1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcachefs setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcachefs.h" 11 #include "alloc_background.h" 12 #include "alloc_foreground.h" 13 #include "bkey_sort.h" 14 #include "btree_cache.h" 15 #include "btree_gc.h" 16 #include "btree_journal_iter.h" 17 #include "btree_key_cache.h" 18 #include "btree_node_scan.h" 19 #include "btree_update_interior.h" 20 #include "btree_io.h" 21 #include "btree_write_buffer.h" 22 #include "buckets_waiting_for_journal.h" 23 #include "chardev.h" 24 #include "checksum.h" 25 #include "clock.h" 26 #include "compress.h" 27 #include "debug.h" 28 #include "disk_groups.h" 29 #include "ec.h" 30 #include "errcode.h" 31 #include "error.h" 32 #include "fs.h" 33 #include "fs-io.h" 34 #include "fs-io-buffered.h" 35 #include "fs-io-direct.h" 36 #include "fsck.h" 37 #include "inode.h" 38 #include "io_read.h" 39 #include "io_write.h" 40 #include "journal.h" 41 #include "journal_reclaim.h" 42 #include "journal_seq_blacklist.h" 43 #include "move.h" 44 #include "migrate.h" 45 #include "movinggc.h" 46 #include "nocow_locking.h" 47 #include "quota.h" 48 #include "rebalance.h" 49 #include "recovery.h" 50 #include "replicas.h" 51 #include "sb-clean.h" 52 #include "sb-counters.h" 53 #include "sb-errors.h" 54 #include "sb-members.h" 55 #include "snapshot.h" 56 #include "subvolume.h" 57 #include "super.h" 58 #include "super-io.h" 59 #include "sysfs.h" 60 #include "thread_with_file.h" 61 #include "trace.h" 62 63 #include <linux/backing-dev.h> 64 #include <linux/blkdev.h> 65 #include <linux/debugfs.h> 66 #include <linux/device.h> 67 #include <linux/idr.h> 68 #include <linux/module.h> 69 #include <linux/percpu.h> 70 #include <linux/random.h> 71 #include <linux/sysfs.h> 72 #include <crypto/hash.h> 73 74 MODULE_LICENSE("GPL"); 75 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 76 MODULE_DESCRIPTION("bcachefs filesystem"); 77 MODULE_SOFTDEP("pre: crc32c"); 78 MODULE_SOFTDEP("pre: crc64"); 79 MODULE_SOFTDEP("pre: sha256"); 80 MODULE_SOFTDEP("pre: chacha20"); 81 MODULE_SOFTDEP("pre: poly1305"); 82 MODULE_SOFTDEP("pre: xxhash"); 83 84 const char * const bch2_fs_flag_strs[] = { 85 #define x(n) #n, 86 BCH_FS_FLAGS() 87 #undef x 88 NULL 89 }; 90 91 __printf(2, 0) 92 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args) 93 { 94 #ifdef __KERNEL__ 95 if (unlikely(stdio)) { 96 if (fmt[0] == KERN_SOH[0]) 97 fmt += 2; 98 99 bch2_stdio_redirect_vprintf(stdio, true, fmt, args); 100 return; 101 } 102 #endif 103 vprintk(fmt, args); 104 } 105 106 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...) 107 { 108 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio; 109 110 va_list args; 111 va_start(args, fmt); 112 bch2_print_maybe_redirect(stdio, fmt, args); 113 va_end(args); 114 } 115 116 void __bch2_print(struct bch_fs *c, const char *fmt, ...) 117 { 118 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 119 120 va_list args; 121 va_start(args, fmt); 122 bch2_print_maybe_redirect(stdio, fmt, args); 123 va_end(args); 124 } 125 126 #define KTYPE(type) \ 127 static const struct attribute_group type ## _group = { \ 128 .attrs = type ## _files \ 129 }; \ 130 \ 131 static const struct attribute_group *type ## _groups[] = { \ 132 &type ## _group, \ 133 NULL \ 134 }; \ 135 \ 136 static const struct kobj_type type ## _ktype = { \ 137 .release = type ## _release, \ 138 .sysfs_ops = &type ## _sysfs_ops, \ 139 .default_groups = type ## _groups \ 140 } 141 142 static void bch2_fs_release(struct kobject *); 143 static void bch2_dev_release(struct kobject *); 144 static void bch2_fs_counters_release(struct kobject *k) 145 { 146 } 147 148 static void bch2_fs_internal_release(struct kobject *k) 149 { 150 } 151 152 static void bch2_fs_opts_dir_release(struct kobject *k) 153 { 154 } 155 156 static void bch2_fs_time_stats_release(struct kobject *k) 157 { 158 } 159 160 KTYPE(bch2_fs); 161 KTYPE(bch2_fs_counters); 162 KTYPE(bch2_fs_internal); 163 KTYPE(bch2_fs_opts_dir); 164 KTYPE(bch2_fs_time_stats); 165 KTYPE(bch2_dev); 166 167 static struct kset *bcachefs_kset; 168 static LIST_HEAD(bch_fs_list); 169 static DEFINE_MUTEX(bch_fs_list_lock); 170 171 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait); 172 173 static void bch2_dev_free(struct bch_dev *); 174 static int bch2_dev_alloc(struct bch_fs *, unsigned); 175 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); 176 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); 177 178 struct bch_fs *bch2_dev_to_fs(dev_t dev) 179 { 180 struct bch_fs *c; 181 182 mutex_lock(&bch_fs_list_lock); 183 rcu_read_lock(); 184 185 list_for_each_entry(c, &bch_fs_list, list) 186 for_each_member_device_rcu(c, ca, NULL) 187 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) { 188 closure_get(&c->cl); 189 goto found; 190 } 191 c = NULL; 192 found: 193 rcu_read_unlock(); 194 mutex_unlock(&bch_fs_list_lock); 195 196 return c; 197 } 198 199 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) 200 { 201 struct bch_fs *c; 202 203 lockdep_assert_held(&bch_fs_list_lock); 204 205 list_for_each_entry(c, &bch_fs_list, list) 206 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) 207 return c; 208 209 return NULL; 210 } 211 212 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) 213 { 214 struct bch_fs *c; 215 216 mutex_lock(&bch_fs_list_lock); 217 c = __bch2_uuid_to_fs(uuid); 218 if (c) 219 closure_get(&c->cl); 220 mutex_unlock(&bch_fs_list_lock); 221 222 return c; 223 } 224 225 static void bch2_dev_usage_journal_reserve(struct bch_fs *c) 226 { 227 unsigned nr = 0, u64s = 228 ((sizeof(struct jset_entry_dev_usage) + 229 sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) / 230 sizeof(u64); 231 232 rcu_read_lock(); 233 for_each_member_device_rcu(c, ca, NULL) 234 nr++; 235 rcu_read_unlock(); 236 237 bch2_journal_entry_res_resize(&c->journal, 238 &c->dev_usage_journal_res, u64s * nr); 239 } 240 241 /* Filesystem RO/RW: */ 242 243 /* 244 * For startup/shutdown of RW stuff, the dependencies are: 245 * 246 * - foreground writes depend on copygc and rebalance (to free up space) 247 * 248 * - copygc and rebalance depend on mark and sweep gc (they actually probably 249 * don't because they either reserve ahead of time or don't block if 250 * allocations fail, but allocations can require mark and sweep gc to run 251 * because of generation number wraparound) 252 * 253 * - all of the above depends on the allocator threads 254 * 255 * - allocator depends on the journal (when it rewrites prios and gens) 256 */ 257 258 static void __bch2_fs_read_only(struct bch_fs *c) 259 { 260 unsigned clean_passes = 0; 261 u64 seq = 0; 262 263 bch2_fs_ec_stop(c); 264 bch2_open_buckets_stop(c, NULL, true); 265 bch2_rebalance_stop(c); 266 bch2_copygc_stop(c); 267 bch2_fs_ec_flush(c); 268 269 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu", 270 journal_cur_seq(&c->journal)); 271 272 do { 273 clean_passes++; 274 275 if (bch2_btree_interior_updates_flush(c) || 276 bch2_journal_flush_all_pins(&c->journal) || 277 bch2_btree_flush_all_writes(c) || 278 seq != atomic64_read(&c->journal.seq)) { 279 seq = atomic64_read(&c->journal.seq); 280 clean_passes = 0; 281 } 282 } while (clean_passes < 2); 283 284 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu", 285 journal_cur_seq(&c->journal)); 286 287 if (test_bit(JOURNAL_replay_done, &c->journal.flags) && 288 !test_bit(BCH_FS_emergency_ro, &c->flags)) 289 