_for_each(i, nr)
811 			BUG_ON(i != eytzinger0_last(nr) &&
812 			       test_array[i] > test_array[eytzinger0_next(i, nr)]);
813 
814 		for (i = 0; i < U16_MAX; i += 1 << 12)
815 			eytzinger0_find_test_val(test_array, nr, i);
816 
817 		for (i = 0; i < nr; i++) {
818 			eytzinger0_find_test_val(test_array, nr, test_array[i] - 1);
819 			eytzinger0_find_test_val(test_array, nr, test_array[i]);
820 			eytzinger0_find_test_val(test_array, nr, test_array[i] + 1);
821 		}
822 	}
823 
824 	kfree(test_array);
825 }
826 #endif
827 
828 /*
829  * Accumulate percpu counters onto one cpu's copy - only valid when access
830  * against any percpu counter is guarded against
831  */
832 u64 *bch2_acc_percpu_u64s(u64 __percpu *p, unsigned nr)
833 {
834 	u64 *ret;
835 	int cpu;
836 
837 	/* access to pcpu vars has to be blocked by other locking */
838 	preempt_disable();
839 	ret = this_cpu_ptr(p);
840 	preempt_enable();
841 
842 	for_each_possible_cpu(cpu) {
843 		u64 *i = per_cpu_ptr(p, cpu);
844 
845 		if (i != ret) {
846 			acc_u64s(ret, i, nr);
847 			memset(i, 0, nr * sizeof(u64));
848 		}
849 	}
850 
851 	return ret;
852 }
853 
854 void bch2_darray_str_exit(darray_str *d)
855 {
856 	darray_for_each(*d, i)
857 		kfree(*i);
858 	darray_exit(d);
859 }
860 
861 int bch2_split_devs(const char *_dev_name, darray_str *ret)
862 {
863 	darray_init(ret);
864 
865 	char *dev_name, *s, *orig;
866 
867 	dev_name = orig = kstrdup(_dev_name, GFP_KERNEL);
868 	if (!dev_name)
869 		return -ENOMEM;
870 
871 	while ((s = strsep(&dev_name, ":"))) {
872 		char *p = kstrdup(s, GFP_KERNEL);
873 		if (!p)
874 			goto err;
875 
876 		if (darray_push(ret, p)) {
877 			kfree(p);
878 			goto err;
879 		}
880 	}
881 
882 	kfree(orig);
883 	return 0;
884 err:
885 	bch2_darray_str_exit(ret);
886 	kfree(orig);
887 	return -ENOMEM;
888 }
889