1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcachefs setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcachefs.h" 11 #include "alloc_background.h" 12 #include "alloc_foreground.h" 13 #include "bkey_sort.h" 14 #include "btree_cache.h" 15 #include "btree_gc.h" 16 #include "btree_journal_iter.h" 17 #include "btree_key_cache.h" 18 #include "btree_update_interior.h" 19 #include "btree_io.h" 20 #include "btree_write_buffer.h" 21 #include "buckets_waiting_for_journal.h" 22 #include "chardev.h" 23 #include "checksum.h" 24 #include "clock.h" 25 #include "compress.h" 26 #include "debug.h" 27 #include "disk_groups.h" 28 #include "ec.h" 29 #include "errcode.h" 30 #include "error.h" 31 #include "fs.h" 32 #include "fs-io.h" 33 #include "fs-io-buffered.h" 34 #include "fs-io-direct.h" 35 #include "fsck.h" 36 #include "inode.h" 37 #include "io_read.h" 38 #include "io_write.h" 39 #include "journal.h" 40 #include "journal_reclaim.h" 41 #include "journal_seq_blacklist.h" 42 #include "move.h" 43 #include "migrate.h" 44 #include "movinggc.h" 45 #include "nocow_locking.h" 46 #include "quota.h" 47 #include "rebalance.h" 48 #include "recovery.h" 49 #include "replicas.h" 50 #include "sb-clean.h" 51 #include "sb-counters.h" 52 #include "sb-errors.h" 53 #include "sb-members.h" 54 #include "snapshot.h" 55 #include "subvolume.h" 56 #include "super.h" 57 #include "super-io.h" 58 #include "sysfs.h" 59 #include "thread_with_file.h" 60 #include "trace.h" 61 62 #include <linux/backing-dev.h> 63 #include <linux/blkdev.h> 64 #include <linux/debugfs.h> 65 #include <linux/device.h> 66 #include <linux/idr.h> 67 #include <linux/module.h> 68 #include <linux/percpu.h> 69 #include <linux/random.h> 70 #include <linux/sysfs.h> 71 #include <crypto/hash.h> 72 73 MODULE_LICENSE("GPL"); 74 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 75 MODULE_DESCRIPTION("bcachefs filesystem"); 76 MODULE_SOFTDEP("pre: crc32c"); 77 MODULE_SOFTDEP("pre: crc64"); 78 MODULE_SOFTDEP("pre: sha256"); 79 MODULE_SOFTDEP("pre: chacha20"); 80 MODULE_SOFTDEP("pre: poly1305"); 81 MODULE_SOFTDEP("pre: xxhash"); 82 83 const char * const bch2_fs_flag_strs[] = { 84 #define x(n) #n, 85 BCH_FS_FLAGS() 86 #undef x 87 NULL 88 }; 89 90 __printf(2, 0) 91 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args) 92 { 93 #ifdef __KERNEL__ 94 if (unlikely(stdio)) { 95 if (fmt[0] == KERN_SOH[0]) 96 fmt += 2; 97 98 bch2_stdio_redirect_vprintf(stdio, true, fmt, args); 99 return; 100 } 101 #endif 102 vprintk(fmt, args); 103 } 104 105 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...) 106 { 107 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio; 108 109 va_list args; 110 va_start(args, fmt); 111 bch2_print_maybe_redirect(stdio, fmt, args); 112 va_end(args); 113 } 114 115 void __bch2_print(struct bch_fs *c, const char *fmt, ...) 116 { 117 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 118 119 va_list args; 120 va_start(args, fmt); 121 bch2_print_maybe_redirect(stdio, fmt, args); 122 va_end(args); 123 } 124 125 #define KTYPE(type) \ 126 static const struct attribute_group type ## _group = { \ 127 .attrs = type ## _files \ 128 }; \ 129 \ 130 static const struct attribute_group *type ## _groups[] = { \ 131 &type ## _group, \ 132 NULL \ 133 }; \ 134 \ 135 static const struct kobj_type type ## _ktype = { \ 136 .release = type ## _release, \ 137 .sysfs_ops = &type ## _sysfs_ops, \ 138 .default_groups = type ## _groups \ 139 } 140 141 static void bch2_fs_release(struct kobject *); 142 static void bch2_dev_release(struct kobject *); 143 static void bch2_fs_counters_release(struct kobject *k) 144 { 145 } 146 147 static void bch2_fs_internal_release(struct kobject *k) 148 { 149 } 150 151 static void bch2_fs_opts_dir_release(struct kobject *k) 152 { 153 } 154 155 static void bch2_fs_time_stats_release(struct kobject *k) 156 { 157 } 158 159 KTYPE(bch2_fs); 160 KTYPE(bch2_fs_counters); 161 KTYPE(bch2_fs_internal); 162 KTYPE(bch2_fs_opts_dir); 163 KTYPE(bch2_fs_time_stats); 164 KTYPE(bch2_dev); 165 166 static struct kset *bcachefs_kset; 167 static LIST_HEAD(bch_fs_list); 168 static DEFINE_MUTEX(bch_fs_list_lock); 169 170 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait); 171 172 static void bch2_dev_free(struct bch_dev *); 173 static int bch2_dev_alloc(struct bch_fs *, unsigned); 174 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); 175 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); 176 177 struct bch_fs *bch2_dev_to_fs(dev_t dev) 178 { 179 struct bch_fs *c; 180 181 mutex_lock(&bch_fs_list_lock); 182 rcu_read_lock(); 183 184 list_for_each_entry(c, &bch_fs_list, list) 185 for_each_member_device_rcu(c, ca, NULL) 186 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) { 187 closure_get(&c->cl); 188 goto found; 189 } 190 c = NULL; 191 found: 192 rcu_read_unlock(); 193 mutex_unlock(&bch_fs_list_lock); 194 195 return c; 196 } 197 198 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) 199 { 200 struct bch_fs *c; 201 202 lockdep_assert_held(&bch_fs_list_lock); 203 204 list_for_each_entry(c, &bch_fs_list, list) 205 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) 206 return c; 207 208 return NULL; 209 } 210 211 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) 212 { 213 struct bch_fs *c; 214 215 mutex_lock(&bch_fs_list_lock); 216 c = __bch2_uuid_to_fs(uuid); 217 if (c) 218 closure_get(&c->cl); 219 mutex_unlock(&bch_fs_list_lock); 220 221 return c; 222 } 223 224 static void bch2_dev_usage_journal_reserve(struct bch_fs *c) 225 { 226 unsigned nr = 0, u64s = 227 ((sizeof(struct jset_entry_dev_usage) + 228 sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) / 229 sizeof(u64); 230 231 rcu_read_lock(); 232 for_each_member_device_rcu(c, ca, NULL) 233 nr++; 234 rcu_read_unlock(); 235 236 bch2_journal_entry_res_resize(&c->journal, 237 &c->dev_usage_journal_res, u64s * nr); 238 } 239 240 /* Filesystem RO/RW: */ 241 242 /* 243 * For startup/shutdown of RW stuff, the dependencies are: 244 * 245 * - foreground writes depend on copygc and rebalance (to free up space) 246 * 247 * - copygc and rebalance depend on mark and sweep gc (they actually probably 248 * don't because they either reserve ahead of time or don't block if 249 * allocations fail, but allocations can require mark and sweep gc to run 250 * because of generation number wraparound) 251 * 252 * - all of the above depends on the allocator threads 253 * 254 * - allocator depends on the journal (when it rewrites prios and gens) 255 */ 256 257 static void __bch2_fs_read_only(struct bch_fs *c) 258 { 259 unsigned clean_passes = 0; 260 u64 seq = 0; 261 262 bch2_fs_ec_stop(c); 263 bch2_open_buckets_stop(c, NULL, true); 264 bch2_rebalance_stop(c); 265 bch2_copygc_stop(c); 266 bch2_gc_thread_stop(c); 267 bch2_fs_ec_flush(c); 268 269 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu", 270 journal_cur_seq(&c->journal)); 271 272 do { 273 clean_passes++; 274 275 if (bch2_btree_interior_updates_flush(c) || 276 bch2_journal_flush_all_pins(&c->journal) || 277 bch2_btree_flush_all_writes(c) || 278 seq != atomic64_read(&c->journal.seq)) { 279 seq = atomic64_read(&c->journal.seq); 280 clean_passes = 0; 281 } 282 } while (clean_passes < 2); 283 284 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu", 