set_bit(BCH_FS_clean_shutdown, &c->flags); 290 291 bch2_fs_journal_stop(&c->journal); 292 293 bch_info(c, "%sshutdown complete, journal seq %llu", 294 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un", 295 c->journal.seq_ondisk); 296 297 /* 298 * After stopping journal: 299 */ 300 for_each_member_device(c, ca) 301 bch2_dev_allocator_remove(c, ca); 302 } 303 304 #ifndef BCH_WRITE_REF_DEBUG 305 static void bch2_writes_disabled(struct percpu_ref *writes) 306 { 307 struct bch_fs *c = container_of(writes, struct bch_fs, writes); 308 309 set_bit(BCH_FS_write_disable_complete, &c->flags); 310 wake_up(&bch2_read_only_wait); 311 } 312 #endif 313 314 void bch2_fs_read_only(struct bch_fs *c) 315 { 316 if (!test_bit(BCH_FS_rw, &c->flags)) { 317 bch2_journal_reclaim_stop(&c->journal); 318 return; 319 } 320 321 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags)); 322 323 bch_verbose(c, "going read-only"); 324 325 /* 326 * Block new foreground-end write operations from starting - any new 327 * writes will return -EROFS: 328 */ 329 set_bit(BCH_FS_going_ro, &c->flags); 330 #ifndef BCH_WRITE_REF_DEBUG 331 percpu_ref_kill(&c->writes); 332 #else 333 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 334 bch2_write_ref_put(c, i); 335 #endif 336 337 /* 338 * If we're not doing an emergency shutdown, we want to wait on 339 * outstanding writes to complete so they don't see spurious errors due 340 * to shutting down the allocator: 341 * 342 * If we are doing an emergency shutdown outstanding writes may 343 * hang until we shutdown the allocator so we don't want to wait 344 * on outstanding writes before shutting everything down - but 345 * we do need to wait on them before returning and signalling 346 * that going RO is complete: 347 */ 348 wait_event(bch2_read_only_wait, 349 test_bit(BCH_FS_write_disable_complete, &c->flags) || 350 test_bit(BCH_FS_emergency_ro, &c->flags)); 351 352 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags); 353 if (writes_disabled) 354 bch_verbose(c, "finished waiting for writes to stop"); 355 356 __bch2_fs_read_only(c); 357 358 wait_event(bch2_read_only_wait, 359 test_bit(BCH_FS_write_disable_complete, &c->flags)); 360 361 if (!writes_disabled) 362 bch_verbose(c, "finished waiting for writes to stop"); 363 364 clear_bit(BCH_FS_write_disable_complete, &c->flags); 365 clear_bit(BCH_FS_going_ro, &c->flags); 366 clear_bit(BCH_FS_rw, &c->flags); 367 368 if (!bch2_journal_error(&c->journal) && 369 !test_bit(BCH_FS_error, &c->flags) && 370 !test_bit(BCH_FS_emergency_ro, &c->flags) && 371 test_bit(BCH_FS_started, &c->flags) && 372 test_bit(BCH_FS_clean_shutdown, &c->flags) && 373 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) { 374 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal)); 375 BUG_ON(atomic_read(&c->btree_cache.dirty)); 376 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty)); 377 BUG_ON(c->btree_write_buffer.inc.keys.nr); 378 BUG_ON(c->btree_write_buffer.flushing.keys.nr); 379 380 bch_verbose(c, "marking filesystem clean"); 381 bch2_fs_mark_clean(c); 382 } else { 383 bch_verbose(c, "done going read-only, filesystem not clean"); 384 } 385 } 386 387 static void bch2_fs_read_only_work(struct work_struct *work) 388 { 389 struct bch_fs *c = 390 container_of(work, struct bch_fs, read_only_work); 391 392 down_write(&c->state_lock); 393 bch2_fs_read_only(c); 394 up_write(&c->state_lock); 395 } 396 397 static void bch2_fs_read_only_async(struct bch_fs *c) 398 { 399 queue_work(system_long_wq, &c->read_only_work); 400 } 401 402 bool bch2_fs_emergency_read_only(struct bch_fs *c) 403 { 404 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags); 405 406 bch2_journal_halt(&c->journal); 407 bch2_fs_read_only_async(c); 408 409 wake_up(&bch2_read_only_wait); 410 return ret; 411 } 412 413 static int bch2_fs_read_write_late(struct bch_fs *c) 414 { 415 int ret; 416 417 /* 418 * Data move operations can't run until after check_snapshots has 419 * completed, and bch2_snapshot_is_ancestor() is available. 420 * 421 * Ideally we'd start copygc/rebalance earlier instead of waiting for 422 * all of recovery/fsck to complete: 423 */ 424 ret = bch2_copygc_start(c); 425 if (ret) { 426 bch_err(c, "error starting copygc thread"); 427 return ret; 428 } 429 430 ret = bch2_rebalance_start(c); 431 if (ret) { 432 bch_err(c, "error starting rebalance thread"); 433 return ret; 434 } 435 436 return 0; 437 } 438 439 static int __bch2_fs_read_write(struct bch_fs *c, bool early) 440 { 441 int ret; 442 443 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) { 444 bch_err(c, "cannot go rw, unfixed btree errors"); 445 return -BCH_ERR_erofs_unfixed_errors; 446 } 447 448 if (test_bit(BCH_FS_rw, &c->flags)) 449 return 0; 450 451 bch_info(c, "going read-write"); 452 453 ret = bch2_sb_members_v2_init(c); 454 if (ret) 455 goto err; 456 457 ret = bch2_fs_mark_dirty(c); 458 if (ret) 459 goto err; 460 461 clear_bit(BCH_FS_clean_shutdown, &c->flags); 462 463 /* 464 * First journal write must be a flush write: after a clean shutdown we 465 * don't read the journal, so the first journal write may end up 466 * overwriting whatever was there previously, and there must always be 467 * at least one non-flush write in the journal or recovery will fail: 468 */ 469 set_bit(JOURNAL_need_flush_write, &c->journal.flags); 470 set_bit(JOURNAL_running, &c->journal.flags); 471 472 for_each_rw_member(c, ca) 473 bch2_dev_allocator_add(c, ca); 474 bch2_recalc_capacity(c); 475 476 set_bit(BCH_FS_rw, &c->flags); 477 set_bit(BCH_FS_was_rw, &c->flags); 478 479 #ifndef BCH_WRITE_REF_DEBUG 480 percpu_ref_reinit(&c->writes); 481 #else 482 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) { 483 BUG_ON(atomic_long_read(&c->writes[i])); 484 atomic_long_inc(&c->writes[i]); 485 } 486 #endif 487 488 ret = bch2_journal_reclaim_start(&c->journal); 489 if (ret) 490 goto err; 491 492 if (!early) { 493 ret = bch2_fs_read_write_late(c); 494 if (ret) 495 goto err; 496 } 497 498 bch2_do_discards(c); 499 bch2_do_invalidates(c); 500 bch2_do_stripe_deletes(c); 501 bch2_do_pending_node_rewrites(c); 502 return 0; 503 err: 504 if (test_bit(BCH_FS_rw, &c->flags)) 505 bch2_fs_read_only(c); 506 else 507 __bch2_fs_read_only(c); 508 return ret; 509 } 510 511 int bch2_fs_read_write(struct bch_fs *c) 512 { 513 if (c->opts.recovery_pass_last && 514 c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay) 515 return -BCH_ERR_erofs_norecovery; 516 517 if (c->opts.nochanges) 518 return -BCH_ERR_erofs_nochanges; 519 520 return __bch2_fs_read_write(c, false); 521 } 522 523 int bch2_fs_read_write_early(struct bch_fs *c) 524 { 525 lockdep_assert_held(&c->state_lock); 526 527 return __bch2_fs_read_write(c, true); 528 } 529 530 /* Filesystem startup/shutdown: */ 531 532 static void __bch2_fs_free(struct bch_fs *c) 533 { 534 for (unsigned i = 0; i < BCH_TIME_STAT_NR; i++) 535 bch2_time_stats_exit(&c->times[i]); 536 537 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 538 bch2_free_pending_node_rewrites(c); 539 bch2_fs_allocator_background_exit(c); 540 bch2_fs_sb_errors_exit(c); 541 bch2_fs_counters_exit(c); 542 bch2_fs_snapshots_exit(c); 543 bch2_fs_quota_exit(c); 544 bch2_fs_fs_io_direct_exit(c); 545 bch2_fs_fs_io_buffered_exit(c); 546 bch2_fs_fsio_exit(c); 547 bch2_fs_ec_exit(c); 548 bch2_fs_encryption_exit(c); 549 bch2_fs_nocow_locking_exit(c); 550 bch2_fs_io_write_exit(c); 551 bch2_fs_io_read_exit(c); 552 bch2_fs_buckets_waiting_for_journal_exit(c); 