1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcachefs setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcachefs.h" 11 #include "alloc_background.h" 12 #include "alloc_foreground.h" 13 #include "bkey_sort.h" 14 #include "btree_cache.h" 15 #include "btree_gc.h" 16 #include "btree_journal_iter.h" 17 #include "btree_key_cache.h" 18 #include "btree_node_scan.h" 19 #include "btree_update_interior.h" 20 #include "btree_io.h" 21 #include "btree_write_buffer.h" 22 #include "buckets_waiting_for_journal.h" 23 #include "chardev.h" 24 #include "checksum.h" 25 #include "clock.h" 26 #include "compress.h" 27 #include "debug.h" 28 #include "disk_groups.h" 29 #include "ec.h" 30 #include "errcode.h" 31 #include "error.h" 32 #include "fs.h" 33 #include "fs-io.h" 34 #include "fs-io-buffered.h" 35 #include "fs-io-direct.h" 36 #include "fsck.h" 37 #include "inode.h" 38 #include "io_read.h" 39 #include "io_write.h" 40 #include "journal.h" 41 #include "journal_reclaim.h" 42 #include "journal_seq_blacklist.h" 43 #include "move.h" 44 #include "migrate.h" 45 #include "movinggc.h" 46 #include "nocow_locking.h" 47 #include "quota.h" 48 #include "rebalance.h" 49 #include "recovery.h" 50 #include "replicas.h" 51 #include "sb-clean.h" 52 #include "sb-counters.h" 53 #include "sb-errors.h" 54 #include "sb-members.h" 55 #include "snapshot.h" 56 #include "subvolume.h" 57 #include "super.h" 58 #include "super-io.h" 59 #include "sysfs.h" 60 #include "thread_with_file.h" 61 #include "trace.h" 62 63 #include <linux/backing-dev.h> 64 #include <linux/blkdev.h> 65 #include <linux/debugfs.h> 66 #include <linux/device.h> 67 #include <linux/idr.h> 68 #include <linux/module.h> 69 #include <linux/percpu.h> 70 #include <linux/random.h> 71 #include <linux/sysfs.h> 72 #include <crypto/hash.h> 73 74 MODULE_LICENSE("GPL"); 75 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 76 MODULE_DESCRIPTION("bcachefs filesystem"); 77 MODULE_SOFTDEP("pre: crc32c"); 78 MODULE_SOFTDEP("pre: crc64"); 79 MODULE_SOFTDEP("pre: sha256"); 80 MODULE_SOFTDEP("pre: chacha20"); 81 MODULE_SOFTDEP("pre: poly1305"); 82 MODULE_SOFTDEP("pre: xxhash"); 83 84 const char * const bch2_fs_flag_strs[] = { 85 #define x(n) #n, 86 BCH_FS_FLAGS() 87 #undef x 88 NULL 89 }; 90 91 __printf(2, 0) 92 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args) 93 { 94 #ifdef __KERNEL__ 95 if (unlikely(stdio)) { 96 if (fmt[0] == KERN_SOH[0]) 97 fmt += 2; 98 99 bch2_stdio_redirect_vprintf(stdio, true, fmt, args); 100 return; 101 } 102 #endif 103 vprintk(fmt, args); 104 } 105 106 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...) 107 { 108 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio; 109 110 va_list args; 111 va_start(args, fmt); 112 bch2_print_maybe_redirect(stdio, fmt, args); 113 va_end(args); 114 } 115 116 void __bch2_print(struct bch_fs *c, const char *fmt, ...) 117 { 118 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 119 120 va_list args; 121 va_start(args, fmt); 122 bch2_print_maybe_redirect(stdio, fmt, args); 123 va_end(args); 124 } 125 126 #define KTYPE(type) \ 127 static const struct attribute_group type ## _group = { \ 128 .attrs = type ## _files \ 129 }; \ 130 \ 131 static const struct attribute_group *type ## _groups[] = { \ 132 &type ## _group, \ 133 NULL \ 134 }; \ 135 \ 136 static const struct kobj_type type ## _ktype = { \ 137 .release = type ## _release, \ 138 .sysfs_ops = &type ## _sysfs_ops, \ 139 .default_groups = type ## _groups \ 140 } 141 142 static void bch2_fs_release(struct kobject *); 143 static void bch2_dev_release(struct kobject *); 144 static void bch2_fs_counters_release(struct kobject *k) 145 { 146 } 147 148 static void bch2_fs_internal_release(struct kobject *k) 149 { 150 } 151 152 static void bch2_fs_opts_dir_release(struct kobject *k) 153 { 154 } 155 156 static void bch2_fs_time_stats_release(struct kobject *k) 157 { 158 } 159 160 KTYPE(bch2_fs); 161 KTYPE(bch2_fs_counters); 162 KTYPE(bch2_fs_internal); 163 KTYPE(bch2_fs_opts_dir); 164 KTYPE(bch2_fs_time_stats); 165 KTYPE(bch2_dev); 166 167 static struct kset *bcachefs_kset; 168 static LIST_HEAD(bch_fs_list); 169 static DEFINE_MUTEX(bch_fs_list_lock); 170 171 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait); 172 173 static void bch2_dev_free(struct bch_dev *); 174 static int bch2_dev_alloc(struct bch_fs *, unsigned); 175 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); 176 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); 177 178 struct bch_fs *bch2_dev_to_fs(dev_t dev) 179 { 180 struct bch_fs *c; 181 182 mutex_lock(&bch_fs_list_lock); 183 rcu_read_lock(); 184 185 list_for_each_entry(c, &bch_fs_list, list) 186 for_each_member_device_rcu(c, ca, NULL) 187 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) { 188 closure_get(&c->cl); 189 goto found; 190 } 191 c = NULL; 192 found: 193 rcu_read_unlock(); 194 mutex_unlock(&bch_fs_list_lock); 195 196 return c; 197 } 198 199 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) 200 { 201 struct bch_fs *c; 202 203 lockdep_assert_held(&bch_fs_list_lock); 204 205 list_for_each_entry(c, &bch_fs_list, list) 206 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) 207 return c; 208 209 return NULL; 210 } 211 212 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) 213 { 214 struct bch_fs *c; 215 216 mutex_lock(&bch_fs_list_lock); 217 c = __bch2_uuid_to_fs(uuid); 218 if (c) 219 closure_get(&c->cl); 220 mutex_unlock(&bch_fs_list_lock); 221 222 return c; 223 } 224 225 static void bch2_dev_usage_journal_reserve(struct bch_fs *c) 226 { 227 unsigned nr = 0, u64s = 228 ((sizeof(struct jset_entry_dev_usage) + 229 sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) / 230 sizeof(u64); 231 232 rcu_read_lock(); 233 for_each_member_device_rcu(c, ca, NULL) 234 nr++; 235 rcu_read_unlock(); 236 237 bch2_journal_entry_res_resize(&c->journal, 238 &c->dev_usage_journal_res, u64s * nr); 239 } 240 241 /* Filesystem RO/RW: */ 242 243 /* 244 * For startup/shutdown of RW stuff, the dependencies are: 245 * 246 * - foreground writes depend on copygc and rebalance (to free up space) 247 * 248 * - copygc and rebalance depend on mark and sweep gc (they actually probably 249 * don't because they either reserve ahead of time or don't block if 250 * allocations fail, but allocations can require mark and sweep gc to run 251 * because of generation number wraparound) 252 * 253 * - all of the above depends on the allocator threads 254 * 255 * - allocator depends on the journal (when it rewrites prios and gens) 256 */ 257 258 static void __bch2_fs_read_only(struct bch_fs *c) 259 { 260 unsigned clean_passes = 0; 261 u64 seq = 0; 262 263 bch2_fs_ec_stop(c); 264 bch2_open_buckets_stop(c, NULL, true); 265 bch2_rebalance_stop(c); 266 bch2_copygc_stop(c); 267 bch2_fs_ec_flush(c); 268 269 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu", 270 journal_cur_seq(&c->journal)); 271 272 do { 273 clean_passes++; 274 275 if (bch2_btree_interior_updates_flush(c) || 276 bch2_journal_flush_all_pins(&c->journal) || 277 bch2_btree_flush_all_writes(c) || 278 seq != atomic64_read(&c->journal.seq)) { 279 seq = atomic64_read(&c->journal.seq); 280 clean_passes = 0; 281 } 282 } while (clean_passes < 2); 283 284 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu", 285 journal_cur_seq(&c->journal)); 286 287 if (test_bit(JOURNAL_replay_done, &c->journal.flags) && 288 !test_bit(BCH_FS_emergency_ro, &c->flags)) 