285 journal_cur_seq(&c->journal)); 286 287 if (test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags) && 288 !test_bit(BCH_FS_emergency_ro, &c->flags)) 289 set_bit(BCH_FS_clean_shutdown, &c->flags); 290 bch2_fs_journal_stop(&c->journal); 291 292 /* 293 * After stopping journal: 294 */ 295 for_each_member_device(c, ca) 296 bch2_dev_allocator_remove(c, ca); 297 } 298 299 #ifndef BCH_WRITE_REF_DEBUG 300 static void bch2_writes_disabled(struct percpu_ref *writes) 301 { 302 struct bch_fs *c = container_of(writes, struct bch_fs, writes); 303 304 set_bit(BCH_FS_write_disable_complete, &c->flags); 305 wake_up(&bch2_read_only_wait); 306 } 307 #endif 308 309 void bch2_fs_read_only(struct bch_fs *c) 310 { 311 if (!test_bit(BCH_FS_rw, &c->flags)) { 312 bch2_journal_reclaim_stop(&c->journal); 313 return; 314 } 315 316 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags)); 317 318 bch_verbose(c, "going read-only"); 319 320 /* 321 * Block new foreground-end write operations from starting - any new 322 * writes will return -EROFS: 323 */ 324 set_bit(BCH_FS_going_ro, &c->flags); 325 #ifndef BCH_WRITE_REF_DEBUG 326 percpu_ref_kill(&c->writes); 327 #else 328 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 329 bch2_write_ref_put(c, i); 330 #endif 331 332 /* 333 * If we're not doing an emergency shutdown, we want to wait on 334 * outstanding writes to complete so they don't see spurious errors due 335 * to shutting down the allocator: 336 * 337 * If we are doing an emergency shutdown outstanding writes may 338 * hang until we shutdown the allocator so we don't want to wait 339 * on outstanding writes before shutting everything down - but 340 * we do need to wait on them before returning and signalling 341 * that going RO is complete: 342 */ 343 wait_event(bch2_read_only_wait, 344 test_bit(BCH_FS_write_disable_complete, &c->flags) || 345 test_bit(BCH_FS_emergency_ro, &c->flags)); 346 347 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags); 348 if (writes_disabled) 349 bch_verbose(c, "finished waiting for writes to stop"); 350 351 __bch2_fs_read_only(c); 352 353 wait_event(bch2_read_only_wait, 354 test_bit(BCH_FS_write_disable_complete, &c->flags)); 355 356 if (!writes_disabled) 357 bch_verbose(c, "finished waiting for writes to stop"); 358 359 clear_bit(BCH_FS_write_disable_complete, &c->flags); 360 clear_bit(BCH_FS_going_ro, &c->flags); 361 clear_bit(BCH_FS_rw, &c->flags); 362 363 if (!bch2_journal_error(&c->journal) && 364 !test_bit(BCH_FS_error, &c->flags) && 365 !test_bit(BCH_FS_emergency_ro, &c->flags) && 366 test_bit(BCH_FS_started, &c->flags) && 367 test_bit(BCH_FS_clean_shutdown, &c->flags) && 368 !c->opts.norecovery) { 369 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal)); 370 BUG_ON(atomic_read(&c->btree_cache.dirty)); 371 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty)); 372 BUG_ON(c->btree_write_buffer.inc.keys.nr); 373 BUG_ON(c->btree_write_buffer.flushing.keys.nr); 374 375 bch_verbose(c, "marking filesystem clean"); 376 bch2_fs_mark_clean(c); 377 } else { 378 bch_verbose(c, "done going read-only, filesystem not clean"); 379 } 380 } 381 382 static void bch2_fs_read_only_work(struct work_struct *work) 383 { 384 struct bch_fs *c = 385 container_of(work, struct bch_fs, read_only_work); 386 387 down_write(&c->state_lock); 388 bch2_fs_read_only(c); 389 up_write(&c->state_lock); 390 } 391 392 static void bch2_fs_read_only_async(struct bch_fs *c) 393 { 394 queue_work(system_long_wq, &c->read_only_work); 395 } 396 397 bool bch2_fs_emergency_read_only(struct bch_fs *c) 398 { 399 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags); 400 401 bch2_journal_halt(&c->journal); 402 bch2_fs_read_only_async(c); 403 404 wake_up(&bch2_read_only_wait); 405 return ret; 406 } 407 408 static int bch2_fs_read_write_late(struct bch_fs *c) 409 { 410 int ret; 411 412 /* 413 * Data move operations can't run until after check_snapshots has 414 * completed, and bch2_snapshot_is_ancestor() is available. 415 * 416 * Ideally we'd start copygc/rebalance earlier instead of waiting for 417 * all of recovery/fsck to complete: 418 */ 419 ret = bch2_copygc_start(c); 420 if (ret) { 421 bch_err(c, "error starting copygc thread"); 422 return ret; 423 } 424 425 ret = bch2_rebalance_start(c); 426 if (ret) { 427 bch_err(c, "error starting rebalance thread"); 428 return ret; 429 } 430 431 return 0; 432 } 433 434 static int __bch2_fs_read_write(struct bch_fs *c, bool early) 435 { 436 int ret; 437 438 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) { 439 bch_err(c, "cannot go rw, unfixed btree errors"); 440 return -BCH_ERR_erofs_unfixed_errors; 441 } 442 443 if (test_bit(BCH_FS_rw, &c->flags)) 444 return 0; 445 446 bch_info(c, "going read-write"); 447 448 ret = bch2_sb_members_v2_init(c); 449 if (ret) 450 goto err; 451 452 ret = bch2_fs_mark_dirty(c); 453 if (ret) 454 goto err; 455 456 clear_bit(BCH_FS_clean_shutdown, &c->flags); 457 458 /* 459 * First journal write must be a flush write: after a clean shutdown we 460 * don't read the journal, so the first journal write may end up 461 * overwriting whatever was there previously, and there must always be 462 * at least one non-flush write in the journal or recovery will fail: 463 */ 464 set_bit(JOURNAL_NEED_FLUSH_WRITE, &c->journal.flags); 465 466 for_each_rw_member(c, ca) 467 bch2_dev_allocator_add(c, ca); 468 bch2_recalc_capacity(c); 469 470 set_bit(BCH_FS_rw, &c->flags); 471 set_bit(BCH_FS_was_rw, &c->flags); 472 473 #ifndef BCH_WRITE_REF_DEBUG 474 percpu_ref_reinit(&c->writes); 475 #else 476 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) { 477 BUG_ON(atomic_long_read(&c->writes[i])); 478 atomic_long_inc(&c->writes[i]); 479 } 480 #endif 481 482 ret = bch2_gc_thread_start(c); 483 if (ret) { 484 bch_err(c, "error starting gc thread"); 485 return ret; 486 } 487 488 ret = bch2_journal_reclaim_start(&c->journal); 489 if (ret) 490 goto err; 491 492 if (!early) { 493 ret = bch2_fs_read_write_late(c); 494 if (ret) 495 goto err; 496 } 497 498 bch2_do_discards(c); 499 bch2_do_invalidates(c); 500 bch2_do_stripe_deletes(c); 501 bch2_do_pending_node_rewrites(c); 502 return 0; 503 err: 504 if (test_bit(BCH_FS_rw, &c->flags)) 505 bch2_fs_read_only(c); 506 else 507 __bch2_fs_read_only(c); 508 return ret; 509 } 510 511 int bch2_fs_read_write(struct bch_fs *c) 512 { 513 if (c->opts.norecovery) 514 return -BCH_ERR_erofs_norecovery; 515 516 if (c->opts.nochanges) 517 return -BCH_ERR_erofs_nochanges; 518 519 return __bch2_fs_read_write(c, false); 520 } 521 522 int bch2_fs_read_write_early(struct bch_fs *c) 523 { 524 lockdep_assert_held(&c->state_lock); 525 526 return __bch2_fs_read_write(c, true); 527 } 528 529 /* Filesystem startup/shutdown: */ 530 531 static void __bch2_fs_free(struct bch_fs *c) 532 { 533 unsigned i; 534 535 for (i = 0; i < BCH_TIME_STAT_NR; i++) 536 bch2_time_stats_exit(&c->times[i]); 537 538 bch2_free_pending_node_rewrites(c); 539 bch2_fs_sb_errors_exit(c); 540 bch2_fs_counters_exit(c); 541 bch2_fs_snapshots_exit(c); 542 bch2_fs_quota_exit(c); 543 bch2_fs_fs_io_direct_exit(c); 544 bch2_fs_fs_io_buffered_exit(c); 545 bch2_fs_fsio_exit(c); 546 bch2_fs_ec_exit(c); 547 bch2_fs_encryption_exit(c); 548 