553 bch2_fs_btree_interior_update_exit(c); 554 bch2_fs_btree_key_cache_exit(&c->btree_key_cache); 555 bch2_fs_btree_cache_exit(c); 556 bch2_fs_btree_iter_exit(c); 557 bch2_fs_replicas_exit(c); 558 bch2_fs_journal_exit(&c->journal); 559 bch2_io_clock_exit(&c->io_clock[WRITE]); 560 bch2_io_clock_exit(&c->io_clock[READ]); 561 bch2_fs_compress_exit(c); 562 bch2_journal_keys_put_initial(c); 563 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 564 BUG_ON(atomic_read(&c->journal_keys.ref)); 565 bch2_fs_btree_write_buffer_exit(c); 566 percpu_free_rwsem(&c->mark_lock); 567 EBUG_ON(c->online_reserved && percpu_u64_get(c->online_reserved)); 568 free_percpu(c->online_reserved); 569 570 darray_exit(&c->btree_roots_extra); 571 free_percpu(c->pcpu); 572 mempool_exit(&c->large_bkey_pool); 573 mempool_exit(&c->btree_bounce_pool); 574 bioset_exit(&c->btree_bio); 575 mempool_exit(&c->fill_iter); 576 #ifndef BCH_WRITE_REF_DEBUG 577 percpu_ref_exit(&c->writes); 578 #endif 579 kfree(rcu_dereference_protected(c->disk_groups, 1)); 580 kfree(c->journal_seq_blacklist_table); 581 kfree(c->unused_inode_hints); 582 583 if (c->write_ref_wq) 584 destroy_workqueue(c->write_ref_wq); 585 if (c->btree_write_submit_wq) 586 destroy_workqueue(c->btree_write_submit_wq); 587 if (c->btree_read_complete_wq) 588 destroy_workqueue(c->btree_read_complete_wq); 589 if (c->copygc_wq) 590 destroy_workqueue(c->copygc_wq); 591 if (c->btree_io_complete_wq) 592 destroy_workqueue(c->btree_io_complete_wq); 593 if (c->btree_update_wq) 594 destroy_workqueue(c->btree_update_wq); 595 596 bch2_free_super(&c->disk_sb); 597 kvfree(c); 598 module_put(THIS_MODULE); 599 } 600 601 static void bch2_fs_release(struct kobject *kobj) 602 { 603 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); 604 605 __bch2_fs_free(c); 606 } 607 608 void __bch2_fs_stop(struct bch_fs *c) 609 { 610 bch_verbose(c, "shutting down"); 611 612 set_bit(BCH_FS_stopping, &c->flags); 613 614 down_write(&c->state_lock); 615 bch2_fs_read_only(c); 616 up_write(&c->state_lock); 617 618 for_each_member_device(c, ca) 619 if (ca->kobj.state_in_sysfs && 620 ca->disk_sb.bdev) 621 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 622 623 if (c->kobj.state_in_sysfs) 624 kobject_del(&c->kobj); 625 626 bch2_fs_debug_exit(c); 627 bch2_fs_chardev_exit(c); 628 629 bch2_ro_ref_put(c); 630 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref)); 631 632 kobject_put(&c->counters_kobj); 633 kobject_put(&c->time_stats); 634 kobject_put(&c->opts_dir); 635 kobject_put(&c->internal); 636 637 /* btree prefetch might have kicked off reads in the background: */ 638 bch2_btree_flush_all_reads(c); 639 640 for_each_member_device(c, ca) 641 cancel_work_sync(&ca->io_error_work); 642 643 cancel_work_sync(&c->read_only_work); 644 } 645 646 void bch2_fs_free(struct bch_fs *c) 647 { 648 unsigned i; 649 650 mutex_lock(&bch_fs_list_lock); 651 list_del(&c->list); 652 mutex_unlock(&bch_fs_list_lock); 653 654 closure_sync(&c->cl); 655 closure_debug_destroy(&c->cl); 656 657 for (i = 0; i < c->sb.nr_devices; i++) { 658 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true); 659 660 if (ca) { 661 EBUG_ON(atomic_long_read(&ca->ref) != 1); 662 bch2_free_super(&ca->disk_sb); 663 bch2_dev_free(ca); 664 } 665 } 666 667 bch_verbose(c, "shutdown complete"); 668 669 kobject_put(&c->kobj); 670 } 671 672 void bch2_fs_stop(struct bch_fs *c) 673 { 674 __bch2_fs_stop(c); 675 bch2_fs_free(c); 676 } 677 678 static int bch2_fs_online(struct bch_fs *c) 679 { 680 int ret = 0; 681 682 lockdep_assert_held(&bch_fs_list_lock); 683 684 if (__bch2_uuid_to_fs(c->sb.uuid)) { 685 bch_err(c, "filesystem UUID already open"); 686 return -EINVAL; 687 } 688 689 ret = bch2_fs_chardev_init(c); 690 if (ret) { 691 bch_err(c, "error creating character device"); 692 return ret; 693 } 694 695 bch2_fs_debug_init(c); 696 697 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?: 698 kobject_add(&c->internal, &c->kobj, "internal") ?: 699 kobject_add(&c->opts_dir, &c->kobj, "options") ?: 700 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 701 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?: 702 #endif 703 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?: 704 bch2_opts_create_sysfs_files(&c->opts_dir); 705 if (ret) { 706 bch_err(c, "error creating sysfs objects"); 707 return ret; 708 } 709 710 down_write(&c->state_lock); 711 712 for_each_member_device(c, ca) { 713 ret = bch2_dev_sysfs_online(c, ca); 714 if (ret) { 715 bch_err(c, "error creating sysfs objects"); 716 bch2_dev_put(ca); 717 goto err; 718 } 719 } 720 721 BUG_ON(!list_empty(&c->list)); 722 list_add(&c->list, &bch_fs_list); 723 err: 724 up_write(&c->state_lock); 725 return ret; 726 } 727 728 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) 729 { 730 struct bch_fs *c; 731 struct printbuf name = PRINTBUF; 732 unsigned i, iter_size; 733 int ret = 0; 734 735 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); 736 if (!c) { 737 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc); 738 goto out; 739 } 740 741 c->stdio = (void *)(unsigned long) opts.stdio; 742 743 __module_get(THIS_MODULE); 744 745 closure_init(&c->cl, NULL); 746 747 c->kobj.kset = bcachefs_kset; 748 kobject_init(&c->kobj, &bch2_fs_ktype); 749 kobject_init(&c->internal, &bch2_fs_internal_ktype); 750 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); 751 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); 752 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype); 753 754 c->minor = -1; 755 c->disk_sb.fs_sb = true; 756 757 init_rwsem(&c->state_lock); 758 mutex_init(&c->sb_lock); 759 mutex_init(&c->replicas_gc_lock); 760 mutex_init(&c->btree_root_lock); 761 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); 762 763 refcount_set(&c->ro_ref, 1); 764 init_waitqueue_head(&c->ro_ref_wait); 765 sema_init(&c->online_fsck_mutex, 1); 766 767 init_rwsem(&c->gc_lock); 768 mutex_init(&c->gc_gens_lock); 769 atomic_set(&c->journal_keys.ref, 1); 770 c->journal_keys.initial_ref_held = true; 771 772 for (i = 0; i < BCH_TIME_STAT_NR; i++) 773 bch2_time_stats_init(&c->times[i]); 774 775 bch2_fs_gc_init(c); 776 bch2_fs_copygc_init(c); 777 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); 778 bch2_fs_btree_iter_init_early(c); 779 bch2_fs_btree_interior_update_init_early(c); 780 bch2_fs_allocator_background_init(c); 781 bch2_fs_allocator_foreground_init(c); 782 bch2_fs_rebalance_init(c); 783 bch2_fs_quota_init(c); 784 bch2_fs_ec_init_early(c); 785 bch2_fs_move_init(c); 786 bch2_fs_sb_errors_init_early(c); 787 788 INIT_LIST_HEAD(&c->list); 789 790 mutex_init(&c->usage_scratch_lock); 791 792 mutex_init(&c->bio_bounce_pages_lock); 793 mutex_init(&c->snapshot_table_lock); 794 init_rwsem(&c->snapshot_create_lock); 795 796 spin_lock_init(&c->btree_write_error_lock); 797 798 INIT_LIST_HEAD(&c->journal_iters); 799 800 INIT_LIST_HEAD(&c->fsck_error_msgs); 801 mutex_init(&c->fsck_error_msgs_lock); 802 803 seqcount_init(&c->usage_lock); 804 805 sema_init(&c->io_in_flight, 128); 806 807 INIT_LIST_HEAD(&c->vfs_inodes_list); 808 mutex_init(&c->vfs_inodes_lock); 809 810 c->copy_gc_enabled = 1; 811 c->rebalance.enabled = 1; 812 c->promote_whole_extents = true; 813 814 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write]; 815 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write]; 816 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; 817 818 bch2_fs_btree_cache_init_early(&c->btree_cache); 