289 set_bit(BCH_FS_clean_shutdown, &c->flags); 290 291 bch2_fs_journal_stop(&c->journal); 292 293 bch_info(c, "%sshutdown complete, journal seq %llu", 294 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un", 295 c->journal.seq_ondisk); 296 297 /* 298 * After stopping journal: 299 */ 300 for_each_member_device(c, ca) 301 bch2_dev_allocator_remove(c, ca); 302 } 303 304 #ifndef BCH_WRITE_REF_DEBUG 305 static void bch2_writes_disabled(struct percpu_ref *writes) 306 { 307 struct bch_fs *c = container_of(writes, struct bch_fs, writes); 308 309 set_bit(BCH_FS_write_disable_complete, &c->flags); 310 wake_up(&bch2_read_only_wait); 311 } 312 #endif 313 314 void bch2_fs_read_only(struct bch_fs *c) 315 { 316 if (!test_bit(BCH_FS_rw, &c->flags)) { 317 bch2_journal_reclaim_stop(&c->journal); 318 return; 319 } 320 321 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags)); 322 323 bch_verbose(c, "going read-only"); 324 325 /* 326 * Block new foreground-end write operations from starting - any new 327 * writes will return -EROFS: 328 */ 329 set_bit(BCH_FS_going_ro, &c->flags); 330 #ifndef BCH_WRITE_REF_DEBUG 331 percpu_ref_kill(&c->writes); 332 #else 333 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 334 bch2_write_ref_put(c, i); 335 #endif 336 337 /* 338 * If we're not doing an emergency shutdown, we want to wait on 339 * outstanding writes to complete so they don't see spurious errors due 340 * to shutting down the allocator: 341 * 342 * If we are doing an emergency shutdown outstanding writes may 343 * hang until we shutdown the allocator so we don't want to wait 344 * on outstanding writes before shutting everything down - but 345 * we do need to wait on them before returning and signalling 346 * that going RO is complete: 347 */ 348 wait_event(bch2_read_only_wait, 349 test_bit(BCH_FS_write_disable_complete, &c->flags) || 350 test_bit(BCH_FS_emergency_ro, &c->flags)); 351 352 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags); 353 if (writes_disabled) 354 bch_verbose(c, "finished waiting for writes to stop"); 355 356 __bch2_fs_read_only(c); 357 358 wait_event(bch2_read_only_wait, 359 test_bit(BCH_FS_write_disable_complete, &c->flags)); 360 361 if (!writes_disabled) 362 bch_verbose(c, "finished waiting for writes to stop"); 363 364 clear_bit(BCH_FS_write_disable_complete, &c->flags); 365 clear_bit(BCH_FS_going_ro, &c->flags); 366 clear_bit(BCH_FS_rw, &c->flags); 367 368 if (!bch2_journal_error(&c->journal) && 369 !test_bit(BCH_FS_error, &c->flags) && 370 !test_bit(BCH_FS_emergency_ro, &c->flags) && 371 test_bit(BCH_FS_started, &c->flags) && 372 test_bit(BCH_FS_clean_shutdown, &c->flags) && 373 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) { 374 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal)); 375 BUG_ON(atomic_read(&c->btree_cache.dirty)); 376 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty)); 377 BUG_ON(c->btree_write_buffer.inc.keys.nr); 378 BUG_ON(c->btree_write_buffer.flushing.keys.nr); 379 380 bch_verbose(c, "marking filesystem clean"); 381 bch2_fs_mark_clean(c); 382 } else { 383 bch_verbose(c, "done going read-only, filesystem not clean"); 384 } 385 } 386 387 static void bch2_fs_read_only_work(struct work_struct *work) 388 { 389 struct bch_fs *c = 390 container_of(work, struct bch_fs, read_only_work); 391 392 down_write(&c->state_lock); 393 bch2_fs_read_only(c); 394 up_write(&c->state_lock); 395 } 396 397 static void bch2_fs_read_only_async(struct bch_fs *c) 398 { 399 queue_work(system_long_wq, &c->read_only_work); 400 } 401 402 bool bch2_fs_emergency_read_only(struct bch_fs *c) 403 { 404 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags); 405 406 bch2_journal_halt(&c->journal); 407 bch2_fs_read_only_async(c); 408 409 wake_up(&bch2_read_only_wait); 410 return ret; 411 } 412 413 static int bch2_fs_read_write_late(struct bch_fs *c) 414 { 415 int ret; 416 417 /* 418 * Data move operations can't run until after check_snapshots has 419 * completed, and bch2_snapshot_is_ancestor() is available. 420 * 421 * Ideally we'd start copygc/rebalance earlier instead of waiting for 422 * all of recovery/fsck to complete: 423 */ 424 ret = bch2_copygc_start(c); 425 if (ret) { 426 bch_err(c, "error starting copygc thread"); 427 return ret; 428 } 429 430 ret = bch2_rebalance_start(c); 431 if (ret) { 432 bch_err(c, "error starting rebalance thread"); 433 return ret; 434 } 435 436 return 0; 437 } 438 439 static int __bch2_fs_read_write(struct bch_fs *c, bool early) 440 { 441 int ret; 442 443 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) { 444 bch_err(c, "cannot go rw, unfixed btree errors"); 445 return -BCH_ERR_erofs_unfixed_errors; 446 } 447 448 if (test_bit(BCH_FS_rw, &c->flags)) 449 return 0; 450 451 bch_info(c, "going read-write"); 452 453 ret = bch2_sb_members_v2_init(c); 454 if (ret) 455 goto err; 456 457 ret = bch2_fs_mark_dirty(c); 458 if (ret) 459 goto err; 460 461 clear_bit(BCH_FS_clean_shutdown, &c->flags); 462 463 /* 464 * First journal write must be a flush write: after a clean shutdown we 465 * don't read the journal, so the first journal write may end up 466 * overwriting whatever was there previously, and there must always be 467 * at least one non-flush write in the journal or recovery will fail: 468 */ 469 set_bit(JOURNAL_need_flush_write, &c->journal.flags); 470 set_bit(JOURNAL_running, &c->journal.flags); 471 472 for_each_rw_member(c, ca) 473 bch2_dev_allocator_add(c, ca); 474 bch2_recalc_capacity(c); 475 476 set_bit(BCH_FS_rw, &c->flags); 477 set_bit(BCH_FS_was_rw, &c->flags); 478 479 #ifndef BCH_WRITE_REF_DEBUG 480 percpu_ref_reinit(&c->writes); 481 #else 482 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) { 483 BUG_ON(atomic_long_read(&c->writes[i])); 484 atomic_long_inc(&c->writes[i]); 485 } 486 #endif 487 488 ret = bch2_journal_reclaim_start(&c->journal); 489 if (ret) 490 goto err; 491 492 if (!early) { 493 ret = bch2_fs_read_write_late(c); 494 if (ret) 495 goto err; 496 } 497 498 bch2_do_discards(c); 499 bch2_do_invalidates(c); 500 bch2_do_stripe_deletes(c); 501 bch2_do_pending_node_rewrites(c); 502 return 0; 503 err: 504 if (test_bit(BCH_FS_rw, &c->flags)) 505 bch2_fs_read_only(c); 506 else 507 __bch2_fs_read_only(c); 508 return ret; 509 } 510 511 int bch2_fs_read_write(struct bch_fs *c) 512 { 513 if (c->opts.recovery_pass_last && 514 c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay) 515 return -BCH_ERR_erofs_norecovery; 516 517 if (c->opts.nochanges) 518 return -BCH_ERR_erofs_nochanges; 519 520 return __bch2_fs_read_write(c, false); 521 } 522 523 int bch2_fs_read_write_early(struct bch_fs *c) 524 { 525 lockdep_assert_held(&c->state_lock); 526 527 return __bch2_fs_read_write(c, true); 528 } 529 530 /* Filesystem startup/shutdown: */ 531 532 static void __bch2_fs_free(struct bch_fs *c) 533 { 534 for (unsigned i = 0; i < BCH_TIME_STAT_NR; i++) 535 bch2_time_stats_exit(&c->times[i]); 536 537 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 538 bch2_free_pending_node_rewrites(c); 539 bch2_fs_allocator_background_exit(c); 540 bch2_fs_sb_errors_exit(c); 541 bch2_fs_counters_exit(c); 542 bch2_fs_snapshots_exit(c); 543 bch2_fs_quota_exit(c); 544 bch2_fs_fs_io_direct_exit(c); 545 bch2_fs_fs_io_buffered_exit(c); 546 bch2_fs_fsio_exit(c); 547 bch2_fs_ec_exit(c); 548 bch2_fs_encryption_exit(c); 549 bch2_fs_nocow_locking_exit(c); 550 bch2_fs_io_write_exit(c); 