bch2_fs_nocow_locking_exit(c); 549 bch2_fs_io_write_exit(c); 550 bch2_fs_io_read_exit(c); 551 bch2_fs_buckets_waiting_for_journal_exit(c); 552 bch2_fs_btree_interior_update_exit(c); 553 bch2_fs_btree_iter_exit(c); 554 bch2_fs_btree_key_cache_exit(&c->btree_key_cache); 555 bch2_fs_btree_cache_exit(c); 556 bch2_fs_replicas_exit(c); 557 bch2_fs_journal_exit(&c->journal); 558 bch2_io_clock_exit(&c->io_clock[WRITE]); 559 bch2_io_clock_exit(&c->io_clock[READ]); 560 bch2_fs_compress_exit(c); 561 bch2_journal_keys_put_initial(c); 562 BUG_ON(atomic_read(&c->journal_keys.ref)); 563 bch2_fs_btree_write_buffer_exit(c); 564 percpu_free_rwsem(&c->mark_lock); 565 free_percpu(c->online_reserved); 566 567 darray_exit(&c->btree_roots_extra); 568 free_percpu(c->pcpu); 569 mempool_exit(&c->large_bkey_pool); 570 mempool_exit(&c->btree_bounce_pool); 571 bioset_exit(&c->btree_bio); 572 mempool_exit(&c->fill_iter); 573 #ifndef BCH_WRITE_REF_DEBUG 574 percpu_ref_exit(&c->writes); 575 #endif 576 kfree(rcu_dereference_protected(c->disk_groups, 1)); 577 kfree(c->journal_seq_blacklist_table); 578 kfree(c->unused_inode_hints); 579 580 if (c->write_ref_wq) 581 destroy_workqueue(c->write_ref_wq); 582 if (c->io_complete_wq) 583 destroy_workqueue(c->io_complete_wq); 584 if (c->copygc_wq) 585 destroy_workqueue(c->copygc_wq); 586 if (c->btree_io_complete_wq) 587 destroy_workqueue(c->btree_io_complete_wq); 588 if (c->btree_update_wq) 589 destroy_workqueue(c->btree_update_wq); 590 591 bch2_free_super(&c->disk_sb); 592 kvfree(c); 593 module_put(THIS_MODULE); 594 } 595 596 static void bch2_fs_release(struct kobject *kobj) 597 { 598 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); 599 600 __bch2_fs_free(c); 601 } 602 603 void __bch2_fs_stop(struct bch_fs *c) 604 { 605 bch_verbose(c, "shutting down"); 606 607 set_bit(BCH_FS_stopping, &c->flags); 608 609 cancel_work_sync(&c->journal_seq_blacklist_gc_work); 610 611 down_write(&c->state_lock); 612 bch2_fs_read_only(c); 613 up_write(&c->state_lock); 614 615 for_each_member_device(c, ca) 616 if (ca->kobj.state_in_sysfs && 617 ca->disk_sb.bdev) 618 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 619 620 if (c->kobj.state_in_sysfs) 621 kobject_del(&c->kobj); 622 623 bch2_fs_debug_exit(c); 624 bch2_fs_chardev_exit(c); 625 626 bch2_ro_ref_put(c); 627 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref)); 628 629 kobject_put(&c->counters_kobj); 630 kobject_put(&c->time_stats); 631 kobject_put(&c->opts_dir); 632 kobject_put(&c->internal); 633 634 /* btree prefetch might have kicked off reads in the background: */ 635 bch2_btree_flush_all_reads(c); 636 637 for_each_member_device(c, ca) 638 cancel_work_sync(&ca->io_error_work); 639 640 cancel_work_sync(&c->read_only_work); 641 } 642 643 void bch2_fs_free(struct bch_fs *c) 644 { 645 unsigned i; 646 647 mutex_lock(&bch_fs_list_lock); 648 list_del(&c->list); 649 mutex_unlock(&bch_fs_list_lock); 650 651 closure_sync(&c->cl); 652 closure_debug_destroy(&c->cl); 653 654 for (i = 0; i < c->sb.nr_devices; i++) { 655 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true); 656 657 if (ca) { 658 bch2_free_super(&ca->disk_sb); 659 bch2_dev_free(ca); 660 } 661 } 662 663 bch_verbose(c, "shutdown complete"); 664 665 kobject_put(&c->kobj); 666 } 667 668 void bch2_fs_stop(struct bch_fs *c) 669 { 670 __bch2_fs_stop(c); 671 bch2_fs_free(c); 672 } 673 674 static int bch2_fs_online(struct bch_fs *c) 675 { 676 int ret = 0; 677 678 lockdep_assert_held(&bch_fs_list_lock); 679 680 if (__bch2_uuid_to_fs(c->sb.uuid)) { 681 bch_err(c, "filesystem UUID already open"); 682 return -EINVAL; 683 } 684 685 ret = bch2_fs_chardev_init(c); 686 if (ret) { 687 bch_err(c, "error creating character device"); 688 return ret; 689 } 690 691 bch2_fs_debug_init(c); 692 693 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?: 694 kobject_add(&c->internal, &c->kobj, "internal") ?: 695 kobject_add(&c->opts_dir, &c->kobj, "options") ?: 696 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 697 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?: 698 #endif 699 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?: 700 bch2_opts_create_sysfs_files(&c->opts_dir); 701 if (ret) { 702 bch_err(c, "error creating sysfs objects"); 703 return ret; 704 } 705 706 down_write(&c->state_lock); 707 708 for_each_member_device(c, ca) { 709 ret = bch2_dev_sysfs_online(c, ca); 710 if (ret) { 711 bch_err(c, "error creating sysfs objects"); 712 percpu_ref_put(&ca->ref); 713 goto err; 714 } 715 } 716 717 BUG_ON(!list_empty(&c->list)); 718 list_add(&c->list, &bch_fs_list); 719 err: 720 up_write(&c->state_lock); 721 return ret; 722 } 723 724 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) 725 { 726 struct bch_fs *c; 727 struct printbuf name = PRINTBUF; 728 unsigned i, iter_size; 729 int ret = 0; 730 731 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); 732 if (!c) { 733 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc); 734 goto out; 735 } 736 737 c->stdio = (void *)(unsigned long) opts.stdio; 738 739 __module_get(THIS_MODULE); 740 741 closure_init(&c->cl, NULL); 742 743 c->kobj.kset = bcachefs_kset; 744 kobject_init(&c->kobj, &bch2_fs_ktype); 745 kobject_init(&c->internal, &bch2_fs_internal_ktype); 746 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); 747 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); 748 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype); 749 750 c->minor = -1; 751 c->disk_sb.fs_sb = true; 752 753 init_rwsem(&c->state_lock); 754 mutex_init(&c->sb_lock); 755 mutex_init(&c->replicas_gc_lock); 756 mutex_init(&c->btree_root_lock); 757 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); 758 759 refcount_set(&c->ro_ref, 1); 760 init_waitqueue_head(&c->ro_ref_wait); 761 sema_init(&c->online_fsck_mutex, 1); 762 763 init_rwsem(&c->gc_lock); 764 mutex_init(&c->gc_gens_lock); 765 atomic_set(&c->journal_keys.ref, 1); 766 c->journal_keys.initial_ref_held = true; 767 768 for (i = 0; i < BCH_TIME_STAT_NR; i++) 769 bch2_time_stats_init(&c->times[i]); 770 771 bch2_fs_copygc_init(c); 772 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); 773 bch2_fs_btree_iter_init_early(c); 774 bch2_fs_btree_interior_update_init_early(c); 775 bch2_fs_allocator_background_init(c); 776 bch2_fs_allocator_foreground_init(c); 777 bch2_fs_rebalance_init(c); 778 bch2_fs_quota_init(c); 779 bch2_fs_ec_init_early(c); 780 bch2_fs_move_init(c); 781 bch2_fs_sb_errors_init_early(c); 782 783 INIT_LIST_HEAD(&c->list); 784 785 mutex_init(&c->usage_scratch_lock); 786 787 mutex_init(&c->bio_bounce_pages_lock); 788 mutex_init(&c->snapshot_table_lock); 789 init_rwsem(&c->snapshot_create_lock); 790 791 spin_lock_init(&c->btree_write_error_lock); 792 793 INIT_WORK(&c->journal_seq_blacklist_gc_work, 794 bch2_blacklist_entries_gc); 795 796 INIT_LIST_HEAD(&c->journal_iters); 797 798 INIT_LIST_HEAD(&c->fsck_error_msgs); 799 mutex_init(&c->fsck_error_msgs_lock); 800 801 seqcount_init(&c->gc_pos_lock); 802 803 seqcount_init(&c->usage_lock); 804 805 sema_init(&c->io_in_flight, 128); 806 807 INIT_LIST_HEAD(&c->vfs_inodes_list); 808 mutex_init(&c->vfs_inodes_lock); 809 810 c->copy_gc_enabled = 1; 811 c->rebalance.enabled = 1; 812 c->promote_whole_extents = true; 813 814 