819 820 mutex_init(&c->sectors_available_lock); 821 822 ret = percpu_init_rwsem(&c->mark_lock); 823 if (ret) 824 goto err; 825 826 mutex_lock(&c->sb_lock); 827 ret = bch2_sb_to_fs(c, sb); 828 mutex_unlock(&c->sb_lock); 829 830 if (ret) 831 goto err; 832 833 pr_uuid(&name, c->sb.user_uuid.b); 834 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0; 835 if (ret) 836 goto err; 837 838 strscpy(c->name, name.buf, sizeof(c->name)); 839 printbuf_exit(&name); 840 841 /* Compat: */ 842 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 843 !BCH_SB_JOURNAL_FLUSH_DELAY(sb)) 844 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); 845 846 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 847 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) 848 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100); 849 850 c->opts = bch2_opts_default; 851 ret = bch2_opts_from_sb(&c->opts, sb); 852 if (ret) 853 goto err; 854 855 bch2_opts_apply(&c->opts, opts); 856 857 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc; 858 if (c->opts.inodes_use_key_cache) 859 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes; 860 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops; 861 862 c->block_bits = ilog2(block_sectors(c)); 863 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); 864 865 if (bch2_fs_init_fault("fs_alloc")) { 866 bch_err(c, "fs_alloc fault injected"); 867 ret = -EFAULT; 868 goto err; 869 } 870 871 iter_size = sizeof(struct sort_iter) + 872 (btree_blocks(c) + 1) * 2 * 873 sizeof(struct sort_iter_set); 874 875 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus())); 876 877 if (!(c->btree_update_wq = alloc_workqueue("bcachefs", 878 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) || 879 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io", 880 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 881 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc", 882 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || 883 !(c->btree_read_complete_wq = alloc_workqueue("bcachefs_btree_read_complete", 884 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) || 885 !(c->btree_write_submit_wq = alloc_workqueue("bcachefs_btree_write_sumit", 886 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 887 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref", 888 WQ_FREEZABLE, 0)) || 889 #ifndef BCH_WRITE_REF_DEBUG 890 percpu_ref_init(&c->writes, bch2_writes_disabled, 891 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 892 #endif 893 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 894 bioset_init(&c->btree_bio, 1, 895 max(offsetof(struct btree_read_bio, bio), 896 offsetof(struct btree_write_bio, wbio.bio)), 897 BIOSET_NEED_BVECS) || 898 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || 899 !(c->online_reserved = alloc_percpu(u64)) || 900 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1, 901 c->opts.btree_node_size) || 902 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) || 903 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits, 904 sizeof(u64), GFP_KERNEL))) { 905 ret = -BCH_ERR_ENOMEM_fs_other_alloc; 906 goto err; 907 } 908 909 ret = bch2_fs_counters_init(c) ?: 910 bch2_fs_sb_errors_init(c) ?: 911 bch2_io_clock_init(&c->io_clock[READ]) ?: 912 bch2_io_clock_init(&c->io_clock[WRITE]) ?: 913 bch2_fs_journal_init(&c->journal) ?: 914 bch2_fs_replicas_init(c) ?: 915 bch2_fs_btree_iter_init(c) ?: 916 bch2_fs_btree_cache_init(c) ?: 917 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?: 918 bch2_fs_btree_interior_update_init(c) ?: 919 bch2_fs_buckets_waiting_for_journal_init(c) ?: 920 bch2_fs_btree_write_buffer_init(c) ?: 921 bch2_fs_subvolumes_init(c) ?: 922 bch2_fs_io_read_init(c) ?: 923 bch2_fs_io_write_init(c) ?: 924 bch2_fs_nocow_locking_init(c) ?: 925 bch2_fs_encryption_init(c) ?: 926 bch2_fs_compress_init(c) ?: 927 bch2_fs_ec_init(c) ?: 928 bch2_fs_fsio_init(c) ?: 929 bch2_fs_fs_io_buffered_init(c) ?: 930 bch2_fs_fs_io_direct_init(c); 931 if (ret) 932 goto err; 933 934 for (i = 0; i < c->sb.nr_devices; i++) { 935 if (!bch2_member_exists(c->disk_sb.sb, i)) 936 continue; 937 ret = bch2_dev_alloc(c, i); 938 if (ret) 939 goto err; 940 } 941 942 bch2_journal_entry_res_resize(&c->journal, 943 &c->btree_root_journal_res, 944 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX)); 945 bch2_dev_usage_journal_reserve(c); 946 bch2_journal_entry_res_resize(&c->journal, 947 &c->clock_journal_res, 948 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2); 949 950 mutex_lock(&bch_fs_list_lock); 951 ret = bch2_fs_online(c); 952 mutex_unlock(&bch_fs_list_lock); 953 954 if (ret) 955 goto err; 956 out: 957 return c; 958 err: 959 bch2_fs_free(c); 960 c = ERR_PTR(ret); 961 goto out; 962 } 963 964 noinline_for_stack 965 static void print_mount_opts(struct bch_fs *c) 966 { 967 enum bch_opt_id i; 968 struct printbuf p = PRINTBUF; 969 bool first = true; 970 971 prt_str(&p, "mounting version "); 972 bch2_version_to_text(&p, c->sb.version); 973 974 if (c->opts.read_only) { 975 prt_str(&p, " opts="); 976 first = false; 977 prt_printf(&p, "ro"); 978 } 979 980 for (i = 0; i < bch2_opts_nr; i++) { 981 const struct bch_option *opt = &bch2_opt_table[i]; 982 u64 v = bch2_opt_get_by_id(&c->opts, i); 983 984 if (!(opt->flags & OPT_MOUNT)) 985 continue; 986 987 if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) 988 continue; 989 990 prt_str(&p, first ? " opts=" : ","); 991 first = false; 992 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE); 993 } 994 995 bch_info(c, "%s", p.buf); 996 printbuf_exit(&p); 997 } 998 999 int bch2_fs_start(struct bch_fs *c) 1000 { 1001 time64_t now = ktime_get_real_seconds(); 1002 int ret; 1003 1004 print_mount_opts(c); 1005 1006 down_write(&c->state_lock); 1007 1008 BUG_ON(test_bit(BCH_FS_started, &c->flags)); 1009 1010 mutex_lock(&c->sb_lock); 1011 1012 ret = bch2_sb_members_v2_init(c); 1013 if (ret) { 1014 mutex_unlock(&c->sb_lock); 1015 goto err; 1016 } 1017 1018 for_each_online_member(c, ca) 1019 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now); 1020 1021 struct bch_sb_field_ext *ext = 1022 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64)); 1023 mutex_unlock(&c->sb_lock); 1024 1025 if (!ext) { 1026 bch_err(c, "insufficient space in superblock for sb_field_ext"); 1027 ret = -BCH_ERR_ENOSPC_sb; 1028 goto err; 1029 } 1030 1031 for_each_rw_member(c, ca) 1032 bch2_dev_allocator_add(c, ca); 1033 bch2_recalc_capacity(c); 1034 1035 ret = BCH_SB_INITIALIZED(c->disk_sb.sb) 1036 ? bch2_fs_recovery(c) 1037 : bch2_fs_initialize(c); 1038 if (ret) 1039 goto err; 1040 1041 ret = bch2_opts_check_may_set(c); 1042 if (ret) 1043 goto err; 1044 1045 if (bch2_fs_init_fault("fs_start")) { 1046 bch_err(c, "fs_start fault injected"); 1047 ret = -EINVAL; 1048 goto err; 1049 } 1050 1051 set_bit(BCH_FS_started, &c->flags); 1052 1053 if (c->opts.read_only) { 1054 bch2_fs_read_only(c); 1055 } else { 1056 ret = !test_bit(BCH_FS_rw, &c->flags) 1057 ? bch2_fs_read_write(c) 1058 : bch2_fs_read_write_late(c); 1059 if (ret) 1060 goto err; 1061 } 1062 1063 ret = 0; 1064 err: 1065 if (ret) 1066 bch_err_msg(c, ret, "starting filesystem"); 1067 else 1068 bch_verbose(c, "done starting filesystem"); 1069 up_write(&c->state_lock); 1070 return ret; 1071 } 1072 1073 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) 1074 { 1075 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); 1076 1077 if (le16_to_cpu(sb->block_size) != block_sectors(c)) 1078 return -BCH_ERR_mismatched_block_size; 1079 1080 if (le16_to_cpu(m.bucket_size) < 1081 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) 1082 return -BCH_ERR_bucket_size_too_small; 1083 1084 return 0; 1085 } 1086 1087 static int bch2_dev_in_fs(struct bch_sb_handle *fs, 1088 struct bch_sb_handle *sb, 1089 struct bch_opts *opts) 1090 { 1091 if (fs == sb) 1092 return 0; 1093 1094 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid)) 1095 return -BCH_ERR_device_not_a_member_of_filesystem; 1096 1097 if (!bch2_member_exists(fs->sb, sb->sb->dev_idx)) 1098 return -BCH_ERR_device_has_been_removed; 1099 1100 if (fs->sb->block_size != sb->sb->block_size) 1101 return -BCH_ERR_mismatched_block_size; 1102 1103 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq || 1104 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq) 1105 return 0; 1106 1107 if (fs->sb->seq == sb->sb->seq && 1108 fs->sb->write_time != sb->sb->write_time) { 1109 struct printbuf buf = PRINTBUF; 1110 1111 prt_str(&buf, "Split brain detected between "); 1112 prt_bdevname(&buf, sb->bdev); 1113 prt_str(&buf, " and "); 1114 prt_bdevname(&buf, fs->bdev); 1115 prt_char(&buf, ':'); 1116 prt_newline(&buf); 1117 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq)); 1118 prt_newline(&buf); 1119 1120 prt_bdevname(&buf, fs->bdev); 1121 prt_char(&buf, ' '); 1122 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));; 1123 prt_newline(&buf); 1124 1125 prt_bdevname(&buf, sb->bdev); 1126 prt_char(&buf, ' '); 1127 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));; 1128 prt_newline(&buf); 1129 1130 if (!opts->no_splitbrain_check) 1131 prt_printf(&buf, "Not using older sb"); 1132 1133 pr_err("%s", buf.buf); 1134 printbuf_exit(&buf); 1135 1136 if (!opts->no_splitbrain_check) 1137 return -BCH_ERR_device_splitbrain; 1138 } 1139 1140 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx); 1141 u64 seq_from_fs = le64_to_cpu(m.seq); 1142 u64 seq_from_member = le64_to_cpu(sb->sb->seq); 1143 1144 if (seq_from_fs && seq_from_fs < seq_from_member) { 1145 struct printbuf buf = PRINTBUF; 1146 1147 prt_str(&buf, "Split brain detected between "); 1148 prt_bdevname(&buf, sb->bdev); 1149 prt_str(&buf, " and "); 1150 prt_bdevname(&buf, fs->bdev); 1151 prt_char(&buf, ':'); 1152 prt_newline(&buf); 1153 1154 prt_bdevname(&buf, fs->bdev); 1155 prt_str(&buf, " believes seq of "); 1156 prt_bdevname(&buf, sb->bdev); 1157 prt_printf(&buf, " to be %llu, but ", seq_from_fs); 1158 prt_bdevname(&buf, sb->bdev); 1159 prt_printf(&buf, " has %llu\n", seq_from_member); 1160 1161 if (!opts->no_splitbrain_check) { 1162 prt_str(&buf, "Not using "); 1163 prt_bdevname(&buf, sb->bdev); 1164 } 1165 1166 pr_err("%s", buf.buf); 1167 printbuf_exit(&buf); 1168 1169 if (!opts->no_splitbrain_check) 1170 return -BCH_ERR_device_splitbrain; 1171 } 1172 1173 return 0; 1174 } 1175 1176 /* Device startup/shutdown: */ 1177 1178 static void bch2_dev_release(struct kobject *kobj) 1179 { 1180 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); 1181 1182 kfree(ca); 1183 } 1184 1185 static void bch2_dev_free(struct bch_dev *ca) 1186 { 1187 cancel_work_sync(&ca->io_error_work); 1188 1189 if (ca->kobj.state_in_sysfs && 1190 ca->disk_sb.bdev) 1191 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1192 1193 if (ca->kobj.state_in_sysfs) 1194 kobject_del(&ca->kobj); 1195 1196 kfree(ca->buckets_nouse); 1197 bch2_free_super(&ca->disk_sb); 1198 bch2_dev_journal_exit(ca); 1199 1200 free_percpu(ca->io_done); 1201 bch2_dev_buckets_free(ca); 1202 free_page((unsigned long) ca->sb_read_scratch); 1203 1204 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]); 1205 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]); 1206 1207 percpu_ref_exit(&ca->io_ref); 1208 #ifndef CONFIG_BCACHEFS_DEBUG 1209 percpu_ref_exit(&ca->ref); 1210 #endif 1211 kobject_put(&ca->kobj); 1212 } 1213 1214 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) 1215 { 1216 1217 lockdep_assert_held(&c->state_lock); 1218 1219 if (percpu_ref_is_zero(&ca->io_ref)) 1220 return; 1221 1222 __bch2_dev_read_only(c, ca); 1223 1224 reinit_completion(&ca->io_ref_completion); 1225 percpu_ref_kill(&ca->io_ref); 1226 wait_for_completion(&ca->io_ref_completion); 1227 1228 if (ca->kobj.state_in_sysfs) { 1229 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1230 sysfs_remove_link(&ca->kobj, "block"); 1231 } 1232 1233 bch2_free_super(&ca->disk_sb); 1234 bch2_dev_journal_exit(ca); 1235 } 1236 1237 #ifndef CONFIG_BCACHEFS_DEBUG 1238 static void bch2_dev_ref_complete(struct percpu_ref *ref) 1239 { 1240 struct bch_dev *ca = container_of(ref, struct bch_dev, ref); 1241 1242 complete(&ca->ref_completion); 1243 } 1244 #endif 1245 1246 static void bch2_dev_io_ref_complete(struct percpu_ref *ref) 1247 { 1248 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); 1249 1250 complete(&ca->io_ref_completion); 1251 } 1252 1253 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) 1254 { 1255 int ret; 1256 1257 if (!c->kobj.state_in_sysfs) 1258 return 0; 1259 1260 if (!ca->kobj.state_in_sysfs) { 1261 ret = kobject_add(&ca->kobj, &c->kobj, 1262 "dev-%u", ca->dev_idx); 1263 if (ret) 1264 return ret; 1265 } 1266 1267 if (ca->disk_sb.bdev) { 1268 struct kobject *block = bdev_kobj(ca->disk_sb.bdev); 1269 1270 ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); 1271 if (ret) 1272 return ret; 1273 1274 ret = sysfs_create_link(&ca->kobj, block, "block"); 1275 if (ret) 1276 return ret; 1277 } 1278 1279 return 0; 1280 } 1281 1282 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, 1283 struct bch_member *member) 1284 { 1285 struct bch_dev *ca; 1286 unsigned i; 1287 1288 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 1289 if (!ca) 1290 return NULL; 1291 1292 kobject_init(&ca->kobj, &bch2_dev_ktype); 1293 init_completion(&ca->ref_completion); 1294 init_completion(&ca->io_ref_completion); 1295 1296 init_rwsem(&ca->bucket_lock); 1297 1298 INIT_WORK(&ca->io_error_work, bch2_io_error_work); 1299 1300 bch2_time_stats_quantiles_init(&ca->io_latency[READ]); 1301 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]); 1302 1303 ca->mi = bch2_mi_to_cpu(member); 1304 1305 for (i = 0; i < ARRAY_SIZE(member->errors); i++) 1306 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i])); 1307 1308 ca->uuid = member->uuid; 1309 1310 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, 1311 ca->mi.bucket_size / btree_sectors(c)); 1312 1313 #ifndef CONFIG_BCACHEFS_DEBUG 1314 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL)) 1315 goto err; 1316 #else 1317 atomic_long_set(&ca->ref, 1); 1318 #endif 1319 1320 if (percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, 1321 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 1322 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || 1323 bch2_dev_buckets_alloc(c, ca) || 1324 !