551 bch2_fs_io_read_exit(c); 552 bch2_fs_buckets_waiting_for_journal_exit(c); 553 bch2_fs_btree_interior_update_exit(c); 554 bch2_fs_btree_iter_exit(c); 555 bch2_fs_btree_key_cache_exit(&c->btree_key_cache); 556 bch2_fs_btree_cache_exit(c); 557 bch2_fs_replicas_exit(c); 558 bch2_fs_journal_exit(&c->journal); 559 bch2_io_clock_exit(&c->io_clock[WRITE]); 560 bch2_io_clock_exit(&c->io_clock[READ]); 561 bch2_fs_compress_exit(c); 562 bch2_journal_keys_put_initial(c); 563 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 564 BUG_ON(atomic_read(&c->journal_keys.ref)); 565 bch2_fs_btree_write_buffer_exit(c); 566 percpu_free_rwsem(&c->mark_lock); 567 EBUG_ON(percpu_u64_get(c->online_reserved)); 568 free_percpu(c->online_reserved); 569 570 darray_exit(&c->btree_roots_extra); 571 free_percpu(c->pcpu); 572 mempool_exit(&c->large_bkey_pool); 573 mempool_exit(&c->btree_bounce_pool); 574 bioset_exit(&c->btree_bio); 575 mempool_exit(&c->fill_iter); 576 #ifndef BCH_WRITE_REF_DEBUG 577 percpu_ref_exit(&c->writes); 578 #endif 579 kfree(rcu_dereference_protected(c->disk_groups, 1)); 580 kfree(c->journal_seq_blacklist_table); 581 kfree(c->unused_inode_hints); 582 583 if (c->write_ref_wq) 584 destroy_workqueue(c->write_ref_wq); 585 if (c->io_complete_wq) 586 destroy_workqueue(c->io_complete_wq); 587 if (c->copygc_wq) 588 destroy_workqueue(c->copygc_wq); 589 if (c->btree_io_complete_wq) 590 destroy_workqueue(c->btree_io_complete_wq); 591 if (c->btree_update_wq) 592 destroy_workqueue(c->btree_update_wq); 593 594 bch2_free_super(&c->disk_sb); 595 kvfree(c); 596 module_put(THIS_MODULE); 597 } 598 599 static void bch2_fs_release(struct kobject *kobj) 600 { 601 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); 602 603 __bch2_fs_free(c); 604 } 605 606 void __bch2_fs_stop(struct bch_fs *c) 607 { 608 bch_verbose(c, "shutting down"); 609 610 set_bit(BCH_FS_stopping, &c->flags); 611 612 down_write(&c->state_lock); 613 bch2_fs_read_only(c); 614 up_write(&c->state_lock); 615 616 for_each_member_device(c, ca) 617 if (ca->kobj.state_in_sysfs && 618 ca->disk_sb.bdev) 619 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 620 621 if (c->kobj.state_in_sysfs) 622 kobject_del(&c->kobj); 623 624 bch2_fs_debug_exit(c); 625 bch2_fs_chardev_exit(c); 626 627 bch2_ro_ref_put(c); 628 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref)); 629 630 kobject_put(&c->counters_kobj); 631 kobject_put(&c->time_stats); 632 kobject_put(&c->opts_dir); 633 kobject_put(&c->internal); 634 635 /* btree prefetch might have kicked off reads in the background: */ 636 bch2_btree_flush_all_reads(c); 637 638 for_each_member_device(c, ca) 639 cancel_work_sync(&ca->io_error_work); 640 641 cancel_work_sync(&c->read_only_work); 642 } 643 644 void bch2_fs_free(struct bch_fs *c) 645 { 646 unsigned i; 647 648 mutex_lock(&bch_fs_list_lock); 649 list_del(&c->list); 650 mutex_unlock(&bch_fs_list_lock); 651 652 closure_sync(&c->cl); 653 closure_debug_destroy(&c->cl); 654 655 for (i = 0; i < c->sb.nr_devices; i++) { 656 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true); 657 658 if (ca) { 659 EBUG_ON(atomic_long_read(&ca->ref) != 1); 660 bch2_free_super(&ca->disk_sb); 661 bch2_dev_free(ca); 662 } 663 } 664 665 bch_verbose(c, "shutdown complete"); 666 667 kobject_put(&c->kobj); 668 } 669 670 void bch2_fs_stop(struct bch_fs *c) 671 { 672 __bch2_fs_stop(c); 673 bch2_fs_free(c); 674 } 675 676 static int bch2_fs_online(struct bch_fs *c) 677 { 678 int ret = 0; 679 680 lockdep_assert_held(&bch_fs_list_lock); 681 682 if (__bch2_uuid_to_fs(c->sb.uuid)) { 683 bch_err(c, "filesystem UUID already open"); 684 return -EINVAL; 685 } 686 687 ret = bch2_fs_chardev_init(c); 688 if (ret) { 689 bch_err(c, "error creating character device"); 690 return ret; 691 } 692 693 bch2_fs_debug_init(c); 694 695 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?: 696 kobject_add(&c->internal, &c->kobj, "internal") ?: 697 kobject_add(&c->opts_dir, &c->kobj, "options") ?: 698 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 699 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?: 700 #endif 701 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?: 702 bch2_opts_create_sysfs_files(&c->opts_dir); 703 if (ret) { 704 bch_err(c, "error creating sysfs objects"); 705 return ret; 706 } 707 708 down_write(&c->state_lock); 709 710 for_each_member_device(c, ca) { 711 ret = bch2_dev_sysfs_online(c, ca); 712 if (ret) { 713 bch_err(c, "error creating sysfs objects"); 714 bch2_dev_put(ca); 715 goto err; 716 } 717 } 718 719 BUG_ON(!list_empty(&c->list)); 720 list_add(&c->list, &bch_fs_list); 721 err: 722 up_write(&c->state_lock); 723 return ret; 724 } 725 726 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) 727 { 728 struct bch_fs *c; 729 struct printbuf name = PRINTBUF; 730 unsigned i, iter_size; 731 int ret = 0; 732 733 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); 734 if (!c) { 735 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc); 736 goto out; 737 } 738 739 c->stdio = (void *)(unsigned long) opts.stdio; 740 741 __module_get(THIS_MODULE); 742 743 closure_init(&c->cl, NULL); 744 745 c->kobj.kset = bcachefs_kset; 746 kobject_init(&c->kobj, &bch2_fs_ktype); 747 kobject_init(&c->internal, &bch2_fs_internal_ktype); 748 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); 749 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); 750 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype); 751 752 c->minor = -1; 753 c->disk_sb.fs_sb = true; 754 755 init_rwsem(&c->state_lock); 756 mutex_init(&c->sb_lock); 757 mutex_init(&c->replicas_gc_lock); 758 mutex_init(&c->btree_root_lock); 759 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); 760 761 refcount_set(&c->ro_ref, 1); 762 init_waitqueue_head(&c->ro_ref_wait); 763 sema_init(&c->online_fsck_mutex, 1); 764 765 init_rwsem(&c->gc_lock); 766 mutex_init(&c->gc_gens_lock); 767 atomic_set(&c->journal_keys.ref, 1); 768 c->journal_keys.initial_ref_held = true; 769 770 for (i = 0; i < BCH_TIME_STAT_NR; i++) 771 bch2_time_stats_init(&c->times[i]); 772 773 bch2_fs_gc_init(c); 774 bch2_fs_copygc_init(c); 775 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); 776 bch2_fs_btree_iter_init_early(c); 777 bch2_fs_btree_interior_update_init_early(c); 778 bch2_fs_allocator_background_init(c); 779 bch2_fs_allocator_foreground_init(c); 780 bch2_fs_rebalance_init(c); 781 bch2_fs_quota_init(c); 782 bch2_fs_ec_init_early(c); 783 bch2_fs_move_init(c); 784 bch2_fs_sb_errors_init_early(c); 785 786 INIT_LIST_HEAD(&c->list); 787 788 mutex_init(&c->usage_scratch_lock); 789 790 mutex_init(&c->bio_bounce_pages_lock); 791 mutex_init(&c->snapshot_table_lock); 792 init_rwsem(&c->snapshot_create_lock); 793 794 spin_lock_init(&c->btree_write_error_lock); 795 796 INIT_LIST_HEAD(&c->journal_iters); 797 798 INIT_LIST_HEAD(&c->fsck_error_msgs); 799 mutex_init(&c->fsck_error_msgs_lock); 800 801 seqcount_init(&c->usage_lock); 802 803 sema_init(&c->io_in_flight, 128); 804 805 INIT_LIST_HEAD(&c->vfs_inodes_list); 806 mutex_init(&c->vfs_inodes_lock); 807 808 c->copy_gc_enabled = 1; 809 c->rebalance.enabled = 1; 810 c->promote_whole_extents = true; 811 812 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write]; 813 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write]; 814 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; 815 816 bch2_fs_btree_cache_init_early(&c->btree_cache); 