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write]; 815 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write]; 816 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; 817 818 bch2_fs_btree_cache_init_early(&c->btree_cache); 819 820 mutex_init(&c->sectors_available_lock); 821 822 ret = percpu_init_rwsem(&c->mark_lock); 823 if (ret) 824 goto err; 825 826 mutex_lock(&c->sb_lock); 827 ret = bch2_sb_to_fs(c, sb); 828 mutex_unlock(&c->sb_lock); 829 830 if (ret) 831 goto err; 832 833 pr_uuid(&name, c->sb.user_uuid.b); 834 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0; 835 if (ret) 836 goto err; 837 838 strscpy(c->name, name.buf, sizeof(c->name)); 839 printbuf_exit(&name); 840 841 /* Compat: */ 842 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 843 !BCH_SB_JOURNAL_FLUSH_DELAY(sb)) 844 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); 845 846 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 847 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) 848 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100); 849 850 c->opts = bch2_opts_default; 851 ret = bch2_opts_from_sb(&c->opts, sb); 852 if (ret) 853 goto err; 854 855 bch2_opts_apply(&c->opts, opts); 856 857 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc; 858 if (c->opts.inodes_use_key_cache) 859 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes; 860 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops; 861 862 c->block_bits = ilog2(block_sectors(c)); 863 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); 864 865 if (bch2_fs_init_fault("fs_alloc")) { 866 bch_err(c, "fs_alloc fault injected"); 867 ret = -EFAULT; 868 goto err; 869 } 870 871 iter_size = sizeof(struct sort_iter) + 872 (btree_blocks(c) + 1) * 2 * 873 sizeof(struct sort_iter_set); 874 875 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus())); 876 877 if (!(c->btree_update_wq = alloc_workqueue("bcachefs", 878 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) || 879 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io", 880 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 881 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc", 882 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || 883 !(c->io_complete_wq = alloc_workqueue("bcachefs_io", 884 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) || 885 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref", 886 WQ_FREEZABLE, 0)) || 887 #ifndef BCH_WRITE_REF_DEBUG 888 percpu_ref_init(&c->writes, bch2_writes_disabled, 889 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 890 #endif 891 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 892 bioset_init(&c->btree_bio, 1, 893 max(offsetof(struct btree_read_bio, bio), 894 offsetof(struct btree_write_bio, wbio.bio)), 895 BIOSET_NEED_BVECS) || 896 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || 897 !(c->online_reserved = alloc_percpu(u64)) || 898 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1, 899 c->opts.btree_node_size) || 900 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) || 901 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits, 902 sizeof(u64), GFP_KERNEL))) { 903 ret = -BCH_ERR_ENOMEM_fs_other_alloc; 904 goto err; 905 } 906 907 ret = bch2_fs_counters_init(c) ?: 908 bch2_fs_sb_errors_init(c) ?: 909 bch2_io_clock_init(&c->io_clock[READ]) ?: 910 bch2_io_clock_init(&c->io_clock[WRITE]) ?: 911 bch2_fs_journal_init(&c->journal) ?: 912 bch2_fs_replicas_init(c) ?: 913 bch2_fs_btree_cache_init(c) ?: 914 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?: 915 bch2_fs_btree_iter_init(c) ?: 916 bch2_fs_btree_interior_update_init(c) ?: 917 bch2_fs_buckets_waiting_for_journal_init(c) ?: 918 bch2_fs_btree_write_buffer_init(c) ?: 919 bch2_fs_subvolumes_init(c) ?: 920 bch2_fs_io_read_init(c) ?: 921 bch2_fs_io_write_init(c) ?: 922 bch2_fs_nocow_locking_init(c) ?: 923 bch2_fs_encryption_init(c) ?: 924 bch2_fs_compress_init(c) ?: 925 bch2_fs_ec_init(c) ?: 926 bch2_fs_fsio_init(c) ?: 927 bch2_fs_fs_io_buffered_init(c) ?: 928 bch2_fs_fs_io_direct_init(c); 929 if (ret) 930 goto err; 931 932 for (i = 0; i < c->sb.nr_devices; i++) 933 if (bch2_dev_exists(c->disk_sb.sb, i) && 934 bch2_dev_alloc(c, i)) { 935 ret = -EEXIST; 936 goto err; 937 } 938 939 bch2_journal_entry_res_resize(&c->journal, 940 &c->btree_root_journal_res, 941 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX)); 942 bch2_dev_usage_journal_reserve(c); 943 bch2_journal_entry_res_resize(&c->journal, 944 &c->clock_journal_res, 945 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2); 946 947 mutex_lock(&bch_fs_list_lock); 948 ret = bch2_fs_online(c); 949 mutex_unlock(&bch_fs_list_lock); 950 951 if (ret) 952 goto err; 953 out: 954 return c; 955 err: 956 bch2_fs_free(c); 957 c = ERR_PTR(ret); 958 goto out; 959 } 960 961 noinline_for_stack 962 static void print_mount_opts(struct bch_fs *c) 963 { 964 enum bch_opt_id i; 965 struct printbuf p = PRINTBUF; 966 bool first = true; 967 968 prt_str(&p, "mounting version "); 969 bch2_version_to_text(&p, c->sb.version); 970 971 if (c->opts.read_only) { 972 prt_str(&p, " opts="); 973 first = false; 974 prt_printf(&p, "ro"); 975 } 976 977 for (i = 0; i < bch2_opts_nr; i++) { 978 const struct bch_option *opt = &bch2_opt_table[i]; 979 u64 v = bch2_opt_get_by_id(&c->opts, i); 980 981 if (!(opt->flags & OPT_MOUNT)) 982 continue; 983 984 if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) 985 continue; 986 987 prt_str(&p, first ? " opts=" : ","); 988 first = false; 989 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE); 990 } 991 992 bch_info(c, "%s", p.buf); 993 printbuf_exit(&p); 994 } 995 996 int bch2_fs_start(struct bch_fs *c) 997 { 998 time64_t now = ktime_get_real_seconds(); 999 int ret; 1000 1001 print_mount_opts(c); 1002 1003 down_write(&c->state_lock); 1004 1005 BUG_ON(test_bit(BCH_FS_started, &c->flags)); 1006 1007 mutex_lock(&c->sb_lock); 1008 1009 ret = bch2_sb_members_v2_init(c); 1010 if (ret) { 1011 mutex_unlock(&c->sb_lock); 1012 goto err; 1013 } 1014 1015 for_each_online_member(c, ca) 1016 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now); 1017 1018 mutex_unlock(&c->sb_lock); 1019 1020 for_each_rw_member(c, ca) 1021 bch2_dev_allocator_add(c, ca); 1022 bch2_recalc_capacity(c); 1023 1024 ret = BCH_SB_INITIALIZED(c->disk_sb.sb) 1025 ? bch2_fs_recovery(c) 1026 : bch2_fs_initialize(c); 1027 if (ret) 1028 goto err; 1029 1030 ret = bch2_opts_check_may_set(c); 1031 if (ret) 1032 goto err; 1033 1034 if (bch2_fs_init_fault("fs_start")) { 1035 bch_err(c, "fs_start fault injected"); 1036 ret = -EINVAL; 1037 goto err; 1038 } 1039 1040 set_bit(BCH_FS_started, &c->flags); 1041 1042 if (c->opts.read_only) { 1043 bch2_fs_read_only(c); 1044 } else { 1045 ret = !test_bit(BCH_FS_rw, &c->flags) 1046 ? bch2_fs_read_write(c) 1047 : bch2_fs_read_write_late(c); 1048 if (ret) 1049 goto err; 1050 } 1051 1052 ret = 0; 1053 err: 1054 if (ret) 1055 bch_err_msg(c, ret, "starting filesystem"); 1056 else 1057 bch_verbose(c, "done starting filesystem"); 1058 up_write(&c->state_lock); 1059 return ret; 1060 } 1061 1062 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) 1063 { 1064 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); 1065 1066 if (le16_to_cpu(sb->block_size) != block_sectors(c)) 1067 return -BCH_ERR_mismatched_block_size; 1068 1069 if (le16_to_cpu(m.bucket_size) < 1070 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) 1071 return -BCH_ERR_bucket_size_too_small; 1072 1073 return 0; 1074 } 1075 1076 static int bch2_dev_in_fs(struct bch_sb_handle *fs, 1077 struct bch_sb_handle *sb, 1078 struct bch_opts *opts) 1079 { 1080 if (fs == sb) 1081 return 0; 1082 1083 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid)) 1084 return -BCH_ERR_device_not_a_member_of_filesystem; 1085 1086 if (!bch2_dev_exists(fs->sb, sb->sb->dev_idx)) 1087 return -BCH_ERR_device_has_been_removed; 1088 1089 if (fs->sb->block_size != sb->sb->block_size) 1090 return -BCH_ERR_mismatched_block_size; 1091 1092 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq || 1093 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq) 1094 return 0; 1095 1096 if (fs->sb->seq == sb->sb->seq && 1097 fs->sb->write_time != sb->sb->write_time) { 1098 struct printbuf buf = PRINTBUF; 1099 1100 prt_str(&buf, "Split brain detected between "); 1101 prt_bdevname(&buf, sb->bdev); 1102 prt_str(&buf, " and "); 1103 prt_bdevname(&buf, fs->bdev); 1104 prt_char(&buf, ':'); 1105 prt_newline(&buf); 1106 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq)); 1107 prt_newline(&buf); 1108 1109 prt_bdevname(&buf, fs->bdev); 1110 prt_char(&buf, ' '); 1111 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));; 1112 prt_newline(&buf); 1113 1114 prt_bdevname(&buf, sb->bdev); 1115 prt_char(&buf, ' '); 1116 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));; 1117 prt_newline(&buf); 1118 1119 if (!opts->no_splitbrain_check) 1120 prt_printf(&buf, "Not using older sb"); 1121 1122 pr_err("%s", buf.buf); 1123 printbuf_exit(&buf); 1124 1125 if (!opts->no_splitbrain_check) 1126 return -BCH_ERR_device_splitbrain; 1127 } 1128 1129 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx); 1130 u64 seq_from_fs = le64_to_cpu(m.seq); 1131 u64 seq_from_member = le64_to_cpu(sb->sb->seq); 1132 1133 if (seq_from_fs && seq_from_fs < seq_from_member) { 1134 struct printbuf buf = PRINTBUF; 1135 1136 prt_str(&buf, "Split brain detected between "); 1137 prt_bdevname(&buf, sb->bdev); 1138 prt_str(&buf, " and "); 1139 prt_bdevname(&buf, fs->bdev); 1140 prt_char(&buf, ':'); 1141 prt_newline(&buf); 1142 1143 prt_bdevname(&buf, fs->bdev); 1144 prt_str(&buf, " believes seq of "); 1145 prt_bdevname(&buf, sb->bdev); 1146 prt_printf(&buf, " to be %llu, but ", seq_from_fs); 1147 prt_bdevname(&buf, sb->bdev); 1148 prt_printf(&buf, " has %llu\n", seq_from_member); 1149 1150 if (!opts->no_splitbrain_check) { 1151 prt_str(&buf, "Not using "); 1152 prt_bdevname(&buf, sb->bdev); 1153 } 1154 1155 pr_err("%s", buf.buf); 1156 printbuf_exit(&buf); 1157 1158 if (!opts->no_splitbrain_check) 1159 return -BCH_ERR_device_splitbrain; 1160 } 1161 1162 return 0; 1163 } 1164 1165 /* Device startup/shutdown: */ 1166 1167 static void bch2_dev_release(struct kobject *kobj) 1168 { 1169 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); 1170 1171 kfree(ca); 1172 } 1173 1174 static void bch2_dev_free(struct bch_dev *ca) 1175 { 1176 cancel_work_sync(&ca->io_error_work); 1177 1178 if (ca->kobj.state_in_sysfs && 1179 ca->disk_sb.bdev) 1180 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1181 1182 if (ca->kobj.state_in_sysfs) 1183 kobject_del(&ca->kobj); 1184 1185 bch2_free_super(&ca->disk_sb); 1186 bch2_dev_journal_exit(ca); 1187 1188 free_percpu(ca->io_done); 1189 bioset_exit(&ca->replica_set); 1190 bch2_dev_buckets_free(ca); 1191 free_page((unsigned long) ca->sb_read_scratch); 1192 1193 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]); 1194 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]); 1195 1196 percpu_ref_exit(&ca->io_ref); 1197 percpu_ref_exit(&ca->ref); 1198 kobject_put(&ca->kobj); 1199 } 1200 1201 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) 1202 { 1203 1204 lockdep_assert_held(&c->state_lock); 1205 1206 if (percpu_ref_is_zero(&ca->io_ref)) 1207 return; 1208 1209 __bch2_dev_read_only(c, ca); 1210 1211 reinit_completion(&ca->io_ref_completion); 1212 percpu_ref_kill(&ca->io_ref); 1213 wait_for_completion(&ca->io_ref_completion); 1214 1215 if (ca->kobj.state_in_sysfs) { 1216 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1217 sysfs_remove_link(&ca->kobj, "block"); 1218 } 1219 1220 bch2_free_super(&ca->disk_sb); 1221 bch2_dev_journal_exit(ca); 1222 } 1223 1224 static void bch2_dev_ref_complete(struct percpu_ref *ref) 1225 { 1226 struct bch_dev *ca = container_of(ref, struct bch_dev, ref); 1227 1228 complete(&ca->ref_completion); 1229 } 1230 1231 static void bch2_dev_io_ref_complete(struct percpu_ref *ref) 1232 { 1233 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); 1234 1235 complete(&ca->io_ref_completion); 1236 } 1237 1238 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) 1239 { 1240 int ret; 1241 1242 if (!c->kobj.state_in_sysfs) 1243 return 0; 1244 1245 if (!ca->kobj.state_in_sysfs) { 1246 ret = kobject_add(&ca->kobj, &c->kobj, 1247 "dev-%u", ca->dev_idx); 1248 if (ret) 1249 return ret; 1250 } 1251 1252 if (ca->disk_sb.bdev) { 1253 struct kobject *block = bdev_kobj(ca->disk_sb.bdev); 1254 1255 ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); 1256 if (ret) 1257 return ret; 1258 1259 ret = sysfs_create_link(&ca->kobj, block, "block"); 1260 if (ret) 1261 return ret; 1262 } 1263 1264 return 0; 1265 } 1266 1267 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, 1268 struct bch_member *member) 1269 { 1270 struct bch_dev *ca; 1271 unsigned i; 1272 1273 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 1274 if (!ca) 1275 return NULL; 1276 1277 kobject_init(&ca->kobj, &bch2_dev_ktype); 1278 init_completion(&ca->ref_completion); 1279 init_completion(&ca->io_ref_completion); 1280 1281 init_rwsem(&ca->bucket_lock); 1282 1283 INIT_WORK(&ca->io_error_work, bch2_io_error_work); 1284 1285 bch2_time_stats_quantiles_init(&ca->io_latency[READ]); 1286 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]); 1287 1288 ca->mi = bch2_mi_to_cpu(member); 1289 1290 for (i = 0; i < ARRAY_SIZE(member->errors); i++) 1291 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i])); 1292 1293 ca->uuid = member->uuid; 1294 1295 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, 1296 ca->mi.bucket_size / btree_sectors(c)); 1297 1298 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 1299 0, GFP_KERNEL) || 1300 percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, 1301 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 1302 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || 1303 bch2_dev_buckets_alloc(c, ca) || 1304 bioset_init(&ca->replica_set, 4, 1305 offsetof(struct bch_write_bio, bio), 0) || 1306 !