(ca->io_done = alloc_percpu(*ca->io_done))) 1325 goto err; 1326 1327 return ca; 1328 err: 1329 bch2_dev_free(ca); 1330 return NULL; 1331 } 1332 1333 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, 1334 unsigned dev_idx) 1335 { 1336 ca->dev_idx = dev_idx; 1337 __set_bit(ca->dev_idx, ca->self.d); 1338 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); 1339 1340 ca->fs = c; 1341 rcu_assign_pointer(c->devs[ca->dev_idx], ca); 1342 1343 if (bch2_dev_sysfs_online(c, ca)) 1344 pr_warn("error creating sysfs objects"); 1345 } 1346 1347 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) 1348 { 1349 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1350 struct bch_dev *ca = NULL; 1351 int ret = 0; 1352 1353 if (bch2_fs_init_fault("dev_alloc")) 1354 goto err; 1355 1356 ca = __bch2_dev_alloc(c, &member); 1357 if (!ca) 1358 goto err; 1359 1360 ca->fs = c; 1361 1362 bch2_dev_attach(c, ca, dev_idx); 1363 return ret; 1364 err: 1365 if (ca) 1366 bch2_dev_free(ca); 1367 return -BCH_ERR_ENOMEM_dev_alloc; 1368 } 1369 1370 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) 1371 { 1372 unsigned ret; 1373 1374 if (bch2_dev_is_online(ca)) { 1375 bch_err(ca, "already have device online in slot %u", 1376 sb->sb->dev_idx); 1377 return -BCH_ERR_device_already_online; 1378 } 1379 1380 if (get_capacity(sb->bdev->bd_disk) < 1381 ca->mi.bucket_size * ca->mi.nbuckets) { 1382 bch_err(ca, "cannot online: device too small"); 1383 return -BCH_ERR_device_size_too_small; 1384 } 1385 1386 BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); 1387 1388 ret = bch2_dev_journal_init(ca, sb->sb); 1389 if (ret) 1390 return ret; 1391 1392 /* Commit: */ 1393 ca->disk_sb = *sb; 1394 memset(sb, 0, sizeof(*sb)); 1395 1396 ca->dev = ca->disk_sb.bdev->bd_dev; 1397 1398 percpu_ref_reinit(&ca->io_ref); 1399 1400 return 0; 1401 } 1402 1403 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) 1404 { 1405 struct bch_dev *ca; 1406 int ret; 1407 1408 lockdep_assert_held(&c->state_lock); 1409 1410 if (le64_to_cpu(sb->sb->seq) > 1411 le64_to_cpu(c->disk_sb.sb->seq)) 1412 bch2_sb_to_fs(c, sb->sb); 1413 1414 BUG_ON(!bch2_dev_exists(c, sb->sb->dev_idx)); 1415 1416 ca = bch2_dev_locked(c, sb->sb->dev_idx); 1417 1418 ret = __bch2_dev_attach_bdev(ca, sb); 1419 if (ret) 1420 return ret; 1421 1422 bch2_dev_sysfs_online(c, ca); 1423 1424 struct printbuf name = PRINTBUF; 1425 prt_bdevname(&name, ca->disk_sb.bdev); 1426 1427 if (c->sb.nr_devices == 1) 1428 strscpy(c->name, name.buf, sizeof(c->name)); 1429 strscpy(ca->name, name.buf, sizeof(ca->name)); 1430 1431 printbuf_exit(&name); 1432 1433 rebalance_wakeup(c); 1434 return 0; 1435 } 1436 1437 /* Device management: */ 1438 1439 /* 1440 * Note: this function is also used by the error paths - when a particular 1441 * device sees an error, we call it to determine whether we can just set the 1442 * device RO, or - if this function returns false - we'll set the whole 1443 * filesystem RO: 1444 * 1445 * XXX: maybe we should be more explicit about whether we're changing state 1446 * because we got an error or what have you? 1447 */ 1448 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, 1449 enum bch_member_state new_state, int flags) 1450 { 1451 struct bch_devs_mask new_online_devs; 1452 int nr_rw = 0, required; 1453 1454 lockdep_assert_held(&c->state_lock); 1455 1456 switch (new_state) { 1457 case BCH_MEMBER_STATE_rw: 1458 return true; 1459 case BCH_MEMBER_STATE_ro: 1460 if (ca->mi.state != BCH_MEMBER_STATE_rw) 1461 return true; 1462 1463 /* do we have enough devices to write to? */ 1464 for_each_member_device(c, ca2) 1465 if (ca2 != ca) 1466 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw; 1467 1468 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) 1469 ? c->opts.metadata_replicas 1470 : metadata_replicas_required(c), 1471 !(flags & BCH_FORCE_IF_DATA_DEGRADED) 1472 ? c->opts.data_replicas 1473 : data_replicas_required(c)); 1474 1475 return nr_rw >= required; 1476 case BCH_MEMBER_STATE_failed: 1477 case BCH_MEMBER_STATE_spare: 1478 if (ca->mi.state != BCH_MEMBER_STATE_rw && 1479 ca->mi.state != BCH_MEMBER_STATE_ro) 1480 return true; 1481 1482 /* do we have enough devices to read from? */ 1483 new_online_devs = bch2_online_devs(c); 1484 __clear_bit(ca->dev_idx, new_online_devs.d); 1485 1486 return bch2_have_enough_devs(c, new_online_devs, flags, false); 1487 default: 1488 BUG(); 1489 } 1490 } 1491 1492 static bool bch2_fs_may_start(struct bch_fs *c) 1493 { 1494 struct bch_dev *ca; 1495 unsigned i, flags = 0; 1496 1497 if (c->opts.very_degraded) 1498 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST; 1499 1500 if (c->opts.degraded) 1501 flags |= BCH_FORCE_IF_DEGRADED; 1502 1503 if (!c->opts.degraded && 1504 !c->opts.very_degraded) { 1505 mutex_lock(&c->sb_lock); 1506 1507 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { 1508 if (!bch2_member_exists(c->disk_sb.sb, i)) 1509 continue; 1510 1511 ca = bch2_dev_locked(c, i); 1512 1513 if (!bch2_dev_is_online(ca) && 1514 (ca->mi.state == BCH_MEMBER_STATE_rw || 1515 ca->mi.state == BCH_MEMBER_STATE_ro)) { 1516 mutex_unlock(&c->sb_lock); 1517 return false; 1518 } 1519 } 1520 mutex_unlock(&c->sb_lock); 1521 } 1522 1523 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true); 1524 } 1525 1526 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) 1527 { 1528 /* 1529 * The allocator thread itself allocates btree nodes, so stop it first: 1530 */ 1531 bch2_dev_allocator_remove(c, ca); 1532 bch2_dev_journal_stop(&c->journal, ca); 1533 } 1534 1535 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) 1536 { 1537 lockdep_assert_held(&c->state_lock); 1538 1539 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw); 1540 1541 bch2_dev_allocator_add(c, ca); 1542 bch2_recalc_capacity(c); 1543 } 1544 1545 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1546 enum bch_member_state new_state, int flags) 1547 { 1548 struct bch_member *m; 1549 int ret = 0; 1550 1551 if (ca->mi.state == new_state) 1552 return 0; 1553 1554 if (!bch2_dev_state_allowed(c, ca, new_state, flags)) 1555 return -BCH_ERR_device_state_not_allowed; 1556 1557 if (new_state != BCH_MEMBER_STATE_rw) 1558 __bch2_dev_read_only(c, ca); 1559 1560 bch_notice(ca, "%s", bch2_member_states[new_state]); 1561 1562 mutex_lock(&c->sb_lock); 1563 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1564 SET_BCH_MEMBER_STATE(m, new_state); 1565 bch2_write_super(c); 1566 mutex_unlock(&c->sb_lock); 1567 1568 if (new_state == BCH_MEMBER_STATE_rw) 1569 __bch2_dev_read_write(c, ca); 1570 1571 rebalance_wakeup(c); 1572 1573 return ret; 1574 } 1575 1576 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1577 enum bch_member_state new_state, int flags) 1578 { 1579 int ret; 1580 1581 down_write(&c->state_lock); 1582 ret = __bch2_dev_set_state(c, ca, new_state, flags); 1583 up_write(&c->state_lock); 1584 1585 return ret; 1586 } 1587 1588 /* Device add/removal: */ 1589 1590 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca) 1591 { 1592 struct bpos start = POS(ca->dev_idx, 0); 1593 struct bpos end = POS(ca->dev_idx, U64_MAX); 1594 int ret; 1595 1596 /* 1597 * We clear the LRU and need_discard btrees first so that we don't race 1598 * with bch2_do_invalidates() and bch2_do_discards() 1599 */ 1600 ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end, 1601 BTREE_TRIGGER_norun, NULL) ?: 1602 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end, 1603 BTREE_TRIGGER_norun, NULL) ?: 1604 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end, 1605 BTREE_TRIGGER_norun, NULL) ?: 1606 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end, 1607 BTREE_TRIGGER_norun, NULL) ?: 1608 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end, 1609 BTREE_TRIGGER_norun, NULL) ?: 1610 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end, 1611 BTREE_TRIGGER_norun, NULL); 1612 bch_err_msg(c, ret, "removing dev alloc info"); 1613 return ret; 1614 } 1615 1616 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) 1617 { 1618 struct bch_member *m; 1619 