817 818 mutex_init(&c->sectors_available_lock); 819 820 ret = percpu_init_rwsem(&c->mark_lock); 821 if (ret) 822 goto err; 823 824 mutex_lock(&c->sb_lock); 825 ret = bch2_sb_to_fs(c, sb); 826 mutex_unlock(&c->sb_lock); 827 828 if (ret) 829 goto err; 830 831 pr_uuid(&name, c->sb.user_uuid.b); 832 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0; 833 if (ret) 834 goto err; 835 836 strscpy(c->name, name.buf, sizeof(c->name)); 837 printbuf_exit(&name); 838 839 /* Compat: */ 840 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 841 !BCH_SB_JOURNAL_FLUSH_DELAY(sb)) 842 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); 843 844 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 845 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) 846 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100); 847 848 c->opts = bch2_opts_default; 849 ret = bch2_opts_from_sb(&c->opts, sb); 850 if (ret) 851 goto err; 852 853 bch2_opts_apply(&c->opts, opts); 854 855 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc; 856 if (c->opts.inodes_use_key_cache) 857 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes; 858 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops; 859 860 c->block_bits = ilog2(block_sectors(c)); 861 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); 862 863 if (bch2_fs_init_fault("fs_alloc")) { 864 bch_err(c, "fs_alloc fault injected"); 865 ret = -EFAULT; 866 goto err; 867 } 868 869 iter_size = sizeof(struct sort_iter) + 870 (btree_blocks(c) + 1) * 2 * 871 sizeof(struct sort_iter_set); 872 873 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus())); 874 875 if (!(c->btree_update_wq = alloc_workqueue("bcachefs", 876 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) || 877 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io", 878 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 879 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc", 880 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || 881 !(c->io_complete_wq = alloc_workqueue("bcachefs_io", 882 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) || 883 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref", 884 WQ_FREEZABLE, 0)) || 885 #ifndef BCH_WRITE_REF_DEBUG 886 percpu_ref_init(&c->writes, bch2_writes_disabled, 887 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 888 #endif 889 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 890 bioset_init(&c->btree_bio, 1, 891 max(offsetof(struct btree_read_bio, bio), 892 offsetof(struct btree_write_bio, wbio.bio)), 893 BIOSET_NEED_BVECS) || 894 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || 895 !(c->online_reserved = alloc_percpu(u64)) || 896 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1, 897 c->opts.btree_node_size) || 898 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) || 899 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits, 900 sizeof(u64), GFP_KERNEL))) { 901 ret = -BCH_ERR_ENOMEM_fs_other_alloc; 902 goto err; 903 } 904 905 ret = bch2_fs_counters_init(c) ?: 906 bch2_fs_sb_errors_init(c) ?: 907 bch2_io_clock_init(&c->io_clock[READ]) ?: 908 bch2_io_clock_init(&c->io_clock[WRITE]) ?: 909 bch2_fs_journal_init(&c->journal) ?: 910 bch2_fs_replicas_init(c) ?: 911 bch2_fs_btree_cache_init(c) ?: 912 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?: 913 bch2_fs_btree_iter_init(c) ?: 914 bch2_fs_btree_interior_update_init(c) ?: 915 bch2_fs_buckets_waiting_for_journal_init(c) ?: 916 bch2_fs_btree_write_buffer_init(c) ?: 917 bch2_fs_subvolumes_init(c) ?: 918 bch2_fs_io_read_init(c) ?: 919 bch2_fs_io_write_init(c) ?: 920 bch2_fs_nocow_locking_init(c) ?: 921 bch2_fs_encryption_init(c) ?: 922 bch2_fs_compress_init(c) ?: 923 bch2_fs_ec_init(c) ?: 924 bch2_fs_fsio_init(c) ?: 925 bch2_fs_fs_io_buffered_init(c) ?: 926 bch2_fs_fs_io_direct_init(c); 927 if (ret) 928 goto err; 929 930 for (i = 0; i < c->sb.nr_devices; i++) 931 if (bch2_member_exists(c->disk_sb.sb, i) && 932 bch2_dev_alloc(c, i)) { 933 ret = -EEXIST; 934 goto err; 935 } 936 937 bch2_journal_entry_res_resize(&c->journal, 938 &c->btree_root_journal_res, 939 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX)); 940 bch2_dev_usage_journal_reserve(c); 941 bch2_journal_entry_res_resize(&c->journal, 942 &c->clock_journal_res, 943 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2); 944 945 mutex_lock(&bch_fs_list_lock); 946 ret = bch2_fs_online(c); 947 mutex_unlock(&bch_fs_list_lock); 948 949 if (ret) 950 goto err; 951 out: 952 return c; 953 err: 954 bch2_fs_free(c); 955 c = ERR_PTR(ret); 956 goto out; 957 } 958 959 noinline_for_stack 960 static void print_mount_opts(struct bch_fs *c) 961 { 962 enum bch_opt_id i; 963 struct printbuf p = PRINTBUF; 964 bool first = true; 965 966 prt_str(&p, "mounting version "); 967 bch2_version_to_text(&p, c->sb.version); 968 969 if (c->opts.read_only) { 970 prt_str(&p, " opts="); 971 first = false; 972 prt_printf(&p, "ro"); 973 } 974 975 for (i = 0; i < bch2_opts_nr; i++) { 976 const struct bch_option *opt = &bch2_opt_table[i]; 977 u64 v = bch2_opt_get_by_id(&c->opts, i); 978 979 if (!(opt->flags & OPT_MOUNT)) 980 continue; 981 982 if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) 983 continue; 984 985 prt_str(&p, first ? " opts=" : ","); 986 first = false; 987 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE); 988 } 989 990 bch_info(c, "%s", p.buf); 991 printbuf_exit(&p); 992 } 993 994 int bch2_fs_start(struct bch_fs *c) 995 { 996 time64_t now = ktime_get_real_seconds(); 997 int ret; 998 999 print_mount_opts(c); 1000 1001 down_write(&c->state_lock); 1002 1003 BUG_ON(test_bit(BCH_FS_started, &c->flags)); 1004 1005 mutex_lock(&c->sb_lock); 1006 1007 ret = bch2_sb_members_v2_init(c); 1008 if (ret) { 1009 mutex_unlock(&c->sb_lock); 1010 goto err; 1011 } 1012 1013 for_each_online_member(c, ca) 1014 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now); 1015 1016 struct bch_sb_field_ext *ext = 1017 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64)); 1018 mutex_unlock(&c->sb_lock); 1019 1020 if (!ext) { 1021 bch_err(c, "insufficient space in superblock for sb_field_ext"); 1022 ret = -BCH_ERR_ENOSPC_sb; 1023 goto err; 1024 } 1025 1026 for_each_rw_member(c, ca) 1027 bch2_dev_allocator_add(c, ca); 1028 bch2_recalc_capacity(c); 1029 1030 ret = BCH_SB_INITIALIZED(c->disk_sb.sb) 1031 ? bch2_fs_recovery(c) 1032 : bch2_fs_initialize(c); 1033 if (ret) 1034 goto err; 1035 1036 ret = bch2_opts_check_may_set(c); 1037 if (ret) 1038 goto err; 1039 1040 if (bch2_fs_init_fault("fs_start")) { 1041 bch_err(c, "fs_start fault injected"); 1042 ret = -EINVAL; 1043 goto err; 1044 } 1045 1046 set_bit(BCH_FS_started, &c->flags); 1047 1048 if (c->opts.read_only) { 1049 bch2_fs_read_only(c); 1050 } else { 1051 ret = !test_bit(BCH_FS_rw, &c->flags) 1052 ? bch2_fs_read_write(c) 1053 : bch2_fs_read_write_late(c); 1054 if (ret) 1055 goto err; 1056 } 1057 1058 ret = 0; 1059 err: 1060 if (ret) 1061 bch_err_msg(c, ret, "starting filesystem"); 1062 else 1063 bch_verbose(c, "done starting filesystem"); 1064 up_write(&c->state_lock); 1065 return ret; 1066 } 1067 1068 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) 1069 { 1070 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); 1071 1072 if (le16_to_cpu(sb->block_size) != block_sectors(c)) 1073 return -BCH_ERR_mismatched_block_size; 1074 1075 if (le16_to_cpu(m.bucket_size) < 1076 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) 