(ca->io_done = alloc_percpu(*ca->io_done))) 1307 goto err; 1308 1309 return ca; 1310 err: 1311 bch2_dev_free(ca); 1312 return NULL; 1313 } 1314 1315 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, 1316 unsigned dev_idx) 1317 { 1318 ca->dev_idx = dev_idx; 1319 __set_bit(ca->dev_idx, ca->self.d); 1320 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); 1321 1322 ca->fs = c; 1323 rcu_assign_pointer(c->devs[ca->dev_idx], ca); 1324 1325 if (bch2_dev_sysfs_online(c, ca)) 1326 pr_warn("error creating sysfs objects"); 1327 } 1328 1329 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) 1330 { 1331 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1332 struct bch_dev *ca = NULL; 1333 int ret = 0; 1334 1335 if (bch2_fs_init_fault("dev_alloc")) 1336 goto err; 1337 1338 ca = __bch2_dev_alloc(c, &member); 1339 if (!ca) 1340 goto err; 1341 1342 ca->fs = c; 1343 1344 bch2_dev_attach(c, ca, dev_idx); 1345 return ret; 1346 err: 1347 if (ca) 1348 bch2_dev_free(ca); 1349 return -BCH_ERR_ENOMEM_dev_alloc; 1350 } 1351 1352 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) 1353 { 1354 unsigned ret; 1355 1356 if (bch2_dev_is_online(ca)) { 1357 bch_err(ca, "already have device online in slot %u", 1358 sb->sb->dev_idx); 1359 return -BCH_ERR_device_already_online; 1360 } 1361 1362 if (get_capacity(sb->bdev->bd_disk) < 1363 ca->mi.bucket_size * ca->mi.nbuckets) { 1364 bch_err(ca, "cannot online: device too small"); 1365 return -BCH_ERR_device_size_too_small; 1366 } 1367 1368 BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); 1369 1370 ret = bch2_dev_journal_init(ca, sb->sb); 1371 if (ret) 1372 return ret; 1373 1374 /* Commit: */ 1375 ca->disk_sb = *sb; 1376 memset(sb, 0, sizeof(*sb)); 1377 1378 ca->dev = ca->disk_sb.bdev->bd_dev; 1379 1380 percpu_ref_reinit(&ca->io_ref); 1381 1382 return 0; 1383 } 1384 1385 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) 1386 { 1387 struct bch_dev *ca; 1388 int ret; 1389 1390 lockdep_assert_held(&c->state_lock); 1391 1392 if (le64_to_cpu(sb->sb->seq) > 1393 le64_to_cpu(c->disk_sb.sb->seq)) 1394 bch2_sb_to_fs(c, sb->sb); 1395 1396 BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices || 1397 !c->devs[sb->sb->dev_idx]); 1398 1399 ca = bch_dev_locked(c, sb->sb->dev_idx); 1400 1401 ret = __bch2_dev_attach_bdev(ca, sb); 1402 if (ret) 1403 return ret; 1404 1405 bch2_dev_sysfs_online(c, ca); 1406 1407 struct printbuf name = PRINTBUF; 1408 prt_bdevname(&name, ca->disk_sb.bdev); 1409 1410 if (c->sb.nr_devices == 1) 1411 strscpy(c->name, name.buf, sizeof(c->name)); 1412 strscpy(ca->name, name.buf, sizeof(ca->name)); 1413 1414 printbuf_exit(&name); 1415 1416 rebalance_wakeup(c); 1417 return 0; 1418 } 1419 1420 /* Device management: */ 1421 1422 /* 1423 * Note: this function is also used by the error paths - when a particular 1424 * device sees an error, we call it to determine whether we can just set the 1425 * device RO, or - if this function returns false - we'll set the whole 1426 * filesystem RO: 1427 * 1428 * XXX: maybe we should be more explicit about whether we're changing state 1429 * because we got an error or what have you? 1430 */ 1431 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, 1432 enum bch_member_state new_state, int flags) 1433 { 1434 struct bch_devs_mask new_online_devs; 1435 int nr_rw = 0, required; 1436 1437 lockdep_assert_held(&c->state_lock); 1438 1439 switch (new_state) { 1440 case BCH_MEMBER_STATE_rw: 1441 return true; 1442 case BCH_MEMBER_STATE_ro: 1443 if (ca->mi.state != BCH_MEMBER_STATE_rw) 1444 return true; 1445 1446 /* do we have enough devices to write to? */ 1447 for_each_member_device(c, ca2) 1448 if (ca2 != ca) 1449 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw; 1450 1451 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) 1452 ? c->opts.metadata_replicas 1453 : metadata_replicas_required(c), 1454 !(flags & BCH_FORCE_IF_DATA_DEGRADED) 1455 ? c->opts.data_replicas 1456 : data_replicas_required(c)); 1457 1458 return nr_rw >= required; 1459 case BCH_MEMBER_STATE_failed: 1460 case BCH_MEMBER_STATE_spare: 1461 if (ca->mi.state != BCH_MEMBER_STATE_rw && 1462 ca->mi.state != BCH_MEMBER_STATE_ro) 1463 return true; 1464 1465 /* do we have enough devices to read from? */ 1466 new_online_devs = bch2_online_devs(c); 1467 __clear_bit(ca->dev_idx, new_online_devs.d); 1468 1469 return bch2_have_enough_devs(c, new_online_devs, flags, false); 1470 default: 1471 BUG(); 1472 } 1473 } 1474 1475 static bool bch2_fs_may_start(struct bch_fs *c) 1476 { 1477 struct bch_dev *ca; 1478 unsigned i, flags = 0; 1479 1480 if (c->opts.very_degraded) 1481 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST; 1482 1483 if (c->opts.degraded) 1484 flags |= BCH_FORCE_IF_DEGRADED; 1485 1486 if (!c->opts.degraded && 1487 !c->opts.very_degraded) { 1488 mutex_lock(&c->sb_lock); 1489 1490 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { 1491 if (!bch2_dev_exists(c->disk_sb.sb, i)) 1492 continue; 1493 1494 ca = bch_dev_locked(c, i); 1495 1496 if (!bch2_dev_is_online(ca) && 1497 (ca->mi.state == BCH_MEMBER_STATE_rw || 1498 ca->mi.state == BCH_MEMBER_STATE_ro)) { 1499 mutex_unlock(&c->sb_lock); 1500 return false; 1501 } 1502 } 1503 mutex_unlock(&c->sb_lock); 1504 } 1505 1506 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true); 1507 } 1508 1509 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) 1510 { 1511 /* 1512 * The allocator thread itself allocates btree nodes, so stop it first: 1513 */ 1514 bch2_dev_allocator_remove(c, ca); 1515 bch2_dev_journal_stop(&c->journal, ca); 1516 } 1517 1518 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) 1519 { 1520 lockdep_assert_held(&c->state_lock); 1521 1522 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw); 1523 1524 bch2_dev_allocator_add(c, ca); 1525 bch2_recalc_capacity(c); 1526 } 1527 1528 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1529 enum bch_member_state new_state, int flags) 1530 { 1531 struct bch_member *m; 1532 int ret = 0; 1533 1534 if (ca->mi.state == new_state) 1535 return 0; 1536 1537 if (!bch2_dev_state_allowed(c, ca, new_state, flags)) 1538 return -BCH_ERR_device_state_not_allowed; 1539 1540 if (new_state != BCH_MEMBER_STATE_rw) 1541 __bch2_dev_read_only(c, ca); 1542 1543 bch_notice(ca, "%s", bch2_member_states[new_state]); 1544 1545 mutex_lock(&c->sb_lock); 1546 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1547 SET_BCH_MEMBER_STATE(m, new_state); 1548 bch2_write_super(c); 1549 mutex_unlock(&c->sb_lock); 1550 1551 if (new_state == BCH_MEMBER_STATE_rw) 1552 __bch2_dev_read_write(c, ca); 1553 1554 rebalance_wakeup(c); 1555 1556 return ret; 1557 } 1558 1559 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1560 enum bch_member_state new_state, int flags) 1561 { 1562 int ret; 1563 1564 down_write(&c->state_lock); 1565 ret = __bch2_dev_set_state(c, ca, new_state, flags); 1566 up_write(&c->state_lock); 1567 1568 return ret; 1569 } 1570 1571 /* Device add/removal: */ 1572 1573 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca) 1574 { 1575 struct bpos start = POS(ca->dev_idx, 0); 1576 struct bpos end = POS(ca->dev_idx, U64_MAX); 1577 int ret; 1578 1579 /* 1580 * We clear the LRU and need_discard btrees first so that we don't race 1581 * with bch2_do_invalidates() and bch2_do_discards() 1582 */ 1583 ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end, 1584 BTREE_TRIGGER_NORUN, NULL) ?: 1585 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end, 1586 BTREE_TRIGGER_NORUN, NULL) ?: 1587 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end, 1588 BTREE_TRIGGER_NORUN, NULL) ?: 1589 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end, 1590 BTREE_TRIGGER_NORUN, NULL) ?: 1591 