unsigned dev_idx = ca->dev_idx, data; 1620 int ret; 1621 1622 down_write(&c->state_lock); 1623 1624 /* 1625 * We consume a reference to ca->ref, regardless of whether we succeed 1626 * or fail: 1627 */ 1628 bch2_dev_put(ca); 1629 1630 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1631 bch_err(ca, "Cannot remove without losing data"); 1632 ret = -BCH_ERR_device_state_not_allowed; 1633 goto err; 1634 } 1635 1636 __bch2_dev_read_only(c, ca); 1637 1638 ret = bch2_dev_data_drop(c, ca->dev_idx, flags); 1639 bch_err_msg(ca, ret, "bch2_dev_data_drop()"); 1640 if (ret) 1641 goto err; 1642 1643 ret = bch2_dev_remove_alloc(c, ca); 1644 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()"); 1645 if (ret) 1646 goto err; 1647 1648 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); 1649 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()"); 1650 if (ret) 1651 goto err; 1652 1653 ret = bch2_journal_flush(&c->journal); 1654 bch_err_msg(ca, ret, "bch2_journal_flush()"); 1655 if (ret) 1656 goto err; 1657 1658 ret = bch2_replicas_gc2(c); 1659 bch_err_msg(ca, ret, "bch2_replicas_gc2()"); 1660 if (ret) 1661 goto err; 1662 1663 data = bch2_dev_has_data(c, ca); 1664 if (data) { 1665 struct printbuf data_has = PRINTBUF; 1666 1667 prt_bitflags(&data_has, __bch2_data_types, data); 1668 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf); 1669 printbuf_exit(&data_has); 1670 ret = -EBUSY; 1671 goto err; 1672 } 1673 1674 __bch2_dev_offline(c, ca); 1675 1676 mutex_lock(&c->sb_lock); 1677 rcu_assign_pointer(c->devs[ca->dev_idx], NULL); 1678 mutex_unlock(&c->sb_lock); 1679 1680 #ifndef CONFIG_BCACHEFS_DEBUG 1681 percpu_ref_kill(&ca->ref); 1682 #else 1683 ca->dying = true; 1684 bch2_dev_put(ca); 1685 #endif 1686 wait_for_completion(&ca->ref_completion); 1687 1688 bch2_dev_free(ca); 1689 1690 /* 1691 * At this point the device object has been removed in-core, but the 1692 * on-disk journal might still refer to the device index via sb device 1693 * usage entries. Recovery fails if it sees usage information for an 1694 * invalid device. Flush journal pins to push the back of the journal 1695 * past now invalid device index references before we update the 1696 * superblock, but after the device object has been removed so any 1697 * further journal writes elide usage info for the device. 1698 */ 1699 bch2_journal_flush_all_pins(&c->journal); 1700 1701 /* 1702 * Free this device's slot in the bch_member array - all pointers to 1703 * this device must be gone: 1704 */ 1705 mutex_lock(&c->sb_lock); 1706 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1707 memset(&m->uuid, 0, sizeof(m->uuid)); 1708 1709 bch2_write_super(c); 1710 1711 mutex_unlock(&c->sb_lock); 1712 up_write(&c->state_lock); 1713 1714 bch2_dev_usage_journal_reserve(c); 1715 return 0; 1716 err: 1717 if (ca->mi.state == BCH_MEMBER_STATE_rw && 1718 !percpu_ref_is_zero(&ca->io_ref)) 1719 __bch2_dev_read_write(c, ca); 1720 up_write(&c->state_lock); 1721 return ret; 1722 } 1723 1724 /* Add new device to running filesystem: */ 1725 int bch2_dev_add(struct bch_fs *c, const char *path) 1726 { 1727 struct bch_opts opts = bch2_opts_empty(); 1728 struct bch_sb_handle sb; 1729 struct bch_dev *ca = NULL; 1730 struct bch_sb_field_members_v2 *mi; 1731 struct bch_member dev_mi; 1732 unsigned dev_idx, nr_devices, u64s; 1733 struct printbuf errbuf = PRINTBUF; 1734 struct printbuf label = PRINTBUF; 1735 int ret; 1736 1737 ret = bch2_read_super(path, &opts, &sb); 1738 bch_err_msg(c, ret, "reading super"); 1739 if (ret) 1740 goto err; 1741 1742 dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx); 1743 1744 if (BCH_MEMBER_GROUP(&dev_mi)) { 1745 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1); 1746 if (label.allocation_failure) { 1747 ret = -ENOMEM; 1748 goto err; 1749 } 1750 } 1751 1752 ret = bch2_dev_may_add(sb.sb, c); 1753 if (ret) 1754 goto err; 1755 1756 ca = __bch2_dev_alloc(c, &dev_mi); 1757 if (!ca) { 1758 ret = -ENOMEM; 1759 goto err; 1760 } 1761 1762 bch2_dev_usage_init(ca); 1763 1764 ret = __bch2_dev_attach_bdev(ca, &sb); 1765 if (ret) 1766 goto err; 1767 1768 ret = bch2_dev_journal_alloc(ca); 1769 bch_err_msg(c, ret, "allocating journal"); 1770 if (ret) 1771 goto err; 1772 1773 down_write(&c->state_lock); 1774 mutex_lock(&c->sb_lock); 1775 1776 ret = bch2_sb_from_fs(c, ca); 1777 bch_err_msg(c, ret, "setting up new superblock"); 1778 if (ret) 1779 goto err_unlock; 1780 1781 if (dynamic_fault("bcachefs:add:no_slot")) 1782 goto no_slot; 1783 1784 if (c->sb.nr_devices < BCH_SB_MEMBERS_MAX) { 1785 dev_idx = c->sb.nr_devices; 1786 goto have_slot; 1787 } 1788 1789 int best = -1; 1790 u64 best_last_mount = 0; 1791 for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) { 1792 struct bch_member m = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1793 if (bch2_member_alive(&m)) 1794 continue; 1795 1796 u64 last_mount = le64_to_cpu(m.last_mount); 1797 if (best < 0 || last_mount < best_last_mount) { 1798 best = dev_idx; 1799 best_last_mount = last_mount; 1800 } 1801 } 1802 if (best >= 0) { 1803 dev_idx = best; 1804 goto have_slot; 1805 } 1806 no_slot: 1807 ret = -BCH_ERR_ENOSPC_sb_members; 1808 bch_err_msg(c, ret, "setting up new superblock"); 1809 goto err_unlock; 1810 1811 have_slot: 1812 nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices); 1813 1814 mi = bch2_sb_field_get(c->disk_sb.sb, members_v2); 1815 u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) + 1816 le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64)); 1817 1818 mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s); 1819 if (!mi) { 1820 ret = -BCH_ERR_ENOSPC_sb_members; 1821 bch_err_msg(c, ret, "setting up new superblock"); 1822 goto err_unlock; 1823 } 1824 struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1825 1826 /* success: */ 1827 1828 *m = dev_mi; 1829 m->last_mount = cpu_to_le64(ktime_get_real_seconds()); 1830 c->disk_sb.sb->nr_devices = nr_devices; 1831 1832 ca->disk_sb.sb->dev_idx = dev_idx; 1833 bch2_dev_attach(c, ca, dev_idx); 1834 1835 if (BCH_MEMBER_GROUP(&dev_mi)) { 1836 ret = __bch2_dev_group_set(c, ca, label.buf); 1837 bch_err_msg(c, ret, "creating new label"); 1838 if (ret) 1839 goto err_unlock; 1840 } 1841 1842 bch2_write_super(c); 1843 mutex_unlock(&c->sb_lock); 1844 1845 bch2_dev_usage_journal_reserve(c); 1846 1847 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1848 bch_err_msg(ca, ret, "marking new superblock"); 1849 if (ret) 1850 goto err_late; 1851 1852 ret = bch2_fs_freespace_init(c); 1853 bch_err_msg(ca, ret, "initializing free space"); 1854 if (ret) 1855 goto err_late; 1856 1857 ca->new_fs_bucket_idx = 0; 1858 1859 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1860 __bch2_dev_read_write(c, ca); 1861 1862 up_write(&c->state_lock); 1863 return 0; 1864 1865 err_unlock: 1866 mutex_unlock(&c->sb_lock); 1867 up_write(&c->state_lock); 1868 err: 1869 if (ca) 1870 bch2_dev_free(ca); 1871 bch2_free_super(&sb); 1872 printbuf_exit(&label); 1873 printbuf_exit(&errbuf); 1874 bch_err_fn(c, ret); 1875 return ret; 1876 err_late: 1877 up_write(&c->state_lock); 1878 ca = NULL; 1879 goto err; 1880 } 1881 1882 /* Hot add existing device to running filesystem: */ 1883 int bch2_dev_online(struct bch_fs *c, const char *path) 1884 { 1885 struct bch_opts opts = bch2_opts_empty(); 1886 struct bch_sb_handle sb = { NULL }; 1887 struct bch_dev *ca; 1888 unsigned dev_idx; 1889 int ret; 1890 1891 down_write(&c->state_lock); 1892 