1077 return -BCH_ERR_bucket_size_too_small; 1078 1079 return 0; 1080 } 1081 1082 static int bch2_dev_in_fs(struct bch_sb_handle *fs, 1083 struct bch_sb_handle *sb, 1084 struct bch_opts *opts) 1085 { 1086 if (fs == sb) 1087 return 0; 1088 1089 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid)) 1090 return -BCH_ERR_device_not_a_member_of_filesystem; 1091 1092 if (!bch2_member_exists(fs->sb, sb->sb->dev_idx)) 1093 return -BCH_ERR_device_has_been_removed; 1094 1095 if (fs->sb->block_size != sb->sb->block_size) 1096 return -BCH_ERR_mismatched_block_size; 1097 1098 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq || 1099 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq) 1100 return 0; 1101 1102 if (fs->sb->seq == sb->sb->seq && 1103 fs->sb->write_time != sb->sb->write_time) { 1104 struct printbuf buf = PRINTBUF; 1105 1106 prt_str(&buf, "Split brain detected between "); 1107 prt_bdevname(&buf, sb->bdev); 1108 prt_str(&buf, " and "); 1109 prt_bdevname(&buf, fs->bdev); 1110 prt_char(&buf, ':'); 1111 prt_newline(&buf); 1112 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq)); 1113 prt_newline(&buf); 1114 1115 prt_bdevname(&buf, fs->bdev); 1116 prt_char(&buf, ' '); 1117 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));; 1118 prt_newline(&buf); 1119 1120 prt_bdevname(&buf, sb->bdev); 1121 prt_char(&buf, ' '); 1122 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));; 1123 prt_newline(&buf); 1124 1125 if (!opts->no_splitbrain_check) 1126 prt_printf(&buf, "Not using older sb"); 1127 1128 pr_err("%s", buf.buf); 1129 printbuf_exit(&buf); 1130 1131 if (!opts->no_splitbrain_check) 1132 return -BCH_ERR_device_splitbrain; 1133 } 1134 1135 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx); 1136 u64 seq_from_fs = le64_to_cpu(m.seq); 1137 u64 seq_from_member = le64_to_cpu(sb->sb->seq); 1138 1139 if (seq_from_fs && seq_from_fs < seq_from_member) { 1140 struct printbuf buf = PRINTBUF; 1141 1142 prt_str(&buf, "Split brain detected between "); 1143 prt_bdevname(&buf, sb->bdev); 1144 prt_str(&buf, " and "); 1145 prt_bdevname(&buf, fs->bdev); 1146 prt_char(&buf, ':'); 1147 prt_newline(&buf); 1148 1149 prt_bdevname(&buf, fs->bdev); 1150 prt_str(&buf, " believes seq of "); 1151 prt_bdevname(&buf, sb->bdev); 1152 prt_printf(&buf, " to be %llu, but ", seq_from_fs); 1153 prt_bdevname(&buf, sb->bdev); 1154 prt_printf(&buf, " has %llu\n", seq_from_member); 1155 1156 if (!opts->no_splitbrain_check) { 1157 prt_str(&buf, "Not using "); 1158 prt_bdevname(&buf, sb->bdev); 1159 } 1160 1161 pr_err("%s", buf.buf); 1162 printbuf_exit(&buf); 1163 1164 if (!opts->no_splitbrain_check) 1165 return -BCH_ERR_device_splitbrain; 1166 } 1167 1168 return 0; 1169 } 1170 1171 /* Device startup/shutdown: */ 1172 1173 static void bch2_dev_release(struct kobject *kobj) 1174 { 1175 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); 1176 1177 kfree(ca); 1178 } 1179 1180 static void bch2_dev_free(struct bch_dev *ca) 1181 { 1182 cancel_work_sync(&ca->io_error_work); 1183 1184 if (ca->kobj.state_in_sysfs && 1185 ca->disk_sb.bdev) 1186 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1187 1188 if (ca->kobj.state_in_sysfs) 1189 kobject_del(&ca->kobj); 1190 1191 kfree(ca->buckets_nouse); 1192 bch2_free_super(&ca->disk_sb); 1193 bch2_dev_journal_exit(ca); 1194 1195 free_percpu(ca->io_done); 1196 bch2_dev_buckets_free(ca); 1197 free_page((unsigned long) ca->sb_read_scratch); 1198 1199 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]); 1200 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]); 1201 1202 percpu_ref_exit(&ca->io_ref); 1203 #ifndef CONFIG_BCACHEFS_DEBUG 1204 percpu_ref_exit(&ca->ref); 1205 #endif 1206 kobject_put(&ca->kobj); 1207 } 1208 1209 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) 1210 { 1211 1212 lockdep_assert_held(&c->state_lock); 1213 1214 if (percpu_ref_is_zero(&ca->io_ref)) 1215 return; 1216 1217 __bch2_dev_read_only(c, ca); 1218 1219 reinit_completion(&ca->io_ref_completion); 1220 percpu_ref_kill(&ca->io_ref); 1221 wait_for_completion(&ca->io_ref_completion); 1222 1223 if (ca->kobj.state_in_sysfs) { 1224 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1225 sysfs_remove_link(&ca->kobj, "block"); 1226 } 1227 1228 bch2_free_super(&ca->disk_sb); 1229 bch2_dev_journal_exit(ca); 1230 } 1231 1232 #ifndef CONFIG_BCACHEFS_DEBUG 1233 static void bch2_dev_ref_complete(struct percpu_ref *ref) 1234 { 1235 struct bch_dev *ca = container_of(ref, struct bch_dev, ref); 1236 1237 complete(&ca->ref_completion); 1238 } 1239 #endif 1240 1241 static void bch2_dev_io_ref_complete(struct percpu_ref *ref) 1242 { 1243 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); 1244 1245 complete(&ca->io_ref_completion); 1246 } 1247 1248 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) 1249 { 1250 int ret; 1251 1252 if (!c->kobj.state_in_sysfs) 1253 return 0; 1254 1255 if (!ca->kobj.state_in_sysfs) { 1256 ret = kobject_add(&ca->kobj, &c->kobj, 1257 "dev-%u", ca->dev_idx); 1258 if (ret) 1259 return ret; 1260 } 1261 1262 if (ca->disk_sb.bdev) { 1263 struct kobject *block = bdev_kobj(ca->disk_sb.bdev); 1264 1265 ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); 1266 if (ret) 1267 return ret; 1268 1269 ret = sysfs_create_link(&ca->kobj, block, "block"); 1270 if (ret) 1271 return ret; 1272 } 1273 1274 return 0; 1275 } 1276 1277 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, 1278 struct bch_member *member) 1279 { 1280 struct bch_dev *ca; 1281 unsigned i; 1282 1283 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 1284 if (!ca) 1285 return NULL; 1286 1287 kobject_init(&ca->kobj, &bch2_dev_ktype); 1288 init_completion(&ca->ref_completion); 1289 init_completion(&ca->io_ref_completion); 1290 1291 init_rwsem(&ca->bucket_lock); 1292 1293 INIT_WORK(&ca->io_error_work, bch2_io_error_work); 1294 1295 bch2_time_stats_quantiles_init(&ca->io_latency[READ]); 1296 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]); 1297 1298 ca->mi = bch2_mi_to_cpu(member); 1299 1300 for (i = 0; i < ARRAY_SIZE(member->errors); i++) 1301 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i])); 1302 1303 ca->uuid = member->uuid; 1304 1305 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, 1306 ca->mi.bucket_size / btree_sectors(c)); 1307 1308 #ifndef CONFIG_BCACHEFS_DEBUG 1309 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL)) 1310 goto err; 1311 #else 1312 atomic_long_set(&ca->ref, 1); 1313 #endif 1314 1315 if (percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, 1316 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 1317 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || 1318 bch2_dev_buckets_alloc(c, ca) || 1319 !