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end, 1592 BTREE_TRIGGER_NORUN, NULL) ?: 1593 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end, 1594 BTREE_TRIGGER_NORUN, NULL); 1595 bch_err_msg(c, ret, "removing dev alloc info"); 1596 return ret; 1597 } 1598 1599 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) 1600 { 1601 struct bch_member *m; 1602 unsigned dev_idx = ca->dev_idx, data; 1603 int ret; 1604 1605 down_write(&c->state_lock); 1606 1607 /* 1608 * We consume a reference to ca->ref, regardless of whether we succeed 1609 * or fail: 1610 */ 1611 percpu_ref_put(&ca->ref); 1612 1613 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1614 bch_err(ca, "Cannot remove without losing data"); 1615 ret = -BCH_ERR_device_state_not_allowed; 1616 goto err; 1617 } 1618 1619 __bch2_dev_read_only(c, ca); 1620 1621 ret = bch2_dev_data_drop(c, ca->dev_idx, flags); 1622 bch_err_msg(ca, ret, "bch2_dev_data_drop()"); 1623 if (ret) 1624 goto err; 1625 1626 ret = bch2_dev_remove_alloc(c, ca); 1627 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()"); 1628 if (ret) 1629 goto err; 1630 1631 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); 1632 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()"); 1633 if (ret) 1634 goto err; 1635 1636 ret = bch2_journal_flush(&c->journal); 1637 bch_err_msg(ca, ret, "bch2_journal_flush()"); 1638 if (ret) 1639 goto err; 1640 1641 ret = bch2_replicas_gc2(c); 1642 bch_err_msg(ca, ret, "bch2_replicas_gc2()"); 1643 if (ret) 1644 goto err; 1645 1646 data = bch2_dev_has_data(c, ca); 1647 if (data) { 1648 struct printbuf data_has = PRINTBUF; 1649 1650 prt_bitflags(&data_has, __bch2_data_types, data); 1651 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf); 1652 printbuf_exit(&data_has); 1653 ret = -EBUSY; 1654 goto err; 1655 } 1656 1657 __bch2_dev_offline(c, ca); 1658 1659 mutex_lock(&c->sb_lock); 1660 rcu_assign_pointer(c->devs[ca->dev_idx], NULL); 1661 mutex_unlock(&c->sb_lock); 1662 1663 percpu_ref_kill(&ca->ref); 1664 wait_for_completion(&ca->ref_completion); 1665 1666 bch2_dev_free(ca); 1667 1668 /* 1669 * At this point the device object has been removed in-core, but the 1670 * on-disk journal might still refer to the device index via sb device 1671 * usage entries. Recovery fails if it sees usage information for an 1672 * invalid device. Flush journal pins to push the back of the journal 1673 * past now invalid device index references before we update the 1674 * superblock, but after the device object has been removed so any 1675 * further journal writes elide usage info for the device. 1676 */ 1677 bch2_journal_flush_all_pins(&c->journal); 1678 1679 /* 1680 * Free this device's slot in the bch_member array - all pointers to 1681 * this device must be gone: 1682 */ 1683 mutex_lock(&c->sb_lock); 1684 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1685 memset(&m->uuid, 0, sizeof(m->uuid)); 1686 1687 bch2_write_super(c); 1688 1689 mutex_unlock(&c->sb_lock); 1690 up_write(&c->state_lock); 1691 1692 bch2_dev_usage_journal_reserve(c); 1693 return 0; 1694 err: 1695 if (ca->mi.state == BCH_MEMBER_STATE_rw && 1696 !percpu_ref_is_zero(&ca->io_ref)) 1697 __bch2_dev_read_write(c, ca); 1698 up_write(&c->state_lock); 1699 return ret; 1700 } 1701 1702 /* Add new device to running filesystem: */ 1703 int bch2_dev_add(struct bch_fs *c, const char *path) 1704 { 1705 struct bch_opts opts = bch2_opts_empty(); 1706 struct bch_sb_handle sb; 1707 struct bch_dev *ca = NULL; 1708 struct bch_sb_field_members_v2 *mi; 1709 struct bch_member dev_mi; 1710 unsigned dev_idx, nr_devices, u64s; 1711 struct printbuf errbuf = PRINTBUF; 1712 struct printbuf label = PRINTBUF; 1713 int ret; 1714 1715 ret = bch2_read_super(path, &opts, &sb); 1716 bch_err_msg(c, ret, "reading super"); 1717 if (ret) 1718 goto err; 1719 1720 dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx); 1721 1722 if (BCH_MEMBER_GROUP(&dev_mi)) { 1723 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1); 1724 if (label.allocation_failure) { 1725 ret = -ENOMEM; 1726 goto err; 1727 } 1728 } 1729 1730 ret = bch2_dev_may_add(sb.sb, c); 1731 if (ret) 1732 goto err; 1733 1734 ca = __bch2_dev_alloc(c, &dev_mi); 1735 if (!ca) { 1736 ret = -ENOMEM; 1737 goto err; 1738 } 1739 1740 bch2_dev_usage_init(ca); 1741 1742 ret = __bch2_dev_attach_bdev(ca, &sb); 1743 if (ret) 1744 goto err; 1745 1746 ret = bch2_dev_journal_alloc(ca); 1747 bch_err_msg(c, ret, "allocating journal"); 1748 if (ret) 1749 goto err; 1750 1751 down_write(&c->state_lock); 1752 mutex_lock(&c->sb_lock); 1753 1754 ret = bch2_sb_from_fs(c, ca); 1755 bch_err_msg(c, ret, "setting up new superblock"); 1756 if (ret) 1757 goto err_unlock; 1758 1759 if (dynamic_fault("bcachefs:add:no_slot")) 1760 goto no_slot; 1761 1762 for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) 1763 if (!bch2_dev_exists(c->disk_sb.sb, dev_idx)) 1764 goto have_slot; 1765 no_slot: 1766 ret = -BCH_ERR_ENOSPC_sb_members; 1767 bch_err_msg(c, ret, "setting up new superblock"); 1768 goto err_unlock; 1769 1770 have_slot: 1771 nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices); 1772 1773 mi = bch2_sb_field_get(c->disk_sb.sb, members_v2); 1774 u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) + 1775 le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64)); 1776 1777 mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s); 1778 if (!mi) { 1779 ret = -BCH_ERR_ENOSPC_sb_members; 1780 bch_err_msg(c, ret, "setting up new superblock"); 1781 goto err_unlock; 1782 } 1783 struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1784 1785 /* success: */ 1786 1787 *m = dev_mi; 1788 m->last_mount = cpu_to_le64(ktime_get_real_seconds()); 1789 c->disk_sb.sb->nr_devices = nr_devices; 1790 1791 ca->disk_sb.sb->dev_idx = dev_idx; 1792 bch2_dev_attach(c, ca, dev_idx); 1793 1794 if (BCH_MEMBER_GROUP(&dev_mi)) { 1795 ret = __bch2_dev_group_set(c, ca, label.buf); 1796 bch_err_msg(c, ret, "creating new label"); 1797 if (ret) 1798 goto err_unlock; 1799 } 1800 1801 bch2_write_super(c); 1802 mutex_unlock(&c->sb_lock); 1803 1804 bch2_dev_usage_journal_reserve(c); 1805 1806 ret = bch2_trans_mark_dev_sb(c, ca); 1807 bch_err_msg(ca, ret, "marking new superblock"); 1808 if (ret) 1809 goto err_late; 1810 1811 ret = bch2_fs_freespace_init(c); 1812 bch_err_msg(ca, ret, "initializing free space"); 1813 if (ret) 1814 goto err_late; 1815 1816 ca->new_fs_bucket_idx = 0; 1817 1818 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1819 __bch2_dev_read_write(c, ca); 1820 1821 up_write(&c->state_lock); 1822 return 0; 1823 1824 err_unlock: 1825 mutex_unlock(&c->sb_lock); 1826 up_write(&c->state_lock); 1827 err: 1828 if (ca) 1829 bch2_dev_free(ca); 1830 bch2_free_super(&sb); 1831 printbuf_exit(&label); 1832 printbuf_exit(&errbuf); 1833 bch_err_fn(c, ret); 1834 return ret; 1835 err_late: 1836 up_write(&c->state_lock); 1837 ca = NULL; 1838 goto err; 1839 } 1840 1841 /* Hot add existing device to running filesystem: */ 1842 int bch2_dev_online(struct bch_fs *c, const char *path) 1843 { 1844 struct bch_opts opts = bch2_opts_empty(); 1845 struct bch_sb_handle sb = { NULL }; 1846 struct bch_dev *ca; 1847 unsigned dev_idx; 1848 int ret; 1849 1850 down_write(&c->state_lock); 1851 1852 ret = bch2_read_super(path, &opts, &sb); 