1893 ret = bch2_read_super(path, &opts, &sb); 1894 if (ret) { 1895 up_write(&c->state_lock); 1896 return ret; 1897 } 1898 1899 dev_idx = sb.sb->dev_idx; 1900 1901 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts); 1902 bch_err_msg(c, ret, "bringing %s online", path); 1903 if (ret) 1904 goto err; 1905 1906 ret = bch2_dev_attach_bdev(c, &sb); 1907 if (ret) 1908 goto err; 1909 1910 ca = bch2_dev_locked(c, dev_idx); 1911 1912 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1913 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path); 1914 if (ret) 1915 goto err; 1916 1917 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1918 __bch2_dev_read_write(c, ca); 1919 1920 if (!ca->mi.freespace_initialized) { 1921 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets); 1922 bch_err_msg(ca, ret, "initializing free space"); 1923 if (ret) 1924 goto err; 1925 } 1926 1927 if (!ca->journal.nr) { 1928 ret = bch2_dev_journal_alloc(ca); 1929 bch_err_msg(ca, ret, "allocating journal"); 1930 if (ret) 1931 goto err; 1932 } 1933 1934 mutex_lock(&c->sb_lock); 1935 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = 1936 cpu_to_le64(ktime_get_real_seconds()); 1937 bch2_write_super(c); 1938 mutex_unlock(&c->sb_lock); 1939 1940 up_write(&c->state_lock); 1941 return 0; 1942 err: 1943 up_write(&c->state_lock); 1944 bch2_free_super(&sb); 1945 return ret; 1946 } 1947 1948 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) 1949 { 1950 down_write(&c->state_lock); 1951 1952 if (!bch2_dev_is_online(ca)) { 1953 bch_err(ca, "Already offline"); 1954 up_write(&c->state_lock); 1955 return 0; 1956 } 1957 1958 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1959 bch_err(ca, "Cannot offline required disk"); 1960 up_write(&c->state_lock); 1961 return -BCH_ERR_device_state_not_allowed; 1962 } 1963 1964 __bch2_dev_offline(c, ca); 1965 1966 up_write(&c->state_lock); 1967 return 0; 1968 } 1969 1970 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) 1971 { 1972 struct bch_member *m; 1973 u64 old_nbuckets; 1974 int ret = 0; 1975 1976 down_write(&c->state_lock); 1977 old_nbuckets = ca->mi.nbuckets; 1978 1979 if (nbuckets < ca->mi.nbuckets) { 1980 bch_err(ca, "Cannot shrink yet"); 1981 ret = -EINVAL; 1982 goto err; 1983 } 1984 1985 if (nbuckets > BCH_MEMBER_NBUCKETS_MAX) { 1986 bch_err(ca, "New device size too big (%llu greater than max %u)", 1987 nbuckets, BCH_MEMBER_NBUCKETS_MAX); 1988 ret = -BCH_ERR_device_size_too_big; 1989 goto err; 1990 } 1991 1992 if (bch2_dev_is_online(ca) && 1993 get_capacity(ca->disk_sb.bdev->bd_disk) < 1994 ca->mi.bucket_size * nbuckets) { 1995 bch_err(ca, "New size larger than device"); 1996 ret = -BCH_ERR_device_size_too_small; 1997 goto err; 1998 } 1999 2000 ret = bch2_dev_buckets_resize(c, ca, nbuckets); 2001 bch_err_msg(ca, ret, "resizing buckets"); 2002 if (ret) 2003 goto err; 2004 2005 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 2006 if (ret) 2007 goto err; 2008 2009 mutex_lock(&c->sb_lock); 2010 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 2011 m->nbuckets = cpu_to_le64(nbuckets); 2012 2013 bch2_write_super(c); 2014 mutex_unlock(&c->sb_lock); 2015 2016 if (ca->mi.freespace_initialized) { 2017 ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets); 2018 if (ret) 2019 goto err; 2020 2021 /* 2022 * XXX: this is all wrong transactionally - we'll be able to do 2023 * this correctly after the disk space accounting rewrite 2024 */ 2025 ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets; 2026 } 2027 2028 bch2_recalc_capacity(c); 2029 err: 2030 up_write(&c->state_lock); 2031 return ret; 2032 } 2033 2034 /* return with ref on ca->ref: */ 2035 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name) 2036 { 2037 for_each_member_device(c, ca) 2038 if (!strcmp(name, ca->name)) 2039 return ca; 2040 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found); 2041 } 2042 2043 /* Filesystem open: */ 2044 2045 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r) 2046 { 2047 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?: 2048 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time)); 2049 } 2050 2051 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, 2052 struct bch_opts opts) 2053 { 2054 DARRAY(struct bch_sb_handle) sbs = { 0 }; 2055 struct bch_fs *c = NULL; 2056 struct bch_sb_handle *best = NULL; 2057 struct printbuf errbuf = PRINTBUF; 2058 int ret = 0; 2059 2060 if (!try_module_get(THIS_MODULE)) 2061 return ERR_PTR(-ENODEV); 2062 2063 if (!nr_devices) { 2064 ret = -EINVAL; 2065 goto err; 2066 } 2067 2068 ret = darray_make_room(&sbs, nr_devices); 2069 if (ret) 2070 goto err; 2071 2072 for (unsigned i = 0; i < nr_devices; i++) { 2073 struct bch_sb_handle sb = { NULL }; 2074 2075 ret = bch2_read_super(devices[i], &opts, &sb); 2076 if (ret) 2077 goto err; 2078 2079 BUG_ON(darray_push(&sbs, sb)); 2080 } 2081 2082 if (opts.nochanges && !opts.read_only) { 2083 ret = -BCH_ERR_erofs_nochanges; 2084 goto err_print; 2085 } 2086 2087 darray_for_each(sbs, sb) 2088 if (!best || sb_cmp(sb->sb, best->sb) > 0) 2089 best = sb; 2090 2091 darray_for_each_reverse(sbs, sb) { 2092 ret = bch2_dev_in_fs(best, sb, &opts); 2093 2094 if (ret == -BCH_ERR_device_has_been_removed || 2095 ret == -BCH_ERR_device_splitbrain) { 2096 bch2_free_super(sb); 2097 darray_remove_item(&sbs, sb); 2098 best -= best > sb; 2099 ret = 0; 2100 continue; 2101 } 2102 2103 if (ret) 2104 goto err_print; 2105 } 2106 2107 c = bch2_fs_alloc(best->sb, opts); 2108 ret = PTR_ERR_OR_ZERO(c); 2109 if (ret) 2110 goto err; 2111 2112 down_write(&c->state_lock); 2113 darray_for_each(sbs, sb) { 2114 ret = bch2_dev_attach_bdev(c, sb); 2115 if (ret) { 2116 up_write(&c->state_lock); 2117 goto err; 2118 } 2119 } 2120 up_write(&c->state_lock); 2121 2122 if (!bch2_fs_may_start(c)) { 2123 ret = -BCH_ERR_insufficient_devices_to_start; 2124 goto err_print; 2125 } 2126 2127 if (!c->opts.nostart) { 2128 ret = bch2_fs_start(c); 2129 if (ret) 2130 goto err; 2131 } 2132 out: 2133 darray_for_each(sbs, sb) 2134 bch2_free_super(sb); 2135 darray_exit(&sbs); 2136 printbuf_exit(&errbuf); 2137 module_put(THIS_MODULE); 2138 return c; 2139 err_print: 2140 pr_err("bch_fs_open err opening %s: %s", 2141 devices[0], bch2_err_str(ret)); 2142 err: 2143 if (!IS_ERR_OR_NULL(c)) 2144 bch2_fs_stop(c); 2145 c = ERR_PTR(ret); 2146 goto out; 2147 } 2148 2149 /* Global interfaces/init */ 2150 2151 static void bcachefs_exit(void) 2152 { 2153 bch2_debug_exit(); 2154 bch2_vfs_exit(); 2155 bch2_chardev_exit(); 2156 bch2_btree_key_cache_exit(); 2157 if (bcachefs_kset) 2158 kset_unregister(bcachefs_kset); 2159 } 2160 2161 static int __init bcachefs_init(void) 2162 { 2163 bch2_bkey_pack_test(); 2164 2165 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || 2166 bch2_btree_key_cache_init() || 2167 bch2_chardev_init() || 2168 bch2_vfs_init() || 2169 bch2_debug_init()) 2170 goto err; 2171 2172 return 0; 2173 err: 2174 bcachefs_exit(); 2175 return -ENOMEM; 2176 } 2177 2178 #define BCH_DEBUG_PARAM(name, description) \ 2179 bool bch2_##name; \ 2180 module_param_named(name, bch2_##name, bool, 0644); \ 2181 MODULE_PARM_DESC(name, description); 2182 BCH_DEBUG_PARAMS() 2183 #undef BCH_DEBUG_PARAM 2184 2185 __maybe_unused 2186 static unsigned bch2_metadata_version = bcachefs_metadata_version_current; 2187 module_param_named(version, bch2_metadata_version, uint, 0400); 2188 2189 module_exit(bcachefs_exit); 2190 module_init(bcachefs_init); 2191