(ca->io_done = alloc_percpu(*ca->io_done))) 1320 goto err; 1321 1322 return ca; 1323 err: 1324 bch2_dev_free(ca); 1325 return NULL; 1326 } 1327 1328 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, 1329 unsigned dev_idx) 1330 { 1331 ca->dev_idx = dev_idx; 1332 __set_bit(ca->dev_idx, ca->self.d); 1333 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); 1334 1335 ca->fs = c; 1336 rcu_assign_pointer(c->devs[ca->dev_idx], ca); 1337 1338 if (bch2_dev_sysfs_online(c, ca)) 1339 pr_warn("error creating sysfs objects"); 1340 } 1341 1342 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) 1343 { 1344 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1345 struct bch_dev *ca = NULL; 1346 int ret = 0; 1347 1348 if (bch2_fs_init_fault("dev_alloc")) 1349 goto err; 1350 1351 ca = __bch2_dev_alloc(c, &member); 1352 if (!ca) 1353 goto err; 1354 1355 ca->fs = c; 1356 1357 bch2_dev_attach(c, ca, dev_idx); 1358 return ret; 1359 err: 1360 if (ca) 1361 bch2_dev_free(ca); 1362 return -BCH_ERR_ENOMEM_dev_alloc; 1363 } 1364 1365 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) 1366 { 1367 unsigned ret; 1368 1369 if (bch2_dev_is_online(ca)) { 1370 bch_err(ca, "already have device online in slot %u", 1371 sb->sb->dev_idx); 1372 return -BCH_ERR_device_already_online; 1373 } 1374 1375 if (get_capacity(sb->bdev->bd_disk) < 1376 ca->mi.bucket_size * ca->mi.nbuckets) { 1377 bch_err(ca, "cannot online: device too small"); 1378 return -BCH_ERR_device_size_too_small; 1379 } 1380 1381 BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); 1382 1383 ret = bch2_dev_journal_init(ca, sb->sb); 1384 if (ret) 1385 return ret; 1386 1387 /* Commit: */ 1388 ca->disk_sb = *sb; 1389 memset(sb, 0, sizeof(*sb)); 1390 1391 ca->dev = ca->disk_sb.bdev->bd_dev; 1392 1393 percpu_ref_reinit(&ca->io_ref); 1394 1395 return 0; 1396 } 1397 1398 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) 1399 { 1400 struct bch_dev *ca; 1401 int ret; 1402 1403 lockdep_assert_held(&c->state_lock); 1404 1405 if (le64_to_cpu(sb->sb->seq) > 1406 le64_to_cpu(c->disk_sb.sb->seq)) 1407 bch2_sb_to_fs(c, sb->sb); 1408 1409 BUG_ON(!bch2_dev_exists(c, sb->sb->dev_idx)); 1410 1411 ca = bch2_dev_locked(c, sb->sb->dev_idx); 1412 1413 ret = __bch2_dev_attach_bdev(ca, sb); 1414 if (ret) 1415 return ret; 1416 1417 bch2_dev_sysfs_online(c, ca); 1418 1419 struct printbuf name = PRINTBUF; 1420 prt_bdevname(&name, ca->disk_sb.bdev); 1421 1422 if (c->sb.nr_devices == 1) 1423 strscpy(c->name, name.buf, sizeof(c->name)); 1424 strscpy(ca->name, name.buf, sizeof(ca->name)); 1425 1426 printbuf_exit(&name); 1427 1428 rebalance_wakeup(c); 1429 return 0; 1430 } 1431 1432 /* Device management: */ 1433 1434 /* 1435 * Note: this function is also used by the error paths - when a particular 1436 * device sees an error, we call it to determine whether we can just set the 1437 * device RO, or - if this function returns false - we'll set the whole 1438 * filesystem RO: 1439 * 1440 * XXX: maybe we should be more explicit about whether we're changing state 1441 * because we got an error or what have you? 1442 */ 1443 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, 1444 enum bch_member_state new_state, int flags) 1445 { 1446 struct bch_devs_mask new_online_devs; 1447 int nr_rw = 0, required; 1448 1449 lockdep_assert_held(&c->state_lock); 1450 1451 switch (new_state) { 1452 case BCH_MEMBER_STATE_rw: 1453 return true; 1454 case BCH_MEMBER_STATE_ro: 1455 if (ca->mi.state != BCH_MEMBER_STATE_rw) 1456 return true; 1457 1458 /* do we have enough devices to write to? */ 1459 for_each_member_device(c, ca2) 1460 if (ca2 != ca) 1461 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw; 1462 1463 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) 1464 ? c->opts.metadata_replicas 1465 : metadata_replicas_required(c), 1466 !(flags & BCH_FORCE_IF_DATA_DEGRADED) 1467 ? c->opts.data_replicas 1468 : data_replicas_required(c)); 1469 1470 return nr_rw >= required; 1471 case BCH_MEMBER_STATE_failed: 1472 case BCH_MEMBER_STATE_spare: 1473 if (ca->mi.state != BCH_MEMBER_STATE_rw && 1474 ca->mi.state != BCH_MEMBER_STATE_ro) 1475 return true; 1476 1477 /* do we have enough devices to read from? */ 1478 new_online_devs = bch2_online_devs(c); 1479 __clear_bit(ca->dev_idx, new_online_devs.d); 1480 1481 return bch2_have_enough_devs(c, new_online_devs, flags, false); 1482 default: 1483 BUG(); 1484 } 1485 } 1486 1487 static bool bch2_fs_may_start(struct bch_fs *c) 1488 { 1489 struct bch_dev *ca; 1490 unsigned i, flags = 0; 1491 1492 if (c->opts.very_degraded) 1493 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST; 1494 1495 if (c->opts.degraded) 1496 flags |= BCH_FORCE_IF_DEGRADED; 1497 1498 if (!c->opts.degraded && 1499 !c->opts.very_degraded) { 1500 mutex_lock(&c->sb_lock); 1501 1502 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { 1503 if (!bch2_member_exists(c->disk_sb.sb, i)) 1504 continue; 1505 1506 ca = bch2_dev_locked(c, i); 1507 1508 if (!bch2_dev_is_online(ca) && 1509 (ca->mi.state == BCH_MEMBER_STATE_rw || 1510 ca->mi.state == BCH_MEMBER_STATE_ro)) { 1511 mutex_unlock(&c->sb_lock); 1512 return false; 1513 } 1514 } 1515 mutex_unlock(&c->sb_lock); 1516 } 1517 1518 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true); 1519 } 1520 1521 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) 1522 { 1523 /* 1524 * The allocator thread itself allocates btree nodes, so stop it first: 1525 */ 1526 bch2_dev_allocator_remove(c, ca); 1527 bch2_dev_journal_stop(&c->journal, ca); 1528 } 1529 1530 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) 1531 { 1532 lockdep_assert_held(&c->state_lock); 1533 1534 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw); 1535 1536 bch2_dev_allocator_add(c, ca); 1537 bch2_recalc_capacity(c); 1538 } 1539 1540 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1541 enum bch_member_state new_state, int flags) 1542 { 1543 struct bch_member *m; 1544 int ret = 0; 1545 1546 if (ca->mi.state == new_state) 1547 return 0; 1548 1549 if (!bch2_dev_state_allowed(c, ca, new_state, flags)) 1550 return -BCH_ERR_device_state_not_allowed; 1551 1552 if (new_state != BCH_MEMBER_STATE_rw) 1553 __bch2_dev_read_only(c, ca); 1554 1555 bch_notice(ca, "%s", bch2_member_states[new_state]); 1556 1557 mutex_lock(&c->sb_lock); 1558 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1559 SET_BCH_MEMBER_STATE(m, new_state); 1560 bch2_write_super(c); 1561 mutex_unlock(&c->sb_lock); 1562 1563 if (new_state == BCH_MEMBER_STATE_rw) 1564 __bch2_dev_read_write(c, ca); 1565 1566 rebalance_wakeup(c); 1567 1568 return ret; 1569 } 1570 1571 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1572 enum bch_member_state new_state, int flags) 1573 { 1574 int ret; 1575 1576 down_write(&c->state_lock); 1577 ret = __bch2_dev_set_state(c, ca, new_state, flags); 1578 up_write(&c->state_lock); 1579 1580 return ret; 1581 } 1582 1583 /* Device add/removal: */ 1584 1585 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca) 1586 { 1587 struct bpos start = POS(ca->dev_idx, 0); 1588 struct bpos end = POS(ca->dev_idx, U64_MAX); 1589 int ret; 1590 1591 /* 1592 * We clear the LRU and need_discard btrees first so that we don't race 1593 * with bch2_do_invalidates() and bch2_do_discards() 1594 */ 1595 ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end, 1596 BTREE_TRIGGER_norun, NULL) ?: 1597 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end, 1598 BTREE_TRIGGER_norun, NULL) ?: 1599 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end, 1600 BTREE_TRIGGER_norun, NULL) ?: 1601 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end, 1602 BTREE_TRIGGER_norun, NULL) ?: 1603 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end, 1604 BTREE_TRIGGER_norun, NULL) ?: 1605 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end, 1606 BTREE_TRIGGER_norun, NULL); 1607 bch_err_msg(c, ret, "removing dev alloc info"); 1608 return ret; 1609 } 1610 1611 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) 1612 { 1613 struct bch_member *m; 1614 unsigned dev_idx = ca->dev_idx, data; 1615 int ret; 1616 1617 