1853 if (ret) { 1854 up_write(&c->state_lock); 1855 return ret; 1856 } 1857 1858 dev_idx = sb.sb->dev_idx; 1859 1860 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts); 1861 bch_err_msg(c, ret, "bringing %s online", path); 1862 if (ret) 1863 goto err; 1864 1865 ret = bch2_dev_attach_bdev(c, &sb); 1866 if (ret) 1867 goto err; 1868 1869 ca = bch_dev_locked(c, dev_idx); 1870 1871 ret = bch2_trans_mark_dev_sb(c, ca); 1872 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path); 1873 if (ret) 1874 goto err; 1875 1876 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1877 __bch2_dev_read_write(c, ca); 1878 1879 if (!ca->mi.freespace_initialized) { 1880 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets); 1881 bch_err_msg(ca, ret, "initializing free space"); 1882 if (ret) 1883 goto err; 1884 } 1885 1886 if (!ca->journal.nr) { 1887 ret = bch2_dev_journal_alloc(ca); 1888 bch_err_msg(ca, ret, "allocating journal"); 1889 if (ret) 1890 goto err; 1891 } 1892 1893 mutex_lock(&c->sb_lock); 1894 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = 1895 cpu_to_le64(ktime_get_real_seconds()); 1896 bch2_write_super(c); 1897 mutex_unlock(&c->sb_lock); 1898 1899 up_write(&c->state_lock); 1900 return 0; 1901 err: 1902 up_write(&c->state_lock); 1903 bch2_free_super(&sb); 1904 return ret; 1905 } 1906 1907 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) 1908 { 1909 down_write(&c->state_lock); 1910 1911 if (!bch2_dev_is_online(ca)) { 1912 bch_err(ca, "Already offline"); 1913 up_write(&c->state_lock); 1914 return 0; 1915 } 1916 1917 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1918 bch_err(ca, "Cannot offline required disk"); 1919 up_write(&c->state_lock); 1920 return -BCH_ERR_device_state_not_allowed; 1921 } 1922 1923 __bch2_dev_offline(c, ca); 1924 1925 up_write(&c->state_lock); 1926 return 0; 1927 } 1928 1929 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) 1930 { 1931 struct bch_member *m; 1932 u64 old_nbuckets; 1933 int ret = 0; 1934 1935 down_write(&c->state_lock); 1936 old_nbuckets = ca->mi.nbuckets; 1937 1938 if (nbuckets < ca->mi.nbuckets) { 1939 bch_err(ca, "Cannot shrink yet"); 1940 ret = -EINVAL; 1941 goto err; 1942 } 1943 1944 if (bch2_dev_is_online(ca) && 1945 get_capacity(ca->disk_sb.bdev->bd_disk) < 1946 ca->mi.bucket_size * nbuckets) { 1947 bch_err(ca, "New size larger than device"); 1948 ret = -BCH_ERR_device_size_too_small; 1949 goto err; 1950 } 1951 1952 ret = bch2_dev_buckets_resize(c, ca, nbuckets); 1953 bch_err_msg(ca, ret, "resizing buckets"); 1954 if (ret) 1955 goto err; 1956 1957 ret = bch2_trans_mark_dev_sb(c, ca); 1958 if (ret) 1959 goto err; 1960 1961 mutex_lock(&c->sb_lock); 1962 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1963 m->nbuckets = cpu_to_le64(nbuckets); 1964 1965 bch2_write_super(c); 1966 mutex_unlock(&c->sb_lock); 1967 1968 if (ca->mi.freespace_initialized) { 1969 ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets); 1970 if (ret) 1971 goto err; 1972 1973 /* 1974 * XXX: this is all wrong transactionally - we'll be able to do 1975 * this correctly after the disk space accounting rewrite 1976 */ 1977 ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets; 1978 } 1979 1980 bch2_recalc_capacity(c); 1981 err: 1982 up_write(&c->state_lock); 1983 return ret; 1984 } 1985 1986 /* return with ref on ca->ref: */ 1987 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name) 1988 { 1989 rcu_read_lock(); 1990 for_each_member_device_rcu(c, ca, NULL) 1991 if (!strcmp(name, ca->name)) { 1992 rcu_read_unlock(); 1993 return ca; 1994 } 1995 rcu_read_unlock(); 1996 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found); 1997 } 1998 1999 /* Filesystem open: */ 2000 2001 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r) 2002 { 2003 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?: 2004 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time)); 2005 } 2006 2007 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, 2008 struct bch_opts opts) 2009 { 2010 DARRAY(struct bch_sb_handle) sbs = { 0 }; 2011 struct bch_fs *c = NULL; 2012 struct bch_sb_handle *best = NULL; 2013 struct printbuf errbuf = PRINTBUF; 2014 int ret = 0; 2015 2016 if (!try_module_get(THIS_MODULE)) 2017 return ERR_PTR(-ENODEV); 2018 2019 if (!nr_devices) { 2020 ret = -EINVAL; 2021 goto err; 2022 } 2023 2024 ret = darray_make_room(&sbs, nr_devices); 2025 if (ret) 2026 goto err; 2027 2028 for (unsigned i = 0; i < nr_devices; i++) { 2029 struct bch_sb_handle sb = { NULL }; 2030 2031 ret = bch2_read_super(devices[i], &opts, &sb); 2032 if (ret) 2033 goto err; 2034 2035 BUG_ON(darray_push(&sbs, sb)); 2036 } 2037 2038 if (opts.nochanges && !opts.read_only) { 2039 ret = -BCH_ERR_erofs_nochanges; 2040 goto err_print; 2041 } 2042 2043 darray_for_each(sbs, sb) 2044 if (!best || sb_cmp(sb->sb, best->sb) > 0) 2045 best = sb; 2046 2047 darray_for_each_reverse(sbs, sb) { 2048 ret = bch2_dev_in_fs(best, sb, &opts); 2049 2050 if (ret == -BCH_ERR_device_has_been_removed || 2051 ret == -BCH_ERR_device_splitbrain) { 2052 bch2_free_super(sb); 2053 darray_remove_item(&sbs, sb); 2054 best -= best > sb; 2055 ret = 0; 2056 continue; 2057 } 2058 2059 if (ret) 2060 goto err_print; 2061 } 2062 2063 c = bch2_fs_alloc(best->sb, opts); 2064 ret = PTR_ERR_OR_ZERO(c); 2065 if (ret) 2066 goto err; 2067 2068 down_write(&c->state_lock); 2069 darray_for_each(sbs, sb) { 2070 ret = bch2_dev_attach_bdev(c, sb); 2071 if (ret) { 2072 up_write(&c->state_lock); 2073 goto err; 2074 } 2075 } 2076 up_write(&c->state_lock); 2077 2078 if (!bch2_fs_may_start(c)) { 2079 ret = -BCH_ERR_insufficient_devices_to_start; 2080 goto err_print; 2081 } 2082 2083 if (!c->opts.nostart) { 2084 ret = bch2_fs_start(c); 2085 if (ret) 2086 goto err; 2087 } 2088 out: 2089 darray_for_each(sbs, sb) 2090 bch2_free_super(sb); 2091 darray_exit(&sbs); 2092 printbuf_exit(&errbuf); 2093 module_put(THIS_MODULE); 2094 return c; 2095 err_print: 2096 pr_err("bch_fs_open err opening %s: %s", 2097 devices[0], bch2_err_str(ret)); 2098 err: 2099 if (!IS_ERR_OR_NULL(c)) 2100 bch2_fs_stop(c); 2101 c = ERR_PTR(ret); 2102 goto out; 2103 } 2104 2105 /* Global interfaces/init */ 2106 2107 static void bcachefs_exit(void) 2108 { 2109 bch2_debug_exit(); 2110 bch2_vfs_exit(); 2111 bch2_chardev_exit(); 2112 bch2_btree_key_cache_exit(); 2113 if (bcachefs_kset) 2114 kset_unregister(bcachefs_kset); 2115 } 2116 2117 static int __init bcachefs_init(void) 2118 { 2119 bch2_bkey_pack_test(); 2120 2121 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || 2122 bch2_btree_key_cache_init() || 2123 bch2_chardev_init() || 2124 bch2_vfs_init() || 2125 bch2_debug_init()) 2126 goto err; 2127 2128 return 0; 2129 err: 2130 bcachefs_exit(); 2131 return -ENOMEM; 2132 } 2133 2134 #define BCH_DEBUG_PARAM(name, description) \ 2135 bool bch2_##name; \ 2136 module_param_named(name, bch2_##name, bool, 0644); \ 2137 MODULE_PARM_DESC(name, description); 2138 BCH_DEBUG_PARAMS() 2139 #undef BCH_DEBUG_PARAM 2140 2141 __maybe_unused 2142 static unsigned bch2_metadata_version = bcachefs_metadata_version_current; 2143 module_param_named(version, bch2_metadata_version, uint, 0400); 2144 2145 module_exit(bcachefs_exit); 2146 module_init(bcachefs_init); 2147