down_write(&c->state_lock); 1618 1619 /* 1620 * We consume a reference to ca->ref, regardless of whether we succeed 1621 * or fail: 1622 */ 1623 bch2_dev_put(ca); 1624 1625 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1626 bch_err(ca, "Cannot remove without losing data"); 1627 ret = -BCH_ERR_device_state_not_allowed; 1628 goto err; 1629 } 1630 1631 __bch2_dev_read_only(c, ca); 1632 1633 ret = bch2_dev_data_drop(c, ca->dev_idx, flags); 1634 bch_err_msg(ca, ret, "bch2_dev_data_drop()"); 1635 if (ret) 1636 goto err; 1637 1638 ret = bch2_dev_remove_alloc(c, ca); 1639 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()"); 1640 if (ret) 1641 goto err; 1642 1643 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); 1644 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()"); 1645 if (ret) 1646 goto err; 1647 1648 ret = bch2_journal_flush(&c->journal); 1649 bch_err_msg(ca, ret, "bch2_journal_flush()"); 1650 if (ret) 1651 goto err; 1652 1653 ret = bch2_replicas_gc2(c); 1654 bch_err_msg(ca, ret, "bch2_replicas_gc2()"); 1655 if (ret) 1656 goto err; 1657 1658 data = bch2_dev_has_data(c, ca); 1659 if (data) { 1660 struct printbuf data_has = PRINTBUF; 1661 1662 prt_bitflags(&data_has, __bch2_data_types, data); 1663 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf); 1664 printbuf_exit(&data_has); 1665 ret = -EBUSY; 1666 goto err; 1667 } 1668 1669 __bch2_dev_offline(c, ca); 1670 1671 mutex_lock(&c->sb_lock); 1672 rcu_assign_pointer(c->devs[ca->dev_idx], NULL); 1673 mutex_unlock(&c->sb_lock); 1674 1675 #ifndef CONFIG_BCACHEFS_DEBUG 1676 percpu_ref_kill(&ca->ref); 1677 #else 1678 ca->dying = true; 1679 bch2_dev_put(ca); 1680 #endif 1681 wait_for_completion(&ca->ref_completion); 1682 1683 bch2_dev_free(ca); 1684 1685 /* 1686 * At this point the device object has been removed in-core, but the 1687 * on-disk journal might still refer to the device index via sb device 1688 * usage entries. Recovery fails if it sees usage information for an 1689 * invalid device. Flush journal pins to push the back of the journal 1690 * past now invalid device index references before we update the 1691 * superblock, but after the device object has been removed so any 1692 * further journal writes elide usage info for the device. 1693 */ 1694 bch2_journal_flush_all_pins(&c->journal); 1695 1696 /* 1697 * Free this device's slot in the bch_member array - all pointers to 1698 * this device must be gone: 1699 */ 1700 mutex_lock(&c->sb_lock); 1701 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1702 memset(&m->uuid, 0, sizeof(m->uuid)); 1703 1704 bch2_write_super(c); 1705 1706 mutex_unlock(&c->sb_lock); 1707 up_write(&c->state_lock); 1708 1709 bch2_dev_usage_journal_reserve(c); 1710 return 0; 1711 err: 1712 if (ca->mi.state == BCH_MEMBER_STATE_rw && 1713 !percpu_ref_is_zero(&ca->io_ref)) 1714 __bch2_dev_read_write(c, ca); 1715 up_write(&c->state_lock); 1716 return ret; 1717 } 1718 1719 /* Add new device to running filesystem: */ 1720 int bch2_dev_add(struct bch_fs *c, const char *path) 1721 { 1722 struct bch_opts opts = bch2_opts_empty(); 1723 struct bch_sb_handle sb; 1724 struct bch_dev *ca = NULL; 1725 struct bch_sb_field_members_v2 *mi; 1726 struct bch_member dev_mi; 1727 unsigned dev_idx, nr_devices, u64s; 1728 struct printbuf errbuf = PRINTBUF; 1729 struct printbuf label = PRINTBUF; 1730 int ret; 1731 1732 ret = bch2_read_super(path, &opts, &sb); 1733 bch_err_msg(c, ret, "reading super"); 1734 if (ret) 1735 goto err; 1736 1737 dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx); 1738 1739 if (BCH_MEMBER_GROUP(&dev_mi)) { 1740 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1); 1741 if (label.allocation_failure) { 1742 ret = -ENOMEM; 1743 goto err; 1744 } 1745 } 1746 1747 ret = bch2_dev_may_add(sb.sb, c); 1748 if (ret) 1749 goto err; 1750 1751 ca = __bch2_dev_alloc(c, &dev_mi); 1752 if (!ca) { 1753 ret = -ENOMEM; 1754 goto err; 1755 } 1756 1757 bch2_dev_usage_init(ca); 1758 1759 ret = __bch2_dev_attach_bdev(ca, &sb); 1760 if (ret) 1761 goto err; 1762 1763 ret = bch2_dev_journal_alloc(ca); 1764 bch_err_msg(c, ret, "allocating journal"); 1765 if (ret) 1766 goto err; 1767 1768 down_write(&c->state_lock); 1769 mutex_lock(&c->sb_lock); 1770 1771 ret = bch2_sb_from_fs(c, ca); 1772 bch_err_msg(c, ret, "setting up new superblock"); 1773 if (ret) 1774 goto err_unlock; 1775 1776 if (dynamic_fault("bcachefs:add:no_slot")) 1777 goto no_slot; 1778 1779 if (c->sb.nr_devices < BCH_SB_MEMBERS_MAX) { 1780 dev_idx = c->sb.nr_devices; 1781 goto have_slot; 1782 } 1783 1784 int best = -1; 1785 u64 best_last_mount = 0; 1786 for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) { 1787 struct bch_member m = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1788 if (bch2_member_alive(&m)) 1789 continue; 1790 1791 u64 last_mount = le64_to_cpu(m.last_mount); 1792 if (best < 0 || last_mount < best_last_mount) { 1793 best = dev_idx; 1794 best_last_mount = last_mount; 1795 } 1796 } 1797 if (best >= 0) { 1798 dev_idx = best; 1799 goto have_slot; 1800 } 1801 no_slot: 1802 ret = -BCH_ERR_ENOSPC_sb_members; 1803 bch_err_msg(c, ret, "setting up new superblock"); 1804 goto err_unlock; 1805 1806 have_slot: 1807 nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices); 1808 1809 mi = bch2_sb_field_get(c->disk_sb.sb, members_v2); 1810 u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) + 1811 le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64)); 1812 1813 mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s); 1814 if (!mi) { 1815 ret = -BCH_ERR_ENOSPC_sb_members; 1816 bch_err_msg(c, ret, "setting up new superblock"); 1817 goto err_unlock; 1818 } 1819 struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1820 1821 /* success: */ 1822 1823 *m = dev_mi; 1824 m->last_mount = cpu_to_le64(ktime_get_real_seconds()); 1825 c->disk_sb.sb->nr_devices = nr_devices; 1826 1827 ca->disk_sb.sb->dev_idx = dev_idx; 1828 bch2_dev_attach(c, ca, dev_idx); 1829 1830 if (BCH_MEMBER_GROUP(&dev_mi)) { 1831 ret = __bch2_dev_group_set(c, ca, label.buf); 1832 bch_err_msg(c, ret, "creating new label"); 1833 if (ret) 1834 goto err_unlock; 1835 } 1836 1837 bch2_write_super(c); 1838 mutex_unlock(&c->sb_lock); 1839 1840 bch2_dev_usage_journal_reserve(c); 1841 1842 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1843 bch_err_msg(ca, ret, "marking new superblock"); 1844 if (ret) 1845 goto err_late; 1846 1847 ret = bch2_fs_freespace_init(c); 1848 bch_err_msg(ca, ret, "initializing free space"); 1849 if (ret) 1850 goto err_late; 1851 1852 ca->new_fs_bucket_idx = 0; 1853 1854 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1855 __bch2_dev_read_write(c, ca); 1856 1857 up_write(&c->state_lock); 1858 return 0; 1859 1860 err_unlock: 1861 mutex_unlock(&c->sb_lock); 1862 up_write(&c->state_lock); 1863 err: 1864 if (ca) 1865 bch2_dev_free(ca); 1866 bch2_free_super(&sb); 1867 printbuf_exit(&label); 1868 printbuf_exit(&errbuf); 1869 bch_err_fn(c, ret); 1870 return ret; 1871 err_late: 1872 up_write(&c->state_lock); 1873 ca = NULL; 1874 goto err; 1875 } 1876 1877 /* Hot add existing device to running filesystem: */ 1878 int bch2_dev_online(struct bch_fs *c, const char *path) 1879 { 1880 struct bch_opts opts = bch2_opts_empty(); 1881 struct bch_sb_handle sb = { NULL }; 1882 struct bch_dev *ca; 1883 unsigned dev_idx; 1884 int ret; 1885 1886 down_write(&c->state_lock); 1887 1888 ret = bch2_read_super(path, &opts, &sb); 1889 if (ret) { 1890 up_write(&c->state_lock); 1891 return ret; 1892 } 1893 1894 dev_idx = sb.sb->dev_idx; 1895 1896 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts); 1897 bch_err_msg(c, ret, "bringing %s online", path); 1898 if (ret) 1899 goto err; 1900 1901 ret = bch2_dev_attach_bdev(c, &sb); 1902 if (ret) 1903 goto err; 1904 1905 ca = bch2_dev_locked(c, dev_idx); 1906 1907 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1908 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path); 1909 if (ret) 1910 goto err; 1911 1912 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1913 __bch2_dev_read_write(c, ca); 1914 1915 if (!ca->mi.freespace_initialized) { 1916 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets); 1917 bch_err_msg(ca, ret, "initializing free space"); 1918 if (ret) 1919 goto err; 1920 } 1921 1922 if (!ca->journal.nr) { 1923 ret = bch2_dev_journal_alloc(ca); 1924 bch_err_msg(ca, ret, "allocating journal"); 1925 if (ret) 1926 goto err; 1927 } 1928 1929 mutex_lock(&c->sb_lock); 1930 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = 1931 cpu_to_le64(ktime_get_real_seconds()); 1932 bch2_write_super(c); 1933 mutex_unlock(&c->sb_lock); 1934 1935 up_write(&c->state_lock); 1936 return 0; 1937 err: 1938 up_write(&c->state_lock); 1939 bch2_free_super(&sb); 1940 return ret; 1941 } 1942 1943 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) 1944 { 1945 down_write(&c->state_lock); 1946 1947 if (!bch2_dev_is_online(ca)) { 1948 bch_err(ca, "Already offline"); 1949 up_write(&c->state_lock); 1950 return 0; 1951 } 1952 1953 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1954 bch_err(ca, "Cannot offline required disk"); 1955 up_write(&c->state_lock); 1956 return -BCH_ERR_device_state_not_allowed; 1957 } 1958 1959 __bch2_dev_offline(c, ca); 1960 1961 up_write(&c->state_lock); 1962 return 0; 1963 } 1964 1965 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) 1966 { 1967 struct bch_member *m; 1968 u64 old_nbuckets; 1969 int ret = 0; 1970 1971 down_write(&c->state_lock); 1972 old_nbuckets = ca->mi.nbuckets; 1973 1974 if (nbuckets < ca->mi.nbuckets) { 1975 bch_err(ca, "Cannot shrink yet"); 1976 ret = -EINVAL; 1977 goto err; 1978 } 1979 1980 if (nbuckets > BCH_MEMBER_NBUCKETS_MAX) { 1981 bch_err(ca, "New device size too big (%llu greater than max %u)", 1982 nbuckets, BCH_MEMBER_NBUCKETS_MAX); 1983 ret = -BCH_ERR_device_size_too_big; 1984 goto err; 1985 } 1986 1987 if (bch2_dev_is_online(ca) && 1988 get_capacity(ca->disk_sb.bdev->bd_disk) < 1989 ca->mi.bucket_size * nbuckets) { 1990 bch_err(ca, "New size larger than device"); 1991 ret = -BCH_ERR_device_size_too_small; 1992 goto err; 1993 } 1994 1995 ret = bch2_dev_buckets_resize(c, ca, nbuckets); 1996 bch_err_msg(ca, ret, "resizing buckets"); 1997 if (ret) 1998 goto err; 1999 2000 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 2001 if (ret) 2002 goto err; 2003 2004 mutex_lock(&c->sb_lock); 2005 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 2006 m->nbuckets = cpu_to_le64(nbuckets); 2007 2008 bch2_write_super(c); 2009 mutex_unlock(&c->sb_lock); 2010 2011 if (ca->mi.freespace_initialized) { 2012 ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets); 2013 if (ret) 2014 goto err; 2015 2016 /* 2017 * XXX: this is all wrong transactionally - we'll be able to do 2018 * this correctly after the disk space accounting rewrite 2019 */ 2020 ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets; 2021 } 2022 2023 bch2_recalc_capacity(c); 2024 err: 2025 up_write(&c->state_lock); 2026 return ret; 2027 } 2028 2029 /* return with ref on ca->ref: */ 2030 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name) 2031 { 2032 for_each_member_device(c, ca) 2033 if (!strcmp(name, ca->name)) 2034 return ca; 2035 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found); 2036 } 2037 2038 /* Filesystem open: */ 2039 2040 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r) 2041 { 2042 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?: 2043 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time)); 2044 } 2045 2046 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, 2047 struct bch_opts opts) 2048 { 2049 DARRAY(struct bch_sb_handle) sbs = { 0 }; 2050 struct bch_fs *c = NULL; 2051 struct bch_sb_handle *best = NULL; 2052 struct printbuf errbuf = PRINTBUF; 2053 int ret = 0; 2054 2055 if (!try_module_get(THIS_MODULE)) 2056 return ERR_PTR(-ENODEV); 2057 2058 if (!nr_devices) { 2059 ret = -EINVAL; 2060 goto err; 2061 } 2062 2063 ret = darray_make_room(&sbs, nr_devices); 2064 if (ret) 2065 goto err; 2066 2067 for (unsigned i = 0; i < nr_devices; i++) { 2068 struct bch_sb_handle sb = { NULL }; 2069 2070 ret = bch2_read_super(devices[i], &opts, &sb); 2071 if (ret) 2072 goto err; 2073 2074 BUG_ON(darray_push(&sbs, sb)); 2075 } 2076 2077 if (opts.nochanges && !opts.read_only) { 2078 ret = -BCH_ERR_erofs_nochanges; 2079 goto err_print; 2080 } 2081 2082 darray_for_each(sbs, sb) 2083 if (!best || sb_cmp(sb->sb, best->sb) > 0) 2084 best = sb; 2085 2086 darray_for_each_reverse(sbs, sb) { 2087 ret = bch2_dev_in_fs(best, sb, &opts); 2088 2089 if (ret == -BCH_ERR_device_has_been_removed || 2090 ret == -BCH_ERR_device_splitbrain) { 2091 bch2_free_super(sb); 2092 darray_remove_item(&sbs, sb); 2093 best -= best > sb; 2094 ret = 0; 2095 continue; 2096 } 2097 2098 if (ret) 2099 goto err_print; 2100 } 2101 2102 c = bch2_fs_alloc(best->sb, opts); 2103 ret = PTR_ERR_OR_ZERO(c); 2104 if (ret) 2105 goto err; 2106 2107 down_write(&c->state_lock); 2108 darray_for_each(sbs, sb) { 2109 ret = bch2_dev_attach_bdev(c, sb); 2110 if (ret) { 2111 up_write(&c->state_lock); 2112 goto err; 2113 } 2114 } 2115 up_write(&c->state_lock); 2116 2117 if (!bch2_fs_may_start(c)) { 2118 ret = -BCH_ERR_insufficient_devices_to_start; 2119 goto err_print; 2120 } 2121 2122 if (!c->opts.nostart) { 2123 ret = bch2_fs_start(c); 2124 if (ret) 2125 goto err; 2126 } 2127 out: 2128 darray_for_each(sbs, sb) 2129 bch2_free_super(sb); 2130 darray_exit(&sbs); 2131 printbuf_exit(&errbuf); 2132 module_put(THIS_MODULE); 2133 return c; 2134 err_print: 2135 pr_err("bch_fs_open err opening %s: %s", 2136 devices[0], bch2_err_str(ret)); 2137 err: 2138 if (!IS_ERR_OR_NULL(c)) 2139 bch2_fs_stop(c); 2140 c = ERR_PTR(ret); 2141 goto out; 2142 } 2143 2144 /* Global interfaces/init */ 2145 2146 static void bcachefs_exit(void) 2147 { 2148 bch2_debug_exit(); 2149 bch2_vfs_exit(); 2150 bch2_chardev_exit(); 2151 bch2_btree_key_cache_exit(); 2152 if (bcachefs_kset) 2153 kset_unregister(bcachefs_kset); 2154 } 2155 2156 static int __init bcachefs_init(void) 2157 { 2158 bch2_bkey_pack_test(); 2159 2160 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || 2161 bch2_btree_key_cache_init() || 2162 bch2_chardev_init() || 2163 bch2_vfs_init() || 2164 bch2_debug_init()) 2165 goto err; 2166 2167 return 0; 2168 err: 2169 bcachefs_exit(); 2170 return -ENOMEM; 2171 } 2172 2173 #define BCH_DEBUG_PARAM(name, description) \ 2174 bool bch2_##name; \ 2175 module_param_named(name, bch2_##name, bool, 0644); \ 2176 MODULE_PARM_DESC(name, description); 2177 BCH_DEBUG_PARAMS() 2178 #undef BCH_DEBUG_PARAM 2179 2180 __maybe_unused 2181 static unsigned bch2_metadata_version = bcachefs_metadata_version_current; 2182 module_param_named(version, bch2_metadata_version, uint, 0400); 2183 2184 module_exit(bcachefs_exit); 2185 module_init(bcachefs_init); 2186